if_vr.c revision 1.103 1 /* $NetBSD: if_vr.c,v 1.103 2010/02/24 22:38:01 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.103 2010/02/24 22:38:01 dyoung Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include <net/bpf.h>
127
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 #include <dev/pci/pcidevs.h>
139
140 #include <dev/pci/if_vrreg.h>
141
142 #define VR_USEIOSPACE
143
144 /*
145 * Various supported device vendors/types and their names.
146 */
147 static const struct vr_type {
148 pci_vendor_id_t vr_vid;
149 pci_product_id_t vr_did;
150 } vr_devs[] = {
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
152 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
153 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
154 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
156 };
157
158 /*
159 * Transmit descriptor list size.
160 */
161 #define VR_NTXDESC 64
162 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
163 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
164
165 /*
166 * Receive descriptor list size.
167 */
168 #define VR_NRXDESC 64
169 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
170 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
171
172 /*
173 * Control data structres that are DMA'd to the Rhine chip. We allocate
174 * them in a single clump that maps to a single DMA segment to make several
175 * things easier.
176 *
177 * Note that since we always copy outgoing packets to aligned transmit
178 * buffers, we can reduce the transmit descriptors to one per packet.
179 */
180 struct vr_control_data {
181 struct vr_desc vr_txdescs[VR_NTXDESC];
182 struct vr_desc vr_rxdescs[VR_NRXDESC];
183 };
184
185 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
186 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
187 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
188
189 /*
190 * Software state of transmit and receive descriptors.
191 */
192 struct vr_descsoft {
193 struct mbuf *ds_mbuf; /* head of mbuf chain */
194 bus_dmamap_t ds_dmamap; /* our DMA map */
195 };
196
197 struct vr_softc {
198 device_t vr_dev;
199 void *vr_ih; /* interrupt cookie */
200 bus_space_tag_t vr_bst; /* bus space tag */
201 bus_space_handle_t vr_bsh; /* bus space handle */
202 bus_dma_tag_t vr_dmat; /* bus DMA tag */
203 pci_chipset_tag_t vr_pc; /* PCI chipset info */
204 pcitag_t vr_tag; /* PCI tag */
205 struct ethercom vr_ec; /* Ethernet common info */
206 uint8_t vr_enaddr[ETHER_ADDR_LEN];
207 struct mii_data vr_mii; /* MII/media info */
208
209 pcireg_t vr_id; /* vendor/product ID */
210 uint8_t vr_revid; /* Rhine chip revision */
211
212 callout_t vr_tick_ch; /* tick callout */
213
214 bus_dmamap_t vr_cddmamap; /* control data DMA map */
215 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
216
217 /*
218 * Software state for transmit and receive descriptors.
219 */
220 struct vr_descsoft vr_txsoft[VR_NTXDESC];
221 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
222
223 /*
224 * Control data structures.
225 */
226 struct vr_control_data *vr_control_data;
227
228 int vr_txpending; /* number of TX requests pending */
229 int vr_txdirty; /* first dirty TX descriptor */
230 int vr_txlast; /* last used TX descriptor */
231
232 int vr_rxptr; /* next ready RX descriptor */
233
234 uint32_t vr_save_iobase;
235 uint32_t vr_save_membase;
236 uint32_t vr_save_irq;
237
238 #if NRND > 0
239 rndsource_element_t rnd_source; /* random source */
240 #endif
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
270 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
271 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
272 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
273 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (/* CONSTCOND */ 0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf(struct vr_softc *, int);
297
298 static void vr_rxeof(struct vr_softc *);
299 static void vr_rxeoc(struct vr_softc *);
300 static void vr_txeof(struct vr_softc *);
301 static int vr_intr(void *);
302 static void vr_start(struct ifnet *);
303 static int vr_ioctl(struct ifnet *, u_long, void *);
304 static int vr_init(struct ifnet *);
305 static void vr_stop(struct ifnet *, int);
306 static void vr_rxdrain(struct vr_softc *);
307 static void vr_watchdog(struct ifnet *);
308 static void vr_tick(void *);
309
310 static int vr_mii_readreg(device_t, int, int);
311 static void vr_mii_writereg(device_t, int, int, int);
312 static void vr_mii_statchg(device_t);
313
314 static void vr_setmulti(struct vr_softc *);
315 static void vr_reset(struct vr_softc *);
316 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
317 pcireg_t);
318 static bool vr_resume(device_t, const pmf_qual_t *);
319
320 int vr_copy_small = 0;
321
322 #define VR_SETBIT(sc, reg, x) \
323 CSR_WRITE_1(sc, reg, \
324 CSR_READ_1(sc, reg) | (x))
325
326 #define VR_CLRBIT(sc, reg, x) \
327 CSR_WRITE_1(sc, reg, \
328 CSR_READ_1(sc, reg) & ~(x))
329
330 #define VR_SETBIT16(sc, reg, x) \
331 CSR_WRITE_2(sc, reg, \
332 CSR_READ_2(sc, reg) | (x))
333
334 #define VR_CLRBIT16(sc, reg, x) \
335 CSR_WRITE_2(sc, reg, \
336 CSR_READ_2(sc, reg) & ~(x))
337
338 #define VR_SETBIT32(sc, reg, x) \
339 CSR_WRITE_4(sc, reg, \
340 CSR_READ_4(sc, reg) | (x))
341
342 #define VR_CLRBIT32(sc, reg, x) \
343 CSR_WRITE_4(sc, reg, \
344 CSR_READ_4(sc, reg) & ~(x))
345
346 /*
347 * MII bit-bang glue.
348 */
349 static uint32_t vr_mii_bitbang_read(device_t);
350 static void vr_mii_bitbang_write(device_t, uint32_t);
351
352 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 vr_mii_bitbang_read,
354 vr_mii_bitbang_write,
355 {
356 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
357 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
358 VR_MIICMD_CLK, /* MII_BIT_MDC */
359 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
360 0, /* MII_BIT_DIR_PHY_HOST */
361 }
362 };
363
364 static uint32_t
365 vr_mii_bitbang_read(device_t self)
366 {
367 struct vr_softc *sc = device_private(self);
368
369 return (CSR_READ_1(sc, VR_MIICMD));
370 }
371
372 static void
373 vr_mii_bitbang_write(device_t self, uint32_t val)
374 {
375 struct vr_softc *sc = device_private(self);
376
377 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
378 }
379
380 /*
381 * Read an PHY register through the MII.
382 */
383 static int
384 vr_mii_readreg(device_t self, int phy, int reg)
385 {
386 struct vr_softc *sc = device_private(self);
387
388 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
389 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
390 }
391
392 /*
393 * Write to a PHY register through the MII.
394 */
395 static void
396 vr_mii_writereg(device_t self, int phy, int reg, int val)
397 {
398 struct vr_softc *sc = device_private(self);
399
400 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403
404 static void
405 vr_mii_statchg(device_t self)
406 {
407 struct vr_softc *sc = device_private(self);
408
409 /*
410 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 * register, we first have to put the transmit and/or receive logic
412 * in the idle state.
413 */
414 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
415
416 if (sc->vr_mii.mii_media_active & IFM_FDX)
417 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418 else
419 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420
421 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
422 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
423 }
424
425 #define vr_calchash(addr) \
426 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
427
428 /*
429 * Program the 64-bit multicast hash filter.
430 */
431 static void
432 vr_setmulti(struct vr_softc *sc)
433 {
434 struct ifnet *ifp;
435 int h = 0;
436 uint32_t hashes[2] = { 0, 0 };
437 struct ether_multistep step;
438 struct ether_multi *enm;
439 int mcnt = 0;
440 uint8_t rxfilt;
441
442 ifp = &sc->vr_ec.ec_if;
443
444 rxfilt = CSR_READ_1(sc, VR_RXCFG);
445
446 if (ifp->if_flags & IFF_PROMISC) {
447 allmulti:
448 ifp->if_flags |= IFF_ALLMULTI;
449 rxfilt |= VR_RXCFG_RX_MULTI;
450 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
451 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
452 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
453 return;
454 }
455
456 /* first, zot all the existing hash bits */
457 CSR_WRITE_4(sc, VR_MAR0, 0);
458 CSR_WRITE_4(sc, VR_MAR1, 0);
459
460 /* now program new ones */
461 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
462 while (enm != NULL) {
463 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
464 ETHER_ADDR_LEN) != 0)
465 goto allmulti;
466
467 h = vr_calchash(enm->enm_addrlo);
468
469 if (h < 32)
470 hashes[0] |= (1 << h);
471 else
472 hashes[1] |= (1 << (h - 32));
473 ETHER_NEXT_MULTI(step, enm);
474 mcnt++;
475 }
476
477 ifp->if_flags &= ~IFF_ALLMULTI;
478
479 if (mcnt)
480 rxfilt |= VR_RXCFG_RX_MULTI;
481 else
482 rxfilt &= ~VR_RXCFG_RX_MULTI;
483
484 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
485 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
486 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 }
488
489 static void
490 vr_reset(struct vr_softc *sc)
491 {
492 int i;
493
494 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
495
496 for (i = 0; i < VR_TIMEOUT; i++) {
497 DELAY(10);
498 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
499 break;
500 }
501 if (i == VR_TIMEOUT) {
502 if (sc->vr_revid < REV_ID_VT3065_A) {
503 printf("%s: reset never completed!\n",
504 device_xname(sc->vr_dev));
505 } else {
506 /* Use newer force reset command */
507 printf("%s: using force reset command.\n",
508 device_xname(sc->vr_dev));
509 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
510 }
511 }
512
513 /* Wait a little while for the chip to get its brains in order. */
514 DELAY(1000);
515 }
516
517 /*
518 * Initialize an RX descriptor and attach an MBUF cluster.
519 * Note: the length fields are only 11 bits wide, which means the
520 * largest size we can specify is 2047. This is important because
521 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
522 * overflow the field and make a mess.
523 */
524 static int
525 vr_add_rxbuf(struct vr_softc *sc, int i)
526 {
527 struct vr_descsoft *ds = VR_DSRX(sc, i);
528 struct mbuf *m_new;
529 int error;
530
531 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 if (m_new == NULL)
533 return (ENOBUFS);
534
535 MCLGET(m_new, M_DONTWAIT);
536 if ((m_new->m_flags & M_EXT) == 0) {
537 m_freem(m_new);
538 return (ENOBUFS);
539 }
540
541 if (ds->ds_mbuf != NULL)
542 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543
544 ds->ds_mbuf = m_new;
545
546 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 BUS_DMA_READ|BUS_DMA_NOWAIT);
549 if (error) {
550 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
551 i, error);
552 panic("vr_add_rxbuf"); /* XXX */
553 }
554
555 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557
558 VR_INIT_RXDESC(sc, i);
559
560 return (0);
561 }
562
563 /*
564 * A frame has been uploaded: pass the resulting mbuf chain up to
565 * the higher level protocols.
566 */
567 static void
568 vr_rxeof(struct vr_softc *sc)
569 {
570 struct mbuf *m;
571 struct ifnet *ifp;
572 struct vr_desc *d;
573 struct vr_descsoft *ds;
574 int i, total_len;
575 uint32_t rxstat;
576
577 ifp = &sc->vr_ec.ec_if;
578
579 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
580 d = VR_CDRX(sc, i);
581 ds = VR_DSRX(sc, i);
582
583 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
584
585 rxstat = le32toh(d->vr_status);
586
587 if (rxstat & VR_RXSTAT_OWN) {
588 /*
589 * We have processed all of the receive buffers.
590 */
591 break;
592 }
593
594 /*
595 * If an error occurs, update stats, clear the
596 * status word and leave the mbuf cluster in place:
597 * it should simply get re-used next time this descriptor
598 * comes up in the ring.
599 */
600 if (rxstat & VR_RXSTAT_RXERR) {
601 const char *errstr;
602
603 ifp->if_ierrors++;
604 switch (rxstat & 0x000000FF) {
605 case VR_RXSTAT_CRCERR:
606 errstr = "crc error";
607 break;
608 case VR_RXSTAT_FRAMEALIGNERR:
609 errstr = "frame alignment error";
610 break;
611 case VR_RXSTAT_FIFOOFLOW:
612 errstr = "FIFO overflow";
613 break;
614 case VR_RXSTAT_GIANT:
615 errstr = "received giant packet";
616 break;
617 case VR_RXSTAT_RUNT:
618 errstr = "received runt packet";
619 break;
620 case VR_RXSTAT_BUSERR:
621 errstr = "system bus error";
622 break;
623 case VR_RXSTAT_BUFFERR:
624 errstr = "rx buffer error";
625 break;
626 default:
627 errstr = "unknown rx error";
628 break;
629 }
630 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
631 errstr);
632
633 VR_INIT_RXDESC(sc, i);
634
635 continue;
636 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
637 !(rxstat & VR_RXSTAT_LASTFRAG)) {
638 /*
639 * This driver expects to receive whole packets every
640 * time. In case we receive a fragment that is not
641 * a complete packet, we discard it.
642 */
643 ifp->if_ierrors++;
644
645 printf("%s: receive error: incomplete frame; "
646 "size = %d, status = 0x%x\n",
647 device_xname(sc->vr_dev),
648 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
649
650 VR_INIT_RXDESC(sc, i);
651
652 continue;
653 }
654
655 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
656 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
657
658 /* No errors; receive the packet. */
659 total_len = VR_RXBYTES(le32toh(d->vr_status));
660 #ifdef DIAGNOSTIC
661 if (total_len == 0) {
662 /*
663 * If we receive a zero-length packet, we probably
664 * missed to handle an error condition above.
665 * Discard it to avoid a later crash.
666 */
667 ifp->if_ierrors++;
668
669 printf("%s: receive error: zero-length packet; "
670 "status = 0x%x\n",
671 device_xname(sc->vr_dev), rxstat);
672
673 VR_INIT_RXDESC(sc, i);
674
675 continue;
676 }
677 #endif
678
679 /*
680 * The Rhine chip includes the CRC with every packet.
681 * Trim it off here.
682 */
683 total_len -= ETHER_CRC_LEN;
684
685 #ifdef __NO_STRICT_ALIGNMENT
686 /*
687 * If the packet is small enough to fit in a
688 * single header mbuf, allocate one and copy
689 * the data into it. This greatly reduces
690 * memory consumption when we receive lots
691 * of small packets.
692 *
693 * Otherwise, we add a new buffer to the receive
694 * chain. If this fails, we drop the packet and
695 * recycle the old buffer.
696 */
697 if (vr_copy_small != 0 && total_len <= MHLEN) {
698 MGETHDR(m, M_DONTWAIT, MT_DATA);
699 if (m == NULL)
700 goto dropit;
701 memcpy(mtod(m, void *),
702 mtod(ds->ds_mbuf, void *), total_len);
703 VR_INIT_RXDESC(sc, i);
704 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize,
706 BUS_DMASYNC_PREREAD);
707 } else {
708 m = ds->ds_mbuf;
709 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
710 dropit:
711 ifp->if_ierrors++;
712 VR_INIT_RXDESC(sc, i);
713 bus_dmamap_sync(sc->vr_dmat,
714 ds->ds_dmamap, 0,
715 ds->ds_dmamap->dm_mapsize,
716 BUS_DMASYNC_PREREAD);
717 continue;
718 }
719 }
720 #else
721 /*
722 * The Rhine's packet buffers must be 4-byte aligned.
723 * But this means that the data after the Ethernet header
724 * is misaligned. We must allocate a new buffer and
725 * copy the data, shifted forward 2 bytes.
726 */
727 MGETHDR(m, M_DONTWAIT, MT_DATA);
728 if (m == NULL) {
729 dropit:
730 ifp->if_ierrors++;
731 VR_INIT_RXDESC(sc, i);
732 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
733 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
734 continue;
735 }
736 if (total_len > (MHLEN - 2)) {
737 MCLGET(m, M_DONTWAIT);
738 if ((m->m_flags & M_EXT) == 0) {
739 m_freem(m);
740 goto dropit;
741 }
742 }
743 m->m_data += 2;
744
745 /*
746 * Note that we use clusters for incoming frames, so the
747 * buffer is virtually contiguous.
748 */
749 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
750 total_len);
751
752 /* Allow the receive descriptor to continue using its mbuf. */
753 VR_INIT_RXDESC(sc, i);
754 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 #endif /* __NO_STRICT_ALIGNMENT */
757
758 ifp->if_ipackets++;
759 m->m_pkthdr.rcvif = ifp;
760 m->m_pkthdr.len = m->m_len = total_len;
761 /*
762 * Handle BPF listeners. Let the BPF user see the packet, but
763 * don't pass it up to the ether_input() layer unless it's
764 * a broadcast packet, multicast packet, matches our ethernet
765 * address or the interface is in promiscuous mode.
766 */
767 if (ifp->if_bpf)
768 bpf_ops->bpf_mtap(ifp->if_bpf, m);
769 /* Pass it on. */
770 (*ifp->if_input)(ifp, m);
771 }
772
773 /* Update the receive pointer. */
774 sc->vr_rxptr = i;
775 }
776
777 void
778 vr_rxeoc(struct vr_softc *sc)
779 {
780 struct ifnet *ifp;
781 int i;
782
783 ifp = &sc->vr_ec.ec_if;
784
785 ifp->if_ierrors++;
786
787 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
788 for (i = 0; i < VR_TIMEOUT; i++) {
789 DELAY(10);
790 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
791 break;
792 }
793 if (i == VR_TIMEOUT) {
794 /* XXX need reset? */
795 printf("%s: RX shutdown never complete\n",
796 device_xname(sc->vr_dev));
797 }
798
799 vr_rxeof(sc);
800
801 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
802 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
803 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
804 }
805
806 /*
807 * A frame was downloaded to the chip. It's safe for us to clean up
808 * the list buffers.
809 */
810 static void
811 vr_txeof(struct vr_softc *sc)
812 {
813 struct ifnet *ifp = &sc->vr_ec.ec_if;
814 struct vr_desc *d;
815 struct vr_descsoft *ds;
816 uint32_t txstat;
817 int i, j;
818
819 ifp->if_flags &= ~IFF_OACTIVE;
820
821 /*
822 * Go through our tx list and free mbufs for those
823 * frames that have been transmitted.
824 */
825 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
826 i = VR_NEXTTX(i), sc->vr_txpending--) {
827 d = VR_CDTX(sc, i);
828 ds = VR_DSTX(sc, i);
829
830 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
831
832 txstat = le32toh(d->vr_status);
833
834 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
835 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
836 for (j = 0; j < VR_TIMEOUT; j++) {
837 DELAY(10);
838 if ((CSR_READ_2(sc, VR_COMMAND) &
839 VR_CMD_TX_ON) == 0)
840 break;
841 }
842 if (j == VR_TIMEOUT) {
843 /* XXX need reset? */
844 printf("%s: TX shutdown never complete\n",
845 device_xname(sc->vr_dev));
846 }
847 d->vr_status = htole32(VR_TXSTAT_OWN);
848 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
849 break;
850 }
851
852 if (txstat & VR_TXSTAT_OWN)
853 break;
854
855 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
856 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
857 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
858 m_freem(ds->ds_mbuf);
859 ds->ds_mbuf = NULL;
860
861 if (txstat & VR_TXSTAT_ERRSUM) {
862 ifp->if_oerrors++;
863 if (txstat & VR_TXSTAT_DEFER)
864 ifp->if_collisions++;
865 if (txstat & VR_TXSTAT_LATECOLL)
866 ifp->if_collisions++;
867 }
868
869 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
870 ifp->if_opackets++;
871 }
872
873 /* Update the dirty transmit buffer pointer. */
874 sc->vr_txdirty = i;
875
876 /*
877 * Cancel the watchdog timer if there are no pending
878 * transmissions.
879 */
880 if (sc->vr_txpending == 0)
881 ifp->if_timer = 0;
882 }
883
884 static int
885 vr_intr(void *arg)
886 {
887 struct vr_softc *sc;
888 struct ifnet *ifp;
889 uint16_t status;
890 int handled = 0, dotx = 0;
891
892 sc = arg;
893 ifp = &sc->vr_ec.ec_if;
894
895 /* Suppress unwanted interrupts. */
896 if ((ifp->if_flags & IFF_UP) == 0) {
897 vr_stop(ifp, 1);
898 return (0);
899 }
900
901 /* Disable interrupts. */
902 CSR_WRITE_2(sc, VR_IMR, 0x0000);
903
904 for (;;) {
905 status = CSR_READ_2(sc, VR_ISR);
906 if (status)
907 CSR_WRITE_2(sc, VR_ISR, status);
908
909 if ((status & VR_INTRS) == 0)
910 break;
911
912 handled = 1;
913
914 #if NRND > 0
915 if (RND_ENABLED(&sc->rnd_source))
916 rnd_add_uint32(&sc->rnd_source, status);
917 #endif
918
919 if (status & VR_ISR_RX_OK)
920 vr_rxeof(sc);
921
922 if (status & VR_ISR_RX_DROPPED) {
923 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
924 ifp->if_ierrors++;
925 }
926
927 if (status &
928 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
929 vr_rxeoc(sc);
930
931
932 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
933 if (status & VR_ISR_BUSERR)
934 printf("%s: PCI bus error\n",
935 device_xname(sc->vr_dev));
936 if (status & VR_ISR_TX_UNDERRUN)
937 printf("%s: transmit underrun\n",
938 device_xname(sc->vr_dev));
939 /* vr_init() calls vr_start() */
940 dotx = 0;
941 (void)vr_init(ifp);
942
943 }
944
945 if (status & VR_ISR_TX_OK) {
946 dotx = 1;
947 vr_txeof(sc);
948 }
949
950 if (status &
951 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
952 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
953 printf("%s: transmit aborted\n",
954 device_xname(sc->vr_dev));
955 if (status & VR_ISR_TX_UDFI)
956 printf("%s: transmit underflow\n",
957 device_xname(sc->vr_dev));
958 ifp->if_oerrors++;
959 dotx = 1;
960 vr_txeof(sc);
961 if (sc->vr_txpending) {
962 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
963 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
964 }
965 }
966 }
967
968 /* Re-enable interrupts. */
969 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
970
971 if (dotx)
972 vr_start(ifp);
973
974 return (handled);
975 }
976
977 /*
978 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
979 * to the mbuf data regions directly in the transmit lists. We also save a
980 * copy of the pointers since the transmit list fragment pointers are
981 * physical addresses.
982 */
983 static void
984 vr_start(struct ifnet *ifp)
985 {
986 struct vr_softc *sc = ifp->if_softc;
987 struct mbuf *m0, *m;
988 struct vr_desc *d;
989 struct vr_descsoft *ds;
990 int error, firsttx, nexttx, opending;
991
992 /*
993 * Remember the previous txpending and the first transmit
994 * descriptor we use.
995 */
996 opending = sc->vr_txpending;
997 firsttx = VR_NEXTTX(sc->vr_txlast);
998
999 /*
1000 * Loop through the send queue, setting up transmit descriptors
1001 * until we drain the queue, or use up all available transmit
1002 * descriptors.
1003 */
1004 while (sc->vr_txpending < VR_NTXDESC) {
1005 /*
1006 * Grab a packet off the queue.
1007 */
1008 IFQ_POLL(&ifp->if_snd, m0);
1009 if (m0 == NULL)
1010 break;
1011 m = NULL;
1012
1013 /*
1014 * Get the next available transmit descriptor.
1015 */
1016 nexttx = VR_NEXTTX(sc->vr_txlast);
1017 d = VR_CDTX(sc, nexttx);
1018 ds = VR_DSTX(sc, nexttx);
1019
1020 /*
1021 * Load the DMA map. If this fails, the packet didn't
1022 * fit in one DMA segment, and we need to copy. Note,
1023 * the packet must also be aligned.
1024 * if the packet is too small, copy it too, so we're sure
1025 * we have enough room for the pad buffer.
1026 */
1027 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1028 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1029 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1030 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1031 MGETHDR(m, M_DONTWAIT, MT_DATA);
1032 if (m == NULL) {
1033 printf("%s: unable to allocate Tx mbuf\n",
1034 device_xname(sc->vr_dev));
1035 break;
1036 }
1037 if (m0->m_pkthdr.len > MHLEN) {
1038 MCLGET(m, M_DONTWAIT);
1039 if ((m->m_flags & M_EXT) == 0) {
1040 printf("%s: unable to allocate Tx "
1041 "cluster\n", device_xname(sc->vr_dev));
1042 m_freem(m);
1043 break;
1044 }
1045 }
1046 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1047 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1048 /*
1049 * The Rhine doesn't auto-pad, so we have to do this
1050 * ourselves.
1051 */
1052 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1053 memset(mtod(m, char *) + m0->m_pkthdr.len,
1054 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1055 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1056 }
1057 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1058 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1059 if (error) {
1060 m_freem(m);
1061 printf("%s: unable to load Tx buffer, "
1062 "error = %d\n", device_xname(sc->vr_dev), error);
1063 break;
1064 }
1065 }
1066
1067 IFQ_DEQUEUE(&ifp->if_snd, m0);
1068 if (m != NULL) {
1069 m_freem(m0);
1070 m0 = m;
1071 }
1072
1073 /* Sync the DMA map. */
1074 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1075 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1076
1077 /*
1078 * Store a pointer to the packet so we can free it later.
1079 */
1080 ds->ds_mbuf = m0;
1081
1082 /*
1083 * If there's a BPF listener, bounce a copy of this frame
1084 * to him.
1085 */
1086 if (ifp->if_bpf)
1087 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1088
1089 /*
1090 * Fill in the transmit descriptor.
1091 */
1092 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1093 d->vr_ctl = htole32(m0->m_pkthdr.len);
1094 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1095
1096 /*
1097 * If this is the first descriptor we're enqueuing,
1098 * don't give it to the Rhine yet. That could cause
1099 * a race condition. We'll do it below.
1100 */
1101 if (nexttx == firsttx)
1102 d->vr_status = 0;
1103 else
1104 d->vr_status = htole32(VR_TXSTAT_OWN);
1105
1106 VR_CDTXSYNC(sc, nexttx,
1107 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108
1109 /* Advance the tx pointer. */
1110 sc->vr_txpending++;
1111 sc->vr_txlast = nexttx;
1112 }
1113
1114 if (sc->vr_txpending == VR_NTXDESC) {
1115 /* No more slots left; notify upper layer. */
1116 ifp->if_flags |= IFF_OACTIVE;
1117 }
1118
1119 if (sc->vr_txpending != opending) {
1120 /*
1121 * We enqueued packets. If the transmitter was idle,
1122 * reset the txdirty pointer.
1123 */
1124 if (opending == 0)
1125 sc->vr_txdirty = firsttx;
1126
1127 /*
1128 * Cause a transmit interrupt to happen on the
1129 * last packet we enqueued.
1130 */
1131 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1132 VR_CDTXSYNC(sc, sc->vr_txlast,
1133 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1134
1135 /*
1136 * The entire packet chain is set up. Give the
1137 * first descriptor to the Rhine now.
1138 */
1139 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1140 VR_CDTXSYNC(sc, firsttx,
1141 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1142
1143 /* Start the transmitter. */
1144 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1145
1146 /* Set the watchdog timer in case the chip flakes out. */
1147 ifp->if_timer = 5;
1148 }
1149 }
1150
1151 /*
1152 * Initialize the interface. Must be called at splnet.
1153 */
1154 static int
1155 vr_init(struct ifnet *ifp)
1156 {
1157 struct vr_softc *sc = ifp->if_softc;
1158 struct vr_desc *d;
1159 struct vr_descsoft *ds;
1160 int i, error = 0;
1161
1162 /* Cancel pending I/O. */
1163 vr_stop(ifp, 0);
1164
1165 /* Reset the Rhine to a known state. */
1166 vr_reset(sc);
1167
1168 /* set DMA length in BCR0 and BCR1 */
1169 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1170 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1171
1172 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1173 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1174
1175 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1176 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1177
1178 /* set DMA threshold length in RXCFG and TXCFG */
1179 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1180 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1181
1182 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1183 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1184
1185 /*
1186 * Initialize the transmit descriptor ring. txlast is initialized
1187 * to the end of the list so that it will wrap around to the first
1188 * descriptor when the first packet is transmitted.
1189 */
1190 for (i = 0; i < VR_NTXDESC; i++) {
1191 d = VR_CDTX(sc, i);
1192 memset(d, 0, sizeof(struct vr_desc));
1193 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1194 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1195 }
1196 sc->vr_txpending = 0;
1197 sc->vr_txdirty = 0;
1198 sc->vr_txlast = VR_NTXDESC - 1;
1199
1200 /*
1201 * Initialize the receive descriptor ring.
1202 */
1203 for (i = 0; i < VR_NRXDESC; i++) {
1204 ds = VR_DSRX(sc, i);
1205 if (ds->ds_mbuf == NULL) {
1206 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1207 printf("%s: unable to allocate or map rx "
1208 "buffer %d, error = %d\n",
1209 device_xname(sc->vr_dev), i, error);
1210 /*
1211 * XXX Should attempt to run with fewer receive
1212 * XXX buffers instead of just failing.
1213 */
1214 vr_rxdrain(sc);
1215 goto out;
1216 }
1217 } else
1218 VR_INIT_RXDESC(sc, i);
1219 }
1220 sc->vr_rxptr = 0;
1221
1222 /* If we want promiscuous mode, set the allframes bit. */
1223 if (ifp->if_flags & IFF_PROMISC)
1224 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1225 else
1226 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1227
1228 /* Set capture broadcast bit to capture broadcast frames. */
1229 if (ifp->if_flags & IFF_BROADCAST)
1230 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1231 else
1232 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1233
1234 /* Program the multicast filter, if necessary. */
1235 vr_setmulti(sc);
1236
1237 /* Give the transmit and receive rings to the Rhine. */
1238 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1239 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1240
1241 /* Set current media. */
1242 if ((error = ether_mediachange(ifp)) != 0)
1243 goto out;
1244
1245 /* Enable receiver and transmitter. */
1246 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1247 VR_CMD_TX_ON|VR_CMD_RX_ON|
1248 VR_CMD_RX_GO);
1249
1250 /* Enable interrupts. */
1251 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1252 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1253
1254 ifp->if_flags |= IFF_RUNNING;
1255 ifp->if_flags &= ~IFF_OACTIVE;
1256
1257 /* Start one second timer. */
1258 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1259
1260 /* Attempt to start output on the interface. */
1261 vr_start(ifp);
1262
1263 out:
1264 if (error)
1265 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1266 return (error);
1267 }
1268
1269 static int
1270 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1271 {
1272 struct vr_softc *sc = ifp->if_softc;
1273 int s, error = 0;
1274
1275 s = splnet();
1276
1277 error = ether_ioctl(ifp, command, data);
1278 if (error == ENETRESET) {
1279 /*
1280 * Multicast list has changed; set the hardware filter
1281 * accordingly.
1282 */
1283 if (ifp->if_flags & IFF_RUNNING)
1284 vr_setmulti(sc);
1285 error = 0;
1286 }
1287
1288 splx(s);
1289 return (error);
1290 }
1291
1292 static void
1293 vr_watchdog(struct ifnet *ifp)
1294 {
1295 struct vr_softc *sc = ifp->if_softc;
1296
1297 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1298 ifp->if_oerrors++;
1299
1300 (void) vr_init(ifp);
1301 }
1302
1303 /*
1304 * One second timer, used to tick MII.
1305 */
1306 static void
1307 vr_tick(void *arg)
1308 {
1309 struct vr_softc *sc = arg;
1310 int s;
1311
1312 s = splnet();
1313 mii_tick(&sc->vr_mii);
1314 splx(s);
1315
1316 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1317 }
1318
1319 /*
1320 * Drain the receive queue.
1321 */
1322 static void
1323 vr_rxdrain(struct vr_softc *sc)
1324 {
1325 struct vr_descsoft *ds;
1326 int i;
1327
1328 for (i = 0; i < VR_NRXDESC; i++) {
1329 ds = VR_DSRX(sc, i);
1330 if (ds->ds_mbuf != NULL) {
1331 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1332 m_freem(ds->ds_mbuf);
1333 ds->ds_mbuf = NULL;
1334 }
1335 }
1336 }
1337
1338 /*
1339 * Stop the adapter and free any mbufs allocated to the
1340 * transmit lists.
1341 */
1342 static void
1343 vr_stop(struct ifnet *ifp, int disable)
1344 {
1345 struct vr_softc *sc = ifp->if_softc;
1346 struct vr_descsoft *ds;
1347 int i;
1348
1349 /* Cancel one second timer. */
1350 callout_stop(&sc->vr_tick_ch);
1351
1352 /* Down the MII. */
1353 mii_down(&sc->vr_mii);
1354
1355 ifp = &sc->vr_ec.ec_if;
1356 ifp->if_timer = 0;
1357
1358 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1359 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1360 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1361 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1362 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1363
1364 /*
1365 * Release any queued transmit buffers.
1366 */
1367 for (i = 0; i < VR_NTXDESC; i++) {
1368 ds = VR_DSTX(sc, i);
1369 if (ds->ds_mbuf != NULL) {
1370 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1371 m_freem(ds->ds_mbuf);
1372 ds->ds_mbuf = NULL;
1373 }
1374 }
1375
1376 /*
1377 * Mark the interface down and cancel the watchdog timer.
1378 */
1379 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1380 ifp->if_timer = 0;
1381
1382 if (disable)
1383 vr_rxdrain(sc);
1384 }
1385
1386 static int vr_probe(device_t, cfdata_t, void *);
1387 static void vr_attach(device_t, device_t, void *);
1388 static bool vr_shutdown(device_t, int);
1389
1390 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1391 vr_probe, vr_attach, NULL, NULL);
1392
1393 static const struct vr_type *
1394 vr_lookup(struct pci_attach_args *pa)
1395 {
1396 const struct vr_type *vrt;
1397 int i;
1398
1399 for (i = 0; i < __arraycount(vr_devs); i++) {
1400 vrt = &vr_devs[i];
1401 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1402 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1403 return (vrt);
1404 }
1405 return (NULL);
1406 }
1407
1408 static int
1409 vr_probe(device_t parent, cfdata_t match, void *aux)
1410 {
1411 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1412
1413 if (vr_lookup(pa) != NULL)
1414 return (1);
1415
1416 return (0);
1417 }
1418
1419 /*
1420 * Stop all chip I/O so that the kernel's probe routines don't
1421 * get confused by errant DMAs when rebooting.
1422 */
1423 static bool
1424 vr_shutdown(device_t self, int howto)
1425 {
1426 struct vr_softc *sc = device_private(self);
1427
1428 vr_stop(&sc->vr_ec.ec_if, 1);
1429
1430 return true;
1431 }
1432
1433 /*
1434 * Attach the interface. Allocate softc structures, do ifmedia
1435 * setup and ethernet/BPF attach.
1436 */
1437 static void
1438 vr_attach(device_t parent, device_t self, void *aux)
1439 {
1440 struct vr_softc *sc = device_private(self);
1441 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1442 bus_dma_segment_t seg;
1443 uint32_t reg;
1444 struct ifnet *ifp;
1445 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1446 int i, rseg, error;
1447 char devinfo[256];
1448
1449 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1450 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1451
1452 sc->vr_dev = self;
1453 sc->vr_pc = pa->pa_pc;
1454 sc->vr_tag = pa->pa_tag;
1455 sc->vr_id = pa->pa_id;
1456 callout_init(&sc->vr_tick_ch, 0);
1457
1458 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1459 aprint_naive("\n");
1460 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1461 PCI_REVISION(pa->pa_class));
1462
1463 /*
1464 * Handle power management nonsense.
1465 */
1466
1467 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1468 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1469 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1470
1471 /* power up chip */
1472 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1473 vr_restore_state)) && error != EOPNOTSUPP) {
1474 aprint_error_dev(self, "cannot activate %d\n",
1475 error);
1476 return;
1477 }
1478
1479 /* Make sure bus mastering is enabled. */
1480 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1481 reg |= PCI_COMMAND_MASTER_ENABLE;
1482 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1483
1484 /* Get revision */
1485 sc->vr_revid = PCI_REVISION(pa->pa_class);
1486
1487 /*
1488 * Map control/status registers.
1489 */
1490 {
1491 bus_space_tag_t iot, memt;
1492 bus_space_handle_t ioh, memh;
1493 int ioh_valid, memh_valid;
1494 pci_intr_handle_t intrhandle;
1495 const char *intrstr;
1496
1497 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1498 PCI_MAPREG_TYPE_IO, 0,
1499 &iot, &ioh, NULL, NULL) == 0);
1500 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1501 PCI_MAPREG_TYPE_MEM |
1502 PCI_MAPREG_MEM_TYPE_32BIT,
1503 0, &memt, &memh, NULL, NULL) == 0);
1504 #if defined(VR_USEIOSPACE)
1505 if (ioh_valid) {
1506 sc->vr_bst = iot;
1507 sc->vr_bsh = ioh;
1508 } else if (memh_valid) {
1509 sc->vr_bst = memt;
1510 sc->vr_bsh = memh;
1511 }
1512 #else
1513 if (memh_valid) {
1514 sc->vr_bst = memt;
1515 sc->vr_bsh = memh;
1516 } else if (ioh_valid) {
1517 sc->vr_bst = iot;
1518 sc->vr_bsh = ioh;
1519 }
1520 #endif
1521 else {
1522 printf(": unable to map device registers\n");
1523 return;
1524 }
1525
1526 /* Allocate interrupt */
1527 if (pci_intr_map(pa, &intrhandle)) {
1528 aprint_error_dev(self, "couldn't map interrupt\n");
1529 return;
1530 }
1531 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1532 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1533 vr_intr, sc);
1534 if (sc->vr_ih == NULL) {
1535 aprint_error_dev(self, "couldn't establish interrupt");
1536 if (intrstr != NULL)
1537 aprint_error(" at %s", intrstr);
1538 aprint_error("\n");
1539 }
1540 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1541 }
1542
1543 /*
1544 * Windows may put the chip in suspend mode when it
1545 * shuts down. Be sure to kick it in the head to wake it
1546 * up again.
1547 *
1548 * Don't touch this register on VT3043 since it causes
1549 * kernel MCHK trap on macppc.
1550 * (Note some VT86C100A chip returns a product ID of VT3043)
1551 */
1552 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1553 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1554
1555 /* Reset the adapter. */
1556 vr_reset(sc);
1557
1558 /*
1559 * Get station address. The way the Rhine chips work,
1560 * you're not allowed to directly access the EEPROM once
1561 * they've been programmed a special way. Consequently,
1562 * we need to read the node address from the PAR0 and PAR1
1563 * registers.
1564 *
1565 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1566 * of the *whole* EEPROM, not just the MAC address. This is
1567 * pretty pointless since the chip does this automatically
1568 * at powerup/reset.
1569 * I suspect the same thing applies to the other Rhine
1570 * variants, but in the absence of a data sheet for those
1571 * (and the lack of anyone else noticing the problems this
1572 * causes) I'm going to retain the old behaviour for the
1573 * other parts.
1574 * In some cases, the chip really does startup without having
1575 * read the EEPROM (kern/34812). To handle this case, we force
1576 * a reload if we see an all-zeroes MAC address.
1577 */
1578 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1579 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1580
1581 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1582 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1583 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1584 DELAY(200);
1585 for (i = 0; i < ETHER_ADDR_LEN; i++)
1586 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1587 }
1588
1589 /*
1590 * A Rhine chip was detected. Inform the world.
1591 */
1592 printf("%s: Ethernet address: %s\n",
1593 device_xname(self), ether_sprintf(eaddr));
1594
1595 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1596
1597 sc->vr_dmat = pa->pa_dmat;
1598
1599 /*
1600 * Allocate the control data structures, and create and load
1601 * the DMA map for it.
1602 */
1603 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1604 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1605 0)) != 0) {
1606 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1607 goto fail_0;
1608 }
1609
1610 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1611 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1612 BUS_DMA_COHERENT)) != 0) {
1613 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1614 goto fail_1;
1615 }
1616
1617 if ((error = bus_dmamap_create(sc->vr_dmat,
1618 sizeof(struct vr_control_data), 1,
1619 sizeof(struct vr_control_data), 0, 0,
1620 &sc->vr_cddmamap)) != 0) {
1621 aprint_error_dev(self, "unable to create control data DMA map, "
1622 "error = %d\n", error);
1623 goto fail_2;
1624 }
1625
1626 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1627 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1628 0)) != 0) {
1629 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1630 error);
1631 goto fail_3;
1632 }
1633
1634 /*
1635 * Create the transmit buffer DMA maps.
1636 */
1637 for (i = 0; i < VR_NTXDESC; i++) {
1638 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1639 1, MCLBYTES, 0, 0,
1640 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1641 aprint_error_dev(self, "unable to create tx DMA map %d, "
1642 "error = %d\n", i, error);
1643 goto fail_4;
1644 }
1645 }
1646
1647 /*
1648 * Create the receive buffer DMA maps.
1649 */
1650 for (i = 0; i < VR_NRXDESC; i++) {
1651 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1652 MCLBYTES, 0, 0,
1653 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1654 aprint_error_dev(self, "unable to create rx DMA map %d, "
1655 "error = %d\n", i, error);
1656 goto fail_5;
1657 }
1658 VR_DSRX(sc, i)->ds_mbuf = NULL;
1659 }
1660
1661 ifp = &sc->vr_ec.ec_if;
1662 ifp->if_softc = sc;
1663 ifp->if_mtu = ETHERMTU;
1664 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1665 ifp->if_ioctl = vr_ioctl;
1666 ifp->if_start = vr_start;
1667 ifp->if_watchdog = vr_watchdog;
1668 ifp->if_init = vr_init;
1669 ifp->if_stop = vr_stop;
1670 IFQ_SET_READY(&ifp->if_snd);
1671
1672 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1673
1674 /*
1675 * Initialize MII/media info.
1676 */
1677 sc->vr_mii.mii_ifp = ifp;
1678 sc->vr_mii.mii_readreg = vr_mii_readreg;
1679 sc->vr_mii.mii_writereg = vr_mii_writereg;
1680 sc->vr_mii.mii_statchg = vr_mii_statchg;
1681
1682 sc->vr_ec.ec_mii = &sc->vr_mii;
1683 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1684 ether_mediastatus);
1685 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1686 MII_OFFSET_ANY, MIIF_FORCEANEG);
1687 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1688 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1689 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1690 } else
1691 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1692
1693 /*
1694 * Call MI attach routines.
1695 */
1696 if_attach(ifp);
1697 ether_ifattach(ifp, sc->vr_enaddr);
1698 #if NRND > 0
1699 rnd_attach_source(&sc->rnd_source, device_xname(self),
1700 RND_TYPE_NET, 0);
1701 #endif
1702
1703 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1704 pmf_class_network_register(self, ifp);
1705 else
1706 aprint_error_dev(self, "couldn't establish power handler\n");
1707
1708 return;
1709
1710 fail_5:
1711 for (i = 0; i < VR_NRXDESC; i++) {
1712 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1713 bus_dmamap_destroy(sc->vr_dmat,
1714 sc->vr_rxsoft[i].ds_dmamap);
1715 }
1716 fail_4:
1717 for (i = 0; i < VR_NTXDESC; i++) {
1718 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1719 bus_dmamap_destroy(sc->vr_dmat,
1720 sc->vr_txsoft[i].ds_dmamap);
1721 }
1722 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1723 fail_3:
1724 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1725 fail_2:
1726 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1727 sizeof(struct vr_control_data));
1728 fail_1:
1729 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1730 fail_0:
1731 return;
1732 }
1733
1734 static int
1735 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1736 pcireg_t state)
1737 {
1738 struct vr_softc *sc = device_private(self);
1739 int error;
1740
1741 if (state == PCI_PMCSR_STATE_D0)
1742 return 0;
1743 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1744 return error;
1745
1746 /* Restore PCI config data. */
1747 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1748 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1749 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1750 return 0;
1751 }
1752
1753 static bool
1754 vr_resume(device_t self, const pmf_qual_t *qual)
1755 {
1756 struct vr_softc *sc = device_private(self);
1757
1758 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1759 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1760
1761 return true;
1762 }
1763