if_vr.c revision 1.105 1 /* $NetBSD: if_vr.c,v 1.105 2010/04/28 22:08:58 hubertf Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.105 2010/04/28 22:08:58 hubertf Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include <net/bpf.h>
127
128 #include <sys/bus.h>
129 #include <sys/intr.h>
130 #include <machine/endian.h>
131
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 #include <dev/pci/pcidevs.h>
139
140 #include <dev/pci/if_vrreg.h>
141
142 #define VR_USEIOSPACE
143
144 /*
145 * Various supported device vendors/types and their names.
146 */
147 static const struct vr_type {
148 pci_vendor_id_t vr_vid;
149 pci_product_id_t vr_did;
150 } vr_devs[] = {
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
152 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
153 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
154 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
156 };
157
158 /*
159 * Transmit descriptor list size.
160 */
161 #define VR_NTXDESC 64
162 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
163 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
164
165 /*
166 * Receive descriptor list size.
167 */
168 #define VR_NRXDESC 64
169 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
170 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
171
172 /*
173 * Control data structres that are DMA'd to the Rhine chip. We allocate
174 * them in a single clump that maps to a single DMA segment to make several
175 * things easier.
176 *
177 * Note that since we always copy outgoing packets to aligned transmit
178 * buffers, we can reduce the transmit descriptors to one per packet.
179 */
180 struct vr_control_data {
181 struct vr_desc vr_txdescs[VR_NTXDESC];
182 struct vr_desc vr_rxdescs[VR_NRXDESC];
183 };
184
185 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
186 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
187 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
188
189 /*
190 * Software state of transmit and receive descriptors.
191 */
192 struct vr_descsoft {
193 struct mbuf *ds_mbuf; /* head of mbuf chain */
194 bus_dmamap_t ds_dmamap; /* our DMA map */
195 };
196
197 struct vr_softc {
198 device_t vr_dev;
199 void *vr_ih; /* interrupt cookie */
200 bus_space_tag_t vr_bst; /* bus space tag */
201 bus_space_handle_t vr_bsh; /* bus space handle */
202 bus_dma_tag_t vr_dmat; /* bus DMA tag */
203 pci_chipset_tag_t vr_pc; /* PCI chipset info */
204 pcitag_t vr_tag; /* PCI tag */
205 struct ethercom vr_ec; /* Ethernet common info */
206 uint8_t vr_enaddr[ETHER_ADDR_LEN];
207 struct mii_data vr_mii; /* MII/media info */
208
209 pcireg_t vr_id; /* vendor/product ID */
210 uint8_t vr_revid; /* Rhine chip revision */
211
212 callout_t vr_tick_ch; /* tick callout */
213
214 bus_dmamap_t vr_cddmamap; /* control data DMA map */
215 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
216
217 /*
218 * Software state for transmit and receive descriptors.
219 */
220 struct vr_descsoft vr_txsoft[VR_NTXDESC];
221 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
222
223 /*
224 * Control data structures.
225 */
226 struct vr_control_data *vr_control_data;
227
228 int vr_txpending; /* number of TX requests pending */
229 int vr_txdirty; /* first dirty TX descriptor */
230 int vr_txlast; /* last used TX descriptor */
231
232 int vr_rxptr; /* next ready RX descriptor */
233
234 uint32_t vr_save_iobase;
235 uint32_t vr_save_membase;
236 uint32_t vr_save_irq;
237
238 #if NRND > 0
239 rndsource_element_t rnd_source; /* random source */
240 #endif
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
270 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
271 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
272 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
273 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (/* CONSTCOND */ 0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf(struct vr_softc *, int);
297
298 static void vr_rxeof(struct vr_softc *);
299 static void vr_rxeoc(struct vr_softc *);
300 static void vr_txeof(struct vr_softc *);
301 static int vr_intr(void *);
302 static void vr_start(struct ifnet *);
303 static int vr_ioctl(struct ifnet *, u_long, void *);
304 static int vr_init(struct ifnet *);
305 static void vr_stop(struct ifnet *, int);
306 static void vr_rxdrain(struct vr_softc *);
307 static void vr_watchdog(struct ifnet *);
308 static void vr_tick(void *);
309
310 static int vr_mii_readreg(device_t, int, int);
311 static void vr_mii_writereg(device_t, int, int, int);
312 static void vr_mii_statchg(device_t);
313
314 static void vr_setmulti(struct vr_softc *);
315 static void vr_reset(struct vr_softc *);
316 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
317 pcireg_t);
318 static bool vr_resume(device_t, const pmf_qual_t *);
319
320 int vr_copy_small = 0;
321
322 #define VR_SETBIT(sc, reg, x) \
323 CSR_WRITE_1(sc, reg, \
324 CSR_READ_1(sc, reg) | (x))
325
326 #define VR_CLRBIT(sc, reg, x) \
327 CSR_WRITE_1(sc, reg, \
328 CSR_READ_1(sc, reg) & ~(x))
329
330 #define VR_SETBIT16(sc, reg, x) \
331 CSR_WRITE_2(sc, reg, \
332 CSR_READ_2(sc, reg) | (x))
333
334 #define VR_CLRBIT16(sc, reg, x) \
335 CSR_WRITE_2(sc, reg, \
336 CSR_READ_2(sc, reg) & ~(x))
337
338 #define VR_SETBIT32(sc, reg, x) \
339 CSR_WRITE_4(sc, reg, \
340 CSR_READ_4(sc, reg) | (x))
341
342 #define VR_CLRBIT32(sc, reg, x) \
343 CSR_WRITE_4(sc, reg, \
344 CSR_READ_4(sc, reg) & ~(x))
345
346 /*
347 * MII bit-bang glue.
348 */
349 static uint32_t vr_mii_bitbang_read(device_t);
350 static void vr_mii_bitbang_write(device_t, uint32_t);
351
352 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 vr_mii_bitbang_read,
354 vr_mii_bitbang_write,
355 {
356 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
357 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
358 VR_MIICMD_CLK, /* MII_BIT_MDC */
359 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
360 0, /* MII_BIT_DIR_PHY_HOST */
361 }
362 };
363
364 static uint32_t
365 vr_mii_bitbang_read(device_t self)
366 {
367 struct vr_softc *sc = device_private(self);
368
369 return (CSR_READ_1(sc, VR_MIICMD));
370 }
371
372 static void
373 vr_mii_bitbang_write(device_t self, uint32_t val)
374 {
375 struct vr_softc *sc = device_private(self);
376
377 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
378 }
379
380 /*
381 * Read an PHY register through the MII.
382 */
383 static int
384 vr_mii_readreg(device_t self, int phy, int reg)
385 {
386 struct vr_softc *sc = device_private(self);
387
388 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
389 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
390 }
391
392 /*
393 * Write to a PHY register through the MII.
394 */
395 static void
396 vr_mii_writereg(device_t self, int phy, int reg, int val)
397 {
398 struct vr_softc *sc = device_private(self);
399
400 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403
404 static void
405 vr_mii_statchg(device_t self)
406 {
407 struct vr_softc *sc = device_private(self);
408
409 /*
410 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 * register, we first have to put the transmit and/or receive logic
412 * in the idle state.
413 */
414 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
415
416 if (sc->vr_mii.mii_media_active & IFM_FDX)
417 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418 else
419 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420
421 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
422 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
423 }
424
425 #define vr_calchash(addr) \
426 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
427
428 /*
429 * Program the 64-bit multicast hash filter.
430 */
431 static void
432 vr_setmulti(struct vr_softc *sc)
433 {
434 struct ifnet *ifp;
435 int h = 0;
436 uint32_t hashes[2] = { 0, 0 };
437 struct ether_multistep step;
438 struct ether_multi *enm;
439 int mcnt = 0;
440 uint8_t rxfilt;
441
442 ifp = &sc->vr_ec.ec_if;
443
444 rxfilt = CSR_READ_1(sc, VR_RXCFG);
445
446 if (ifp->if_flags & IFF_PROMISC) {
447 allmulti:
448 ifp->if_flags |= IFF_ALLMULTI;
449 rxfilt |= VR_RXCFG_RX_MULTI;
450 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
451 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
452 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
453 return;
454 }
455
456 /* first, zot all the existing hash bits */
457 CSR_WRITE_4(sc, VR_MAR0, 0);
458 CSR_WRITE_4(sc, VR_MAR1, 0);
459
460 /* now program new ones */
461 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
462 while (enm != NULL) {
463 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
464 ETHER_ADDR_LEN) != 0)
465 goto allmulti;
466
467 h = vr_calchash(enm->enm_addrlo);
468
469 if (h < 32)
470 hashes[0] |= (1 << h);
471 else
472 hashes[1] |= (1 << (h - 32));
473 ETHER_NEXT_MULTI(step, enm);
474 mcnt++;
475 }
476
477 ifp->if_flags &= ~IFF_ALLMULTI;
478
479 if (mcnt)
480 rxfilt |= VR_RXCFG_RX_MULTI;
481 else
482 rxfilt &= ~VR_RXCFG_RX_MULTI;
483
484 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
485 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
486 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 }
488
489 static void
490 vr_reset(struct vr_softc *sc)
491 {
492 int i;
493
494 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
495
496 for (i = 0; i < VR_TIMEOUT; i++) {
497 DELAY(10);
498 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
499 break;
500 }
501 if (i == VR_TIMEOUT) {
502 if (sc->vr_revid < REV_ID_VT3065_A) {
503 printf("%s: reset never completed!\n",
504 device_xname(sc->vr_dev));
505 } else {
506 /* Use newer force reset command */
507 printf("%s: using force reset command.\n",
508 device_xname(sc->vr_dev));
509 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
510 }
511 }
512
513 /* Wait a little while for the chip to get its brains in order. */
514 DELAY(1000);
515 }
516
517 /*
518 * Initialize an RX descriptor and attach an MBUF cluster.
519 * Note: the length fields are only 11 bits wide, which means the
520 * largest size we can specify is 2047. This is important because
521 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
522 * overflow the field and make a mess.
523 */
524 static int
525 vr_add_rxbuf(struct vr_softc *sc, int i)
526 {
527 struct vr_descsoft *ds = VR_DSRX(sc, i);
528 struct mbuf *m_new;
529 int error;
530
531 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 if (m_new == NULL)
533 return (ENOBUFS);
534
535 MCLGET(m_new, M_DONTWAIT);
536 if ((m_new->m_flags & M_EXT) == 0) {
537 m_freem(m_new);
538 return (ENOBUFS);
539 }
540
541 if (ds->ds_mbuf != NULL)
542 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543
544 ds->ds_mbuf = m_new;
545
546 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 BUS_DMA_READ|BUS_DMA_NOWAIT);
549 if (error) {
550 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
551 i, error);
552 panic("vr_add_rxbuf"); /* XXX */
553 }
554
555 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557
558 VR_INIT_RXDESC(sc, i);
559
560 return (0);
561 }
562
563 /*
564 * A frame has been uploaded: pass the resulting mbuf chain up to
565 * the higher level protocols.
566 */
567 static void
568 vr_rxeof(struct vr_softc *sc)
569 {
570 struct mbuf *m;
571 struct ifnet *ifp;
572 struct vr_desc *d;
573 struct vr_descsoft *ds;
574 int i, total_len;
575 uint32_t rxstat;
576
577 ifp = &sc->vr_ec.ec_if;
578
579 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
580 d = VR_CDRX(sc, i);
581 ds = VR_DSRX(sc, i);
582
583 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
584
585 rxstat = le32toh(d->vr_status);
586
587 if (rxstat & VR_RXSTAT_OWN) {
588 /*
589 * We have processed all of the receive buffers.
590 */
591 break;
592 }
593
594 /*
595 * If an error occurs, update stats, clear the
596 * status word and leave the mbuf cluster in place:
597 * it should simply get re-used next time this descriptor
598 * comes up in the ring.
599 */
600 if (rxstat & VR_RXSTAT_RXERR) {
601 const char *errstr;
602
603 ifp->if_ierrors++;
604 switch (rxstat & 0x000000FF) {
605 case VR_RXSTAT_CRCERR:
606 errstr = "crc error";
607 break;
608 case VR_RXSTAT_FRAMEALIGNERR:
609 errstr = "frame alignment error";
610 break;
611 case VR_RXSTAT_FIFOOFLOW:
612 errstr = "FIFO overflow";
613 break;
614 case VR_RXSTAT_GIANT:
615 errstr = "received giant packet";
616 break;
617 case VR_RXSTAT_RUNT:
618 errstr = "received runt packet";
619 break;
620 case VR_RXSTAT_BUSERR:
621 errstr = "system bus error";
622 break;
623 case VR_RXSTAT_BUFFERR:
624 errstr = "rx buffer error";
625 break;
626 default:
627 errstr = "unknown rx error";
628 break;
629 }
630 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
631 errstr);
632
633 VR_INIT_RXDESC(sc, i);
634
635 continue;
636 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
637 !(rxstat & VR_RXSTAT_LASTFRAG)) {
638 /*
639 * This driver expects to receive whole packets every
640 * time. In case we receive a fragment that is not
641 * a complete packet, we discard it.
642 */
643 ifp->if_ierrors++;
644
645 printf("%s: receive error: incomplete frame; "
646 "size = %d, status = 0x%x\n",
647 device_xname(sc->vr_dev),
648 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
649
650 VR_INIT_RXDESC(sc, i);
651
652 continue;
653 }
654
655 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
656 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
657
658 /* No errors; receive the packet. */
659 total_len = VR_RXBYTES(le32toh(d->vr_status));
660 #ifdef DIAGNOSTIC
661 if (total_len == 0) {
662 /*
663 * If we receive a zero-length packet, we probably
664 * missed to handle an error condition above.
665 * Discard it to avoid a later crash.
666 */
667 ifp->if_ierrors++;
668
669 printf("%s: receive error: zero-length packet; "
670 "status = 0x%x\n",
671 device_xname(sc->vr_dev), rxstat);
672
673 VR_INIT_RXDESC(sc, i);
674
675 continue;
676 }
677 #endif
678
679 /*
680 * The Rhine chip includes the CRC with every packet.
681 * Trim it off here.
682 */
683 total_len -= ETHER_CRC_LEN;
684
685 #ifdef __NO_STRICT_ALIGNMENT
686 /*
687 * If the packet is small enough to fit in a
688 * single header mbuf, allocate one and copy
689 * the data into it. This greatly reduces
690 * memory consumption when we receive lots
691 * of small packets.
692 *
693 * Otherwise, we add a new buffer to the receive
694 * chain. If this fails, we drop the packet and
695 * recycle the old buffer.
696 */
697 if (vr_copy_small != 0 && total_len <= MHLEN) {
698 MGETHDR(m, M_DONTWAIT, MT_DATA);
699 if (m == NULL)
700 goto dropit;
701 memcpy(mtod(m, void *),
702 mtod(ds->ds_mbuf, void *), total_len);
703 VR_INIT_RXDESC(sc, i);
704 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize,
706 BUS_DMASYNC_PREREAD);
707 } else {
708 m = ds->ds_mbuf;
709 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
710 dropit:
711 ifp->if_ierrors++;
712 VR_INIT_RXDESC(sc, i);
713 bus_dmamap_sync(sc->vr_dmat,
714 ds->ds_dmamap, 0,
715 ds->ds_dmamap->dm_mapsize,
716 BUS_DMASYNC_PREREAD);
717 continue;
718 }
719 }
720 #else
721 /*
722 * The Rhine's packet buffers must be 4-byte aligned.
723 * But this means that the data after the Ethernet header
724 * is misaligned. We must allocate a new buffer and
725 * copy the data, shifted forward 2 bytes.
726 */
727 MGETHDR(m, M_DONTWAIT, MT_DATA);
728 if (m == NULL) {
729 dropit:
730 ifp->if_ierrors++;
731 VR_INIT_RXDESC(sc, i);
732 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
733 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
734 continue;
735 }
736 if (total_len > (MHLEN - 2)) {
737 MCLGET(m, M_DONTWAIT);
738 if ((m->m_flags & M_EXT) == 0) {
739 m_freem(m);
740 goto dropit;
741 }
742 }
743 m->m_data += 2;
744
745 /*
746 * Note that we use clusters for incoming frames, so the
747 * buffer is virtually contiguous.
748 */
749 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
750 total_len);
751
752 /* Allow the receive descriptor to continue using its mbuf. */
753 VR_INIT_RXDESC(sc, i);
754 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 #endif /* __NO_STRICT_ALIGNMENT */
757
758 ifp->if_ipackets++;
759 m->m_pkthdr.rcvif = ifp;
760 m->m_pkthdr.len = m->m_len = total_len;
761 /*
762 * Handle BPF listeners. Let the BPF user see the packet, but
763 * don't pass it up to the ether_input() layer unless it's
764 * a broadcast packet, multicast packet, matches our ethernet
765 * address or the interface is in promiscuous mode.
766 */
767 bpf_mtap(ifp, m);
768 /* Pass it on. */
769 (*ifp->if_input)(ifp, m);
770 }
771
772 /* Update the receive pointer. */
773 sc->vr_rxptr = i;
774 }
775
776 void
777 vr_rxeoc(struct vr_softc *sc)
778 {
779 struct ifnet *ifp;
780 int i;
781
782 ifp = &sc->vr_ec.ec_if;
783
784 ifp->if_ierrors++;
785
786 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
787 for (i = 0; i < VR_TIMEOUT; i++) {
788 DELAY(10);
789 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
790 break;
791 }
792 if (i == VR_TIMEOUT) {
793 /* XXX need reset? */
794 printf("%s: RX shutdown never complete\n",
795 device_xname(sc->vr_dev));
796 }
797
798 vr_rxeof(sc);
799
800 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
801 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
802 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
803 }
804
805 /*
806 * A frame was downloaded to the chip. It's safe for us to clean up
807 * the list buffers.
808 */
809 static void
810 vr_txeof(struct vr_softc *sc)
811 {
812 struct ifnet *ifp = &sc->vr_ec.ec_if;
813 struct vr_desc *d;
814 struct vr_descsoft *ds;
815 uint32_t txstat;
816 int i, j;
817
818 ifp->if_flags &= ~IFF_OACTIVE;
819
820 /*
821 * Go through our tx list and free mbufs for those
822 * frames that have been transmitted.
823 */
824 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
825 i = VR_NEXTTX(i), sc->vr_txpending--) {
826 d = VR_CDTX(sc, i);
827 ds = VR_DSTX(sc, i);
828
829 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
830
831 txstat = le32toh(d->vr_status);
832
833 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
834 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
835 for (j = 0; j < VR_TIMEOUT; j++) {
836 DELAY(10);
837 if ((CSR_READ_2(sc, VR_COMMAND) &
838 VR_CMD_TX_ON) == 0)
839 break;
840 }
841 if (j == VR_TIMEOUT) {
842 /* XXX need reset? */
843 printf("%s: TX shutdown never complete\n",
844 device_xname(sc->vr_dev));
845 }
846 d->vr_status = htole32(VR_TXSTAT_OWN);
847 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
848 break;
849 }
850
851 if (txstat & VR_TXSTAT_OWN)
852 break;
853
854 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
855 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
856 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
857 m_freem(ds->ds_mbuf);
858 ds->ds_mbuf = NULL;
859
860 if (txstat & VR_TXSTAT_ERRSUM) {
861 ifp->if_oerrors++;
862 if (txstat & VR_TXSTAT_DEFER)
863 ifp->if_collisions++;
864 if (txstat & VR_TXSTAT_LATECOLL)
865 ifp->if_collisions++;
866 }
867
868 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
869 ifp->if_opackets++;
870 }
871
872 /* Update the dirty transmit buffer pointer. */
873 sc->vr_txdirty = i;
874
875 /*
876 * Cancel the watchdog timer if there are no pending
877 * transmissions.
878 */
879 if (sc->vr_txpending == 0)
880 ifp->if_timer = 0;
881 }
882
883 static int
884 vr_intr(void *arg)
885 {
886 struct vr_softc *sc;
887 struct ifnet *ifp;
888 uint16_t status;
889 int handled = 0, dotx = 0;
890
891 sc = arg;
892 ifp = &sc->vr_ec.ec_if;
893
894 /* Suppress unwanted interrupts. */
895 if ((ifp->if_flags & IFF_UP) == 0) {
896 vr_stop(ifp, 1);
897 return (0);
898 }
899
900 /* Disable interrupts. */
901 CSR_WRITE_2(sc, VR_IMR, 0x0000);
902
903 for (;;) {
904 status = CSR_READ_2(sc, VR_ISR);
905 if (status)
906 CSR_WRITE_2(sc, VR_ISR, status);
907
908 if ((status & VR_INTRS) == 0)
909 break;
910
911 handled = 1;
912
913 #if NRND > 0
914 if (RND_ENABLED(&sc->rnd_source))
915 rnd_add_uint32(&sc->rnd_source, status);
916 #endif
917
918 if (status & VR_ISR_RX_OK)
919 vr_rxeof(sc);
920
921 if (status & VR_ISR_RX_DROPPED) {
922 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
923 ifp->if_ierrors++;
924 }
925
926 if (status &
927 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
928 vr_rxeoc(sc);
929
930
931 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
932 if (status & VR_ISR_BUSERR)
933 printf("%s: PCI bus error\n",
934 device_xname(sc->vr_dev));
935 if (status & VR_ISR_TX_UNDERRUN)
936 printf("%s: transmit underrun\n",
937 device_xname(sc->vr_dev));
938 /* vr_init() calls vr_start() */
939 dotx = 0;
940 (void)vr_init(ifp);
941
942 }
943
944 if (status & VR_ISR_TX_OK) {
945 dotx = 1;
946 vr_txeof(sc);
947 }
948
949 if (status &
950 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
951 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
952 printf("%s: transmit aborted\n",
953 device_xname(sc->vr_dev));
954 if (status & VR_ISR_TX_UDFI)
955 printf("%s: transmit underflow\n",
956 device_xname(sc->vr_dev));
957 ifp->if_oerrors++;
958 dotx = 1;
959 vr_txeof(sc);
960 if (sc->vr_txpending) {
961 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
962 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
963 }
964 }
965 }
966
967 /* Re-enable interrupts. */
968 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
969
970 if (dotx)
971 vr_start(ifp);
972
973 return (handled);
974 }
975
976 /*
977 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
978 * to the mbuf data regions directly in the transmit lists. We also save a
979 * copy of the pointers since the transmit list fragment pointers are
980 * physical addresses.
981 */
982 static void
983 vr_start(struct ifnet *ifp)
984 {
985 struct vr_softc *sc = ifp->if_softc;
986 struct mbuf *m0, *m;
987 struct vr_desc *d;
988 struct vr_descsoft *ds;
989 int error, firsttx, nexttx, opending;
990
991 /*
992 * Remember the previous txpending and the first transmit
993 * descriptor we use.
994 */
995 opending = sc->vr_txpending;
996 firsttx = VR_NEXTTX(sc->vr_txlast);
997
998 /*
999 * Loop through the send queue, setting up transmit descriptors
1000 * until we drain the queue, or use up all available transmit
1001 * descriptors.
1002 */
1003 while (sc->vr_txpending < VR_NTXDESC) {
1004 /*
1005 * Grab a packet off the queue.
1006 */
1007 IFQ_POLL(&ifp->if_snd, m0);
1008 if (m0 == NULL)
1009 break;
1010 m = NULL;
1011
1012 /*
1013 * Get the next available transmit descriptor.
1014 */
1015 nexttx = VR_NEXTTX(sc->vr_txlast);
1016 d = VR_CDTX(sc, nexttx);
1017 ds = VR_DSTX(sc, nexttx);
1018
1019 /*
1020 * Load the DMA map. If this fails, the packet didn't
1021 * fit in one DMA segment, and we need to copy. Note,
1022 * the packet must also be aligned.
1023 * if the packet is too small, copy it too, so we're sure
1024 * we have enough room for the pad buffer.
1025 */
1026 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1027 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1028 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1029 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1030 MGETHDR(m, M_DONTWAIT, MT_DATA);
1031 if (m == NULL) {
1032 printf("%s: unable to allocate Tx mbuf\n",
1033 device_xname(sc->vr_dev));
1034 break;
1035 }
1036 if (m0->m_pkthdr.len > MHLEN) {
1037 MCLGET(m, M_DONTWAIT);
1038 if ((m->m_flags & M_EXT) == 0) {
1039 printf("%s: unable to allocate Tx "
1040 "cluster\n", device_xname(sc->vr_dev));
1041 m_freem(m);
1042 break;
1043 }
1044 }
1045 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1046 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1047 /*
1048 * The Rhine doesn't auto-pad, so we have to do this
1049 * ourselves.
1050 */
1051 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1052 memset(mtod(m, char *) + m0->m_pkthdr.len,
1053 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1054 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1055 }
1056 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1057 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1058 if (error) {
1059 m_freem(m);
1060 printf("%s: unable to load Tx buffer, "
1061 "error = %d\n", device_xname(sc->vr_dev), error);
1062 break;
1063 }
1064 }
1065
1066 IFQ_DEQUEUE(&ifp->if_snd, m0);
1067 if (m != NULL) {
1068 m_freem(m0);
1069 m0 = m;
1070 }
1071
1072 /* Sync the DMA map. */
1073 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1074 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1075
1076 /*
1077 * Store a pointer to the packet so we can free it later.
1078 */
1079 ds->ds_mbuf = m0;
1080
1081 /*
1082 * If there's a BPF listener, bounce a copy of this frame
1083 * to him.
1084 */
1085 bpf_mtap(ifp, m0);
1086
1087 /*
1088 * Fill in the transmit descriptor.
1089 */
1090 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1091 d->vr_ctl = htole32(m0->m_pkthdr.len);
1092 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1093
1094 /*
1095 * If this is the first descriptor we're enqueuing,
1096 * don't give it to the Rhine yet. That could cause
1097 * a race condition. We'll do it below.
1098 */
1099 if (nexttx == firsttx)
1100 d->vr_status = 0;
1101 else
1102 d->vr_status = htole32(VR_TXSTAT_OWN);
1103
1104 VR_CDTXSYNC(sc, nexttx,
1105 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1106
1107 /* Advance the tx pointer. */
1108 sc->vr_txpending++;
1109 sc->vr_txlast = nexttx;
1110 }
1111
1112 if (sc->vr_txpending == VR_NTXDESC) {
1113 /* No more slots left; notify upper layer. */
1114 ifp->if_flags |= IFF_OACTIVE;
1115 }
1116
1117 if (sc->vr_txpending != opending) {
1118 /*
1119 * We enqueued packets. If the transmitter was idle,
1120 * reset the txdirty pointer.
1121 */
1122 if (opending == 0)
1123 sc->vr_txdirty = firsttx;
1124
1125 /*
1126 * Cause a transmit interrupt to happen on the
1127 * last packet we enqueued.
1128 */
1129 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1130 VR_CDTXSYNC(sc, sc->vr_txlast,
1131 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1132
1133 /*
1134 * The entire packet chain is set up. Give the
1135 * first descriptor to the Rhine now.
1136 */
1137 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1138 VR_CDTXSYNC(sc, firsttx,
1139 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140
1141 /* Start the transmitter. */
1142 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1143
1144 /* Set the watchdog timer in case the chip flakes out. */
1145 ifp->if_timer = 5;
1146 }
1147 }
1148
1149 /*
1150 * Initialize the interface. Must be called at splnet.
1151 */
1152 static int
1153 vr_init(struct ifnet *ifp)
1154 {
1155 struct vr_softc *sc = ifp->if_softc;
1156 struct vr_desc *d;
1157 struct vr_descsoft *ds;
1158 int i, error = 0;
1159
1160 /* Cancel pending I/O. */
1161 vr_stop(ifp, 0);
1162
1163 /* Reset the Rhine to a known state. */
1164 vr_reset(sc);
1165
1166 /* set DMA length in BCR0 and BCR1 */
1167 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1168 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1169
1170 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1171 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1172
1173 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1174 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1175
1176 /* set DMA threshold length in RXCFG and TXCFG */
1177 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1178 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1179
1180 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1181 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1182
1183 /*
1184 * Initialize the transmit descriptor ring. txlast is initialized
1185 * to the end of the list so that it will wrap around to the first
1186 * descriptor when the first packet is transmitted.
1187 */
1188 for (i = 0; i < VR_NTXDESC; i++) {
1189 d = VR_CDTX(sc, i);
1190 memset(d, 0, sizeof(struct vr_desc));
1191 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1192 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1193 }
1194 sc->vr_txpending = 0;
1195 sc->vr_txdirty = 0;
1196 sc->vr_txlast = VR_NTXDESC - 1;
1197
1198 /*
1199 * Initialize the receive descriptor ring.
1200 */
1201 for (i = 0; i < VR_NRXDESC; i++) {
1202 ds = VR_DSRX(sc, i);
1203 if (ds->ds_mbuf == NULL) {
1204 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1205 printf("%s: unable to allocate or map rx "
1206 "buffer %d, error = %d\n",
1207 device_xname(sc->vr_dev), i, error);
1208 /*
1209 * XXX Should attempt to run with fewer receive
1210 * XXX buffers instead of just failing.
1211 */
1212 vr_rxdrain(sc);
1213 goto out;
1214 }
1215 } else
1216 VR_INIT_RXDESC(sc, i);
1217 }
1218 sc->vr_rxptr = 0;
1219
1220 /* If we want promiscuous mode, set the allframes bit. */
1221 if (ifp->if_flags & IFF_PROMISC)
1222 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1223 else
1224 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1225
1226 /* Set capture broadcast bit to capture broadcast frames. */
1227 if (ifp->if_flags & IFF_BROADCAST)
1228 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1229 else
1230 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1231
1232 /* Program the multicast filter, if necessary. */
1233 vr_setmulti(sc);
1234
1235 /* Give the transmit and receive rings to the Rhine. */
1236 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1237 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1238
1239 /* Set current media. */
1240 if ((error = ether_mediachange(ifp)) != 0)
1241 goto out;
1242
1243 /* Enable receiver and transmitter. */
1244 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1245 VR_CMD_TX_ON|VR_CMD_RX_ON|
1246 VR_CMD_RX_GO);
1247
1248 /* Enable interrupts. */
1249 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1250 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1251
1252 ifp->if_flags |= IFF_RUNNING;
1253 ifp->if_flags &= ~IFF_OACTIVE;
1254
1255 /* Start one second timer. */
1256 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1257
1258 /* Attempt to start output on the interface. */
1259 vr_start(ifp);
1260
1261 out:
1262 if (error)
1263 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1264 return (error);
1265 }
1266
1267 static int
1268 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1269 {
1270 struct vr_softc *sc = ifp->if_softc;
1271 int s, error = 0;
1272
1273 s = splnet();
1274
1275 error = ether_ioctl(ifp, command, data);
1276 if (error == ENETRESET) {
1277 /*
1278 * Multicast list has changed; set the hardware filter
1279 * accordingly.
1280 */
1281 if (ifp->if_flags & IFF_RUNNING)
1282 vr_setmulti(sc);
1283 error = 0;
1284 }
1285
1286 splx(s);
1287 return (error);
1288 }
1289
1290 static void
1291 vr_watchdog(struct ifnet *ifp)
1292 {
1293 struct vr_softc *sc = ifp->if_softc;
1294
1295 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1296 ifp->if_oerrors++;
1297
1298 (void) vr_init(ifp);
1299 }
1300
1301 /*
1302 * One second timer, used to tick MII.
1303 */
1304 static void
1305 vr_tick(void *arg)
1306 {
1307 struct vr_softc *sc = arg;
1308 int s;
1309
1310 s = splnet();
1311 mii_tick(&sc->vr_mii);
1312 splx(s);
1313
1314 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1315 }
1316
1317 /*
1318 * Drain the receive queue.
1319 */
1320 static void
1321 vr_rxdrain(struct vr_softc *sc)
1322 {
1323 struct vr_descsoft *ds;
1324 int i;
1325
1326 for (i = 0; i < VR_NRXDESC; i++) {
1327 ds = VR_DSRX(sc, i);
1328 if (ds->ds_mbuf != NULL) {
1329 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1330 m_freem(ds->ds_mbuf);
1331 ds->ds_mbuf = NULL;
1332 }
1333 }
1334 }
1335
1336 /*
1337 * Stop the adapter and free any mbufs allocated to the
1338 * transmit lists.
1339 */
1340 static void
1341 vr_stop(struct ifnet *ifp, int disable)
1342 {
1343 struct vr_softc *sc = ifp->if_softc;
1344 struct vr_descsoft *ds;
1345 int i;
1346
1347 /* Cancel one second timer. */
1348 callout_stop(&sc->vr_tick_ch);
1349
1350 /* Down the MII. */
1351 mii_down(&sc->vr_mii);
1352
1353 ifp = &sc->vr_ec.ec_if;
1354 ifp->if_timer = 0;
1355
1356 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1357 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1358 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1359 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1360 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1361
1362 /*
1363 * Release any queued transmit buffers.
1364 */
1365 for (i = 0; i < VR_NTXDESC; i++) {
1366 ds = VR_DSTX(sc, i);
1367 if (ds->ds_mbuf != NULL) {
1368 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1369 m_freem(ds->ds_mbuf);
1370 ds->ds_mbuf = NULL;
1371 }
1372 }
1373
1374 /*
1375 * Mark the interface down and cancel the watchdog timer.
1376 */
1377 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1378 ifp->if_timer = 0;
1379
1380 if (disable)
1381 vr_rxdrain(sc);
1382 }
1383
1384 static int vr_probe(device_t, cfdata_t, void *);
1385 static void vr_attach(device_t, device_t, void *);
1386 static bool vr_shutdown(device_t, int);
1387
1388 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1389 vr_probe, vr_attach, NULL, NULL);
1390
1391 static const struct vr_type *
1392 vr_lookup(struct pci_attach_args *pa)
1393 {
1394 const struct vr_type *vrt;
1395 int i;
1396
1397 for (i = 0; i < __arraycount(vr_devs); i++) {
1398 vrt = &vr_devs[i];
1399 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1400 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1401 return (vrt);
1402 }
1403 return (NULL);
1404 }
1405
1406 static int
1407 vr_probe(device_t parent, cfdata_t match, void *aux)
1408 {
1409 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1410
1411 if (vr_lookup(pa) != NULL)
1412 return (1);
1413
1414 return (0);
1415 }
1416
1417 /*
1418 * Stop all chip I/O so that the kernel's probe routines don't
1419 * get confused by errant DMAs when rebooting.
1420 */
1421 static bool
1422 vr_shutdown(device_t self, int howto)
1423 {
1424 struct vr_softc *sc = device_private(self);
1425
1426 vr_stop(&sc->vr_ec.ec_if, 1);
1427
1428 return true;
1429 }
1430
1431 /*
1432 * Attach the interface. Allocate softc structures, do ifmedia
1433 * setup and ethernet/BPF attach.
1434 */
1435 static void
1436 vr_attach(device_t parent, device_t self, void *aux)
1437 {
1438 struct vr_softc *sc = device_private(self);
1439 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1440 bus_dma_segment_t seg;
1441 uint32_t reg;
1442 struct ifnet *ifp;
1443 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1444 int i, rseg, error;
1445 char devinfo[256];
1446
1447 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1448 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1449
1450 sc->vr_dev = self;
1451 sc->vr_pc = pa->pa_pc;
1452 sc->vr_tag = pa->pa_tag;
1453 sc->vr_id = pa->pa_id;
1454 callout_init(&sc->vr_tick_ch, 0);
1455
1456 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1457 aprint_naive("\n");
1458 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1459 PCI_REVISION(pa->pa_class));
1460
1461 /*
1462 * Handle power management nonsense.
1463 */
1464
1465 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1466 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1467 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1468
1469 /* power up chip */
1470 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1471 vr_restore_state)) && error != EOPNOTSUPP) {
1472 aprint_error_dev(self, "cannot activate %d\n",
1473 error);
1474 return;
1475 }
1476
1477 /* Make sure bus mastering is enabled. */
1478 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1479 reg |= PCI_COMMAND_MASTER_ENABLE;
1480 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1481
1482 /* Get revision */
1483 sc->vr_revid = PCI_REVISION(pa->pa_class);
1484
1485 /*
1486 * Map control/status registers.
1487 */
1488 {
1489 bus_space_tag_t iot, memt;
1490 bus_space_handle_t ioh, memh;
1491 int ioh_valid, memh_valid;
1492 pci_intr_handle_t intrhandle;
1493 const char *intrstr;
1494
1495 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1496 PCI_MAPREG_TYPE_IO, 0,
1497 &iot, &ioh, NULL, NULL) == 0);
1498 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1499 PCI_MAPREG_TYPE_MEM |
1500 PCI_MAPREG_MEM_TYPE_32BIT,
1501 0, &memt, &memh, NULL, NULL) == 0);
1502 #if defined(VR_USEIOSPACE)
1503 if (ioh_valid) {
1504 sc->vr_bst = iot;
1505 sc->vr_bsh = ioh;
1506 } else if (memh_valid) {
1507 sc->vr_bst = memt;
1508 sc->vr_bsh = memh;
1509 }
1510 #else
1511 if (memh_valid) {
1512 sc->vr_bst = memt;
1513 sc->vr_bsh = memh;
1514 } else if (ioh_valid) {
1515 sc->vr_bst = iot;
1516 sc->vr_bsh = ioh;
1517 }
1518 #endif
1519 else {
1520 printf(": unable to map device registers\n");
1521 return;
1522 }
1523
1524 /* Allocate interrupt */
1525 if (pci_intr_map(pa, &intrhandle)) {
1526 aprint_error_dev(self, "couldn't map interrupt\n");
1527 return;
1528 }
1529 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1530 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1531 vr_intr, sc);
1532 if (sc->vr_ih == NULL) {
1533 aprint_error_dev(self, "couldn't establish interrupt");
1534 if (intrstr != NULL)
1535 aprint_error(" at %s", intrstr);
1536 aprint_error("\n");
1537 }
1538 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1539 }
1540
1541 /*
1542 * Windows may put the chip in suspend mode when it
1543 * shuts down. Be sure to kick it in the head to wake it
1544 * up again.
1545 *
1546 * Don't touch this register on VT3043 since it causes
1547 * kernel MCHK trap on macppc.
1548 * (Note some VT86C100A chip returns a product ID of VT3043)
1549 */
1550 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1551 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1552
1553 /* Reset the adapter. */
1554 vr_reset(sc);
1555
1556 /*
1557 * Get station address. The way the Rhine chips work,
1558 * you're not allowed to directly access the EEPROM once
1559 * they've been programmed a special way. Consequently,
1560 * we need to read the node address from the PAR0 and PAR1
1561 * registers.
1562 *
1563 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1564 * of the *whole* EEPROM, not just the MAC address. This is
1565 * pretty pointless since the chip does this automatically
1566 * at powerup/reset.
1567 * I suspect the same thing applies to the other Rhine
1568 * variants, but in the absence of a data sheet for those
1569 * (and the lack of anyone else noticing the problems this
1570 * causes) I'm going to retain the old behaviour for the
1571 * other parts.
1572 * In some cases, the chip really does startup without having
1573 * read the EEPROM (kern/34812). To handle this case, we force
1574 * a reload if we see an all-zeroes MAC address.
1575 */
1576 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1577 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1578
1579 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1580 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1581 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1582 DELAY(200);
1583 for (i = 0; i < ETHER_ADDR_LEN; i++)
1584 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1585 }
1586
1587 /*
1588 * A Rhine chip was detected. Inform the world.
1589 */
1590 aprint_normal("%s: Ethernet address: %s\n",
1591 device_xname(self), ether_sprintf(eaddr));
1592
1593 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1594
1595 sc->vr_dmat = pa->pa_dmat;
1596
1597 /*
1598 * Allocate the control data structures, and create and load
1599 * the DMA map for it.
1600 */
1601 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1602 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1603 0)) != 0) {
1604 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1605 goto fail_0;
1606 }
1607
1608 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1609 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1610 BUS_DMA_COHERENT)) != 0) {
1611 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1612 goto fail_1;
1613 }
1614
1615 if ((error = bus_dmamap_create(sc->vr_dmat,
1616 sizeof(struct vr_control_data), 1,
1617 sizeof(struct vr_control_data), 0, 0,
1618 &sc->vr_cddmamap)) != 0) {
1619 aprint_error_dev(self, "unable to create control data DMA map, "
1620 "error = %d\n", error);
1621 goto fail_2;
1622 }
1623
1624 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1625 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1626 0)) != 0) {
1627 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1628 error);
1629 goto fail_3;
1630 }
1631
1632 /*
1633 * Create the transmit buffer DMA maps.
1634 */
1635 for (i = 0; i < VR_NTXDESC; i++) {
1636 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1637 1, MCLBYTES, 0, 0,
1638 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1639 aprint_error_dev(self, "unable to create tx DMA map %d, "
1640 "error = %d\n", i, error);
1641 goto fail_4;
1642 }
1643 }
1644
1645 /*
1646 * Create the receive buffer DMA maps.
1647 */
1648 for (i = 0; i < VR_NRXDESC; i++) {
1649 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1650 MCLBYTES, 0, 0,
1651 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1652 aprint_error_dev(self, "unable to create rx DMA map %d, "
1653 "error = %d\n", i, error);
1654 goto fail_5;
1655 }
1656 VR_DSRX(sc, i)->ds_mbuf = NULL;
1657 }
1658
1659 ifp = &sc->vr_ec.ec_if;
1660 ifp->if_softc = sc;
1661 ifp->if_mtu = ETHERMTU;
1662 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1663 ifp->if_ioctl = vr_ioctl;
1664 ifp->if_start = vr_start;
1665 ifp->if_watchdog = vr_watchdog;
1666 ifp->if_init = vr_init;
1667 ifp->if_stop = vr_stop;
1668 IFQ_SET_READY(&ifp->if_snd);
1669
1670 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1671
1672 /*
1673 * Initialize MII/media info.
1674 */
1675 sc->vr_mii.mii_ifp = ifp;
1676 sc->vr_mii.mii_readreg = vr_mii_readreg;
1677 sc->vr_mii.mii_writereg = vr_mii_writereg;
1678 sc->vr_mii.mii_statchg = vr_mii_statchg;
1679
1680 sc->vr_ec.ec_mii = &sc->vr_mii;
1681 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1682 ether_mediastatus);
1683 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1684 MII_OFFSET_ANY, MIIF_FORCEANEG);
1685 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1686 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1687 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1688 } else
1689 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1690
1691 /*
1692 * Call MI attach routines.
1693 */
1694 if_attach(ifp);
1695 ether_ifattach(ifp, sc->vr_enaddr);
1696 #if NRND > 0
1697 rnd_attach_source(&sc->rnd_source, device_xname(self),
1698 RND_TYPE_NET, 0);
1699 #endif
1700
1701 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1702 pmf_class_network_register(self, ifp);
1703 else
1704 aprint_error_dev(self, "couldn't establish power handler\n");
1705
1706 return;
1707
1708 fail_5:
1709 for (i = 0; i < VR_NRXDESC; i++) {
1710 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1711 bus_dmamap_destroy(sc->vr_dmat,
1712 sc->vr_rxsoft[i].ds_dmamap);
1713 }
1714 fail_4:
1715 for (i = 0; i < VR_NTXDESC; i++) {
1716 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1717 bus_dmamap_destroy(sc->vr_dmat,
1718 sc->vr_txsoft[i].ds_dmamap);
1719 }
1720 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1721 fail_3:
1722 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1723 fail_2:
1724 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1725 sizeof(struct vr_control_data));
1726 fail_1:
1727 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1728 fail_0:
1729 return;
1730 }
1731
1732 static int
1733 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1734 pcireg_t state)
1735 {
1736 struct vr_softc *sc = device_private(self);
1737 int error;
1738
1739 if (state == PCI_PMCSR_STATE_D0)
1740 return 0;
1741 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1742 return error;
1743
1744 /* Restore PCI config data. */
1745 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1746 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1747 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1748 return 0;
1749 }
1750
1751 static bool
1752 vr_resume(device_t self, const pmf_qual_t *qual)
1753 {
1754 struct vr_softc *sc = device_private(self);
1755
1756 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1757 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1758
1759 return true;
1760 }
1761