Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.108
      1 /*	$NetBSD: if_vr.c,v 1.108 2011/11/19 22:51:23 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1997, 1998
     35  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by Bill Paul.
     48  * 4. Neither the name of the author nor the names of any co-contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     62  * THE POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     65  */
     66 
     67 /*
     68  * VIA Rhine fast ethernet PCI NIC driver
     69  *
     70  * Supports various network adapters based on the VIA Rhine
     71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     72  * Datasheets are available at http://www.via.com.tw.
     73  *
     74  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     75  * Electrical Engineering Department
     76  * Columbia University, New York City
     77  */
     78 
     79 /*
     80  * The VIA Rhine controllers are similar in some respects to the
     81  * the DEC tulip chips, except less complicated. The controller
     82  * uses an MII bus and an external physical layer interface. The
     83  * receiver has a one entry perfect filter and a 64-bit hash table
     84  * multicast filter. Transmit and receive descriptors are similar
     85  * to the tulip.
     86  *
     87  * The Rhine has a serious flaw in its transmit DMA mechanism:
     88  * transmit buffers must be longword aligned. Unfortunately,
     89  * the kernel doesn't guarantee that mbufs will be filled in starting
     90  * at longword boundaries, so we have to do a buffer copy before
     91  * transmission.
     92  *
     93  * Apparently, the receive DMA mechanism also has the same flaw.  This
     94  * means that on systems with struct alignment requirements, incoming
     95  * frames must be copied to a new buffer which shifts the data forward
     96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
     97  */
     98 
     99 #include <sys/cdefs.h>
    100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.108 2011/11/19 22:51:23 tls Exp $");
    101 
    102 #include "rnd.h"
    103 
    104 #include <sys/param.h>
    105 #include <sys/systm.h>
    106 #include <sys/callout.h>
    107 #include <sys/sockio.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/malloc.h>
    110 #include <sys/kernel.h>
    111 #include <sys/socket.h>
    112 #include <sys/device.h>
    113 
    114 #if NRND > 0
    115 #include <sys/rnd.h>
    116 #endif
    117 
    118 #include <net/if.h>
    119 #include <net/if_arp.h>
    120 #include <net/if_dl.h>
    121 #include <net/if_media.h>
    122 #include <net/if_ether.h>
    123 
    124 #include <net/bpf.h>
    125 
    126 #include <sys/bus.h>
    127 #include <sys/intr.h>
    128 #include <machine/endian.h>
    129 
    130 #include <dev/mii/mii.h>
    131 #include <dev/mii/miivar.h>
    132 #include <dev/mii/mii_bitbang.h>
    133 
    134 #include <dev/pci/pcireg.h>
    135 #include <dev/pci/pcivar.h>
    136 #include <dev/pci/pcidevs.h>
    137 
    138 #include <dev/pci/if_vrreg.h>
    139 
    140 #define	VR_USEIOSPACE
    141 
    142 /*
    143  * Various supported device vendors/types and their names.
    144  */
    145 static const struct vr_type {
    146 	pci_vendor_id_t		vr_vid;
    147 	pci_product_id_t	vr_did;
    148 } vr_devs[] = {
    149 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
    150 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
    151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
    152 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
    153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
    154 };
    155 
    156 /*
    157  * Transmit descriptor list size.
    158  */
    159 #define	VR_NTXDESC		64
    160 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    161 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    162 
    163 /*
    164  * Receive descriptor list size.
    165  */
    166 #define	VR_NRXDESC		64
    167 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    168 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    169 
    170 /*
    171  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    172  * them in a single clump that maps to a single DMA segment to make several
    173  * things easier.
    174  *
    175  * Note that since we always copy outgoing packets to aligned transmit
    176  * buffers, we can reduce the transmit descriptors to one per packet.
    177  */
    178 struct vr_control_data {
    179 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    180 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    181 };
    182 
    183 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    184 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    185 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    186 
    187 /*
    188  * Software state of transmit and receive descriptors.
    189  */
    190 struct vr_descsoft {
    191 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    192 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    193 };
    194 
    195 struct vr_softc {
    196 	device_t		vr_dev;
    197 	void			*vr_ih;		/* interrupt cookie */
    198 	bus_space_tag_t		vr_bst;		/* bus space tag */
    199 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    200 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    201 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    202 	pcitag_t		vr_tag;		/* PCI tag */
    203 	struct ethercom		vr_ec;		/* Ethernet common info */
    204 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
    205 	struct mii_data		vr_mii;		/* MII/media info */
    206 
    207 	pcireg_t		vr_id;		/* vendor/product ID */
    208 	uint8_t			vr_revid;	/* Rhine chip revision */
    209 
    210 	callout_t		vr_tick_ch;	/* tick callout */
    211 
    212 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    213 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    214 
    215 	/*
    216 	 * Software state for transmit and receive descriptors.
    217 	 */
    218 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    219 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    220 
    221 	/*
    222 	 * Control data structures.
    223 	 */
    224 	struct vr_control_data	*vr_control_data;
    225 
    226 	int	vr_txpending;		/* number of TX requests pending */
    227 	int	vr_txdirty;		/* first dirty TX descriptor */
    228 	int	vr_txlast;		/* last used TX descriptor */
    229 
    230 	int	vr_rxptr;		/* next ready RX descriptor */
    231 
    232 	uint32_t	vr_save_iobase;
    233 	uint32_t	vr_save_membase;
    234 	uint32_t	vr_save_irq;
    235 
    236 #if NRND > 0
    237 	krndsource_t rnd_source;	/* random source */
    238 #endif
    239 };
    240 
    241 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    242 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    243 
    244 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    245 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    246 
    247 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    248 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    249 
    250 #define	VR_CDTXSYNC(sc, x, ops)						\
    251 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    252 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    253 
    254 #define	VR_CDRXSYNC(sc, x, ops)						\
    255 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    256 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    257 
    258 /*
    259  * Note we rely on MCLBYTES being a power of two below.
    260  */
    261 #define	VR_INIT_RXDESC(sc, i)						\
    262 do {									\
    263 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    264 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    265 									\
    266 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    267 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    268 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    269 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    270 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    271 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    272 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    273 } while (/* CONSTCOND */ 0)
    274 
    275 /*
    276  * register space access macros
    277  */
    278 #define	CSR_WRITE_4(sc, reg, val)					\
    279 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    280 #define	CSR_WRITE_2(sc, reg, val)					\
    281 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_1(sc, reg, val)					\
    283 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    284 
    285 #define	CSR_READ_4(sc, reg)						\
    286 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    287 #define	CSR_READ_2(sc, reg)						\
    288 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_1(sc, reg)						\
    290 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    291 
    292 #define	VR_TIMEOUT		1000
    293 
    294 static int	vr_add_rxbuf(struct vr_softc *, int);
    295 
    296 static void	vr_rxeof(struct vr_softc *);
    297 static void	vr_rxeoc(struct vr_softc *);
    298 static void	vr_txeof(struct vr_softc *);
    299 static int	vr_intr(void *);
    300 static void	vr_start(struct ifnet *);
    301 static int	vr_ioctl(struct ifnet *, u_long, void *);
    302 static int	vr_init(struct ifnet *);
    303 static void	vr_stop(struct ifnet *, int);
    304 static void	vr_rxdrain(struct vr_softc *);
    305 static void	vr_watchdog(struct ifnet *);
    306 static void	vr_tick(void *);
    307 
    308 static int	vr_mii_readreg(device_t, int, int);
    309 static void	vr_mii_writereg(device_t, int, int, int);
    310 static void	vr_mii_statchg(device_t);
    311 
    312 static void	vr_setmulti(struct vr_softc *);
    313 static void	vr_reset(struct vr_softc *);
    314 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
    315     pcireg_t);
    316 static bool	vr_resume(device_t, const pmf_qual_t *);
    317 
    318 int	vr_copy_small = 0;
    319 
    320 #define	VR_SETBIT(sc, reg, x)				\
    321 	CSR_WRITE_1(sc, reg,				\
    322 	    CSR_READ_1(sc, reg) | (x))
    323 
    324 #define	VR_CLRBIT(sc, reg, x)				\
    325 	CSR_WRITE_1(sc, reg,				\
    326 	    CSR_READ_1(sc, reg) & ~(x))
    327 
    328 #define	VR_SETBIT16(sc, reg, x)				\
    329 	CSR_WRITE_2(sc, reg,				\
    330 	    CSR_READ_2(sc, reg) | (x))
    331 
    332 #define	VR_CLRBIT16(sc, reg, x)				\
    333 	CSR_WRITE_2(sc, reg,				\
    334 	    CSR_READ_2(sc, reg) & ~(x))
    335 
    336 #define	VR_SETBIT32(sc, reg, x)				\
    337 	CSR_WRITE_4(sc, reg,				\
    338 	    CSR_READ_4(sc, reg) | (x))
    339 
    340 #define	VR_CLRBIT32(sc, reg, x)				\
    341 	CSR_WRITE_4(sc, reg,				\
    342 	    CSR_READ_4(sc, reg) & ~(x))
    343 
    344 /*
    345  * MII bit-bang glue.
    346  */
    347 static uint32_t vr_mii_bitbang_read(device_t);
    348 static void	vr_mii_bitbang_write(device_t, uint32_t);
    349 
    350 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    351 	vr_mii_bitbang_read,
    352 	vr_mii_bitbang_write,
    353 	{
    354 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    355 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    356 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    357 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    358 		0,			/* MII_BIT_DIR_PHY_HOST */
    359 	}
    360 };
    361 
    362 static uint32_t
    363 vr_mii_bitbang_read(device_t self)
    364 {
    365 	struct vr_softc *sc = device_private(self);
    366 
    367 	return (CSR_READ_1(sc, VR_MIICMD));
    368 }
    369 
    370 static void
    371 vr_mii_bitbang_write(device_t self, uint32_t val)
    372 {
    373 	struct vr_softc *sc = device_private(self);
    374 
    375 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    376 }
    377 
    378 /*
    379  * Read an PHY register through the MII.
    380  */
    381 static int
    382 vr_mii_readreg(device_t self, int phy, int reg)
    383 {
    384 	struct vr_softc *sc = device_private(self);
    385 
    386 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    387 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    388 }
    389 
    390 /*
    391  * Write to a PHY register through the MII.
    392  */
    393 static void
    394 vr_mii_writereg(device_t self, int phy, int reg, int val)
    395 {
    396 	struct vr_softc *sc = device_private(self);
    397 
    398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    399 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    400 }
    401 
    402 static void
    403 vr_mii_statchg(device_t self)
    404 {
    405 	struct vr_softc *sc = device_private(self);
    406 
    407 	/*
    408 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    409 	 * register, we first have to put the transmit and/or receive logic
    410 	 * in the idle state.
    411 	 */
    412 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    413 
    414 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    415 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    416 	else
    417 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    418 
    419 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    420 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    421 }
    422 
    423 #define	vr_calchash(addr) \
    424 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    425 
    426 /*
    427  * Program the 64-bit multicast hash filter.
    428  */
    429 static void
    430 vr_setmulti(struct vr_softc *sc)
    431 {
    432 	struct ifnet *ifp;
    433 	int h = 0;
    434 	uint32_t hashes[2] = { 0, 0 };
    435 	struct ether_multistep step;
    436 	struct ether_multi *enm;
    437 	int mcnt = 0;
    438 	uint8_t rxfilt;
    439 
    440 	ifp = &sc->vr_ec.ec_if;
    441 
    442 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    443 
    444 	if (ifp->if_flags & IFF_PROMISC) {
    445 allmulti:
    446 		ifp->if_flags |= IFF_ALLMULTI;
    447 		rxfilt |= VR_RXCFG_RX_MULTI;
    448 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    449 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    450 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    451 		return;
    452 	}
    453 
    454 	/* first, zot all the existing hash bits */
    455 	CSR_WRITE_4(sc, VR_MAR0, 0);
    456 	CSR_WRITE_4(sc, VR_MAR1, 0);
    457 
    458 	/* now program new ones */
    459 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    460 	while (enm != NULL) {
    461 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    462 		    ETHER_ADDR_LEN) != 0)
    463 			goto allmulti;
    464 
    465 		h = vr_calchash(enm->enm_addrlo);
    466 
    467 		if (h < 32)
    468 			hashes[0] |= (1 << h);
    469 		else
    470 			hashes[1] |= (1 << (h - 32));
    471 		ETHER_NEXT_MULTI(step, enm);
    472 		mcnt++;
    473 	}
    474 
    475 	ifp->if_flags &= ~IFF_ALLMULTI;
    476 
    477 	if (mcnt)
    478 		rxfilt |= VR_RXCFG_RX_MULTI;
    479 	else
    480 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    481 
    482 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    483 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    484 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    485 }
    486 
    487 static void
    488 vr_reset(struct vr_softc *sc)
    489 {
    490 	int i;
    491 
    492 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    493 
    494 	for (i = 0; i < VR_TIMEOUT; i++) {
    495 		DELAY(10);
    496 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    497 			break;
    498 	}
    499 	if (i == VR_TIMEOUT) {
    500 		if (sc->vr_revid < REV_ID_VT3065_A) {
    501 			printf("%s: reset never completed!\n",
    502 			    device_xname(sc->vr_dev));
    503 		} else {
    504 			/* Use newer force reset command */
    505 			printf("%s: using force reset command.\n",
    506 			    device_xname(sc->vr_dev));
    507 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    508 		}
    509 	}
    510 
    511 	/* Wait a little while for the chip to get its brains in order. */
    512 	DELAY(1000);
    513 }
    514 
    515 /*
    516  * Initialize an RX descriptor and attach an MBUF cluster.
    517  * Note: the length fields are only 11 bits wide, which means the
    518  * largest size we can specify is 2047. This is important because
    519  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    520  * overflow the field and make a mess.
    521  */
    522 static int
    523 vr_add_rxbuf(struct vr_softc *sc, int i)
    524 {
    525 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    526 	struct mbuf *m_new;
    527 	int error;
    528 
    529 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    530 	if (m_new == NULL)
    531 		return (ENOBUFS);
    532 
    533 	MCLGET(m_new, M_DONTWAIT);
    534 	if ((m_new->m_flags & M_EXT) == 0) {
    535 		m_freem(m_new);
    536 		return (ENOBUFS);
    537 	}
    538 
    539 	if (ds->ds_mbuf != NULL)
    540 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    541 
    542 	ds->ds_mbuf = m_new;
    543 
    544 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    545 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    546 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    547 	if (error) {
    548 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
    549 		    i, error);
    550 		panic("vr_add_rxbuf");		/* XXX */
    551 	}
    552 
    553 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    554 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    555 
    556 	VR_INIT_RXDESC(sc, i);
    557 
    558 	return (0);
    559 }
    560 
    561 /*
    562  * A frame has been uploaded: pass the resulting mbuf chain up to
    563  * the higher level protocols.
    564  */
    565 static void
    566 vr_rxeof(struct vr_softc *sc)
    567 {
    568 	struct mbuf *m;
    569 	struct ifnet *ifp;
    570 	struct vr_desc *d;
    571 	struct vr_descsoft *ds;
    572 	int i, total_len;
    573 	uint32_t rxstat;
    574 
    575 	ifp = &sc->vr_ec.ec_if;
    576 
    577 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    578 		d = VR_CDRX(sc, i);
    579 		ds = VR_DSRX(sc, i);
    580 
    581 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    582 
    583 		rxstat = le32toh(d->vr_status);
    584 
    585 		if (rxstat & VR_RXSTAT_OWN) {
    586 			/*
    587 			 * We have processed all of the receive buffers.
    588 			 */
    589 			break;
    590 		}
    591 
    592 		/*
    593 		 * If an error occurs, update stats, clear the
    594 		 * status word and leave the mbuf cluster in place:
    595 		 * it should simply get re-used next time this descriptor
    596 		 * comes up in the ring.
    597 		 */
    598 		if (rxstat & VR_RXSTAT_RXERR) {
    599 			const char *errstr;
    600 
    601 			ifp->if_ierrors++;
    602 			switch (rxstat & 0x000000FF) {
    603 			case VR_RXSTAT_CRCERR:
    604 				errstr = "crc error";
    605 				break;
    606 			case VR_RXSTAT_FRAMEALIGNERR:
    607 				errstr = "frame alignment error";
    608 				break;
    609 			case VR_RXSTAT_FIFOOFLOW:
    610 				errstr = "FIFO overflow";
    611 				break;
    612 			case VR_RXSTAT_GIANT:
    613 				errstr = "received giant packet";
    614 				break;
    615 			case VR_RXSTAT_RUNT:
    616 				errstr = "received runt packet";
    617 				break;
    618 			case VR_RXSTAT_BUSERR:
    619 				errstr = "system bus error";
    620 				break;
    621 			case VR_RXSTAT_BUFFERR:
    622 				errstr = "rx buffer error";
    623 				break;
    624 			default:
    625 				errstr = "unknown rx error";
    626 				break;
    627 			}
    628 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
    629 			    errstr);
    630 
    631 			VR_INIT_RXDESC(sc, i);
    632 
    633 			continue;
    634 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
    635 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
    636 			/*
    637 			 * This driver expects to receive whole packets every
    638 			 * time.  In case we receive a fragment that is not
    639 			 * a complete packet, we discard it.
    640 			 */
    641 			ifp->if_ierrors++;
    642 
    643 			printf("%s: receive error: incomplete frame; "
    644 			       "size = %d, status = 0x%x\n",
    645 			       device_xname(sc->vr_dev),
    646 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
    647 
    648 			VR_INIT_RXDESC(sc, i);
    649 
    650 			continue;
    651 		}
    652 
    653 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    654 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    655 
    656 		/* No errors; receive the packet. */
    657 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    658 #ifdef DIAGNOSTIC
    659 		if (total_len == 0) {
    660 			/*
    661 			 * If we receive a zero-length packet, we probably
    662 			 * missed to handle an error condition above.
    663 			 * Discard it to avoid a later crash.
    664 			 */
    665 			ifp->if_ierrors++;
    666 
    667 			printf("%s: receive error: zero-length packet; "
    668 			       "status = 0x%x\n",
    669 			       device_xname(sc->vr_dev), rxstat);
    670 
    671 			VR_INIT_RXDESC(sc, i);
    672 
    673 			continue;
    674 		}
    675 #endif
    676 
    677 		/*
    678 		 * The Rhine chip includes the CRC with every packet.
    679 		 * Trim it off here.
    680 		 */
    681 		total_len -= ETHER_CRC_LEN;
    682 
    683 #ifdef __NO_STRICT_ALIGNMENT
    684 		/*
    685 		 * If the packet is small enough to fit in a
    686 		 * single header mbuf, allocate one and copy
    687 		 * the data into it.  This greatly reduces
    688 		 * memory consumption when we receive lots
    689 		 * of small packets.
    690 		 *
    691 		 * Otherwise, we add a new buffer to the receive
    692 		 * chain.  If this fails, we drop the packet and
    693 		 * recycle the old buffer.
    694 		 */
    695 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    696 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    697 			if (m == NULL)
    698 				goto dropit;
    699 			memcpy(mtod(m, void *),
    700 			    mtod(ds->ds_mbuf, void *), total_len);
    701 			VR_INIT_RXDESC(sc, i);
    702 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    703 			    ds->ds_dmamap->dm_mapsize,
    704 			    BUS_DMASYNC_PREREAD);
    705 		} else {
    706 			m = ds->ds_mbuf;
    707 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    708  dropit:
    709 				ifp->if_ierrors++;
    710 				VR_INIT_RXDESC(sc, i);
    711 				bus_dmamap_sync(sc->vr_dmat,
    712 				    ds->ds_dmamap, 0,
    713 				    ds->ds_dmamap->dm_mapsize,
    714 				    BUS_DMASYNC_PREREAD);
    715 				continue;
    716 			}
    717 		}
    718 #else
    719 		/*
    720 		 * The Rhine's packet buffers must be 4-byte aligned.
    721 		 * But this means that the data after the Ethernet header
    722 		 * is misaligned.  We must allocate a new buffer and
    723 		 * copy the data, shifted forward 2 bytes.
    724 		 */
    725 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    726 		if (m == NULL) {
    727  dropit:
    728 			ifp->if_ierrors++;
    729 			VR_INIT_RXDESC(sc, i);
    730 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    731 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    732 			continue;
    733 		}
    734 		if (total_len > (MHLEN - 2)) {
    735 			MCLGET(m, M_DONTWAIT);
    736 			if ((m->m_flags & M_EXT) == 0) {
    737 				m_freem(m);
    738 				goto dropit;
    739 			}
    740 		}
    741 		m->m_data += 2;
    742 
    743 		/*
    744 		 * Note that we use clusters for incoming frames, so the
    745 		 * buffer is virtually contiguous.
    746 		 */
    747 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
    748 		    total_len);
    749 
    750 		/* Allow the receive descriptor to continue using its mbuf. */
    751 		VR_INIT_RXDESC(sc, i);
    752 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    753 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    754 #endif /* __NO_STRICT_ALIGNMENT */
    755 
    756 		ifp->if_ipackets++;
    757 		m->m_pkthdr.rcvif = ifp;
    758 		m->m_pkthdr.len = m->m_len = total_len;
    759 		/*
    760 		 * Handle BPF listeners. Let the BPF user see the packet, but
    761 		 * don't pass it up to the ether_input() layer unless it's
    762 		 * a broadcast packet, multicast packet, matches our ethernet
    763 		 * address or the interface is in promiscuous mode.
    764 		 */
    765 		bpf_mtap(ifp, m);
    766 		/* Pass it on. */
    767 		(*ifp->if_input)(ifp, m);
    768 	}
    769 
    770 	/* Update the receive pointer. */
    771 	sc->vr_rxptr = i;
    772 }
    773 
    774 void
    775 vr_rxeoc(struct vr_softc *sc)
    776 {
    777 	struct ifnet *ifp;
    778 	int i;
    779 
    780 	ifp = &sc->vr_ec.ec_if;
    781 
    782 	ifp->if_ierrors++;
    783 
    784 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    785 	for (i = 0; i < VR_TIMEOUT; i++) {
    786 		DELAY(10);
    787 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
    788 			break;
    789 	}
    790 	if (i == VR_TIMEOUT) {
    791 		/* XXX need reset? */
    792 		printf("%s: RX shutdown never complete\n",
    793 		    device_xname(sc->vr_dev));
    794 	}
    795 
    796 	vr_rxeof(sc);
    797 
    798 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    799 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    800 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    801 }
    802 
    803 /*
    804  * A frame was downloaded to the chip. It's safe for us to clean up
    805  * the list buffers.
    806  */
    807 static void
    808 vr_txeof(struct vr_softc *sc)
    809 {
    810 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    811 	struct vr_desc *d;
    812 	struct vr_descsoft *ds;
    813 	uint32_t txstat;
    814 	int i, j;
    815 
    816 	ifp->if_flags &= ~IFF_OACTIVE;
    817 
    818 	/*
    819 	 * Go through our tx list and free mbufs for those
    820 	 * frames that have been transmitted.
    821 	 */
    822 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    823 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    824 		d = VR_CDTX(sc, i);
    825 		ds = VR_DSTX(sc, i);
    826 
    827 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    828 
    829 		txstat = le32toh(d->vr_status);
    830 
    831 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
    832 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    833 			for (j = 0; j < VR_TIMEOUT; j++) {
    834 				DELAY(10);
    835 				if ((CSR_READ_2(sc, VR_COMMAND) &
    836 				    VR_CMD_TX_ON) == 0)
    837 					break;
    838 			}
    839 			if (j == VR_TIMEOUT) {
    840 				/* XXX need reset? */
    841 				printf("%s: TX shutdown never complete\n",
    842 				    device_xname(sc->vr_dev));
    843 			}
    844 			d->vr_status = htole32(VR_TXSTAT_OWN);
    845 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
    846 			break;
    847 		}
    848 
    849 		if (txstat & VR_TXSTAT_OWN)
    850 			break;
    851 
    852 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    853 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    854 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    855 		m_freem(ds->ds_mbuf);
    856 		ds->ds_mbuf = NULL;
    857 
    858 		if (txstat & VR_TXSTAT_ERRSUM) {
    859 			ifp->if_oerrors++;
    860 			if (txstat & VR_TXSTAT_DEFER)
    861 				ifp->if_collisions++;
    862 			if (txstat & VR_TXSTAT_LATECOLL)
    863 				ifp->if_collisions++;
    864 		}
    865 
    866 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    867 		ifp->if_opackets++;
    868 	}
    869 
    870 	/* Update the dirty transmit buffer pointer. */
    871 	sc->vr_txdirty = i;
    872 
    873 	/*
    874 	 * Cancel the watchdog timer if there are no pending
    875 	 * transmissions.
    876 	 */
    877 	if (sc->vr_txpending == 0)
    878 		ifp->if_timer = 0;
    879 }
    880 
    881 static int
    882 vr_intr(void *arg)
    883 {
    884 	struct vr_softc *sc;
    885 	struct ifnet *ifp;
    886 	uint16_t status;
    887 	int handled = 0, dotx = 0;
    888 
    889 	sc = arg;
    890 	ifp = &sc->vr_ec.ec_if;
    891 
    892 	/* Suppress unwanted interrupts. */
    893 	if ((ifp->if_flags & IFF_UP) == 0) {
    894 		vr_stop(ifp, 1);
    895 		return (0);
    896 	}
    897 
    898 	/* Disable interrupts. */
    899 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    900 
    901 	for (;;) {
    902 		status = CSR_READ_2(sc, VR_ISR);
    903 		if (status)
    904 			CSR_WRITE_2(sc, VR_ISR, status);
    905 
    906 		if ((status & VR_INTRS) == 0)
    907 			break;
    908 
    909 		handled = 1;
    910 
    911 #if NRND > 0
    912 		if (RND_ENABLED(&sc->rnd_source))
    913 			rnd_add_uint32(&sc->rnd_source, status);
    914 #endif
    915 
    916 		if (status & VR_ISR_RX_OK)
    917 			vr_rxeof(sc);
    918 
    919 		if (status & VR_ISR_RX_DROPPED) {
    920 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
    921 			ifp->if_ierrors++;
    922 		}
    923 
    924 		if (status &
    925 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
    926 			vr_rxeoc(sc);
    927 
    928 
    929 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
    930 			if (status & VR_ISR_BUSERR)
    931 				printf("%s: PCI bus error\n",
    932 				    device_xname(sc->vr_dev));
    933 			if (status & VR_ISR_TX_UNDERRUN)
    934 				printf("%s: transmit underrun\n",
    935 				    device_xname(sc->vr_dev));
    936 			/* vr_init() calls vr_start() */
    937 			dotx = 0;
    938 			(void)vr_init(ifp);
    939 
    940 		}
    941 
    942 		if (status & VR_ISR_TX_OK) {
    943 			dotx = 1;
    944 			vr_txeof(sc);
    945 		}
    946 
    947 		if (status &
    948 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
    949 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
    950 				printf("%s: transmit aborted\n",
    951 				    device_xname(sc->vr_dev));
    952 			if (status & VR_ISR_TX_UDFI)
    953 				printf("%s: transmit underflow\n",
    954 				    device_xname(sc->vr_dev));
    955 			ifp->if_oerrors++;
    956 			dotx = 1;
    957 			vr_txeof(sc);
    958 			if (sc->vr_txpending) {
    959 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    960 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    961 			}
    962 		}
    963 	}
    964 
    965 	/* Re-enable interrupts. */
    966 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    967 
    968 	if (dotx)
    969 		vr_start(ifp);
    970 
    971 	return (handled);
    972 }
    973 
    974 /*
    975  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    976  * to the mbuf data regions directly in the transmit lists. We also save a
    977  * copy of the pointers since the transmit list fragment pointers are
    978  * physical addresses.
    979  */
    980 static void
    981 vr_start(struct ifnet *ifp)
    982 {
    983 	struct vr_softc *sc = ifp->if_softc;
    984 	struct mbuf *m0, *m;
    985 	struct vr_desc *d;
    986 	struct vr_descsoft *ds;
    987 	int error, firsttx, nexttx, opending;
    988 
    989 	/*
    990 	 * Remember the previous txpending and the first transmit
    991 	 * descriptor we use.
    992 	 */
    993 	opending = sc->vr_txpending;
    994 	firsttx = VR_NEXTTX(sc->vr_txlast);
    995 
    996 	/*
    997 	 * Loop through the send queue, setting up transmit descriptors
    998 	 * until we drain the queue, or use up all available transmit
    999 	 * descriptors.
   1000 	 */
   1001 	while (sc->vr_txpending < VR_NTXDESC) {
   1002 		/*
   1003 		 * Grab a packet off the queue.
   1004 		 */
   1005 		IFQ_POLL(&ifp->if_snd, m0);
   1006 		if (m0 == NULL)
   1007 			break;
   1008 		m = NULL;
   1009 
   1010 		/*
   1011 		 * Get the next available transmit descriptor.
   1012 		 */
   1013 		nexttx = VR_NEXTTX(sc->vr_txlast);
   1014 		d = VR_CDTX(sc, nexttx);
   1015 		ds = VR_DSTX(sc, nexttx);
   1016 
   1017 		/*
   1018 		 * Load the DMA map.  If this fails, the packet didn't
   1019 		 * fit in one DMA segment, and we need to copy.  Note,
   1020 		 * the packet must also be aligned.
   1021 		 * if the packet is too small, copy it too, so we're sure
   1022 		 * we have enough room for the pad buffer.
   1023 		 */
   1024 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
   1025 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
   1026 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1027 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1028 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1029 			if (m == NULL) {
   1030 				printf("%s: unable to allocate Tx mbuf\n",
   1031 				    device_xname(sc->vr_dev));
   1032 				break;
   1033 			}
   1034 			if (m0->m_pkthdr.len > MHLEN) {
   1035 				MCLGET(m, M_DONTWAIT);
   1036 				if ((m->m_flags & M_EXT) == 0) {
   1037 					printf("%s: unable to allocate Tx "
   1038 					    "cluster\n", device_xname(sc->vr_dev));
   1039 					m_freem(m);
   1040 					break;
   1041 				}
   1042 			}
   1043 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1044 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1045 			/*
   1046 			 * The Rhine doesn't auto-pad, so we have to do this
   1047 			 * ourselves.
   1048 			 */
   1049 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
   1050 				memset(mtod(m, char *) + m0->m_pkthdr.len,
   1051 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
   1052 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
   1053 			}
   1054 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1055 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1056 			if (error) {
   1057 				m_freem(m);
   1058 				printf("%s: unable to load Tx buffer, "
   1059 				    "error = %d\n", device_xname(sc->vr_dev), error);
   1060 				break;
   1061 			}
   1062 		}
   1063 
   1064 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1065 		if (m != NULL) {
   1066 			m_freem(m0);
   1067 			m0 = m;
   1068 		}
   1069 
   1070 		/* Sync the DMA map. */
   1071 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1072 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1073 
   1074 		/*
   1075 		 * Store a pointer to the packet so we can free it later.
   1076 		 */
   1077 		ds->ds_mbuf = m0;
   1078 
   1079 		/*
   1080 		 * If there's a BPF listener, bounce a copy of this frame
   1081 		 * to him.
   1082 		 */
   1083 		bpf_mtap(ifp, m0);
   1084 
   1085 		/*
   1086 		 * Fill in the transmit descriptor.
   1087 		 */
   1088 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1089 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1090 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1091 
   1092 		/*
   1093 		 * If this is the first descriptor we're enqueuing,
   1094 		 * don't give it to the Rhine yet.  That could cause
   1095 		 * a race condition.  We'll do it below.
   1096 		 */
   1097 		if (nexttx == firsttx)
   1098 			d->vr_status = 0;
   1099 		else
   1100 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1101 
   1102 		VR_CDTXSYNC(sc, nexttx,
   1103 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1104 
   1105 		/* Advance the tx pointer. */
   1106 		sc->vr_txpending++;
   1107 		sc->vr_txlast = nexttx;
   1108 	}
   1109 
   1110 	if (sc->vr_txpending == VR_NTXDESC) {
   1111 		/* No more slots left; notify upper layer. */
   1112 		ifp->if_flags |= IFF_OACTIVE;
   1113 	}
   1114 
   1115 	if (sc->vr_txpending != opending) {
   1116 		/*
   1117 		 * We enqueued packets.  If the transmitter was idle,
   1118 		 * reset the txdirty pointer.
   1119 		 */
   1120 		if (opending == 0)
   1121 			sc->vr_txdirty = firsttx;
   1122 
   1123 		/*
   1124 		 * Cause a transmit interrupt to happen on the
   1125 		 * last packet we enqueued.
   1126 		 */
   1127 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1128 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1129 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1130 
   1131 		/*
   1132 		 * The entire packet chain is set up.  Give the
   1133 		 * first descriptor to the Rhine now.
   1134 		 */
   1135 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1136 		VR_CDTXSYNC(sc, firsttx,
   1137 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1138 
   1139 		/* Start the transmitter. */
   1140 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1141 
   1142 		/* Set the watchdog timer in case the chip flakes out. */
   1143 		ifp->if_timer = 5;
   1144 	}
   1145 }
   1146 
   1147 /*
   1148  * Initialize the interface.  Must be called at splnet.
   1149  */
   1150 static int
   1151 vr_init(struct ifnet *ifp)
   1152 {
   1153 	struct vr_softc *sc = ifp->if_softc;
   1154 	struct vr_desc *d;
   1155 	struct vr_descsoft *ds;
   1156 	int i, error = 0;
   1157 
   1158 	/* Cancel pending I/O. */
   1159 	vr_stop(ifp, 0);
   1160 
   1161 	/* Reset the Rhine to a known state. */
   1162 	vr_reset(sc);
   1163 
   1164 	/* set DMA length in BCR0 and BCR1 */
   1165 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1166 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1167 
   1168 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1169 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1170 
   1171 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1172 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1173 
   1174 	/* set DMA threshold length in RXCFG and TXCFG */
   1175 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1176 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1177 
   1178 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1179 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1180 
   1181 	/*
   1182 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1183 	 * to the end of the list so that it will wrap around to the first
   1184 	 * descriptor when the first packet is transmitted.
   1185 	 */
   1186 	for (i = 0; i < VR_NTXDESC; i++) {
   1187 		d = VR_CDTX(sc, i);
   1188 		memset(d, 0, sizeof(struct vr_desc));
   1189 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1190 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1191 	}
   1192 	sc->vr_txpending = 0;
   1193 	sc->vr_txdirty = 0;
   1194 	sc->vr_txlast = VR_NTXDESC - 1;
   1195 
   1196 	/*
   1197 	 * Initialize the receive descriptor ring.
   1198 	 */
   1199 	for (i = 0; i < VR_NRXDESC; i++) {
   1200 		ds = VR_DSRX(sc, i);
   1201 		if (ds->ds_mbuf == NULL) {
   1202 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1203 				printf("%s: unable to allocate or map rx "
   1204 				    "buffer %d, error = %d\n",
   1205 				    device_xname(sc->vr_dev), i, error);
   1206 				/*
   1207 				 * XXX Should attempt to run with fewer receive
   1208 				 * XXX buffers instead of just failing.
   1209 				 */
   1210 				vr_rxdrain(sc);
   1211 				goto out;
   1212 			}
   1213 		} else
   1214 			VR_INIT_RXDESC(sc, i);
   1215 	}
   1216 	sc->vr_rxptr = 0;
   1217 
   1218 	/* If we want promiscuous mode, set the allframes bit. */
   1219 	if (ifp->if_flags & IFF_PROMISC)
   1220 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1221 	else
   1222 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1223 
   1224 	/* Set capture broadcast bit to capture broadcast frames. */
   1225 	if (ifp->if_flags & IFF_BROADCAST)
   1226 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1227 	else
   1228 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1229 
   1230 	/* Program the multicast filter, if necessary. */
   1231 	vr_setmulti(sc);
   1232 
   1233 	/* Give the transmit and receive rings to the Rhine. */
   1234 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1235 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1236 
   1237 	/* Set current media. */
   1238 	if ((error = ether_mediachange(ifp)) != 0)
   1239 		goto out;
   1240 
   1241 	/* Enable receiver and transmitter. */
   1242 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1243 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1244 				    VR_CMD_RX_GO);
   1245 
   1246 	/* Enable interrupts. */
   1247 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1248 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1249 
   1250 	ifp->if_flags |= IFF_RUNNING;
   1251 	ifp->if_flags &= ~IFF_OACTIVE;
   1252 
   1253 	/* Start one second timer. */
   1254 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1255 
   1256 	/* Attempt to start output on the interface. */
   1257 	vr_start(ifp);
   1258 
   1259  out:
   1260 	if (error)
   1261 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
   1262 	return (error);
   1263 }
   1264 
   1265 static int
   1266 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
   1267 {
   1268 	struct vr_softc *sc = ifp->if_softc;
   1269 	int s, error = 0;
   1270 
   1271 	s = splnet();
   1272 
   1273 	error = ether_ioctl(ifp, command, data);
   1274 	if (error == ENETRESET) {
   1275 		/*
   1276 		 * Multicast list has changed; set the hardware filter
   1277 		 * accordingly.
   1278 		 */
   1279 		if (ifp->if_flags & IFF_RUNNING)
   1280 			vr_setmulti(sc);
   1281 		error = 0;
   1282 	}
   1283 
   1284 	splx(s);
   1285 	return (error);
   1286 }
   1287 
   1288 static void
   1289 vr_watchdog(struct ifnet *ifp)
   1290 {
   1291 	struct vr_softc *sc = ifp->if_softc;
   1292 
   1293 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
   1294 	ifp->if_oerrors++;
   1295 
   1296 	(void) vr_init(ifp);
   1297 }
   1298 
   1299 /*
   1300  * One second timer, used to tick MII.
   1301  */
   1302 static void
   1303 vr_tick(void *arg)
   1304 {
   1305 	struct vr_softc *sc = arg;
   1306 	int s;
   1307 
   1308 	s = splnet();
   1309 	mii_tick(&sc->vr_mii);
   1310 	splx(s);
   1311 
   1312 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1313 }
   1314 
   1315 /*
   1316  * Drain the receive queue.
   1317  */
   1318 static void
   1319 vr_rxdrain(struct vr_softc *sc)
   1320 {
   1321 	struct vr_descsoft *ds;
   1322 	int i;
   1323 
   1324 	for (i = 0; i < VR_NRXDESC; i++) {
   1325 		ds = VR_DSRX(sc, i);
   1326 		if (ds->ds_mbuf != NULL) {
   1327 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1328 			m_freem(ds->ds_mbuf);
   1329 			ds->ds_mbuf = NULL;
   1330 		}
   1331 	}
   1332 }
   1333 
   1334 /*
   1335  * Stop the adapter and free any mbufs allocated to the
   1336  * transmit lists.
   1337  */
   1338 static void
   1339 vr_stop(struct ifnet *ifp, int disable)
   1340 {
   1341 	struct vr_softc *sc = ifp->if_softc;
   1342 	struct vr_descsoft *ds;
   1343 	int i;
   1344 
   1345 	/* Cancel one second timer. */
   1346 	callout_stop(&sc->vr_tick_ch);
   1347 
   1348 	/* Down the MII. */
   1349 	mii_down(&sc->vr_mii);
   1350 
   1351 	ifp = &sc->vr_ec.ec_if;
   1352 	ifp->if_timer = 0;
   1353 
   1354 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1355 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1356 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1357 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1358 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1359 
   1360 	/*
   1361 	 * Release any queued transmit buffers.
   1362 	 */
   1363 	for (i = 0; i < VR_NTXDESC; i++) {
   1364 		ds = VR_DSTX(sc, i);
   1365 		if (ds->ds_mbuf != NULL) {
   1366 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1367 			m_freem(ds->ds_mbuf);
   1368 			ds->ds_mbuf = NULL;
   1369 		}
   1370 	}
   1371 
   1372 	/*
   1373 	 * Mark the interface down and cancel the watchdog timer.
   1374 	 */
   1375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1376 	ifp->if_timer = 0;
   1377 
   1378 	if (disable)
   1379 		vr_rxdrain(sc);
   1380 }
   1381 
   1382 static int	vr_probe(device_t, cfdata_t, void *);
   1383 static void	vr_attach(device_t, device_t, void *);
   1384 static bool	vr_shutdown(device_t, int);
   1385 
   1386 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
   1387     vr_probe, vr_attach, NULL, NULL);
   1388 
   1389 static const struct vr_type *
   1390 vr_lookup(struct pci_attach_args *pa)
   1391 {
   1392 	const struct vr_type *vrt;
   1393 	int i;
   1394 
   1395 	for (i = 0; i < __arraycount(vr_devs); i++) {
   1396 		vrt = &vr_devs[i];
   1397 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1398 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1399 			return (vrt);
   1400 	}
   1401 	return (NULL);
   1402 }
   1403 
   1404 static int
   1405 vr_probe(device_t parent, cfdata_t match, void *aux)
   1406 {
   1407 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1408 
   1409 	if (vr_lookup(pa) != NULL)
   1410 		return (1);
   1411 
   1412 	return (0);
   1413 }
   1414 
   1415 /*
   1416  * Stop all chip I/O so that the kernel's probe routines don't
   1417  * get confused by errant DMAs when rebooting.
   1418  */
   1419 static bool
   1420 vr_shutdown(device_t self, int howto)
   1421 {
   1422 	struct vr_softc *sc = device_private(self);
   1423 
   1424 	vr_stop(&sc->vr_ec.ec_if, 1);
   1425 
   1426 	return true;
   1427 }
   1428 
   1429 /*
   1430  * Attach the interface. Allocate softc structures, do ifmedia
   1431  * setup and ethernet/BPF attach.
   1432  */
   1433 static void
   1434 vr_attach(device_t parent, device_t self, void *aux)
   1435 {
   1436 	struct vr_softc *sc = device_private(self);
   1437 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1438 	bus_dma_segment_t seg;
   1439 	uint32_t reg;
   1440 	struct ifnet *ifp;
   1441 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
   1442 	int i, rseg, error;
   1443 	char devinfo[256];
   1444 
   1445 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
   1446 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
   1447 
   1448 	sc->vr_dev = self;
   1449 	sc->vr_pc = pa->pa_pc;
   1450 	sc->vr_tag = pa->pa_tag;
   1451 	sc->vr_id = pa->pa_id;
   1452 	callout_init(&sc->vr_tick_ch, 0);
   1453 
   1454 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
   1455 	aprint_naive("\n");
   1456 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
   1457 	    PCI_REVISION(pa->pa_class));
   1458 
   1459 	/*
   1460 	 * Handle power management nonsense.
   1461 	 */
   1462 
   1463 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1464 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1465 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1466 
   1467 	/* power up chip */
   1468 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1469 	    vr_restore_state)) && error != EOPNOTSUPP) {
   1470 		aprint_error_dev(self, "cannot activate %d\n",
   1471 		    error);
   1472 		return;
   1473 	}
   1474 
   1475 	/* Make sure bus mastering is enabled. */
   1476 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1477 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1478 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1479 
   1480 	/* Get revision */
   1481 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1482 
   1483 	/*
   1484 	 * Map control/status registers.
   1485 	 */
   1486 	{
   1487 		bus_space_tag_t iot, memt;
   1488 		bus_space_handle_t ioh, memh;
   1489 		int ioh_valid, memh_valid;
   1490 		pci_intr_handle_t intrhandle;
   1491 		const char *intrstr;
   1492 
   1493 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1494 			PCI_MAPREG_TYPE_IO, 0,
   1495 			&iot, &ioh, NULL, NULL) == 0);
   1496 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1497 			PCI_MAPREG_TYPE_MEM |
   1498 			PCI_MAPREG_MEM_TYPE_32BIT,
   1499 			0, &memt, &memh, NULL, NULL) == 0);
   1500 #if defined(VR_USEIOSPACE)
   1501 		if (ioh_valid) {
   1502 			sc->vr_bst = iot;
   1503 			sc->vr_bsh = ioh;
   1504 		} else if (memh_valid) {
   1505 			sc->vr_bst = memt;
   1506 			sc->vr_bsh = memh;
   1507 		}
   1508 #else
   1509 		if (memh_valid) {
   1510 			sc->vr_bst = memt;
   1511 			sc->vr_bsh = memh;
   1512 		} else if (ioh_valid) {
   1513 			sc->vr_bst = iot;
   1514 			sc->vr_bsh = ioh;
   1515 		}
   1516 #endif
   1517 		else {
   1518 			printf(": unable to map device registers\n");
   1519 			return;
   1520 		}
   1521 
   1522 		/* Allocate interrupt */
   1523 		if (pci_intr_map(pa, &intrhandle)) {
   1524 			aprint_error_dev(self, "couldn't map interrupt\n");
   1525 			return;
   1526 		}
   1527 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1528 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1529 						vr_intr, sc);
   1530 		if (sc->vr_ih == NULL) {
   1531 			aprint_error_dev(self, "couldn't establish interrupt");
   1532 			if (intrstr != NULL)
   1533 				aprint_error(" at %s", intrstr);
   1534 			aprint_error("\n");
   1535 		}
   1536 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
   1537 	}
   1538 
   1539 	/*
   1540 	 * Windows may put the chip in suspend mode when it
   1541 	 * shuts down. Be sure to kick it in the head to wake it
   1542 	 * up again.
   1543 	 *
   1544 	 * Don't touch this register on VT3043 since it causes
   1545 	 * kernel MCHK trap on macppc.
   1546 	 * (Note some VT86C100A chip returns a product ID of VT3043)
   1547 	 */
   1548 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
   1549 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1550 
   1551 	/* Reset the adapter. */
   1552 	vr_reset(sc);
   1553 
   1554 	/*
   1555 	 * Get station address. The way the Rhine chips work,
   1556 	 * you're not allowed to directly access the EEPROM once
   1557 	 * they've been programmed a special way. Consequently,
   1558 	 * we need to read the node address from the PAR0 and PAR1
   1559 	 * registers.
   1560 	 *
   1561 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1562 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1563 	 *         pretty pointless since the chip does this automatically
   1564 	 *         at powerup/reset.
   1565 	 *         I suspect the same thing applies to the other Rhine
   1566 	 *         variants, but in the absence of a data sheet for those
   1567 	 *         (and the lack of anyone else noticing the problems this
   1568 	 *         causes) I'm going to retain the old behaviour for the
   1569 	 *         other parts.
   1570 	 *         In some cases, the chip really does startup without having
   1571 	 *         read the EEPROM (kern/34812). To handle this case, we force
   1572 	 *         a reload if we see an all-zeroes MAC address.
   1573 	 */
   1574 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
   1575 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
   1576 
   1577 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1578 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
   1579 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1580 		DELAY(200);
   1581 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1582 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1583 	}
   1584 
   1585 	/*
   1586 	 * A Rhine chip was detected. Inform the world.
   1587 	 */
   1588 	aprint_normal("%s: Ethernet address: %s\n",
   1589 		device_xname(self), ether_sprintf(eaddr));
   1590 
   1591 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1592 
   1593 	sc->vr_dmat = pa->pa_dmat;
   1594 
   1595 	/*
   1596 	 * Allocate the control data structures, and create and load
   1597 	 * the DMA map for it.
   1598 	 */
   1599 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1600 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1601 	    0)) != 0) {
   1602 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
   1603 		goto fail_0;
   1604 	}
   1605 
   1606 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1607 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
   1608 	    BUS_DMA_COHERENT)) != 0) {
   1609 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
   1610 		goto fail_1;
   1611 	}
   1612 
   1613 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1614 	    sizeof(struct vr_control_data), 1,
   1615 	    sizeof(struct vr_control_data), 0, 0,
   1616 	    &sc->vr_cddmamap)) != 0) {
   1617 		aprint_error_dev(self, "unable to create control data DMA map, "
   1618 		    "error = %d\n", error);
   1619 		goto fail_2;
   1620 	}
   1621 
   1622 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1623 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1624 	    0)) != 0) {
   1625 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
   1626 		    error);
   1627 		goto fail_3;
   1628 	}
   1629 
   1630 	/*
   1631 	 * Create the transmit buffer DMA maps.
   1632 	 */
   1633 	for (i = 0; i < VR_NTXDESC; i++) {
   1634 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1635 		    1, MCLBYTES, 0, 0,
   1636 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1637 			aprint_error_dev(self, "unable to create tx DMA map %d, "
   1638 			    "error = %d\n", i, error);
   1639 			goto fail_4;
   1640 		}
   1641 	}
   1642 
   1643 	/*
   1644 	 * Create the receive buffer DMA maps.
   1645 	 */
   1646 	for (i = 0; i < VR_NRXDESC; i++) {
   1647 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1648 		    MCLBYTES, 0, 0,
   1649 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1650 			aprint_error_dev(self, "unable to create rx DMA map %d, "
   1651 			    "error = %d\n", i, error);
   1652 			goto fail_5;
   1653 		}
   1654 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1655 	}
   1656 
   1657 	ifp = &sc->vr_ec.ec_if;
   1658 	ifp->if_softc = sc;
   1659 	ifp->if_mtu = ETHERMTU;
   1660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1661 	ifp->if_ioctl = vr_ioctl;
   1662 	ifp->if_start = vr_start;
   1663 	ifp->if_watchdog = vr_watchdog;
   1664 	ifp->if_init = vr_init;
   1665 	ifp->if_stop = vr_stop;
   1666 	IFQ_SET_READY(&ifp->if_snd);
   1667 
   1668 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1669 
   1670 	/*
   1671 	 * Initialize MII/media info.
   1672 	 */
   1673 	sc->vr_mii.mii_ifp = ifp;
   1674 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1675 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1676 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1677 
   1678 	sc->vr_ec.ec_mii = &sc->vr_mii;
   1679 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
   1680 		ether_mediastatus);
   1681 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1682 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1683 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1684 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1685 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1686 	} else
   1687 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1688 
   1689 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1690 
   1691 	/*
   1692 	 * Call MI attach routines.
   1693 	 */
   1694 	if_attach(ifp);
   1695 	ether_ifattach(ifp, sc->vr_enaddr);
   1696 #if NRND > 0
   1697 	rnd_attach_source(&sc->rnd_source, device_xname(self),
   1698 	    RND_TYPE_NET, 0);
   1699 #endif
   1700 
   1701 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
   1702 		pmf_class_network_register(self, ifp);
   1703 	else
   1704 		aprint_error_dev(self, "couldn't establish power handler\n");
   1705 
   1706 	return;
   1707 
   1708  fail_5:
   1709 	for (i = 0; i < VR_NRXDESC; i++) {
   1710 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1711 			bus_dmamap_destroy(sc->vr_dmat,
   1712 			    sc->vr_rxsoft[i].ds_dmamap);
   1713 	}
   1714  fail_4:
   1715 	for (i = 0; i < VR_NTXDESC; i++) {
   1716 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1717 			bus_dmamap_destroy(sc->vr_dmat,
   1718 			    sc->vr_txsoft[i].ds_dmamap);
   1719 	}
   1720 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1721  fail_3:
   1722 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1723  fail_2:
   1724 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
   1725 	    sizeof(struct vr_control_data));
   1726  fail_1:
   1727 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1728  fail_0:
   1729 	return;
   1730 }
   1731 
   1732 static int
   1733 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
   1734     pcireg_t state)
   1735 {
   1736 	struct vr_softc *sc = device_private(self);
   1737 	int error;
   1738 
   1739 	if (state == PCI_PMCSR_STATE_D0)
   1740 		return 0;
   1741 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
   1742 		return error;
   1743 
   1744 	/* Restore PCI config data. */
   1745 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
   1746 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
   1747 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
   1748 	return 0;
   1749 }
   1750 
   1751 static bool
   1752 vr_resume(device_t self, const pmf_qual_t *qual)
   1753 {
   1754 	struct vr_softc *sc = device_private(self);
   1755 
   1756 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
   1757 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1758 
   1759 	return true;
   1760 }
   1761