if_vr.c revision 1.108 1 /* $NetBSD: if_vr.c,v 1.108 2011/11/19 22:51:23 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.108 2011/11/19 22:51:23 tls Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include <net/bpf.h>
125
126 #include <sys/bus.h>
127 #include <sys/intr.h>
128 #include <machine/endian.h>
129
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/mii_bitbang.h>
133
134 #include <dev/pci/pcireg.h>
135 #include <dev/pci/pcivar.h>
136 #include <dev/pci/pcidevs.h>
137
138 #include <dev/pci/if_vrreg.h>
139
140 #define VR_USEIOSPACE
141
142 /*
143 * Various supported device vendors/types and their names.
144 */
145 static const struct vr_type {
146 pci_vendor_id_t vr_vid;
147 pci_product_id_t vr_did;
148 } vr_devs[] = {
149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
152 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
153 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
154 };
155
156 /*
157 * Transmit descriptor list size.
158 */
159 #define VR_NTXDESC 64
160 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
161 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
162
163 /*
164 * Receive descriptor list size.
165 */
166 #define VR_NRXDESC 64
167 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
168 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
169
170 /*
171 * Control data structres that are DMA'd to the Rhine chip. We allocate
172 * them in a single clump that maps to a single DMA segment to make several
173 * things easier.
174 *
175 * Note that since we always copy outgoing packets to aligned transmit
176 * buffers, we can reduce the transmit descriptors to one per packet.
177 */
178 struct vr_control_data {
179 struct vr_desc vr_txdescs[VR_NTXDESC];
180 struct vr_desc vr_rxdescs[VR_NRXDESC];
181 };
182
183 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
184 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
185 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
186
187 /*
188 * Software state of transmit and receive descriptors.
189 */
190 struct vr_descsoft {
191 struct mbuf *ds_mbuf; /* head of mbuf chain */
192 bus_dmamap_t ds_dmamap; /* our DMA map */
193 };
194
195 struct vr_softc {
196 device_t vr_dev;
197 void *vr_ih; /* interrupt cookie */
198 bus_space_tag_t vr_bst; /* bus space tag */
199 bus_space_handle_t vr_bsh; /* bus space handle */
200 bus_dma_tag_t vr_dmat; /* bus DMA tag */
201 pci_chipset_tag_t vr_pc; /* PCI chipset info */
202 pcitag_t vr_tag; /* PCI tag */
203 struct ethercom vr_ec; /* Ethernet common info */
204 uint8_t vr_enaddr[ETHER_ADDR_LEN];
205 struct mii_data vr_mii; /* MII/media info */
206
207 pcireg_t vr_id; /* vendor/product ID */
208 uint8_t vr_revid; /* Rhine chip revision */
209
210 callout_t vr_tick_ch; /* tick callout */
211
212 bus_dmamap_t vr_cddmamap; /* control data DMA map */
213 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
214
215 /*
216 * Software state for transmit and receive descriptors.
217 */
218 struct vr_descsoft vr_txsoft[VR_NTXDESC];
219 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
220
221 /*
222 * Control data structures.
223 */
224 struct vr_control_data *vr_control_data;
225
226 int vr_txpending; /* number of TX requests pending */
227 int vr_txdirty; /* first dirty TX descriptor */
228 int vr_txlast; /* last used TX descriptor */
229
230 int vr_rxptr; /* next ready RX descriptor */
231
232 uint32_t vr_save_iobase;
233 uint32_t vr_save_membase;
234 uint32_t vr_save_irq;
235
236 #if NRND > 0
237 krndsource_t rnd_source; /* random source */
238 #endif
239 };
240
241 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
242 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
243
244 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
245 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
246
247 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
248 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
249
250 #define VR_CDTXSYNC(sc, x, ops) \
251 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
252 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
253
254 #define VR_CDRXSYNC(sc, x, ops) \
255 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
257
258 /*
259 * Note we rely on MCLBYTES being a power of two below.
260 */
261 #define VR_INIT_RXDESC(sc, i) \
262 do { \
263 struct vr_desc *__d = VR_CDRX((sc), (i)); \
264 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
265 \
266 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
267 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
268 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
269 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
270 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
271 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
272 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (/* CONSTCOND */ 0)
274
275 /*
276 * register space access macros
277 */
278 #define CSR_WRITE_4(sc, reg, val) \
279 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define CSR_WRITE_2(sc, reg, val) \
281 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_1(sc, reg, val) \
283 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
284
285 #define CSR_READ_4(sc, reg) \
286 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
287 #define CSR_READ_2(sc, reg) \
288 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_1(sc, reg) \
290 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
291
292 #define VR_TIMEOUT 1000
293
294 static int vr_add_rxbuf(struct vr_softc *, int);
295
296 static void vr_rxeof(struct vr_softc *);
297 static void vr_rxeoc(struct vr_softc *);
298 static void vr_txeof(struct vr_softc *);
299 static int vr_intr(void *);
300 static void vr_start(struct ifnet *);
301 static int vr_ioctl(struct ifnet *, u_long, void *);
302 static int vr_init(struct ifnet *);
303 static void vr_stop(struct ifnet *, int);
304 static void vr_rxdrain(struct vr_softc *);
305 static void vr_watchdog(struct ifnet *);
306 static void vr_tick(void *);
307
308 static int vr_mii_readreg(device_t, int, int);
309 static void vr_mii_writereg(device_t, int, int, int);
310 static void vr_mii_statchg(device_t);
311
312 static void vr_setmulti(struct vr_softc *);
313 static void vr_reset(struct vr_softc *);
314 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
315 pcireg_t);
316 static bool vr_resume(device_t, const pmf_qual_t *);
317
318 int vr_copy_small = 0;
319
320 #define VR_SETBIT(sc, reg, x) \
321 CSR_WRITE_1(sc, reg, \
322 CSR_READ_1(sc, reg) | (x))
323
324 #define VR_CLRBIT(sc, reg, x) \
325 CSR_WRITE_1(sc, reg, \
326 CSR_READ_1(sc, reg) & ~(x))
327
328 #define VR_SETBIT16(sc, reg, x) \
329 CSR_WRITE_2(sc, reg, \
330 CSR_READ_2(sc, reg) | (x))
331
332 #define VR_CLRBIT16(sc, reg, x) \
333 CSR_WRITE_2(sc, reg, \
334 CSR_READ_2(sc, reg) & ~(x))
335
336 #define VR_SETBIT32(sc, reg, x) \
337 CSR_WRITE_4(sc, reg, \
338 CSR_READ_4(sc, reg) | (x))
339
340 #define VR_CLRBIT32(sc, reg, x) \
341 CSR_WRITE_4(sc, reg, \
342 CSR_READ_4(sc, reg) & ~(x))
343
344 /*
345 * MII bit-bang glue.
346 */
347 static uint32_t vr_mii_bitbang_read(device_t);
348 static void vr_mii_bitbang_write(device_t, uint32_t);
349
350 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
351 vr_mii_bitbang_read,
352 vr_mii_bitbang_write,
353 {
354 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
355 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
356 VR_MIICMD_CLK, /* MII_BIT_MDC */
357 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
358 0, /* MII_BIT_DIR_PHY_HOST */
359 }
360 };
361
362 static uint32_t
363 vr_mii_bitbang_read(device_t self)
364 {
365 struct vr_softc *sc = device_private(self);
366
367 return (CSR_READ_1(sc, VR_MIICMD));
368 }
369
370 static void
371 vr_mii_bitbang_write(device_t self, uint32_t val)
372 {
373 struct vr_softc *sc = device_private(self);
374
375 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
376 }
377
378 /*
379 * Read an PHY register through the MII.
380 */
381 static int
382 vr_mii_readreg(device_t self, int phy, int reg)
383 {
384 struct vr_softc *sc = device_private(self);
385
386 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
387 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
388 }
389
390 /*
391 * Write to a PHY register through the MII.
392 */
393 static void
394 vr_mii_writereg(device_t self, int phy, int reg, int val)
395 {
396 struct vr_softc *sc = device_private(self);
397
398 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
400 }
401
402 static void
403 vr_mii_statchg(device_t self)
404 {
405 struct vr_softc *sc = device_private(self);
406
407 /*
408 * In order to fiddle with the 'full-duplex' bit in the netconfig
409 * register, we first have to put the transmit and/or receive logic
410 * in the idle state.
411 */
412 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
413
414 if (sc->vr_mii.mii_media_active & IFM_FDX)
415 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
416 else
417 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
418
419 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
420 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
421 }
422
423 #define vr_calchash(addr) \
424 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
425
426 /*
427 * Program the 64-bit multicast hash filter.
428 */
429 static void
430 vr_setmulti(struct vr_softc *sc)
431 {
432 struct ifnet *ifp;
433 int h = 0;
434 uint32_t hashes[2] = { 0, 0 };
435 struct ether_multistep step;
436 struct ether_multi *enm;
437 int mcnt = 0;
438 uint8_t rxfilt;
439
440 ifp = &sc->vr_ec.ec_if;
441
442 rxfilt = CSR_READ_1(sc, VR_RXCFG);
443
444 if (ifp->if_flags & IFF_PROMISC) {
445 allmulti:
446 ifp->if_flags |= IFF_ALLMULTI;
447 rxfilt |= VR_RXCFG_RX_MULTI;
448 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
449 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
450 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
451 return;
452 }
453
454 /* first, zot all the existing hash bits */
455 CSR_WRITE_4(sc, VR_MAR0, 0);
456 CSR_WRITE_4(sc, VR_MAR1, 0);
457
458 /* now program new ones */
459 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
460 while (enm != NULL) {
461 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
462 ETHER_ADDR_LEN) != 0)
463 goto allmulti;
464
465 h = vr_calchash(enm->enm_addrlo);
466
467 if (h < 32)
468 hashes[0] |= (1 << h);
469 else
470 hashes[1] |= (1 << (h - 32));
471 ETHER_NEXT_MULTI(step, enm);
472 mcnt++;
473 }
474
475 ifp->if_flags &= ~IFF_ALLMULTI;
476
477 if (mcnt)
478 rxfilt |= VR_RXCFG_RX_MULTI;
479 else
480 rxfilt &= ~VR_RXCFG_RX_MULTI;
481
482 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
483 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
484 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
485 }
486
487 static void
488 vr_reset(struct vr_softc *sc)
489 {
490 int i;
491
492 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
493
494 for (i = 0; i < VR_TIMEOUT; i++) {
495 DELAY(10);
496 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
497 break;
498 }
499 if (i == VR_TIMEOUT) {
500 if (sc->vr_revid < REV_ID_VT3065_A) {
501 printf("%s: reset never completed!\n",
502 device_xname(sc->vr_dev));
503 } else {
504 /* Use newer force reset command */
505 printf("%s: using force reset command.\n",
506 device_xname(sc->vr_dev));
507 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
508 }
509 }
510
511 /* Wait a little while for the chip to get its brains in order. */
512 DELAY(1000);
513 }
514
515 /*
516 * Initialize an RX descriptor and attach an MBUF cluster.
517 * Note: the length fields are only 11 bits wide, which means the
518 * largest size we can specify is 2047. This is important because
519 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
520 * overflow the field and make a mess.
521 */
522 static int
523 vr_add_rxbuf(struct vr_softc *sc, int i)
524 {
525 struct vr_descsoft *ds = VR_DSRX(sc, i);
526 struct mbuf *m_new;
527 int error;
528
529 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
530 if (m_new == NULL)
531 return (ENOBUFS);
532
533 MCLGET(m_new, M_DONTWAIT);
534 if ((m_new->m_flags & M_EXT) == 0) {
535 m_freem(m_new);
536 return (ENOBUFS);
537 }
538
539 if (ds->ds_mbuf != NULL)
540 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
541
542 ds->ds_mbuf = m_new;
543
544 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
545 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
546 BUS_DMA_READ|BUS_DMA_NOWAIT);
547 if (error) {
548 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
549 i, error);
550 panic("vr_add_rxbuf"); /* XXX */
551 }
552
553 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
554 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
555
556 VR_INIT_RXDESC(sc, i);
557
558 return (0);
559 }
560
561 /*
562 * A frame has been uploaded: pass the resulting mbuf chain up to
563 * the higher level protocols.
564 */
565 static void
566 vr_rxeof(struct vr_softc *sc)
567 {
568 struct mbuf *m;
569 struct ifnet *ifp;
570 struct vr_desc *d;
571 struct vr_descsoft *ds;
572 int i, total_len;
573 uint32_t rxstat;
574
575 ifp = &sc->vr_ec.ec_if;
576
577 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
578 d = VR_CDRX(sc, i);
579 ds = VR_DSRX(sc, i);
580
581 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
582
583 rxstat = le32toh(d->vr_status);
584
585 if (rxstat & VR_RXSTAT_OWN) {
586 /*
587 * We have processed all of the receive buffers.
588 */
589 break;
590 }
591
592 /*
593 * If an error occurs, update stats, clear the
594 * status word and leave the mbuf cluster in place:
595 * it should simply get re-used next time this descriptor
596 * comes up in the ring.
597 */
598 if (rxstat & VR_RXSTAT_RXERR) {
599 const char *errstr;
600
601 ifp->if_ierrors++;
602 switch (rxstat & 0x000000FF) {
603 case VR_RXSTAT_CRCERR:
604 errstr = "crc error";
605 break;
606 case VR_RXSTAT_FRAMEALIGNERR:
607 errstr = "frame alignment error";
608 break;
609 case VR_RXSTAT_FIFOOFLOW:
610 errstr = "FIFO overflow";
611 break;
612 case VR_RXSTAT_GIANT:
613 errstr = "received giant packet";
614 break;
615 case VR_RXSTAT_RUNT:
616 errstr = "received runt packet";
617 break;
618 case VR_RXSTAT_BUSERR:
619 errstr = "system bus error";
620 break;
621 case VR_RXSTAT_BUFFERR:
622 errstr = "rx buffer error";
623 break;
624 default:
625 errstr = "unknown rx error";
626 break;
627 }
628 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
629 errstr);
630
631 VR_INIT_RXDESC(sc, i);
632
633 continue;
634 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
635 !(rxstat & VR_RXSTAT_LASTFRAG)) {
636 /*
637 * This driver expects to receive whole packets every
638 * time. In case we receive a fragment that is not
639 * a complete packet, we discard it.
640 */
641 ifp->if_ierrors++;
642
643 printf("%s: receive error: incomplete frame; "
644 "size = %d, status = 0x%x\n",
645 device_xname(sc->vr_dev),
646 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
647
648 VR_INIT_RXDESC(sc, i);
649
650 continue;
651 }
652
653 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
654 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
655
656 /* No errors; receive the packet. */
657 total_len = VR_RXBYTES(le32toh(d->vr_status));
658 #ifdef DIAGNOSTIC
659 if (total_len == 0) {
660 /*
661 * If we receive a zero-length packet, we probably
662 * missed to handle an error condition above.
663 * Discard it to avoid a later crash.
664 */
665 ifp->if_ierrors++;
666
667 printf("%s: receive error: zero-length packet; "
668 "status = 0x%x\n",
669 device_xname(sc->vr_dev), rxstat);
670
671 VR_INIT_RXDESC(sc, i);
672
673 continue;
674 }
675 #endif
676
677 /*
678 * The Rhine chip includes the CRC with every packet.
679 * Trim it off here.
680 */
681 total_len -= ETHER_CRC_LEN;
682
683 #ifdef __NO_STRICT_ALIGNMENT
684 /*
685 * If the packet is small enough to fit in a
686 * single header mbuf, allocate one and copy
687 * the data into it. This greatly reduces
688 * memory consumption when we receive lots
689 * of small packets.
690 *
691 * Otherwise, we add a new buffer to the receive
692 * chain. If this fails, we drop the packet and
693 * recycle the old buffer.
694 */
695 if (vr_copy_small != 0 && total_len <= MHLEN) {
696 MGETHDR(m, M_DONTWAIT, MT_DATA);
697 if (m == NULL)
698 goto dropit;
699 memcpy(mtod(m, void *),
700 mtod(ds->ds_mbuf, void *), total_len);
701 VR_INIT_RXDESC(sc, i);
702 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
703 ds->ds_dmamap->dm_mapsize,
704 BUS_DMASYNC_PREREAD);
705 } else {
706 m = ds->ds_mbuf;
707 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
708 dropit:
709 ifp->if_ierrors++;
710 VR_INIT_RXDESC(sc, i);
711 bus_dmamap_sync(sc->vr_dmat,
712 ds->ds_dmamap, 0,
713 ds->ds_dmamap->dm_mapsize,
714 BUS_DMASYNC_PREREAD);
715 continue;
716 }
717 }
718 #else
719 /*
720 * The Rhine's packet buffers must be 4-byte aligned.
721 * But this means that the data after the Ethernet header
722 * is misaligned. We must allocate a new buffer and
723 * copy the data, shifted forward 2 bytes.
724 */
725 MGETHDR(m, M_DONTWAIT, MT_DATA);
726 if (m == NULL) {
727 dropit:
728 ifp->if_ierrors++;
729 VR_INIT_RXDESC(sc, i);
730 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
731 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
732 continue;
733 }
734 if (total_len > (MHLEN - 2)) {
735 MCLGET(m, M_DONTWAIT);
736 if ((m->m_flags & M_EXT) == 0) {
737 m_freem(m);
738 goto dropit;
739 }
740 }
741 m->m_data += 2;
742
743 /*
744 * Note that we use clusters for incoming frames, so the
745 * buffer is virtually contiguous.
746 */
747 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
748 total_len);
749
750 /* Allow the receive descriptor to continue using its mbuf. */
751 VR_INIT_RXDESC(sc, i);
752 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
753 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
754 #endif /* __NO_STRICT_ALIGNMENT */
755
756 ifp->if_ipackets++;
757 m->m_pkthdr.rcvif = ifp;
758 m->m_pkthdr.len = m->m_len = total_len;
759 /*
760 * Handle BPF listeners. Let the BPF user see the packet, but
761 * don't pass it up to the ether_input() layer unless it's
762 * a broadcast packet, multicast packet, matches our ethernet
763 * address or the interface is in promiscuous mode.
764 */
765 bpf_mtap(ifp, m);
766 /* Pass it on. */
767 (*ifp->if_input)(ifp, m);
768 }
769
770 /* Update the receive pointer. */
771 sc->vr_rxptr = i;
772 }
773
774 void
775 vr_rxeoc(struct vr_softc *sc)
776 {
777 struct ifnet *ifp;
778 int i;
779
780 ifp = &sc->vr_ec.ec_if;
781
782 ifp->if_ierrors++;
783
784 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
785 for (i = 0; i < VR_TIMEOUT; i++) {
786 DELAY(10);
787 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
788 break;
789 }
790 if (i == VR_TIMEOUT) {
791 /* XXX need reset? */
792 printf("%s: RX shutdown never complete\n",
793 device_xname(sc->vr_dev));
794 }
795
796 vr_rxeof(sc);
797
798 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
799 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
800 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
801 }
802
803 /*
804 * A frame was downloaded to the chip. It's safe for us to clean up
805 * the list buffers.
806 */
807 static void
808 vr_txeof(struct vr_softc *sc)
809 {
810 struct ifnet *ifp = &sc->vr_ec.ec_if;
811 struct vr_desc *d;
812 struct vr_descsoft *ds;
813 uint32_t txstat;
814 int i, j;
815
816 ifp->if_flags &= ~IFF_OACTIVE;
817
818 /*
819 * Go through our tx list and free mbufs for those
820 * frames that have been transmitted.
821 */
822 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
823 i = VR_NEXTTX(i), sc->vr_txpending--) {
824 d = VR_CDTX(sc, i);
825 ds = VR_DSTX(sc, i);
826
827 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
828
829 txstat = le32toh(d->vr_status);
830
831 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
832 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
833 for (j = 0; j < VR_TIMEOUT; j++) {
834 DELAY(10);
835 if ((CSR_READ_2(sc, VR_COMMAND) &
836 VR_CMD_TX_ON) == 0)
837 break;
838 }
839 if (j == VR_TIMEOUT) {
840 /* XXX need reset? */
841 printf("%s: TX shutdown never complete\n",
842 device_xname(sc->vr_dev));
843 }
844 d->vr_status = htole32(VR_TXSTAT_OWN);
845 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
846 break;
847 }
848
849 if (txstat & VR_TXSTAT_OWN)
850 break;
851
852 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
853 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
854 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
855 m_freem(ds->ds_mbuf);
856 ds->ds_mbuf = NULL;
857
858 if (txstat & VR_TXSTAT_ERRSUM) {
859 ifp->if_oerrors++;
860 if (txstat & VR_TXSTAT_DEFER)
861 ifp->if_collisions++;
862 if (txstat & VR_TXSTAT_LATECOLL)
863 ifp->if_collisions++;
864 }
865
866 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
867 ifp->if_opackets++;
868 }
869
870 /* Update the dirty transmit buffer pointer. */
871 sc->vr_txdirty = i;
872
873 /*
874 * Cancel the watchdog timer if there are no pending
875 * transmissions.
876 */
877 if (sc->vr_txpending == 0)
878 ifp->if_timer = 0;
879 }
880
881 static int
882 vr_intr(void *arg)
883 {
884 struct vr_softc *sc;
885 struct ifnet *ifp;
886 uint16_t status;
887 int handled = 0, dotx = 0;
888
889 sc = arg;
890 ifp = &sc->vr_ec.ec_if;
891
892 /* Suppress unwanted interrupts. */
893 if ((ifp->if_flags & IFF_UP) == 0) {
894 vr_stop(ifp, 1);
895 return (0);
896 }
897
898 /* Disable interrupts. */
899 CSR_WRITE_2(sc, VR_IMR, 0x0000);
900
901 for (;;) {
902 status = CSR_READ_2(sc, VR_ISR);
903 if (status)
904 CSR_WRITE_2(sc, VR_ISR, status);
905
906 if ((status & VR_INTRS) == 0)
907 break;
908
909 handled = 1;
910
911 #if NRND > 0
912 if (RND_ENABLED(&sc->rnd_source))
913 rnd_add_uint32(&sc->rnd_source, status);
914 #endif
915
916 if (status & VR_ISR_RX_OK)
917 vr_rxeof(sc);
918
919 if (status & VR_ISR_RX_DROPPED) {
920 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
921 ifp->if_ierrors++;
922 }
923
924 if (status &
925 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
926 vr_rxeoc(sc);
927
928
929 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
930 if (status & VR_ISR_BUSERR)
931 printf("%s: PCI bus error\n",
932 device_xname(sc->vr_dev));
933 if (status & VR_ISR_TX_UNDERRUN)
934 printf("%s: transmit underrun\n",
935 device_xname(sc->vr_dev));
936 /* vr_init() calls vr_start() */
937 dotx = 0;
938 (void)vr_init(ifp);
939
940 }
941
942 if (status & VR_ISR_TX_OK) {
943 dotx = 1;
944 vr_txeof(sc);
945 }
946
947 if (status &
948 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
949 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
950 printf("%s: transmit aborted\n",
951 device_xname(sc->vr_dev));
952 if (status & VR_ISR_TX_UDFI)
953 printf("%s: transmit underflow\n",
954 device_xname(sc->vr_dev));
955 ifp->if_oerrors++;
956 dotx = 1;
957 vr_txeof(sc);
958 if (sc->vr_txpending) {
959 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
960 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
961 }
962 }
963 }
964
965 /* Re-enable interrupts. */
966 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
967
968 if (dotx)
969 vr_start(ifp);
970
971 return (handled);
972 }
973
974 /*
975 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
976 * to the mbuf data regions directly in the transmit lists. We also save a
977 * copy of the pointers since the transmit list fragment pointers are
978 * physical addresses.
979 */
980 static void
981 vr_start(struct ifnet *ifp)
982 {
983 struct vr_softc *sc = ifp->if_softc;
984 struct mbuf *m0, *m;
985 struct vr_desc *d;
986 struct vr_descsoft *ds;
987 int error, firsttx, nexttx, opending;
988
989 /*
990 * Remember the previous txpending and the first transmit
991 * descriptor we use.
992 */
993 opending = sc->vr_txpending;
994 firsttx = VR_NEXTTX(sc->vr_txlast);
995
996 /*
997 * Loop through the send queue, setting up transmit descriptors
998 * until we drain the queue, or use up all available transmit
999 * descriptors.
1000 */
1001 while (sc->vr_txpending < VR_NTXDESC) {
1002 /*
1003 * Grab a packet off the queue.
1004 */
1005 IFQ_POLL(&ifp->if_snd, m0);
1006 if (m0 == NULL)
1007 break;
1008 m = NULL;
1009
1010 /*
1011 * Get the next available transmit descriptor.
1012 */
1013 nexttx = VR_NEXTTX(sc->vr_txlast);
1014 d = VR_CDTX(sc, nexttx);
1015 ds = VR_DSTX(sc, nexttx);
1016
1017 /*
1018 * Load the DMA map. If this fails, the packet didn't
1019 * fit in one DMA segment, and we need to copy. Note,
1020 * the packet must also be aligned.
1021 * if the packet is too small, copy it too, so we're sure
1022 * we have enough room for the pad buffer.
1023 */
1024 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1025 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1026 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1027 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1028 MGETHDR(m, M_DONTWAIT, MT_DATA);
1029 if (m == NULL) {
1030 printf("%s: unable to allocate Tx mbuf\n",
1031 device_xname(sc->vr_dev));
1032 break;
1033 }
1034 if (m0->m_pkthdr.len > MHLEN) {
1035 MCLGET(m, M_DONTWAIT);
1036 if ((m->m_flags & M_EXT) == 0) {
1037 printf("%s: unable to allocate Tx "
1038 "cluster\n", device_xname(sc->vr_dev));
1039 m_freem(m);
1040 break;
1041 }
1042 }
1043 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1044 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1045 /*
1046 * The Rhine doesn't auto-pad, so we have to do this
1047 * ourselves.
1048 */
1049 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1050 memset(mtod(m, char *) + m0->m_pkthdr.len,
1051 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1052 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1053 }
1054 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1055 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1056 if (error) {
1057 m_freem(m);
1058 printf("%s: unable to load Tx buffer, "
1059 "error = %d\n", device_xname(sc->vr_dev), error);
1060 break;
1061 }
1062 }
1063
1064 IFQ_DEQUEUE(&ifp->if_snd, m0);
1065 if (m != NULL) {
1066 m_freem(m0);
1067 m0 = m;
1068 }
1069
1070 /* Sync the DMA map. */
1071 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1072 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1073
1074 /*
1075 * Store a pointer to the packet so we can free it later.
1076 */
1077 ds->ds_mbuf = m0;
1078
1079 /*
1080 * If there's a BPF listener, bounce a copy of this frame
1081 * to him.
1082 */
1083 bpf_mtap(ifp, m0);
1084
1085 /*
1086 * Fill in the transmit descriptor.
1087 */
1088 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1089 d->vr_ctl = htole32(m0->m_pkthdr.len);
1090 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1091
1092 /*
1093 * If this is the first descriptor we're enqueuing,
1094 * don't give it to the Rhine yet. That could cause
1095 * a race condition. We'll do it below.
1096 */
1097 if (nexttx == firsttx)
1098 d->vr_status = 0;
1099 else
1100 d->vr_status = htole32(VR_TXSTAT_OWN);
1101
1102 VR_CDTXSYNC(sc, nexttx,
1103 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1104
1105 /* Advance the tx pointer. */
1106 sc->vr_txpending++;
1107 sc->vr_txlast = nexttx;
1108 }
1109
1110 if (sc->vr_txpending == VR_NTXDESC) {
1111 /* No more slots left; notify upper layer. */
1112 ifp->if_flags |= IFF_OACTIVE;
1113 }
1114
1115 if (sc->vr_txpending != opending) {
1116 /*
1117 * We enqueued packets. If the transmitter was idle,
1118 * reset the txdirty pointer.
1119 */
1120 if (opending == 0)
1121 sc->vr_txdirty = firsttx;
1122
1123 /*
1124 * Cause a transmit interrupt to happen on the
1125 * last packet we enqueued.
1126 */
1127 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1128 VR_CDTXSYNC(sc, sc->vr_txlast,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130
1131 /*
1132 * The entire packet chain is set up. Give the
1133 * first descriptor to the Rhine now.
1134 */
1135 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1136 VR_CDTXSYNC(sc, firsttx,
1137 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1138
1139 /* Start the transmitter. */
1140 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1141
1142 /* Set the watchdog timer in case the chip flakes out. */
1143 ifp->if_timer = 5;
1144 }
1145 }
1146
1147 /*
1148 * Initialize the interface. Must be called at splnet.
1149 */
1150 static int
1151 vr_init(struct ifnet *ifp)
1152 {
1153 struct vr_softc *sc = ifp->if_softc;
1154 struct vr_desc *d;
1155 struct vr_descsoft *ds;
1156 int i, error = 0;
1157
1158 /* Cancel pending I/O. */
1159 vr_stop(ifp, 0);
1160
1161 /* Reset the Rhine to a known state. */
1162 vr_reset(sc);
1163
1164 /* set DMA length in BCR0 and BCR1 */
1165 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1166 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1167
1168 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1169 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1170
1171 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1172 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1173
1174 /* set DMA threshold length in RXCFG and TXCFG */
1175 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1176 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1177
1178 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1179 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1180
1181 /*
1182 * Initialize the transmit descriptor ring. txlast is initialized
1183 * to the end of the list so that it will wrap around to the first
1184 * descriptor when the first packet is transmitted.
1185 */
1186 for (i = 0; i < VR_NTXDESC; i++) {
1187 d = VR_CDTX(sc, i);
1188 memset(d, 0, sizeof(struct vr_desc));
1189 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1190 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1191 }
1192 sc->vr_txpending = 0;
1193 sc->vr_txdirty = 0;
1194 sc->vr_txlast = VR_NTXDESC - 1;
1195
1196 /*
1197 * Initialize the receive descriptor ring.
1198 */
1199 for (i = 0; i < VR_NRXDESC; i++) {
1200 ds = VR_DSRX(sc, i);
1201 if (ds->ds_mbuf == NULL) {
1202 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1203 printf("%s: unable to allocate or map rx "
1204 "buffer %d, error = %d\n",
1205 device_xname(sc->vr_dev), i, error);
1206 /*
1207 * XXX Should attempt to run with fewer receive
1208 * XXX buffers instead of just failing.
1209 */
1210 vr_rxdrain(sc);
1211 goto out;
1212 }
1213 } else
1214 VR_INIT_RXDESC(sc, i);
1215 }
1216 sc->vr_rxptr = 0;
1217
1218 /* If we want promiscuous mode, set the allframes bit. */
1219 if (ifp->if_flags & IFF_PROMISC)
1220 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1221 else
1222 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1223
1224 /* Set capture broadcast bit to capture broadcast frames. */
1225 if (ifp->if_flags & IFF_BROADCAST)
1226 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1227 else
1228 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1229
1230 /* Program the multicast filter, if necessary. */
1231 vr_setmulti(sc);
1232
1233 /* Give the transmit and receive rings to the Rhine. */
1234 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1235 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1236
1237 /* Set current media. */
1238 if ((error = ether_mediachange(ifp)) != 0)
1239 goto out;
1240
1241 /* Enable receiver and transmitter. */
1242 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1243 VR_CMD_TX_ON|VR_CMD_RX_ON|
1244 VR_CMD_RX_GO);
1245
1246 /* Enable interrupts. */
1247 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1248 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1249
1250 ifp->if_flags |= IFF_RUNNING;
1251 ifp->if_flags &= ~IFF_OACTIVE;
1252
1253 /* Start one second timer. */
1254 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1255
1256 /* Attempt to start output on the interface. */
1257 vr_start(ifp);
1258
1259 out:
1260 if (error)
1261 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1262 return (error);
1263 }
1264
1265 static int
1266 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1267 {
1268 struct vr_softc *sc = ifp->if_softc;
1269 int s, error = 0;
1270
1271 s = splnet();
1272
1273 error = ether_ioctl(ifp, command, data);
1274 if (error == ENETRESET) {
1275 /*
1276 * Multicast list has changed; set the hardware filter
1277 * accordingly.
1278 */
1279 if (ifp->if_flags & IFF_RUNNING)
1280 vr_setmulti(sc);
1281 error = 0;
1282 }
1283
1284 splx(s);
1285 return (error);
1286 }
1287
1288 static void
1289 vr_watchdog(struct ifnet *ifp)
1290 {
1291 struct vr_softc *sc = ifp->if_softc;
1292
1293 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1294 ifp->if_oerrors++;
1295
1296 (void) vr_init(ifp);
1297 }
1298
1299 /*
1300 * One second timer, used to tick MII.
1301 */
1302 static void
1303 vr_tick(void *arg)
1304 {
1305 struct vr_softc *sc = arg;
1306 int s;
1307
1308 s = splnet();
1309 mii_tick(&sc->vr_mii);
1310 splx(s);
1311
1312 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1313 }
1314
1315 /*
1316 * Drain the receive queue.
1317 */
1318 static void
1319 vr_rxdrain(struct vr_softc *sc)
1320 {
1321 struct vr_descsoft *ds;
1322 int i;
1323
1324 for (i = 0; i < VR_NRXDESC; i++) {
1325 ds = VR_DSRX(sc, i);
1326 if (ds->ds_mbuf != NULL) {
1327 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1328 m_freem(ds->ds_mbuf);
1329 ds->ds_mbuf = NULL;
1330 }
1331 }
1332 }
1333
1334 /*
1335 * Stop the adapter and free any mbufs allocated to the
1336 * transmit lists.
1337 */
1338 static void
1339 vr_stop(struct ifnet *ifp, int disable)
1340 {
1341 struct vr_softc *sc = ifp->if_softc;
1342 struct vr_descsoft *ds;
1343 int i;
1344
1345 /* Cancel one second timer. */
1346 callout_stop(&sc->vr_tick_ch);
1347
1348 /* Down the MII. */
1349 mii_down(&sc->vr_mii);
1350
1351 ifp = &sc->vr_ec.ec_if;
1352 ifp->if_timer = 0;
1353
1354 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1355 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1356 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1357 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1358 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1359
1360 /*
1361 * Release any queued transmit buffers.
1362 */
1363 for (i = 0; i < VR_NTXDESC; i++) {
1364 ds = VR_DSTX(sc, i);
1365 if (ds->ds_mbuf != NULL) {
1366 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1367 m_freem(ds->ds_mbuf);
1368 ds->ds_mbuf = NULL;
1369 }
1370 }
1371
1372 /*
1373 * Mark the interface down and cancel the watchdog timer.
1374 */
1375 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1376 ifp->if_timer = 0;
1377
1378 if (disable)
1379 vr_rxdrain(sc);
1380 }
1381
1382 static int vr_probe(device_t, cfdata_t, void *);
1383 static void vr_attach(device_t, device_t, void *);
1384 static bool vr_shutdown(device_t, int);
1385
1386 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1387 vr_probe, vr_attach, NULL, NULL);
1388
1389 static const struct vr_type *
1390 vr_lookup(struct pci_attach_args *pa)
1391 {
1392 const struct vr_type *vrt;
1393 int i;
1394
1395 for (i = 0; i < __arraycount(vr_devs); i++) {
1396 vrt = &vr_devs[i];
1397 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1398 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1399 return (vrt);
1400 }
1401 return (NULL);
1402 }
1403
1404 static int
1405 vr_probe(device_t parent, cfdata_t match, void *aux)
1406 {
1407 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1408
1409 if (vr_lookup(pa) != NULL)
1410 return (1);
1411
1412 return (0);
1413 }
1414
1415 /*
1416 * Stop all chip I/O so that the kernel's probe routines don't
1417 * get confused by errant DMAs when rebooting.
1418 */
1419 static bool
1420 vr_shutdown(device_t self, int howto)
1421 {
1422 struct vr_softc *sc = device_private(self);
1423
1424 vr_stop(&sc->vr_ec.ec_if, 1);
1425
1426 return true;
1427 }
1428
1429 /*
1430 * Attach the interface. Allocate softc structures, do ifmedia
1431 * setup and ethernet/BPF attach.
1432 */
1433 static void
1434 vr_attach(device_t parent, device_t self, void *aux)
1435 {
1436 struct vr_softc *sc = device_private(self);
1437 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1438 bus_dma_segment_t seg;
1439 uint32_t reg;
1440 struct ifnet *ifp;
1441 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1442 int i, rseg, error;
1443 char devinfo[256];
1444
1445 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1446 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1447
1448 sc->vr_dev = self;
1449 sc->vr_pc = pa->pa_pc;
1450 sc->vr_tag = pa->pa_tag;
1451 sc->vr_id = pa->pa_id;
1452 callout_init(&sc->vr_tick_ch, 0);
1453
1454 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1455 aprint_naive("\n");
1456 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1457 PCI_REVISION(pa->pa_class));
1458
1459 /*
1460 * Handle power management nonsense.
1461 */
1462
1463 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1464 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1465 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1466
1467 /* power up chip */
1468 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1469 vr_restore_state)) && error != EOPNOTSUPP) {
1470 aprint_error_dev(self, "cannot activate %d\n",
1471 error);
1472 return;
1473 }
1474
1475 /* Make sure bus mastering is enabled. */
1476 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1477 reg |= PCI_COMMAND_MASTER_ENABLE;
1478 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1479
1480 /* Get revision */
1481 sc->vr_revid = PCI_REVISION(pa->pa_class);
1482
1483 /*
1484 * Map control/status registers.
1485 */
1486 {
1487 bus_space_tag_t iot, memt;
1488 bus_space_handle_t ioh, memh;
1489 int ioh_valid, memh_valid;
1490 pci_intr_handle_t intrhandle;
1491 const char *intrstr;
1492
1493 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1494 PCI_MAPREG_TYPE_IO, 0,
1495 &iot, &ioh, NULL, NULL) == 0);
1496 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1497 PCI_MAPREG_TYPE_MEM |
1498 PCI_MAPREG_MEM_TYPE_32BIT,
1499 0, &memt, &memh, NULL, NULL) == 0);
1500 #if defined(VR_USEIOSPACE)
1501 if (ioh_valid) {
1502 sc->vr_bst = iot;
1503 sc->vr_bsh = ioh;
1504 } else if (memh_valid) {
1505 sc->vr_bst = memt;
1506 sc->vr_bsh = memh;
1507 }
1508 #else
1509 if (memh_valid) {
1510 sc->vr_bst = memt;
1511 sc->vr_bsh = memh;
1512 } else if (ioh_valid) {
1513 sc->vr_bst = iot;
1514 sc->vr_bsh = ioh;
1515 }
1516 #endif
1517 else {
1518 printf(": unable to map device registers\n");
1519 return;
1520 }
1521
1522 /* Allocate interrupt */
1523 if (pci_intr_map(pa, &intrhandle)) {
1524 aprint_error_dev(self, "couldn't map interrupt\n");
1525 return;
1526 }
1527 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1528 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1529 vr_intr, sc);
1530 if (sc->vr_ih == NULL) {
1531 aprint_error_dev(self, "couldn't establish interrupt");
1532 if (intrstr != NULL)
1533 aprint_error(" at %s", intrstr);
1534 aprint_error("\n");
1535 }
1536 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1537 }
1538
1539 /*
1540 * Windows may put the chip in suspend mode when it
1541 * shuts down. Be sure to kick it in the head to wake it
1542 * up again.
1543 *
1544 * Don't touch this register on VT3043 since it causes
1545 * kernel MCHK trap on macppc.
1546 * (Note some VT86C100A chip returns a product ID of VT3043)
1547 */
1548 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1549 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1550
1551 /* Reset the adapter. */
1552 vr_reset(sc);
1553
1554 /*
1555 * Get station address. The way the Rhine chips work,
1556 * you're not allowed to directly access the EEPROM once
1557 * they've been programmed a special way. Consequently,
1558 * we need to read the node address from the PAR0 and PAR1
1559 * registers.
1560 *
1561 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1562 * of the *whole* EEPROM, not just the MAC address. This is
1563 * pretty pointless since the chip does this automatically
1564 * at powerup/reset.
1565 * I suspect the same thing applies to the other Rhine
1566 * variants, but in the absence of a data sheet for those
1567 * (and the lack of anyone else noticing the problems this
1568 * causes) I'm going to retain the old behaviour for the
1569 * other parts.
1570 * In some cases, the chip really does startup without having
1571 * read the EEPROM (kern/34812). To handle this case, we force
1572 * a reload if we see an all-zeroes MAC address.
1573 */
1574 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1575 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1576
1577 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1578 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1579 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1580 DELAY(200);
1581 for (i = 0; i < ETHER_ADDR_LEN; i++)
1582 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1583 }
1584
1585 /*
1586 * A Rhine chip was detected. Inform the world.
1587 */
1588 aprint_normal("%s: Ethernet address: %s\n",
1589 device_xname(self), ether_sprintf(eaddr));
1590
1591 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1592
1593 sc->vr_dmat = pa->pa_dmat;
1594
1595 /*
1596 * Allocate the control data structures, and create and load
1597 * the DMA map for it.
1598 */
1599 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1600 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1601 0)) != 0) {
1602 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1603 goto fail_0;
1604 }
1605
1606 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1607 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1608 BUS_DMA_COHERENT)) != 0) {
1609 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1610 goto fail_1;
1611 }
1612
1613 if ((error = bus_dmamap_create(sc->vr_dmat,
1614 sizeof(struct vr_control_data), 1,
1615 sizeof(struct vr_control_data), 0, 0,
1616 &sc->vr_cddmamap)) != 0) {
1617 aprint_error_dev(self, "unable to create control data DMA map, "
1618 "error = %d\n", error);
1619 goto fail_2;
1620 }
1621
1622 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1623 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1624 0)) != 0) {
1625 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1626 error);
1627 goto fail_3;
1628 }
1629
1630 /*
1631 * Create the transmit buffer DMA maps.
1632 */
1633 for (i = 0; i < VR_NTXDESC; i++) {
1634 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1635 1, MCLBYTES, 0, 0,
1636 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1637 aprint_error_dev(self, "unable to create tx DMA map %d, "
1638 "error = %d\n", i, error);
1639 goto fail_4;
1640 }
1641 }
1642
1643 /*
1644 * Create the receive buffer DMA maps.
1645 */
1646 for (i = 0; i < VR_NRXDESC; i++) {
1647 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1648 MCLBYTES, 0, 0,
1649 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1650 aprint_error_dev(self, "unable to create rx DMA map %d, "
1651 "error = %d\n", i, error);
1652 goto fail_5;
1653 }
1654 VR_DSRX(sc, i)->ds_mbuf = NULL;
1655 }
1656
1657 ifp = &sc->vr_ec.ec_if;
1658 ifp->if_softc = sc;
1659 ifp->if_mtu = ETHERMTU;
1660 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1661 ifp->if_ioctl = vr_ioctl;
1662 ifp->if_start = vr_start;
1663 ifp->if_watchdog = vr_watchdog;
1664 ifp->if_init = vr_init;
1665 ifp->if_stop = vr_stop;
1666 IFQ_SET_READY(&ifp->if_snd);
1667
1668 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1669
1670 /*
1671 * Initialize MII/media info.
1672 */
1673 sc->vr_mii.mii_ifp = ifp;
1674 sc->vr_mii.mii_readreg = vr_mii_readreg;
1675 sc->vr_mii.mii_writereg = vr_mii_writereg;
1676 sc->vr_mii.mii_statchg = vr_mii_statchg;
1677
1678 sc->vr_ec.ec_mii = &sc->vr_mii;
1679 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1680 ether_mediastatus);
1681 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1682 MII_OFFSET_ANY, MIIF_FORCEANEG);
1683 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1684 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1685 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1686 } else
1687 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1688
1689 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1690
1691 /*
1692 * Call MI attach routines.
1693 */
1694 if_attach(ifp);
1695 ether_ifattach(ifp, sc->vr_enaddr);
1696 #if NRND > 0
1697 rnd_attach_source(&sc->rnd_source, device_xname(self),
1698 RND_TYPE_NET, 0);
1699 #endif
1700
1701 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1702 pmf_class_network_register(self, ifp);
1703 else
1704 aprint_error_dev(self, "couldn't establish power handler\n");
1705
1706 return;
1707
1708 fail_5:
1709 for (i = 0; i < VR_NRXDESC; i++) {
1710 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1711 bus_dmamap_destroy(sc->vr_dmat,
1712 sc->vr_rxsoft[i].ds_dmamap);
1713 }
1714 fail_4:
1715 for (i = 0; i < VR_NTXDESC; i++) {
1716 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1717 bus_dmamap_destroy(sc->vr_dmat,
1718 sc->vr_txsoft[i].ds_dmamap);
1719 }
1720 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1721 fail_3:
1722 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1723 fail_2:
1724 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1725 sizeof(struct vr_control_data));
1726 fail_1:
1727 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1728 fail_0:
1729 return;
1730 }
1731
1732 static int
1733 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1734 pcireg_t state)
1735 {
1736 struct vr_softc *sc = device_private(self);
1737 int error;
1738
1739 if (state == PCI_PMCSR_STATE_D0)
1740 return 0;
1741 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1742 return error;
1743
1744 /* Restore PCI config data. */
1745 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1746 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1747 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1748 return 0;
1749 }
1750
1751 static bool
1752 vr_resume(device_t self, const pmf_qual_t *qual)
1753 {
1754 struct vr_softc *sc = device_private(self);
1755
1756 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1757 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1758
1759 return true;
1760 }
1761