Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.110
      1 /*	$NetBSD: if_vr.c,v 1.110 2012/02/02 19:43:05 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1997, 1998
     35  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by Bill Paul.
     48  * 4. Neither the name of the author nor the names of any co-contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     62  * THE POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     65  */
     66 
     67 /*
     68  * VIA Rhine fast ethernet PCI NIC driver
     69  *
     70  * Supports various network adapters based on the VIA Rhine
     71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     72  * Datasheets are available at http://www.via.com.tw.
     73  *
     74  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     75  * Electrical Engineering Department
     76  * Columbia University, New York City
     77  */
     78 
     79 /*
     80  * The VIA Rhine controllers are similar in some respects to the
     81  * the DEC tulip chips, except less complicated. The controller
     82  * uses an MII bus and an external physical layer interface. The
     83  * receiver has a one entry perfect filter and a 64-bit hash table
     84  * multicast filter. Transmit and receive descriptors are similar
     85  * to the tulip.
     86  *
     87  * The Rhine has a serious flaw in its transmit DMA mechanism:
     88  * transmit buffers must be longword aligned. Unfortunately,
     89  * the kernel doesn't guarantee that mbufs will be filled in starting
     90  * at longword boundaries, so we have to do a buffer copy before
     91  * transmission.
     92  *
     93  * Apparently, the receive DMA mechanism also has the same flaw.  This
     94  * means that on systems with struct alignment requirements, incoming
     95  * frames must be copied to a new buffer which shifts the data forward
     96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
     97  */
     98 
     99 #include <sys/cdefs.h>
    100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.110 2012/02/02 19:43:05 tls Exp $");
    101 
    102 
    103 
    104 #include <sys/param.h>
    105 #include <sys/systm.h>
    106 #include <sys/callout.h>
    107 #include <sys/sockio.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/malloc.h>
    110 #include <sys/kernel.h>
    111 #include <sys/socket.h>
    112 #include <sys/device.h>
    113 
    114 #include <sys/rnd.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_arp.h>
    118 #include <net/if_dl.h>
    119 #include <net/if_media.h>
    120 #include <net/if_ether.h>
    121 
    122 #include <net/bpf.h>
    123 
    124 #include <sys/bus.h>
    125 #include <sys/intr.h>
    126 #include <machine/endian.h>
    127 
    128 #include <dev/mii/mii.h>
    129 #include <dev/mii/miivar.h>
    130 #include <dev/mii/mii_bitbang.h>
    131 
    132 #include <dev/pci/pcireg.h>
    133 #include <dev/pci/pcivar.h>
    134 #include <dev/pci/pcidevs.h>
    135 
    136 #include <dev/pci/if_vrreg.h>
    137 
    138 #define	VR_USEIOSPACE
    139 
    140 /*
    141  * Various supported device vendors/types and their names.
    142  */
    143 static const struct vr_type {
    144 	pci_vendor_id_t		vr_vid;
    145 	pci_product_id_t	vr_did;
    146 } vr_devs[] = {
    147 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
    148 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
    149 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
    150 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
    151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
    152 };
    153 
    154 /*
    155  * Transmit descriptor list size.
    156  */
    157 #define	VR_NTXDESC		64
    158 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    159 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    160 
    161 /*
    162  * Receive descriptor list size.
    163  */
    164 #define	VR_NRXDESC		64
    165 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    166 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    167 
    168 /*
    169  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    170  * them in a single clump that maps to a single DMA segment to make several
    171  * things easier.
    172  *
    173  * Note that since we always copy outgoing packets to aligned transmit
    174  * buffers, we can reduce the transmit descriptors to one per packet.
    175  */
    176 struct vr_control_data {
    177 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    178 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    179 };
    180 
    181 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    182 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    183 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    184 
    185 /*
    186  * Software state of transmit and receive descriptors.
    187  */
    188 struct vr_descsoft {
    189 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    190 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    191 };
    192 
    193 struct vr_softc {
    194 	device_t		vr_dev;
    195 	void			*vr_ih;		/* interrupt cookie */
    196 	bus_space_tag_t		vr_bst;		/* bus space tag */
    197 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    198 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    199 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    200 	pcitag_t		vr_tag;		/* PCI tag */
    201 	struct ethercom		vr_ec;		/* Ethernet common info */
    202 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
    203 	struct mii_data		vr_mii;		/* MII/media info */
    204 
    205 	pcireg_t		vr_id;		/* vendor/product ID */
    206 	uint8_t			vr_revid;	/* Rhine chip revision */
    207 
    208 	callout_t		vr_tick_ch;	/* tick callout */
    209 
    210 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    211 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    212 
    213 	/*
    214 	 * Software state for transmit and receive descriptors.
    215 	 */
    216 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    217 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    218 
    219 	/*
    220 	 * Control data structures.
    221 	 */
    222 	struct vr_control_data	*vr_control_data;
    223 
    224 	int	vr_txpending;		/* number of TX requests pending */
    225 	int	vr_txdirty;		/* first dirty TX descriptor */
    226 	int	vr_txlast;		/* last used TX descriptor */
    227 
    228 	int	vr_rxptr;		/* next ready RX descriptor */
    229 
    230 	uint32_t	vr_save_iobase;
    231 	uint32_t	vr_save_membase;
    232 	uint32_t	vr_save_irq;
    233 
    234 	krndsource_t rnd_source;	/* random source */
    235 };
    236 
    237 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    238 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    239 
    240 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    241 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    242 
    243 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    244 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    245 
    246 #define	VR_CDTXSYNC(sc, x, ops)						\
    247 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    248 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    249 
    250 #define	VR_CDRXSYNC(sc, x, ops)						\
    251 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    252 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    253 
    254 /*
    255  * Note we rely on MCLBYTES being a power of two below.
    256  */
    257 #define	VR_INIT_RXDESC(sc, i)						\
    258 do {									\
    259 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    260 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    261 									\
    262 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    263 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    264 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    265 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    266 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    267 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    268 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    269 } while (/* CONSTCOND */ 0)
    270 
    271 /*
    272  * register space access macros
    273  */
    274 #define	CSR_WRITE_4(sc, reg, val)					\
    275 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    276 #define	CSR_WRITE_2(sc, reg, val)					\
    277 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    278 #define	CSR_WRITE_1(sc, reg, val)					\
    279 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    280 
    281 #define	CSR_READ_4(sc, reg)						\
    282 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    283 #define	CSR_READ_2(sc, reg)						\
    284 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    285 #define	CSR_READ_1(sc, reg)						\
    286 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    287 
    288 #define	VR_TIMEOUT		1000
    289 
    290 static int	vr_add_rxbuf(struct vr_softc *, int);
    291 
    292 static void	vr_rxeof(struct vr_softc *);
    293 static void	vr_rxeoc(struct vr_softc *);
    294 static void	vr_txeof(struct vr_softc *);
    295 static int	vr_intr(void *);
    296 static void	vr_start(struct ifnet *);
    297 static int	vr_ioctl(struct ifnet *, u_long, void *);
    298 static int	vr_init(struct ifnet *);
    299 static void	vr_stop(struct ifnet *, int);
    300 static void	vr_rxdrain(struct vr_softc *);
    301 static void	vr_watchdog(struct ifnet *);
    302 static void	vr_tick(void *);
    303 
    304 static int	vr_mii_readreg(device_t, int, int);
    305 static void	vr_mii_writereg(device_t, int, int, int);
    306 static void	vr_mii_statchg(device_t);
    307 
    308 static void	vr_setmulti(struct vr_softc *);
    309 static void	vr_reset(struct vr_softc *);
    310 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
    311     pcireg_t);
    312 static bool	vr_resume(device_t, const pmf_qual_t *);
    313 
    314 int	vr_copy_small = 0;
    315 
    316 #define	VR_SETBIT(sc, reg, x)				\
    317 	CSR_WRITE_1(sc, reg,				\
    318 	    CSR_READ_1(sc, reg) | (x))
    319 
    320 #define	VR_CLRBIT(sc, reg, x)				\
    321 	CSR_WRITE_1(sc, reg,				\
    322 	    CSR_READ_1(sc, reg) & ~(x))
    323 
    324 #define	VR_SETBIT16(sc, reg, x)				\
    325 	CSR_WRITE_2(sc, reg,				\
    326 	    CSR_READ_2(sc, reg) | (x))
    327 
    328 #define	VR_CLRBIT16(sc, reg, x)				\
    329 	CSR_WRITE_2(sc, reg,				\
    330 	    CSR_READ_2(sc, reg) & ~(x))
    331 
    332 #define	VR_SETBIT32(sc, reg, x)				\
    333 	CSR_WRITE_4(sc, reg,				\
    334 	    CSR_READ_4(sc, reg) | (x))
    335 
    336 #define	VR_CLRBIT32(sc, reg, x)				\
    337 	CSR_WRITE_4(sc, reg,				\
    338 	    CSR_READ_4(sc, reg) & ~(x))
    339 
    340 /*
    341  * MII bit-bang glue.
    342  */
    343 static uint32_t vr_mii_bitbang_read(device_t);
    344 static void	vr_mii_bitbang_write(device_t, uint32_t);
    345 
    346 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    347 	vr_mii_bitbang_read,
    348 	vr_mii_bitbang_write,
    349 	{
    350 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    351 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    352 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    353 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    354 		0,			/* MII_BIT_DIR_PHY_HOST */
    355 	}
    356 };
    357 
    358 static uint32_t
    359 vr_mii_bitbang_read(device_t self)
    360 {
    361 	struct vr_softc *sc = device_private(self);
    362 
    363 	return (CSR_READ_1(sc, VR_MIICMD));
    364 }
    365 
    366 static void
    367 vr_mii_bitbang_write(device_t self, uint32_t val)
    368 {
    369 	struct vr_softc *sc = device_private(self);
    370 
    371 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    372 }
    373 
    374 /*
    375  * Read an PHY register through the MII.
    376  */
    377 static int
    378 vr_mii_readreg(device_t self, int phy, int reg)
    379 {
    380 	struct vr_softc *sc = device_private(self);
    381 
    382 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    383 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    384 }
    385 
    386 /*
    387  * Write to a PHY register through the MII.
    388  */
    389 static void
    390 vr_mii_writereg(device_t self, int phy, int reg, int val)
    391 {
    392 	struct vr_softc *sc = device_private(self);
    393 
    394 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    395 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    396 }
    397 
    398 static void
    399 vr_mii_statchg(device_t self)
    400 {
    401 	struct vr_softc *sc = device_private(self);
    402 
    403 	/*
    404 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    405 	 * register, we first have to put the transmit and/or receive logic
    406 	 * in the idle state.
    407 	 */
    408 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    409 
    410 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    411 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    412 	else
    413 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    414 
    415 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    416 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    417 }
    418 
    419 #define	vr_calchash(addr) \
    420 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    421 
    422 /*
    423  * Program the 64-bit multicast hash filter.
    424  */
    425 static void
    426 vr_setmulti(struct vr_softc *sc)
    427 {
    428 	struct ifnet *ifp;
    429 	int h = 0;
    430 	uint32_t hashes[2] = { 0, 0 };
    431 	struct ether_multistep step;
    432 	struct ether_multi *enm;
    433 	int mcnt = 0;
    434 	uint8_t rxfilt;
    435 
    436 	ifp = &sc->vr_ec.ec_if;
    437 
    438 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    439 
    440 	if (ifp->if_flags & IFF_PROMISC) {
    441 allmulti:
    442 		ifp->if_flags |= IFF_ALLMULTI;
    443 		rxfilt |= VR_RXCFG_RX_MULTI;
    444 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    445 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    446 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    447 		return;
    448 	}
    449 
    450 	/* first, zot all the existing hash bits */
    451 	CSR_WRITE_4(sc, VR_MAR0, 0);
    452 	CSR_WRITE_4(sc, VR_MAR1, 0);
    453 
    454 	/* now program new ones */
    455 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    456 	while (enm != NULL) {
    457 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    458 		    ETHER_ADDR_LEN) != 0)
    459 			goto allmulti;
    460 
    461 		h = vr_calchash(enm->enm_addrlo);
    462 
    463 		if (h < 32)
    464 			hashes[0] |= (1 << h);
    465 		else
    466 			hashes[1] |= (1 << (h - 32));
    467 		ETHER_NEXT_MULTI(step, enm);
    468 		mcnt++;
    469 	}
    470 
    471 	ifp->if_flags &= ~IFF_ALLMULTI;
    472 
    473 	if (mcnt)
    474 		rxfilt |= VR_RXCFG_RX_MULTI;
    475 	else
    476 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    477 
    478 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    479 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    480 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    481 }
    482 
    483 static void
    484 vr_reset(struct vr_softc *sc)
    485 {
    486 	int i;
    487 
    488 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    489 
    490 	for (i = 0; i < VR_TIMEOUT; i++) {
    491 		DELAY(10);
    492 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    493 			break;
    494 	}
    495 	if (i == VR_TIMEOUT) {
    496 		if (sc->vr_revid < REV_ID_VT3065_A) {
    497 			printf("%s: reset never completed!\n",
    498 			    device_xname(sc->vr_dev));
    499 		} else {
    500 			/* Use newer force reset command */
    501 			printf("%s: using force reset command.\n",
    502 			    device_xname(sc->vr_dev));
    503 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    504 		}
    505 	}
    506 
    507 	/* Wait a little while for the chip to get its brains in order. */
    508 	DELAY(1000);
    509 }
    510 
    511 /*
    512  * Initialize an RX descriptor and attach an MBUF cluster.
    513  * Note: the length fields are only 11 bits wide, which means the
    514  * largest size we can specify is 2047. This is important because
    515  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    516  * overflow the field and make a mess.
    517  */
    518 static int
    519 vr_add_rxbuf(struct vr_softc *sc, int i)
    520 {
    521 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    522 	struct mbuf *m_new;
    523 	int error;
    524 
    525 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    526 	if (m_new == NULL)
    527 		return (ENOBUFS);
    528 
    529 	MCLGET(m_new, M_DONTWAIT);
    530 	if ((m_new->m_flags & M_EXT) == 0) {
    531 		m_freem(m_new);
    532 		return (ENOBUFS);
    533 	}
    534 
    535 	if (ds->ds_mbuf != NULL)
    536 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    537 
    538 	ds->ds_mbuf = m_new;
    539 
    540 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    541 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    542 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    543 	if (error) {
    544 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
    545 		    i, error);
    546 		panic("vr_add_rxbuf");		/* XXX */
    547 	}
    548 
    549 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    550 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    551 
    552 	VR_INIT_RXDESC(sc, i);
    553 
    554 	return (0);
    555 }
    556 
    557 /*
    558  * A frame has been uploaded: pass the resulting mbuf chain up to
    559  * the higher level protocols.
    560  */
    561 static void
    562 vr_rxeof(struct vr_softc *sc)
    563 {
    564 	struct mbuf *m;
    565 	struct ifnet *ifp;
    566 	struct vr_desc *d;
    567 	struct vr_descsoft *ds;
    568 	int i, total_len;
    569 	uint32_t rxstat;
    570 
    571 	ifp = &sc->vr_ec.ec_if;
    572 
    573 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    574 		d = VR_CDRX(sc, i);
    575 		ds = VR_DSRX(sc, i);
    576 
    577 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    578 
    579 		rxstat = le32toh(d->vr_status);
    580 
    581 		if (rxstat & VR_RXSTAT_OWN) {
    582 			/*
    583 			 * We have processed all of the receive buffers.
    584 			 */
    585 			break;
    586 		}
    587 
    588 		/*
    589 		 * If an error occurs, update stats, clear the
    590 		 * status word and leave the mbuf cluster in place:
    591 		 * it should simply get re-used next time this descriptor
    592 		 * comes up in the ring.
    593 		 */
    594 		if (rxstat & VR_RXSTAT_RXERR) {
    595 			const char *errstr;
    596 
    597 			ifp->if_ierrors++;
    598 			switch (rxstat & 0x000000FF) {
    599 			case VR_RXSTAT_CRCERR:
    600 				errstr = "crc error";
    601 				break;
    602 			case VR_RXSTAT_FRAMEALIGNERR:
    603 				errstr = "frame alignment error";
    604 				break;
    605 			case VR_RXSTAT_FIFOOFLOW:
    606 				errstr = "FIFO overflow";
    607 				break;
    608 			case VR_RXSTAT_GIANT:
    609 				errstr = "received giant packet";
    610 				break;
    611 			case VR_RXSTAT_RUNT:
    612 				errstr = "received runt packet";
    613 				break;
    614 			case VR_RXSTAT_BUSERR:
    615 				errstr = "system bus error";
    616 				break;
    617 			case VR_RXSTAT_BUFFERR:
    618 				errstr = "rx buffer error";
    619 				break;
    620 			default:
    621 				errstr = "unknown rx error";
    622 				break;
    623 			}
    624 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
    625 			    errstr);
    626 
    627 			VR_INIT_RXDESC(sc, i);
    628 
    629 			continue;
    630 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
    631 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
    632 			/*
    633 			 * This driver expects to receive whole packets every
    634 			 * time.  In case we receive a fragment that is not
    635 			 * a complete packet, we discard it.
    636 			 */
    637 			ifp->if_ierrors++;
    638 
    639 			printf("%s: receive error: incomplete frame; "
    640 			       "size = %d, status = 0x%x\n",
    641 			       device_xname(sc->vr_dev),
    642 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
    643 
    644 			VR_INIT_RXDESC(sc, i);
    645 
    646 			continue;
    647 		}
    648 
    649 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    650 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    651 
    652 		/* No errors; receive the packet. */
    653 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    654 #ifdef DIAGNOSTIC
    655 		if (total_len == 0) {
    656 			/*
    657 			 * If we receive a zero-length packet, we probably
    658 			 * missed to handle an error condition above.
    659 			 * Discard it to avoid a later crash.
    660 			 */
    661 			ifp->if_ierrors++;
    662 
    663 			printf("%s: receive error: zero-length packet; "
    664 			       "status = 0x%x\n",
    665 			       device_xname(sc->vr_dev), rxstat);
    666 
    667 			VR_INIT_RXDESC(sc, i);
    668 
    669 			continue;
    670 		}
    671 #endif
    672 
    673 		/*
    674 		 * The Rhine chip includes the CRC with every packet.
    675 		 * Trim it off here.
    676 		 */
    677 		total_len -= ETHER_CRC_LEN;
    678 
    679 #ifdef __NO_STRICT_ALIGNMENT
    680 		/*
    681 		 * If the packet is small enough to fit in a
    682 		 * single header mbuf, allocate one and copy
    683 		 * the data into it.  This greatly reduces
    684 		 * memory consumption when we receive lots
    685 		 * of small packets.
    686 		 *
    687 		 * Otherwise, we add a new buffer to the receive
    688 		 * chain.  If this fails, we drop the packet and
    689 		 * recycle the old buffer.
    690 		 */
    691 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    692 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    693 			if (m == NULL)
    694 				goto dropit;
    695 			memcpy(mtod(m, void *),
    696 			    mtod(ds->ds_mbuf, void *), total_len);
    697 			VR_INIT_RXDESC(sc, i);
    698 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    699 			    ds->ds_dmamap->dm_mapsize,
    700 			    BUS_DMASYNC_PREREAD);
    701 		} else {
    702 			m = ds->ds_mbuf;
    703 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    704  dropit:
    705 				ifp->if_ierrors++;
    706 				VR_INIT_RXDESC(sc, i);
    707 				bus_dmamap_sync(sc->vr_dmat,
    708 				    ds->ds_dmamap, 0,
    709 				    ds->ds_dmamap->dm_mapsize,
    710 				    BUS_DMASYNC_PREREAD);
    711 				continue;
    712 			}
    713 		}
    714 #else
    715 		/*
    716 		 * The Rhine's packet buffers must be 4-byte aligned.
    717 		 * But this means that the data after the Ethernet header
    718 		 * is misaligned.  We must allocate a new buffer and
    719 		 * copy the data, shifted forward 2 bytes.
    720 		 */
    721 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    722 		if (m == NULL) {
    723  dropit:
    724 			ifp->if_ierrors++;
    725 			VR_INIT_RXDESC(sc, i);
    726 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    727 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    728 			continue;
    729 		}
    730 		if (total_len > (MHLEN - 2)) {
    731 			MCLGET(m, M_DONTWAIT);
    732 			if ((m->m_flags & M_EXT) == 0) {
    733 				m_freem(m);
    734 				goto dropit;
    735 			}
    736 		}
    737 		m->m_data += 2;
    738 
    739 		/*
    740 		 * Note that we use clusters for incoming frames, so the
    741 		 * buffer is virtually contiguous.
    742 		 */
    743 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
    744 		    total_len);
    745 
    746 		/* Allow the receive descriptor to continue using its mbuf. */
    747 		VR_INIT_RXDESC(sc, i);
    748 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    749 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    750 #endif /* __NO_STRICT_ALIGNMENT */
    751 
    752 		ifp->if_ipackets++;
    753 		m->m_pkthdr.rcvif = ifp;
    754 		m->m_pkthdr.len = m->m_len = total_len;
    755 		/*
    756 		 * Handle BPF listeners. Let the BPF user see the packet, but
    757 		 * don't pass it up to the ether_input() layer unless it's
    758 		 * a broadcast packet, multicast packet, matches our ethernet
    759 		 * address or the interface is in promiscuous mode.
    760 		 */
    761 		bpf_mtap(ifp, m);
    762 		/* Pass it on. */
    763 		(*ifp->if_input)(ifp, m);
    764 	}
    765 
    766 	/* Update the receive pointer. */
    767 	sc->vr_rxptr = i;
    768 }
    769 
    770 void
    771 vr_rxeoc(struct vr_softc *sc)
    772 {
    773 	struct ifnet *ifp;
    774 	int i;
    775 
    776 	ifp = &sc->vr_ec.ec_if;
    777 
    778 	ifp->if_ierrors++;
    779 
    780 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    781 	for (i = 0; i < VR_TIMEOUT; i++) {
    782 		DELAY(10);
    783 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
    784 			break;
    785 	}
    786 	if (i == VR_TIMEOUT) {
    787 		/* XXX need reset? */
    788 		printf("%s: RX shutdown never complete\n",
    789 		    device_xname(sc->vr_dev));
    790 	}
    791 
    792 	vr_rxeof(sc);
    793 
    794 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    795 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    796 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    797 }
    798 
    799 /*
    800  * A frame was downloaded to the chip. It's safe for us to clean up
    801  * the list buffers.
    802  */
    803 static void
    804 vr_txeof(struct vr_softc *sc)
    805 {
    806 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    807 	struct vr_desc *d;
    808 	struct vr_descsoft *ds;
    809 	uint32_t txstat;
    810 	int i, j;
    811 
    812 	ifp->if_flags &= ~IFF_OACTIVE;
    813 
    814 	/*
    815 	 * Go through our tx list and free mbufs for those
    816 	 * frames that have been transmitted.
    817 	 */
    818 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    819 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    820 		d = VR_CDTX(sc, i);
    821 		ds = VR_DSTX(sc, i);
    822 
    823 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    824 
    825 		txstat = le32toh(d->vr_status);
    826 
    827 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
    828 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    829 			for (j = 0; j < VR_TIMEOUT; j++) {
    830 				DELAY(10);
    831 				if ((CSR_READ_2(sc, VR_COMMAND) &
    832 				    VR_CMD_TX_ON) == 0)
    833 					break;
    834 			}
    835 			if (j == VR_TIMEOUT) {
    836 				/* XXX need reset? */
    837 				printf("%s: TX shutdown never complete\n",
    838 				    device_xname(sc->vr_dev));
    839 			}
    840 			d->vr_status = htole32(VR_TXSTAT_OWN);
    841 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
    842 			break;
    843 		}
    844 
    845 		if (txstat & VR_TXSTAT_OWN)
    846 			break;
    847 
    848 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    849 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    850 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    851 		m_freem(ds->ds_mbuf);
    852 		ds->ds_mbuf = NULL;
    853 
    854 		if (txstat & VR_TXSTAT_ERRSUM) {
    855 			ifp->if_oerrors++;
    856 			if (txstat & VR_TXSTAT_DEFER)
    857 				ifp->if_collisions++;
    858 			if (txstat & VR_TXSTAT_LATECOLL)
    859 				ifp->if_collisions++;
    860 		}
    861 
    862 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    863 		ifp->if_opackets++;
    864 	}
    865 
    866 	/* Update the dirty transmit buffer pointer. */
    867 	sc->vr_txdirty = i;
    868 
    869 	/*
    870 	 * Cancel the watchdog timer if there are no pending
    871 	 * transmissions.
    872 	 */
    873 	if (sc->vr_txpending == 0)
    874 		ifp->if_timer = 0;
    875 }
    876 
    877 static int
    878 vr_intr(void *arg)
    879 {
    880 	struct vr_softc *sc;
    881 	struct ifnet *ifp;
    882 	uint16_t status;
    883 	int handled = 0, dotx = 0;
    884 
    885 	sc = arg;
    886 	ifp = &sc->vr_ec.ec_if;
    887 
    888 	/* Suppress unwanted interrupts. */
    889 	if ((ifp->if_flags & IFF_UP) == 0) {
    890 		vr_stop(ifp, 1);
    891 		return (0);
    892 	}
    893 
    894 	/* Disable interrupts. */
    895 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    896 
    897 	for (;;) {
    898 		status = CSR_READ_2(sc, VR_ISR);
    899 		if (status)
    900 			CSR_WRITE_2(sc, VR_ISR, status);
    901 
    902 		if ((status & VR_INTRS) == 0)
    903 			break;
    904 
    905 		handled = 1;
    906 
    907 		rnd_add_uint32(&sc->rnd_source, status);
    908 
    909 		if (status & VR_ISR_RX_OK)
    910 			vr_rxeof(sc);
    911 
    912 		if (status & VR_ISR_RX_DROPPED) {
    913 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
    914 			ifp->if_ierrors++;
    915 		}
    916 
    917 		if (status &
    918 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
    919 			vr_rxeoc(sc);
    920 
    921 
    922 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
    923 			if (status & VR_ISR_BUSERR)
    924 				printf("%s: PCI bus error\n",
    925 				    device_xname(sc->vr_dev));
    926 			if (status & VR_ISR_TX_UNDERRUN)
    927 				printf("%s: transmit underrun\n",
    928 				    device_xname(sc->vr_dev));
    929 			/* vr_init() calls vr_start() */
    930 			dotx = 0;
    931 			(void)vr_init(ifp);
    932 
    933 		}
    934 
    935 		if (status & VR_ISR_TX_OK) {
    936 			dotx = 1;
    937 			vr_txeof(sc);
    938 		}
    939 
    940 		if (status &
    941 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
    942 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
    943 				printf("%s: transmit aborted\n",
    944 				    device_xname(sc->vr_dev));
    945 			if (status & VR_ISR_TX_UDFI)
    946 				printf("%s: transmit underflow\n",
    947 				    device_xname(sc->vr_dev));
    948 			ifp->if_oerrors++;
    949 			dotx = 1;
    950 			vr_txeof(sc);
    951 			if (sc->vr_txpending) {
    952 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    953 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    954 			}
    955 		}
    956 	}
    957 
    958 	/* Re-enable interrupts. */
    959 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    960 
    961 	if (dotx)
    962 		vr_start(ifp);
    963 
    964 	return (handled);
    965 }
    966 
    967 /*
    968  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    969  * to the mbuf data regions directly in the transmit lists. We also save a
    970  * copy of the pointers since the transmit list fragment pointers are
    971  * physical addresses.
    972  */
    973 static void
    974 vr_start(struct ifnet *ifp)
    975 {
    976 	struct vr_softc *sc = ifp->if_softc;
    977 	struct mbuf *m0, *m;
    978 	struct vr_desc *d;
    979 	struct vr_descsoft *ds;
    980 	int error, firsttx, nexttx, opending;
    981 
    982 	/*
    983 	 * Remember the previous txpending and the first transmit
    984 	 * descriptor we use.
    985 	 */
    986 	opending = sc->vr_txpending;
    987 	firsttx = VR_NEXTTX(sc->vr_txlast);
    988 
    989 	/*
    990 	 * Loop through the send queue, setting up transmit descriptors
    991 	 * until we drain the queue, or use up all available transmit
    992 	 * descriptors.
    993 	 */
    994 	while (sc->vr_txpending < VR_NTXDESC) {
    995 		/*
    996 		 * Grab a packet off the queue.
    997 		 */
    998 		IFQ_POLL(&ifp->if_snd, m0);
    999 		if (m0 == NULL)
   1000 			break;
   1001 		m = NULL;
   1002 
   1003 		/*
   1004 		 * Get the next available transmit descriptor.
   1005 		 */
   1006 		nexttx = VR_NEXTTX(sc->vr_txlast);
   1007 		d = VR_CDTX(sc, nexttx);
   1008 		ds = VR_DSTX(sc, nexttx);
   1009 
   1010 		/*
   1011 		 * Load the DMA map.  If this fails, the packet didn't
   1012 		 * fit in one DMA segment, and we need to copy.  Note,
   1013 		 * the packet must also be aligned.
   1014 		 * if the packet is too small, copy it too, so we're sure
   1015 		 * we have enough room for the pad buffer.
   1016 		 */
   1017 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
   1018 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
   1019 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1020 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1021 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1022 			if (m == NULL) {
   1023 				printf("%s: unable to allocate Tx mbuf\n",
   1024 				    device_xname(sc->vr_dev));
   1025 				break;
   1026 			}
   1027 			if (m0->m_pkthdr.len > MHLEN) {
   1028 				MCLGET(m, M_DONTWAIT);
   1029 				if ((m->m_flags & M_EXT) == 0) {
   1030 					printf("%s: unable to allocate Tx "
   1031 					    "cluster\n", device_xname(sc->vr_dev));
   1032 					m_freem(m);
   1033 					break;
   1034 				}
   1035 			}
   1036 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1037 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1038 			/*
   1039 			 * The Rhine doesn't auto-pad, so we have to do this
   1040 			 * ourselves.
   1041 			 */
   1042 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
   1043 				memset(mtod(m, char *) + m0->m_pkthdr.len,
   1044 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
   1045 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
   1046 			}
   1047 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1048 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1049 			if (error) {
   1050 				m_freem(m);
   1051 				printf("%s: unable to load Tx buffer, "
   1052 				    "error = %d\n", device_xname(sc->vr_dev), error);
   1053 				break;
   1054 			}
   1055 		}
   1056 
   1057 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1058 		if (m != NULL) {
   1059 			m_freem(m0);
   1060 			m0 = m;
   1061 		}
   1062 
   1063 		/* Sync the DMA map. */
   1064 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1065 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1066 
   1067 		/*
   1068 		 * Store a pointer to the packet so we can free it later.
   1069 		 */
   1070 		ds->ds_mbuf = m0;
   1071 
   1072 		/*
   1073 		 * If there's a BPF listener, bounce a copy of this frame
   1074 		 * to him.
   1075 		 */
   1076 		bpf_mtap(ifp, m0);
   1077 
   1078 		/*
   1079 		 * Fill in the transmit descriptor.
   1080 		 */
   1081 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1082 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1083 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1084 
   1085 		/*
   1086 		 * If this is the first descriptor we're enqueuing,
   1087 		 * don't give it to the Rhine yet.  That could cause
   1088 		 * a race condition.  We'll do it below.
   1089 		 */
   1090 		if (nexttx == firsttx)
   1091 			d->vr_status = 0;
   1092 		else
   1093 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1094 
   1095 		VR_CDTXSYNC(sc, nexttx,
   1096 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1097 
   1098 		/* Advance the tx pointer. */
   1099 		sc->vr_txpending++;
   1100 		sc->vr_txlast = nexttx;
   1101 	}
   1102 
   1103 	if (sc->vr_txpending == VR_NTXDESC) {
   1104 		/* No more slots left; notify upper layer. */
   1105 		ifp->if_flags |= IFF_OACTIVE;
   1106 	}
   1107 
   1108 	if (sc->vr_txpending != opending) {
   1109 		/*
   1110 		 * We enqueued packets.  If the transmitter was idle,
   1111 		 * reset the txdirty pointer.
   1112 		 */
   1113 		if (opending == 0)
   1114 			sc->vr_txdirty = firsttx;
   1115 
   1116 		/*
   1117 		 * Cause a transmit interrupt to happen on the
   1118 		 * last packet we enqueued.
   1119 		 */
   1120 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1121 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1122 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1123 
   1124 		/*
   1125 		 * The entire packet chain is set up.  Give the
   1126 		 * first descriptor to the Rhine now.
   1127 		 */
   1128 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1129 		VR_CDTXSYNC(sc, firsttx,
   1130 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1131 
   1132 		/* Start the transmitter. */
   1133 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1134 
   1135 		/* Set the watchdog timer in case the chip flakes out. */
   1136 		ifp->if_timer = 5;
   1137 	}
   1138 }
   1139 
   1140 /*
   1141  * Initialize the interface.  Must be called at splnet.
   1142  */
   1143 static int
   1144 vr_init(struct ifnet *ifp)
   1145 {
   1146 	struct vr_softc *sc = ifp->if_softc;
   1147 	struct vr_desc *d;
   1148 	struct vr_descsoft *ds;
   1149 	int i, error = 0;
   1150 
   1151 	/* Cancel pending I/O. */
   1152 	vr_stop(ifp, 0);
   1153 
   1154 	/* Reset the Rhine to a known state. */
   1155 	vr_reset(sc);
   1156 
   1157 	/* set DMA length in BCR0 and BCR1 */
   1158 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1159 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1160 
   1161 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1162 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1163 
   1164 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1165 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1166 
   1167 	/* set DMA threshold length in RXCFG and TXCFG */
   1168 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1169 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1170 
   1171 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1172 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1173 
   1174 	/*
   1175 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1176 	 * to the end of the list so that it will wrap around to the first
   1177 	 * descriptor when the first packet is transmitted.
   1178 	 */
   1179 	for (i = 0; i < VR_NTXDESC; i++) {
   1180 		d = VR_CDTX(sc, i);
   1181 		memset(d, 0, sizeof(struct vr_desc));
   1182 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1183 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1184 	}
   1185 	sc->vr_txpending = 0;
   1186 	sc->vr_txdirty = 0;
   1187 	sc->vr_txlast = VR_NTXDESC - 1;
   1188 
   1189 	/*
   1190 	 * Initialize the receive descriptor ring.
   1191 	 */
   1192 	for (i = 0; i < VR_NRXDESC; i++) {
   1193 		ds = VR_DSRX(sc, i);
   1194 		if (ds->ds_mbuf == NULL) {
   1195 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1196 				printf("%s: unable to allocate or map rx "
   1197 				    "buffer %d, error = %d\n",
   1198 				    device_xname(sc->vr_dev), i, error);
   1199 				/*
   1200 				 * XXX Should attempt to run with fewer receive
   1201 				 * XXX buffers instead of just failing.
   1202 				 */
   1203 				vr_rxdrain(sc);
   1204 				goto out;
   1205 			}
   1206 		} else
   1207 			VR_INIT_RXDESC(sc, i);
   1208 	}
   1209 	sc->vr_rxptr = 0;
   1210 
   1211 	/* If we want promiscuous mode, set the allframes bit. */
   1212 	if (ifp->if_flags & IFF_PROMISC)
   1213 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1214 	else
   1215 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1216 
   1217 	/* Set capture broadcast bit to capture broadcast frames. */
   1218 	if (ifp->if_flags & IFF_BROADCAST)
   1219 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1220 	else
   1221 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1222 
   1223 	/* Program the multicast filter, if necessary. */
   1224 	vr_setmulti(sc);
   1225 
   1226 	/* Give the transmit and receive rings to the Rhine. */
   1227 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1228 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1229 
   1230 	/* Set current media. */
   1231 	if ((error = ether_mediachange(ifp)) != 0)
   1232 		goto out;
   1233 
   1234 	/* Enable receiver and transmitter. */
   1235 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1236 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1237 				    VR_CMD_RX_GO);
   1238 
   1239 	/* Enable interrupts. */
   1240 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1241 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1242 
   1243 	ifp->if_flags |= IFF_RUNNING;
   1244 	ifp->if_flags &= ~IFF_OACTIVE;
   1245 
   1246 	/* Start one second timer. */
   1247 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1248 
   1249 	/* Attempt to start output on the interface. */
   1250 	vr_start(ifp);
   1251 
   1252  out:
   1253 	if (error)
   1254 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
   1255 	return (error);
   1256 }
   1257 
   1258 static int
   1259 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
   1260 {
   1261 	struct vr_softc *sc = ifp->if_softc;
   1262 	int s, error = 0;
   1263 
   1264 	s = splnet();
   1265 
   1266 	error = ether_ioctl(ifp, command, data);
   1267 	if (error == ENETRESET) {
   1268 		/*
   1269 		 * Multicast list has changed; set the hardware filter
   1270 		 * accordingly.
   1271 		 */
   1272 		if (ifp->if_flags & IFF_RUNNING)
   1273 			vr_setmulti(sc);
   1274 		error = 0;
   1275 	}
   1276 
   1277 	splx(s);
   1278 	return (error);
   1279 }
   1280 
   1281 static void
   1282 vr_watchdog(struct ifnet *ifp)
   1283 {
   1284 	struct vr_softc *sc = ifp->if_softc;
   1285 
   1286 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
   1287 	ifp->if_oerrors++;
   1288 
   1289 	(void) vr_init(ifp);
   1290 }
   1291 
   1292 /*
   1293  * One second timer, used to tick MII.
   1294  */
   1295 static void
   1296 vr_tick(void *arg)
   1297 {
   1298 	struct vr_softc *sc = arg;
   1299 	int s;
   1300 
   1301 	s = splnet();
   1302 	mii_tick(&sc->vr_mii);
   1303 	splx(s);
   1304 
   1305 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1306 }
   1307 
   1308 /*
   1309  * Drain the receive queue.
   1310  */
   1311 static void
   1312 vr_rxdrain(struct vr_softc *sc)
   1313 {
   1314 	struct vr_descsoft *ds;
   1315 	int i;
   1316 
   1317 	for (i = 0; i < VR_NRXDESC; i++) {
   1318 		ds = VR_DSRX(sc, i);
   1319 		if (ds->ds_mbuf != NULL) {
   1320 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1321 			m_freem(ds->ds_mbuf);
   1322 			ds->ds_mbuf = NULL;
   1323 		}
   1324 	}
   1325 }
   1326 
   1327 /*
   1328  * Stop the adapter and free any mbufs allocated to the
   1329  * transmit lists.
   1330  */
   1331 static void
   1332 vr_stop(struct ifnet *ifp, int disable)
   1333 {
   1334 	struct vr_softc *sc = ifp->if_softc;
   1335 	struct vr_descsoft *ds;
   1336 	int i;
   1337 
   1338 	/* Cancel one second timer. */
   1339 	callout_stop(&sc->vr_tick_ch);
   1340 
   1341 	/* Down the MII. */
   1342 	mii_down(&sc->vr_mii);
   1343 
   1344 	ifp = &sc->vr_ec.ec_if;
   1345 	ifp->if_timer = 0;
   1346 
   1347 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1348 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1349 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1350 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1351 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1352 
   1353 	/*
   1354 	 * Release any queued transmit buffers.
   1355 	 */
   1356 	for (i = 0; i < VR_NTXDESC; i++) {
   1357 		ds = VR_DSTX(sc, i);
   1358 		if (ds->ds_mbuf != NULL) {
   1359 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1360 			m_freem(ds->ds_mbuf);
   1361 			ds->ds_mbuf = NULL;
   1362 		}
   1363 	}
   1364 
   1365 	/*
   1366 	 * Mark the interface down and cancel the watchdog timer.
   1367 	 */
   1368 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1369 	ifp->if_timer = 0;
   1370 
   1371 	if (disable)
   1372 		vr_rxdrain(sc);
   1373 }
   1374 
   1375 static int	vr_probe(device_t, cfdata_t, void *);
   1376 static void	vr_attach(device_t, device_t, void *);
   1377 static bool	vr_shutdown(device_t, int);
   1378 
   1379 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
   1380     vr_probe, vr_attach, NULL, NULL);
   1381 
   1382 static const struct vr_type *
   1383 vr_lookup(struct pci_attach_args *pa)
   1384 {
   1385 	const struct vr_type *vrt;
   1386 	int i;
   1387 
   1388 	for (i = 0; i < __arraycount(vr_devs); i++) {
   1389 		vrt = &vr_devs[i];
   1390 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1391 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1392 			return (vrt);
   1393 	}
   1394 	return (NULL);
   1395 }
   1396 
   1397 static int
   1398 vr_probe(device_t parent, cfdata_t match, void *aux)
   1399 {
   1400 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1401 
   1402 	if (vr_lookup(pa) != NULL)
   1403 		return (1);
   1404 
   1405 	return (0);
   1406 }
   1407 
   1408 /*
   1409  * Stop all chip I/O so that the kernel's probe routines don't
   1410  * get confused by errant DMAs when rebooting.
   1411  */
   1412 static bool
   1413 vr_shutdown(device_t self, int howto)
   1414 {
   1415 	struct vr_softc *sc = device_private(self);
   1416 
   1417 	vr_stop(&sc->vr_ec.ec_if, 1);
   1418 
   1419 	return true;
   1420 }
   1421 
   1422 /*
   1423  * Attach the interface. Allocate softc structures, do ifmedia
   1424  * setup and ethernet/BPF attach.
   1425  */
   1426 static void
   1427 vr_attach(device_t parent, device_t self, void *aux)
   1428 {
   1429 	struct vr_softc *sc = device_private(self);
   1430 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1431 	bus_dma_segment_t seg;
   1432 	uint32_t reg;
   1433 	struct ifnet *ifp;
   1434 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
   1435 	int i, rseg, error;
   1436 
   1437 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
   1438 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
   1439 
   1440 	sc->vr_dev = self;
   1441 	sc->vr_pc = pa->pa_pc;
   1442 	sc->vr_tag = pa->pa_tag;
   1443 	sc->vr_id = pa->pa_id;
   1444 	callout_init(&sc->vr_tick_ch, 0);
   1445 
   1446 	pci_aprint_devinfo(pa, NULL);
   1447 
   1448 	/*
   1449 	 * Handle power management nonsense.
   1450 	 */
   1451 
   1452 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1453 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1454 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1455 
   1456 	/* power up chip */
   1457 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1458 	    vr_restore_state)) && error != EOPNOTSUPP) {
   1459 		aprint_error_dev(self, "cannot activate %d\n",
   1460 		    error);
   1461 		return;
   1462 	}
   1463 
   1464 	/* Make sure bus mastering is enabled. */
   1465 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1466 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1467 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1468 
   1469 	/* Get revision */
   1470 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1471 
   1472 	/*
   1473 	 * Map control/status registers.
   1474 	 */
   1475 	{
   1476 		bus_space_tag_t iot, memt;
   1477 		bus_space_handle_t ioh, memh;
   1478 		int ioh_valid, memh_valid;
   1479 		pci_intr_handle_t intrhandle;
   1480 		const char *intrstr;
   1481 
   1482 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1483 			PCI_MAPREG_TYPE_IO, 0,
   1484 			&iot, &ioh, NULL, NULL) == 0);
   1485 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1486 			PCI_MAPREG_TYPE_MEM |
   1487 			PCI_MAPREG_MEM_TYPE_32BIT,
   1488 			0, &memt, &memh, NULL, NULL) == 0);
   1489 #if defined(VR_USEIOSPACE)
   1490 		if (ioh_valid) {
   1491 			sc->vr_bst = iot;
   1492 			sc->vr_bsh = ioh;
   1493 		} else if (memh_valid) {
   1494 			sc->vr_bst = memt;
   1495 			sc->vr_bsh = memh;
   1496 		}
   1497 #else
   1498 		if (memh_valid) {
   1499 			sc->vr_bst = memt;
   1500 			sc->vr_bsh = memh;
   1501 		} else if (ioh_valid) {
   1502 			sc->vr_bst = iot;
   1503 			sc->vr_bsh = ioh;
   1504 		}
   1505 #endif
   1506 		else {
   1507 			printf(": unable to map device registers\n");
   1508 			return;
   1509 		}
   1510 
   1511 		/* Allocate interrupt */
   1512 		if (pci_intr_map(pa, &intrhandle)) {
   1513 			aprint_error_dev(self, "couldn't map interrupt\n");
   1514 			return;
   1515 		}
   1516 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1517 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1518 						vr_intr, sc);
   1519 		if (sc->vr_ih == NULL) {
   1520 			aprint_error_dev(self, "couldn't establish interrupt");
   1521 			if (intrstr != NULL)
   1522 				aprint_error(" at %s", intrstr);
   1523 			aprint_error("\n");
   1524 		}
   1525 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
   1526 	}
   1527 
   1528 	/*
   1529 	 * Windows may put the chip in suspend mode when it
   1530 	 * shuts down. Be sure to kick it in the head to wake it
   1531 	 * up again.
   1532 	 *
   1533 	 * Don't touch this register on VT3043 since it causes
   1534 	 * kernel MCHK trap on macppc.
   1535 	 * (Note some VT86C100A chip returns a product ID of VT3043)
   1536 	 */
   1537 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
   1538 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1539 
   1540 	/* Reset the adapter. */
   1541 	vr_reset(sc);
   1542 
   1543 	/*
   1544 	 * Get station address. The way the Rhine chips work,
   1545 	 * you're not allowed to directly access the EEPROM once
   1546 	 * they've been programmed a special way. Consequently,
   1547 	 * we need to read the node address from the PAR0 and PAR1
   1548 	 * registers.
   1549 	 *
   1550 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1551 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1552 	 *         pretty pointless since the chip does this automatically
   1553 	 *         at powerup/reset.
   1554 	 *         I suspect the same thing applies to the other Rhine
   1555 	 *         variants, but in the absence of a data sheet for those
   1556 	 *         (and the lack of anyone else noticing the problems this
   1557 	 *         causes) I'm going to retain the old behaviour for the
   1558 	 *         other parts.
   1559 	 *         In some cases, the chip really does startup without having
   1560 	 *         read the EEPROM (kern/34812). To handle this case, we force
   1561 	 *         a reload if we see an all-zeroes MAC address.
   1562 	 */
   1563 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
   1564 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
   1565 
   1566 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1567 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
   1568 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1569 		DELAY(200);
   1570 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1571 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1572 	}
   1573 
   1574 	/*
   1575 	 * A Rhine chip was detected. Inform the world.
   1576 	 */
   1577 	aprint_normal("%s: Ethernet address: %s\n",
   1578 		device_xname(self), ether_sprintf(eaddr));
   1579 
   1580 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1581 
   1582 	sc->vr_dmat = pa->pa_dmat;
   1583 
   1584 	/*
   1585 	 * Allocate the control data structures, and create and load
   1586 	 * the DMA map for it.
   1587 	 */
   1588 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1589 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1590 	    0)) != 0) {
   1591 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
   1592 		goto fail_0;
   1593 	}
   1594 
   1595 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1596 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
   1597 	    BUS_DMA_COHERENT)) != 0) {
   1598 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
   1599 		goto fail_1;
   1600 	}
   1601 
   1602 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1603 	    sizeof(struct vr_control_data), 1,
   1604 	    sizeof(struct vr_control_data), 0, 0,
   1605 	    &sc->vr_cddmamap)) != 0) {
   1606 		aprint_error_dev(self, "unable to create control data DMA map, "
   1607 		    "error = %d\n", error);
   1608 		goto fail_2;
   1609 	}
   1610 
   1611 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1612 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1613 	    0)) != 0) {
   1614 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
   1615 		    error);
   1616 		goto fail_3;
   1617 	}
   1618 
   1619 	/*
   1620 	 * Create the transmit buffer DMA maps.
   1621 	 */
   1622 	for (i = 0; i < VR_NTXDESC; i++) {
   1623 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1624 		    1, MCLBYTES, 0, 0,
   1625 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1626 			aprint_error_dev(self, "unable to create tx DMA map %d, "
   1627 			    "error = %d\n", i, error);
   1628 			goto fail_4;
   1629 		}
   1630 	}
   1631 
   1632 	/*
   1633 	 * Create the receive buffer DMA maps.
   1634 	 */
   1635 	for (i = 0; i < VR_NRXDESC; i++) {
   1636 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1637 		    MCLBYTES, 0, 0,
   1638 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1639 			aprint_error_dev(self, "unable to create rx DMA map %d, "
   1640 			    "error = %d\n", i, error);
   1641 			goto fail_5;
   1642 		}
   1643 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1644 	}
   1645 
   1646 	ifp = &sc->vr_ec.ec_if;
   1647 	ifp->if_softc = sc;
   1648 	ifp->if_mtu = ETHERMTU;
   1649 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1650 	ifp->if_ioctl = vr_ioctl;
   1651 	ifp->if_start = vr_start;
   1652 	ifp->if_watchdog = vr_watchdog;
   1653 	ifp->if_init = vr_init;
   1654 	ifp->if_stop = vr_stop;
   1655 	IFQ_SET_READY(&ifp->if_snd);
   1656 
   1657 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1658 
   1659 	/*
   1660 	 * Initialize MII/media info.
   1661 	 */
   1662 	sc->vr_mii.mii_ifp = ifp;
   1663 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1664 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1665 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1666 
   1667 	sc->vr_ec.ec_mii = &sc->vr_mii;
   1668 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
   1669 		ether_mediastatus);
   1670 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1671 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1672 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1673 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1674 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1675 	} else
   1676 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1677 
   1678 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1679 
   1680 	/*
   1681 	 * Call MI attach routines.
   1682 	 */
   1683 	if_attach(ifp);
   1684 	ether_ifattach(ifp, sc->vr_enaddr);
   1685 
   1686 	rnd_attach_source(&sc->rnd_source, device_xname(self),
   1687 	    RND_TYPE_NET, 0);
   1688 
   1689 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
   1690 		pmf_class_network_register(self, ifp);
   1691 	else
   1692 		aprint_error_dev(self, "couldn't establish power handler\n");
   1693 
   1694 	return;
   1695 
   1696  fail_5:
   1697 	for (i = 0; i < VR_NRXDESC; i++) {
   1698 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1699 			bus_dmamap_destroy(sc->vr_dmat,
   1700 			    sc->vr_rxsoft[i].ds_dmamap);
   1701 	}
   1702  fail_4:
   1703 	for (i = 0; i < VR_NTXDESC; i++) {
   1704 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1705 			bus_dmamap_destroy(sc->vr_dmat,
   1706 			    sc->vr_txsoft[i].ds_dmamap);
   1707 	}
   1708 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1709  fail_3:
   1710 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1711  fail_2:
   1712 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
   1713 	    sizeof(struct vr_control_data));
   1714  fail_1:
   1715 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1716  fail_0:
   1717 	return;
   1718 }
   1719 
   1720 static int
   1721 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
   1722     pcireg_t state)
   1723 {
   1724 	struct vr_softc *sc = device_private(self);
   1725 	int error;
   1726 
   1727 	if (state == PCI_PMCSR_STATE_D0)
   1728 		return 0;
   1729 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
   1730 		return error;
   1731 
   1732 	/* Restore PCI config data. */
   1733 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
   1734 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
   1735 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
   1736 	return 0;
   1737 }
   1738 
   1739 static bool
   1740 vr_resume(device_t self, const pmf_qual_t *qual)
   1741 {
   1742 	struct vr_softc *sc = device_private(self);
   1743 
   1744 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
   1745 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1746 
   1747 	return true;
   1748 }
   1749