if_vr.c revision 1.110 1 /* $NetBSD: if_vr.c,v 1.110 2012/02/02 19:43:05 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.110 2012/02/02 19:43:05 tls Exp $");
101
102
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #include <sys/rnd.h>
115
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121
122 #include <net/bpf.h>
123
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135
136 #include <dev/pci/if_vrreg.h>
137
138 #define VR_USEIOSPACE
139
140 /*
141 * Various supported device vendors/types and their names.
142 */
143 static const struct vr_type {
144 pci_vendor_id_t vr_vid;
145 pci_product_id_t vr_did;
146 } vr_devs[] = {
147 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
148 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
152 };
153
154 /*
155 * Transmit descriptor list size.
156 */
157 #define VR_NTXDESC 64
158 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
159 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
160
161 /*
162 * Receive descriptor list size.
163 */
164 #define VR_NRXDESC 64
165 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
166 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
167
168 /*
169 * Control data structres that are DMA'd to the Rhine chip. We allocate
170 * them in a single clump that maps to a single DMA segment to make several
171 * things easier.
172 *
173 * Note that since we always copy outgoing packets to aligned transmit
174 * buffers, we can reduce the transmit descriptors to one per packet.
175 */
176 struct vr_control_data {
177 struct vr_desc vr_txdescs[VR_NTXDESC];
178 struct vr_desc vr_rxdescs[VR_NRXDESC];
179 };
180
181 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
182 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
183 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
184
185 /*
186 * Software state of transmit and receive descriptors.
187 */
188 struct vr_descsoft {
189 struct mbuf *ds_mbuf; /* head of mbuf chain */
190 bus_dmamap_t ds_dmamap; /* our DMA map */
191 };
192
193 struct vr_softc {
194 device_t vr_dev;
195 void *vr_ih; /* interrupt cookie */
196 bus_space_tag_t vr_bst; /* bus space tag */
197 bus_space_handle_t vr_bsh; /* bus space handle */
198 bus_dma_tag_t vr_dmat; /* bus DMA tag */
199 pci_chipset_tag_t vr_pc; /* PCI chipset info */
200 pcitag_t vr_tag; /* PCI tag */
201 struct ethercom vr_ec; /* Ethernet common info */
202 uint8_t vr_enaddr[ETHER_ADDR_LEN];
203 struct mii_data vr_mii; /* MII/media info */
204
205 pcireg_t vr_id; /* vendor/product ID */
206 uint8_t vr_revid; /* Rhine chip revision */
207
208 callout_t vr_tick_ch; /* tick callout */
209
210 bus_dmamap_t vr_cddmamap; /* control data DMA map */
211 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
212
213 /*
214 * Software state for transmit and receive descriptors.
215 */
216 struct vr_descsoft vr_txsoft[VR_NTXDESC];
217 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
218
219 /*
220 * Control data structures.
221 */
222 struct vr_control_data *vr_control_data;
223
224 int vr_txpending; /* number of TX requests pending */
225 int vr_txdirty; /* first dirty TX descriptor */
226 int vr_txlast; /* last used TX descriptor */
227
228 int vr_rxptr; /* next ready RX descriptor */
229
230 uint32_t vr_save_iobase;
231 uint32_t vr_save_membase;
232 uint32_t vr_save_irq;
233
234 krndsource_t rnd_source; /* random source */
235 };
236
237 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
238 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
239
240 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
241 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
242
243 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
244 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
245
246 #define VR_CDTXSYNC(sc, x, ops) \
247 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
248 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
249
250 #define VR_CDRXSYNC(sc, x, ops) \
251 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
252 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
253
254 /*
255 * Note we rely on MCLBYTES being a power of two below.
256 */
257 #define VR_INIT_RXDESC(sc, i) \
258 do { \
259 struct vr_desc *__d = VR_CDRX((sc), (i)); \
260 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
261 \
262 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
263 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
264 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
265 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
266 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
267 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
268 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
269 } while (/* CONSTCOND */ 0)
270
271 /*
272 * register space access macros
273 */
274 #define CSR_WRITE_4(sc, reg, val) \
275 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
276 #define CSR_WRITE_2(sc, reg, val) \
277 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
278 #define CSR_WRITE_1(sc, reg, val) \
279 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
280
281 #define CSR_READ_4(sc, reg) \
282 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
283 #define CSR_READ_2(sc, reg) \
284 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
285 #define CSR_READ_1(sc, reg) \
286 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
287
288 #define VR_TIMEOUT 1000
289
290 static int vr_add_rxbuf(struct vr_softc *, int);
291
292 static void vr_rxeof(struct vr_softc *);
293 static void vr_rxeoc(struct vr_softc *);
294 static void vr_txeof(struct vr_softc *);
295 static int vr_intr(void *);
296 static void vr_start(struct ifnet *);
297 static int vr_ioctl(struct ifnet *, u_long, void *);
298 static int vr_init(struct ifnet *);
299 static void vr_stop(struct ifnet *, int);
300 static void vr_rxdrain(struct vr_softc *);
301 static void vr_watchdog(struct ifnet *);
302 static void vr_tick(void *);
303
304 static int vr_mii_readreg(device_t, int, int);
305 static void vr_mii_writereg(device_t, int, int, int);
306 static void vr_mii_statchg(device_t);
307
308 static void vr_setmulti(struct vr_softc *);
309 static void vr_reset(struct vr_softc *);
310 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
311 pcireg_t);
312 static bool vr_resume(device_t, const pmf_qual_t *);
313
314 int vr_copy_small = 0;
315
316 #define VR_SETBIT(sc, reg, x) \
317 CSR_WRITE_1(sc, reg, \
318 CSR_READ_1(sc, reg) | (x))
319
320 #define VR_CLRBIT(sc, reg, x) \
321 CSR_WRITE_1(sc, reg, \
322 CSR_READ_1(sc, reg) & ~(x))
323
324 #define VR_SETBIT16(sc, reg, x) \
325 CSR_WRITE_2(sc, reg, \
326 CSR_READ_2(sc, reg) | (x))
327
328 #define VR_CLRBIT16(sc, reg, x) \
329 CSR_WRITE_2(sc, reg, \
330 CSR_READ_2(sc, reg) & ~(x))
331
332 #define VR_SETBIT32(sc, reg, x) \
333 CSR_WRITE_4(sc, reg, \
334 CSR_READ_4(sc, reg) | (x))
335
336 #define VR_CLRBIT32(sc, reg, x) \
337 CSR_WRITE_4(sc, reg, \
338 CSR_READ_4(sc, reg) & ~(x))
339
340 /*
341 * MII bit-bang glue.
342 */
343 static uint32_t vr_mii_bitbang_read(device_t);
344 static void vr_mii_bitbang_write(device_t, uint32_t);
345
346 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
347 vr_mii_bitbang_read,
348 vr_mii_bitbang_write,
349 {
350 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
351 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
352 VR_MIICMD_CLK, /* MII_BIT_MDC */
353 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
354 0, /* MII_BIT_DIR_PHY_HOST */
355 }
356 };
357
358 static uint32_t
359 vr_mii_bitbang_read(device_t self)
360 {
361 struct vr_softc *sc = device_private(self);
362
363 return (CSR_READ_1(sc, VR_MIICMD));
364 }
365
366 static void
367 vr_mii_bitbang_write(device_t self, uint32_t val)
368 {
369 struct vr_softc *sc = device_private(self);
370
371 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
372 }
373
374 /*
375 * Read an PHY register through the MII.
376 */
377 static int
378 vr_mii_readreg(device_t self, int phy, int reg)
379 {
380 struct vr_softc *sc = device_private(self);
381
382 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
383 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
384 }
385
386 /*
387 * Write to a PHY register through the MII.
388 */
389 static void
390 vr_mii_writereg(device_t self, int phy, int reg, int val)
391 {
392 struct vr_softc *sc = device_private(self);
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
396 }
397
398 static void
399 vr_mii_statchg(device_t self)
400 {
401 struct vr_softc *sc = device_private(self);
402
403 /*
404 * In order to fiddle with the 'full-duplex' bit in the netconfig
405 * register, we first have to put the transmit and/or receive logic
406 * in the idle state.
407 */
408 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
409
410 if (sc->vr_mii.mii_media_active & IFM_FDX)
411 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
412 else
413 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
414
415 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
416 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
417 }
418
419 #define vr_calchash(addr) \
420 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
421
422 /*
423 * Program the 64-bit multicast hash filter.
424 */
425 static void
426 vr_setmulti(struct vr_softc *sc)
427 {
428 struct ifnet *ifp;
429 int h = 0;
430 uint32_t hashes[2] = { 0, 0 };
431 struct ether_multistep step;
432 struct ether_multi *enm;
433 int mcnt = 0;
434 uint8_t rxfilt;
435
436 ifp = &sc->vr_ec.ec_if;
437
438 rxfilt = CSR_READ_1(sc, VR_RXCFG);
439
440 if (ifp->if_flags & IFF_PROMISC) {
441 allmulti:
442 ifp->if_flags |= IFF_ALLMULTI;
443 rxfilt |= VR_RXCFG_RX_MULTI;
444 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
445 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
446 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
447 return;
448 }
449
450 /* first, zot all the existing hash bits */
451 CSR_WRITE_4(sc, VR_MAR0, 0);
452 CSR_WRITE_4(sc, VR_MAR1, 0);
453
454 /* now program new ones */
455 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
456 while (enm != NULL) {
457 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
458 ETHER_ADDR_LEN) != 0)
459 goto allmulti;
460
461 h = vr_calchash(enm->enm_addrlo);
462
463 if (h < 32)
464 hashes[0] |= (1 << h);
465 else
466 hashes[1] |= (1 << (h - 32));
467 ETHER_NEXT_MULTI(step, enm);
468 mcnt++;
469 }
470
471 ifp->if_flags &= ~IFF_ALLMULTI;
472
473 if (mcnt)
474 rxfilt |= VR_RXCFG_RX_MULTI;
475 else
476 rxfilt &= ~VR_RXCFG_RX_MULTI;
477
478 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
479 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
480 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
481 }
482
483 static void
484 vr_reset(struct vr_softc *sc)
485 {
486 int i;
487
488 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
489
490 for (i = 0; i < VR_TIMEOUT; i++) {
491 DELAY(10);
492 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
493 break;
494 }
495 if (i == VR_TIMEOUT) {
496 if (sc->vr_revid < REV_ID_VT3065_A) {
497 printf("%s: reset never completed!\n",
498 device_xname(sc->vr_dev));
499 } else {
500 /* Use newer force reset command */
501 printf("%s: using force reset command.\n",
502 device_xname(sc->vr_dev));
503 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
504 }
505 }
506
507 /* Wait a little while for the chip to get its brains in order. */
508 DELAY(1000);
509 }
510
511 /*
512 * Initialize an RX descriptor and attach an MBUF cluster.
513 * Note: the length fields are only 11 bits wide, which means the
514 * largest size we can specify is 2047. This is important because
515 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
516 * overflow the field and make a mess.
517 */
518 static int
519 vr_add_rxbuf(struct vr_softc *sc, int i)
520 {
521 struct vr_descsoft *ds = VR_DSRX(sc, i);
522 struct mbuf *m_new;
523 int error;
524
525 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
526 if (m_new == NULL)
527 return (ENOBUFS);
528
529 MCLGET(m_new, M_DONTWAIT);
530 if ((m_new->m_flags & M_EXT) == 0) {
531 m_freem(m_new);
532 return (ENOBUFS);
533 }
534
535 if (ds->ds_mbuf != NULL)
536 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
537
538 ds->ds_mbuf = m_new;
539
540 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
541 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
542 BUS_DMA_READ|BUS_DMA_NOWAIT);
543 if (error) {
544 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
545 i, error);
546 panic("vr_add_rxbuf"); /* XXX */
547 }
548
549 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
550 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
551
552 VR_INIT_RXDESC(sc, i);
553
554 return (0);
555 }
556
557 /*
558 * A frame has been uploaded: pass the resulting mbuf chain up to
559 * the higher level protocols.
560 */
561 static void
562 vr_rxeof(struct vr_softc *sc)
563 {
564 struct mbuf *m;
565 struct ifnet *ifp;
566 struct vr_desc *d;
567 struct vr_descsoft *ds;
568 int i, total_len;
569 uint32_t rxstat;
570
571 ifp = &sc->vr_ec.ec_if;
572
573 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
574 d = VR_CDRX(sc, i);
575 ds = VR_DSRX(sc, i);
576
577 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
578
579 rxstat = le32toh(d->vr_status);
580
581 if (rxstat & VR_RXSTAT_OWN) {
582 /*
583 * We have processed all of the receive buffers.
584 */
585 break;
586 }
587
588 /*
589 * If an error occurs, update stats, clear the
590 * status word and leave the mbuf cluster in place:
591 * it should simply get re-used next time this descriptor
592 * comes up in the ring.
593 */
594 if (rxstat & VR_RXSTAT_RXERR) {
595 const char *errstr;
596
597 ifp->if_ierrors++;
598 switch (rxstat & 0x000000FF) {
599 case VR_RXSTAT_CRCERR:
600 errstr = "crc error";
601 break;
602 case VR_RXSTAT_FRAMEALIGNERR:
603 errstr = "frame alignment error";
604 break;
605 case VR_RXSTAT_FIFOOFLOW:
606 errstr = "FIFO overflow";
607 break;
608 case VR_RXSTAT_GIANT:
609 errstr = "received giant packet";
610 break;
611 case VR_RXSTAT_RUNT:
612 errstr = "received runt packet";
613 break;
614 case VR_RXSTAT_BUSERR:
615 errstr = "system bus error";
616 break;
617 case VR_RXSTAT_BUFFERR:
618 errstr = "rx buffer error";
619 break;
620 default:
621 errstr = "unknown rx error";
622 break;
623 }
624 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
625 errstr);
626
627 VR_INIT_RXDESC(sc, i);
628
629 continue;
630 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
631 !(rxstat & VR_RXSTAT_LASTFRAG)) {
632 /*
633 * This driver expects to receive whole packets every
634 * time. In case we receive a fragment that is not
635 * a complete packet, we discard it.
636 */
637 ifp->if_ierrors++;
638
639 printf("%s: receive error: incomplete frame; "
640 "size = %d, status = 0x%x\n",
641 device_xname(sc->vr_dev),
642 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
643
644 VR_INIT_RXDESC(sc, i);
645
646 continue;
647 }
648
649 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
650 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
651
652 /* No errors; receive the packet. */
653 total_len = VR_RXBYTES(le32toh(d->vr_status));
654 #ifdef DIAGNOSTIC
655 if (total_len == 0) {
656 /*
657 * If we receive a zero-length packet, we probably
658 * missed to handle an error condition above.
659 * Discard it to avoid a later crash.
660 */
661 ifp->if_ierrors++;
662
663 printf("%s: receive error: zero-length packet; "
664 "status = 0x%x\n",
665 device_xname(sc->vr_dev), rxstat);
666
667 VR_INIT_RXDESC(sc, i);
668
669 continue;
670 }
671 #endif
672
673 /*
674 * The Rhine chip includes the CRC with every packet.
675 * Trim it off here.
676 */
677 total_len -= ETHER_CRC_LEN;
678
679 #ifdef __NO_STRICT_ALIGNMENT
680 /*
681 * If the packet is small enough to fit in a
682 * single header mbuf, allocate one and copy
683 * the data into it. This greatly reduces
684 * memory consumption when we receive lots
685 * of small packets.
686 *
687 * Otherwise, we add a new buffer to the receive
688 * chain. If this fails, we drop the packet and
689 * recycle the old buffer.
690 */
691 if (vr_copy_small != 0 && total_len <= MHLEN) {
692 MGETHDR(m, M_DONTWAIT, MT_DATA);
693 if (m == NULL)
694 goto dropit;
695 memcpy(mtod(m, void *),
696 mtod(ds->ds_mbuf, void *), total_len);
697 VR_INIT_RXDESC(sc, i);
698 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
699 ds->ds_dmamap->dm_mapsize,
700 BUS_DMASYNC_PREREAD);
701 } else {
702 m = ds->ds_mbuf;
703 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
704 dropit:
705 ifp->if_ierrors++;
706 VR_INIT_RXDESC(sc, i);
707 bus_dmamap_sync(sc->vr_dmat,
708 ds->ds_dmamap, 0,
709 ds->ds_dmamap->dm_mapsize,
710 BUS_DMASYNC_PREREAD);
711 continue;
712 }
713 }
714 #else
715 /*
716 * The Rhine's packet buffers must be 4-byte aligned.
717 * But this means that the data after the Ethernet header
718 * is misaligned. We must allocate a new buffer and
719 * copy the data, shifted forward 2 bytes.
720 */
721 MGETHDR(m, M_DONTWAIT, MT_DATA);
722 if (m == NULL) {
723 dropit:
724 ifp->if_ierrors++;
725 VR_INIT_RXDESC(sc, i);
726 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
727 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
728 continue;
729 }
730 if (total_len > (MHLEN - 2)) {
731 MCLGET(m, M_DONTWAIT);
732 if ((m->m_flags & M_EXT) == 0) {
733 m_freem(m);
734 goto dropit;
735 }
736 }
737 m->m_data += 2;
738
739 /*
740 * Note that we use clusters for incoming frames, so the
741 * buffer is virtually contiguous.
742 */
743 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
744 total_len);
745
746 /* Allow the receive descriptor to continue using its mbuf. */
747 VR_INIT_RXDESC(sc, i);
748 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
749 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
750 #endif /* __NO_STRICT_ALIGNMENT */
751
752 ifp->if_ipackets++;
753 m->m_pkthdr.rcvif = ifp;
754 m->m_pkthdr.len = m->m_len = total_len;
755 /*
756 * Handle BPF listeners. Let the BPF user see the packet, but
757 * don't pass it up to the ether_input() layer unless it's
758 * a broadcast packet, multicast packet, matches our ethernet
759 * address or the interface is in promiscuous mode.
760 */
761 bpf_mtap(ifp, m);
762 /* Pass it on. */
763 (*ifp->if_input)(ifp, m);
764 }
765
766 /* Update the receive pointer. */
767 sc->vr_rxptr = i;
768 }
769
770 void
771 vr_rxeoc(struct vr_softc *sc)
772 {
773 struct ifnet *ifp;
774 int i;
775
776 ifp = &sc->vr_ec.ec_if;
777
778 ifp->if_ierrors++;
779
780 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
781 for (i = 0; i < VR_TIMEOUT; i++) {
782 DELAY(10);
783 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
784 break;
785 }
786 if (i == VR_TIMEOUT) {
787 /* XXX need reset? */
788 printf("%s: RX shutdown never complete\n",
789 device_xname(sc->vr_dev));
790 }
791
792 vr_rxeof(sc);
793
794 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
795 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
796 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
797 }
798
799 /*
800 * A frame was downloaded to the chip. It's safe for us to clean up
801 * the list buffers.
802 */
803 static void
804 vr_txeof(struct vr_softc *sc)
805 {
806 struct ifnet *ifp = &sc->vr_ec.ec_if;
807 struct vr_desc *d;
808 struct vr_descsoft *ds;
809 uint32_t txstat;
810 int i, j;
811
812 ifp->if_flags &= ~IFF_OACTIVE;
813
814 /*
815 * Go through our tx list and free mbufs for those
816 * frames that have been transmitted.
817 */
818 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
819 i = VR_NEXTTX(i), sc->vr_txpending--) {
820 d = VR_CDTX(sc, i);
821 ds = VR_DSTX(sc, i);
822
823 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
824
825 txstat = le32toh(d->vr_status);
826
827 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
828 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
829 for (j = 0; j < VR_TIMEOUT; j++) {
830 DELAY(10);
831 if ((CSR_READ_2(sc, VR_COMMAND) &
832 VR_CMD_TX_ON) == 0)
833 break;
834 }
835 if (j == VR_TIMEOUT) {
836 /* XXX need reset? */
837 printf("%s: TX shutdown never complete\n",
838 device_xname(sc->vr_dev));
839 }
840 d->vr_status = htole32(VR_TXSTAT_OWN);
841 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
842 break;
843 }
844
845 if (txstat & VR_TXSTAT_OWN)
846 break;
847
848 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
849 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
850 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
851 m_freem(ds->ds_mbuf);
852 ds->ds_mbuf = NULL;
853
854 if (txstat & VR_TXSTAT_ERRSUM) {
855 ifp->if_oerrors++;
856 if (txstat & VR_TXSTAT_DEFER)
857 ifp->if_collisions++;
858 if (txstat & VR_TXSTAT_LATECOLL)
859 ifp->if_collisions++;
860 }
861
862 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
863 ifp->if_opackets++;
864 }
865
866 /* Update the dirty transmit buffer pointer. */
867 sc->vr_txdirty = i;
868
869 /*
870 * Cancel the watchdog timer if there are no pending
871 * transmissions.
872 */
873 if (sc->vr_txpending == 0)
874 ifp->if_timer = 0;
875 }
876
877 static int
878 vr_intr(void *arg)
879 {
880 struct vr_softc *sc;
881 struct ifnet *ifp;
882 uint16_t status;
883 int handled = 0, dotx = 0;
884
885 sc = arg;
886 ifp = &sc->vr_ec.ec_if;
887
888 /* Suppress unwanted interrupts. */
889 if ((ifp->if_flags & IFF_UP) == 0) {
890 vr_stop(ifp, 1);
891 return (0);
892 }
893
894 /* Disable interrupts. */
895 CSR_WRITE_2(sc, VR_IMR, 0x0000);
896
897 for (;;) {
898 status = CSR_READ_2(sc, VR_ISR);
899 if (status)
900 CSR_WRITE_2(sc, VR_ISR, status);
901
902 if ((status & VR_INTRS) == 0)
903 break;
904
905 handled = 1;
906
907 rnd_add_uint32(&sc->rnd_source, status);
908
909 if (status & VR_ISR_RX_OK)
910 vr_rxeof(sc);
911
912 if (status & VR_ISR_RX_DROPPED) {
913 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
914 ifp->if_ierrors++;
915 }
916
917 if (status &
918 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
919 vr_rxeoc(sc);
920
921
922 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
923 if (status & VR_ISR_BUSERR)
924 printf("%s: PCI bus error\n",
925 device_xname(sc->vr_dev));
926 if (status & VR_ISR_TX_UNDERRUN)
927 printf("%s: transmit underrun\n",
928 device_xname(sc->vr_dev));
929 /* vr_init() calls vr_start() */
930 dotx = 0;
931 (void)vr_init(ifp);
932
933 }
934
935 if (status & VR_ISR_TX_OK) {
936 dotx = 1;
937 vr_txeof(sc);
938 }
939
940 if (status &
941 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
942 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
943 printf("%s: transmit aborted\n",
944 device_xname(sc->vr_dev));
945 if (status & VR_ISR_TX_UDFI)
946 printf("%s: transmit underflow\n",
947 device_xname(sc->vr_dev));
948 ifp->if_oerrors++;
949 dotx = 1;
950 vr_txeof(sc);
951 if (sc->vr_txpending) {
952 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
953 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
954 }
955 }
956 }
957
958 /* Re-enable interrupts. */
959 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
960
961 if (dotx)
962 vr_start(ifp);
963
964 return (handled);
965 }
966
967 /*
968 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
969 * to the mbuf data regions directly in the transmit lists. We also save a
970 * copy of the pointers since the transmit list fragment pointers are
971 * physical addresses.
972 */
973 static void
974 vr_start(struct ifnet *ifp)
975 {
976 struct vr_softc *sc = ifp->if_softc;
977 struct mbuf *m0, *m;
978 struct vr_desc *d;
979 struct vr_descsoft *ds;
980 int error, firsttx, nexttx, opending;
981
982 /*
983 * Remember the previous txpending and the first transmit
984 * descriptor we use.
985 */
986 opending = sc->vr_txpending;
987 firsttx = VR_NEXTTX(sc->vr_txlast);
988
989 /*
990 * Loop through the send queue, setting up transmit descriptors
991 * until we drain the queue, or use up all available transmit
992 * descriptors.
993 */
994 while (sc->vr_txpending < VR_NTXDESC) {
995 /*
996 * Grab a packet off the queue.
997 */
998 IFQ_POLL(&ifp->if_snd, m0);
999 if (m0 == NULL)
1000 break;
1001 m = NULL;
1002
1003 /*
1004 * Get the next available transmit descriptor.
1005 */
1006 nexttx = VR_NEXTTX(sc->vr_txlast);
1007 d = VR_CDTX(sc, nexttx);
1008 ds = VR_DSTX(sc, nexttx);
1009
1010 /*
1011 * Load the DMA map. If this fails, the packet didn't
1012 * fit in one DMA segment, and we need to copy. Note,
1013 * the packet must also be aligned.
1014 * if the packet is too small, copy it too, so we're sure
1015 * we have enough room for the pad buffer.
1016 */
1017 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1018 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1019 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1020 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1021 MGETHDR(m, M_DONTWAIT, MT_DATA);
1022 if (m == NULL) {
1023 printf("%s: unable to allocate Tx mbuf\n",
1024 device_xname(sc->vr_dev));
1025 break;
1026 }
1027 if (m0->m_pkthdr.len > MHLEN) {
1028 MCLGET(m, M_DONTWAIT);
1029 if ((m->m_flags & M_EXT) == 0) {
1030 printf("%s: unable to allocate Tx "
1031 "cluster\n", device_xname(sc->vr_dev));
1032 m_freem(m);
1033 break;
1034 }
1035 }
1036 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1037 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1038 /*
1039 * The Rhine doesn't auto-pad, so we have to do this
1040 * ourselves.
1041 */
1042 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1043 memset(mtod(m, char *) + m0->m_pkthdr.len,
1044 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1045 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1046 }
1047 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1048 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1049 if (error) {
1050 m_freem(m);
1051 printf("%s: unable to load Tx buffer, "
1052 "error = %d\n", device_xname(sc->vr_dev), error);
1053 break;
1054 }
1055 }
1056
1057 IFQ_DEQUEUE(&ifp->if_snd, m0);
1058 if (m != NULL) {
1059 m_freem(m0);
1060 m0 = m;
1061 }
1062
1063 /* Sync the DMA map. */
1064 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1065 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1066
1067 /*
1068 * Store a pointer to the packet so we can free it later.
1069 */
1070 ds->ds_mbuf = m0;
1071
1072 /*
1073 * If there's a BPF listener, bounce a copy of this frame
1074 * to him.
1075 */
1076 bpf_mtap(ifp, m0);
1077
1078 /*
1079 * Fill in the transmit descriptor.
1080 */
1081 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1082 d->vr_ctl = htole32(m0->m_pkthdr.len);
1083 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1084
1085 /*
1086 * If this is the first descriptor we're enqueuing,
1087 * don't give it to the Rhine yet. That could cause
1088 * a race condition. We'll do it below.
1089 */
1090 if (nexttx == firsttx)
1091 d->vr_status = 0;
1092 else
1093 d->vr_status = htole32(VR_TXSTAT_OWN);
1094
1095 VR_CDTXSYNC(sc, nexttx,
1096 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097
1098 /* Advance the tx pointer. */
1099 sc->vr_txpending++;
1100 sc->vr_txlast = nexttx;
1101 }
1102
1103 if (sc->vr_txpending == VR_NTXDESC) {
1104 /* No more slots left; notify upper layer. */
1105 ifp->if_flags |= IFF_OACTIVE;
1106 }
1107
1108 if (sc->vr_txpending != opending) {
1109 /*
1110 * We enqueued packets. If the transmitter was idle,
1111 * reset the txdirty pointer.
1112 */
1113 if (opending == 0)
1114 sc->vr_txdirty = firsttx;
1115
1116 /*
1117 * Cause a transmit interrupt to happen on the
1118 * last packet we enqueued.
1119 */
1120 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1121 VR_CDTXSYNC(sc, sc->vr_txlast,
1122 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1123
1124 /*
1125 * The entire packet chain is set up. Give the
1126 * first descriptor to the Rhine now.
1127 */
1128 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1129 VR_CDTXSYNC(sc, firsttx,
1130 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1131
1132 /* Start the transmitter. */
1133 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1134
1135 /* Set the watchdog timer in case the chip flakes out. */
1136 ifp->if_timer = 5;
1137 }
1138 }
1139
1140 /*
1141 * Initialize the interface. Must be called at splnet.
1142 */
1143 static int
1144 vr_init(struct ifnet *ifp)
1145 {
1146 struct vr_softc *sc = ifp->if_softc;
1147 struct vr_desc *d;
1148 struct vr_descsoft *ds;
1149 int i, error = 0;
1150
1151 /* Cancel pending I/O. */
1152 vr_stop(ifp, 0);
1153
1154 /* Reset the Rhine to a known state. */
1155 vr_reset(sc);
1156
1157 /* set DMA length in BCR0 and BCR1 */
1158 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1159 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1160
1161 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1162 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1163
1164 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1165 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1166
1167 /* set DMA threshold length in RXCFG and TXCFG */
1168 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1169 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1170
1171 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1172 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1173
1174 /*
1175 * Initialize the transmit descriptor ring. txlast is initialized
1176 * to the end of the list so that it will wrap around to the first
1177 * descriptor when the first packet is transmitted.
1178 */
1179 for (i = 0; i < VR_NTXDESC; i++) {
1180 d = VR_CDTX(sc, i);
1181 memset(d, 0, sizeof(struct vr_desc));
1182 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1183 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1184 }
1185 sc->vr_txpending = 0;
1186 sc->vr_txdirty = 0;
1187 sc->vr_txlast = VR_NTXDESC - 1;
1188
1189 /*
1190 * Initialize the receive descriptor ring.
1191 */
1192 for (i = 0; i < VR_NRXDESC; i++) {
1193 ds = VR_DSRX(sc, i);
1194 if (ds->ds_mbuf == NULL) {
1195 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1196 printf("%s: unable to allocate or map rx "
1197 "buffer %d, error = %d\n",
1198 device_xname(sc->vr_dev), i, error);
1199 /*
1200 * XXX Should attempt to run with fewer receive
1201 * XXX buffers instead of just failing.
1202 */
1203 vr_rxdrain(sc);
1204 goto out;
1205 }
1206 } else
1207 VR_INIT_RXDESC(sc, i);
1208 }
1209 sc->vr_rxptr = 0;
1210
1211 /* If we want promiscuous mode, set the allframes bit. */
1212 if (ifp->if_flags & IFF_PROMISC)
1213 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1214 else
1215 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1216
1217 /* Set capture broadcast bit to capture broadcast frames. */
1218 if (ifp->if_flags & IFF_BROADCAST)
1219 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1220 else
1221 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1222
1223 /* Program the multicast filter, if necessary. */
1224 vr_setmulti(sc);
1225
1226 /* Give the transmit and receive rings to the Rhine. */
1227 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1228 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1229
1230 /* Set current media. */
1231 if ((error = ether_mediachange(ifp)) != 0)
1232 goto out;
1233
1234 /* Enable receiver and transmitter. */
1235 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1236 VR_CMD_TX_ON|VR_CMD_RX_ON|
1237 VR_CMD_RX_GO);
1238
1239 /* Enable interrupts. */
1240 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1241 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1242
1243 ifp->if_flags |= IFF_RUNNING;
1244 ifp->if_flags &= ~IFF_OACTIVE;
1245
1246 /* Start one second timer. */
1247 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1248
1249 /* Attempt to start output on the interface. */
1250 vr_start(ifp);
1251
1252 out:
1253 if (error)
1254 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1255 return (error);
1256 }
1257
1258 static int
1259 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1260 {
1261 struct vr_softc *sc = ifp->if_softc;
1262 int s, error = 0;
1263
1264 s = splnet();
1265
1266 error = ether_ioctl(ifp, command, data);
1267 if (error == ENETRESET) {
1268 /*
1269 * Multicast list has changed; set the hardware filter
1270 * accordingly.
1271 */
1272 if (ifp->if_flags & IFF_RUNNING)
1273 vr_setmulti(sc);
1274 error = 0;
1275 }
1276
1277 splx(s);
1278 return (error);
1279 }
1280
1281 static void
1282 vr_watchdog(struct ifnet *ifp)
1283 {
1284 struct vr_softc *sc = ifp->if_softc;
1285
1286 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1287 ifp->if_oerrors++;
1288
1289 (void) vr_init(ifp);
1290 }
1291
1292 /*
1293 * One second timer, used to tick MII.
1294 */
1295 static void
1296 vr_tick(void *arg)
1297 {
1298 struct vr_softc *sc = arg;
1299 int s;
1300
1301 s = splnet();
1302 mii_tick(&sc->vr_mii);
1303 splx(s);
1304
1305 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1306 }
1307
1308 /*
1309 * Drain the receive queue.
1310 */
1311 static void
1312 vr_rxdrain(struct vr_softc *sc)
1313 {
1314 struct vr_descsoft *ds;
1315 int i;
1316
1317 for (i = 0; i < VR_NRXDESC; i++) {
1318 ds = VR_DSRX(sc, i);
1319 if (ds->ds_mbuf != NULL) {
1320 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1321 m_freem(ds->ds_mbuf);
1322 ds->ds_mbuf = NULL;
1323 }
1324 }
1325 }
1326
1327 /*
1328 * Stop the adapter and free any mbufs allocated to the
1329 * transmit lists.
1330 */
1331 static void
1332 vr_stop(struct ifnet *ifp, int disable)
1333 {
1334 struct vr_softc *sc = ifp->if_softc;
1335 struct vr_descsoft *ds;
1336 int i;
1337
1338 /* Cancel one second timer. */
1339 callout_stop(&sc->vr_tick_ch);
1340
1341 /* Down the MII. */
1342 mii_down(&sc->vr_mii);
1343
1344 ifp = &sc->vr_ec.ec_if;
1345 ifp->if_timer = 0;
1346
1347 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1348 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1349 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1350 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1351 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1352
1353 /*
1354 * Release any queued transmit buffers.
1355 */
1356 for (i = 0; i < VR_NTXDESC; i++) {
1357 ds = VR_DSTX(sc, i);
1358 if (ds->ds_mbuf != NULL) {
1359 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1360 m_freem(ds->ds_mbuf);
1361 ds->ds_mbuf = NULL;
1362 }
1363 }
1364
1365 /*
1366 * Mark the interface down and cancel the watchdog timer.
1367 */
1368 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1369 ifp->if_timer = 0;
1370
1371 if (disable)
1372 vr_rxdrain(sc);
1373 }
1374
1375 static int vr_probe(device_t, cfdata_t, void *);
1376 static void vr_attach(device_t, device_t, void *);
1377 static bool vr_shutdown(device_t, int);
1378
1379 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1380 vr_probe, vr_attach, NULL, NULL);
1381
1382 static const struct vr_type *
1383 vr_lookup(struct pci_attach_args *pa)
1384 {
1385 const struct vr_type *vrt;
1386 int i;
1387
1388 for (i = 0; i < __arraycount(vr_devs); i++) {
1389 vrt = &vr_devs[i];
1390 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1391 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1392 return (vrt);
1393 }
1394 return (NULL);
1395 }
1396
1397 static int
1398 vr_probe(device_t parent, cfdata_t match, void *aux)
1399 {
1400 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1401
1402 if (vr_lookup(pa) != NULL)
1403 return (1);
1404
1405 return (0);
1406 }
1407
1408 /*
1409 * Stop all chip I/O so that the kernel's probe routines don't
1410 * get confused by errant DMAs when rebooting.
1411 */
1412 static bool
1413 vr_shutdown(device_t self, int howto)
1414 {
1415 struct vr_softc *sc = device_private(self);
1416
1417 vr_stop(&sc->vr_ec.ec_if, 1);
1418
1419 return true;
1420 }
1421
1422 /*
1423 * Attach the interface. Allocate softc structures, do ifmedia
1424 * setup and ethernet/BPF attach.
1425 */
1426 static void
1427 vr_attach(device_t parent, device_t self, void *aux)
1428 {
1429 struct vr_softc *sc = device_private(self);
1430 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1431 bus_dma_segment_t seg;
1432 uint32_t reg;
1433 struct ifnet *ifp;
1434 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1435 int i, rseg, error;
1436
1437 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1438 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1439
1440 sc->vr_dev = self;
1441 sc->vr_pc = pa->pa_pc;
1442 sc->vr_tag = pa->pa_tag;
1443 sc->vr_id = pa->pa_id;
1444 callout_init(&sc->vr_tick_ch, 0);
1445
1446 pci_aprint_devinfo(pa, NULL);
1447
1448 /*
1449 * Handle power management nonsense.
1450 */
1451
1452 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1453 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1454 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1455
1456 /* power up chip */
1457 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1458 vr_restore_state)) && error != EOPNOTSUPP) {
1459 aprint_error_dev(self, "cannot activate %d\n",
1460 error);
1461 return;
1462 }
1463
1464 /* Make sure bus mastering is enabled. */
1465 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1466 reg |= PCI_COMMAND_MASTER_ENABLE;
1467 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1468
1469 /* Get revision */
1470 sc->vr_revid = PCI_REVISION(pa->pa_class);
1471
1472 /*
1473 * Map control/status registers.
1474 */
1475 {
1476 bus_space_tag_t iot, memt;
1477 bus_space_handle_t ioh, memh;
1478 int ioh_valid, memh_valid;
1479 pci_intr_handle_t intrhandle;
1480 const char *intrstr;
1481
1482 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1483 PCI_MAPREG_TYPE_IO, 0,
1484 &iot, &ioh, NULL, NULL) == 0);
1485 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1486 PCI_MAPREG_TYPE_MEM |
1487 PCI_MAPREG_MEM_TYPE_32BIT,
1488 0, &memt, &memh, NULL, NULL) == 0);
1489 #if defined(VR_USEIOSPACE)
1490 if (ioh_valid) {
1491 sc->vr_bst = iot;
1492 sc->vr_bsh = ioh;
1493 } else if (memh_valid) {
1494 sc->vr_bst = memt;
1495 sc->vr_bsh = memh;
1496 }
1497 #else
1498 if (memh_valid) {
1499 sc->vr_bst = memt;
1500 sc->vr_bsh = memh;
1501 } else if (ioh_valid) {
1502 sc->vr_bst = iot;
1503 sc->vr_bsh = ioh;
1504 }
1505 #endif
1506 else {
1507 printf(": unable to map device registers\n");
1508 return;
1509 }
1510
1511 /* Allocate interrupt */
1512 if (pci_intr_map(pa, &intrhandle)) {
1513 aprint_error_dev(self, "couldn't map interrupt\n");
1514 return;
1515 }
1516 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1517 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1518 vr_intr, sc);
1519 if (sc->vr_ih == NULL) {
1520 aprint_error_dev(self, "couldn't establish interrupt");
1521 if (intrstr != NULL)
1522 aprint_error(" at %s", intrstr);
1523 aprint_error("\n");
1524 }
1525 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1526 }
1527
1528 /*
1529 * Windows may put the chip in suspend mode when it
1530 * shuts down. Be sure to kick it in the head to wake it
1531 * up again.
1532 *
1533 * Don't touch this register on VT3043 since it causes
1534 * kernel MCHK trap on macppc.
1535 * (Note some VT86C100A chip returns a product ID of VT3043)
1536 */
1537 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1538 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1539
1540 /* Reset the adapter. */
1541 vr_reset(sc);
1542
1543 /*
1544 * Get station address. The way the Rhine chips work,
1545 * you're not allowed to directly access the EEPROM once
1546 * they've been programmed a special way. Consequently,
1547 * we need to read the node address from the PAR0 and PAR1
1548 * registers.
1549 *
1550 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1551 * of the *whole* EEPROM, not just the MAC address. This is
1552 * pretty pointless since the chip does this automatically
1553 * at powerup/reset.
1554 * I suspect the same thing applies to the other Rhine
1555 * variants, but in the absence of a data sheet for those
1556 * (and the lack of anyone else noticing the problems this
1557 * causes) I'm going to retain the old behaviour for the
1558 * other parts.
1559 * In some cases, the chip really does startup without having
1560 * read the EEPROM (kern/34812). To handle this case, we force
1561 * a reload if we see an all-zeroes MAC address.
1562 */
1563 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1564 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1565
1566 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1567 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1568 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1569 DELAY(200);
1570 for (i = 0; i < ETHER_ADDR_LEN; i++)
1571 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1572 }
1573
1574 /*
1575 * A Rhine chip was detected. Inform the world.
1576 */
1577 aprint_normal("%s: Ethernet address: %s\n",
1578 device_xname(self), ether_sprintf(eaddr));
1579
1580 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1581
1582 sc->vr_dmat = pa->pa_dmat;
1583
1584 /*
1585 * Allocate the control data structures, and create and load
1586 * the DMA map for it.
1587 */
1588 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1589 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1590 0)) != 0) {
1591 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1592 goto fail_0;
1593 }
1594
1595 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1596 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1597 BUS_DMA_COHERENT)) != 0) {
1598 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1599 goto fail_1;
1600 }
1601
1602 if ((error = bus_dmamap_create(sc->vr_dmat,
1603 sizeof(struct vr_control_data), 1,
1604 sizeof(struct vr_control_data), 0, 0,
1605 &sc->vr_cddmamap)) != 0) {
1606 aprint_error_dev(self, "unable to create control data DMA map, "
1607 "error = %d\n", error);
1608 goto fail_2;
1609 }
1610
1611 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1612 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1613 0)) != 0) {
1614 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1615 error);
1616 goto fail_3;
1617 }
1618
1619 /*
1620 * Create the transmit buffer DMA maps.
1621 */
1622 for (i = 0; i < VR_NTXDESC; i++) {
1623 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1624 1, MCLBYTES, 0, 0,
1625 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1626 aprint_error_dev(self, "unable to create tx DMA map %d, "
1627 "error = %d\n", i, error);
1628 goto fail_4;
1629 }
1630 }
1631
1632 /*
1633 * Create the receive buffer DMA maps.
1634 */
1635 for (i = 0; i < VR_NRXDESC; i++) {
1636 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1637 MCLBYTES, 0, 0,
1638 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1639 aprint_error_dev(self, "unable to create rx DMA map %d, "
1640 "error = %d\n", i, error);
1641 goto fail_5;
1642 }
1643 VR_DSRX(sc, i)->ds_mbuf = NULL;
1644 }
1645
1646 ifp = &sc->vr_ec.ec_if;
1647 ifp->if_softc = sc;
1648 ifp->if_mtu = ETHERMTU;
1649 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1650 ifp->if_ioctl = vr_ioctl;
1651 ifp->if_start = vr_start;
1652 ifp->if_watchdog = vr_watchdog;
1653 ifp->if_init = vr_init;
1654 ifp->if_stop = vr_stop;
1655 IFQ_SET_READY(&ifp->if_snd);
1656
1657 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1658
1659 /*
1660 * Initialize MII/media info.
1661 */
1662 sc->vr_mii.mii_ifp = ifp;
1663 sc->vr_mii.mii_readreg = vr_mii_readreg;
1664 sc->vr_mii.mii_writereg = vr_mii_writereg;
1665 sc->vr_mii.mii_statchg = vr_mii_statchg;
1666
1667 sc->vr_ec.ec_mii = &sc->vr_mii;
1668 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1669 ether_mediastatus);
1670 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1671 MII_OFFSET_ANY, MIIF_FORCEANEG);
1672 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1673 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1674 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1675 } else
1676 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1677
1678 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1679
1680 /*
1681 * Call MI attach routines.
1682 */
1683 if_attach(ifp);
1684 ether_ifattach(ifp, sc->vr_enaddr);
1685
1686 rnd_attach_source(&sc->rnd_source, device_xname(self),
1687 RND_TYPE_NET, 0);
1688
1689 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1690 pmf_class_network_register(self, ifp);
1691 else
1692 aprint_error_dev(self, "couldn't establish power handler\n");
1693
1694 return;
1695
1696 fail_5:
1697 for (i = 0; i < VR_NRXDESC; i++) {
1698 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1699 bus_dmamap_destroy(sc->vr_dmat,
1700 sc->vr_rxsoft[i].ds_dmamap);
1701 }
1702 fail_4:
1703 for (i = 0; i < VR_NTXDESC; i++) {
1704 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1705 bus_dmamap_destroy(sc->vr_dmat,
1706 sc->vr_txsoft[i].ds_dmamap);
1707 }
1708 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1709 fail_3:
1710 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1711 fail_2:
1712 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1713 sizeof(struct vr_control_data));
1714 fail_1:
1715 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1716 fail_0:
1717 return;
1718 }
1719
1720 static int
1721 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1722 pcireg_t state)
1723 {
1724 struct vr_softc *sc = device_private(self);
1725 int error;
1726
1727 if (state == PCI_PMCSR_STATE_D0)
1728 return 0;
1729 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1730 return error;
1731
1732 /* Restore PCI config data. */
1733 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1734 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1735 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1736 return 0;
1737 }
1738
1739 static bool
1740 vr_resume(device_t self, const pmf_qual_t *qual)
1741 {
1742 struct vr_softc *sc = device_private(self);
1743
1744 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1745 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1746
1747 return true;
1748 }
1749