if_vr.c revision 1.114.4.2 1 /* $NetBSD: if_vr.c,v 1.114.4.2 2016/03/19 11:30:10 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.114.4.2 2016/03/19 11:30:10 skrll Exp $");
101
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/callout.h>
106 #include <sys/sockio.h>
107 #include <sys/mbuf.h>
108 #include <sys/malloc.h>
109 #include <sys/kernel.h>
110 #include <sys/socket.h>
111 #include <sys/device.h>
112
113 #include <sys/rndsource.h>
114
115 #include <net/if.h>
116 #include <net/if_arp.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_ether.h>
120
121 #include <net/bpf.h>
122
123 #include <sys/bus.h>
124 #include <sys/intr.h>
125 #include <machine/endian.h>
126
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/mii_bitbang.h>
130
131 #include <dev/pci/pcireg.h>
132 #include <dev/pci/pcivar.h>
133 #include <dev/pci/pcidevs.h>
134
135 #include <dev/pci/if_vrreg.h>
136
137 #define VR_USEIOSPACE
138
139 /*
140 * Various supported device vendors/types and their names.
141 */
142 static const struct vr_type {
143 pci_vendor_id_t vr_vid;
144 pci_product_id_t vr_did;
145 } vr_devs[] = {
146 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
147 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
148 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
151 };
152
153 /*
154 * Transmit descriptor list size.
155 */
156 #define VR_NTXDESC 64
157 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
158 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
159
160 /*
161 * Receive descriptor list size.
162 */
163 #define VR_NRXDESC 64
164 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
165 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
166
167 /*
168 * Control data structres that are DMA'd to the Rhine chip. We allocate
169 * them in a single clump that maps to a single DMA segment to make several
170 * things easier.
171 *
172 * Note that since we always copy outgoing packets to aligned transmit
173 * buffers, we can reduce the transmit descriptors to one per packet.
174 */
175 struct vr_control_data {
176 struct vr_desc vr_txdescs[VR_NTXDESC];
177 struct vr_desc vr_rxdescs[VR_NRXDESC];
178 };
179
180 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
181 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
182 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
183
184 /*
185 * Software state of transmit and receive descriptors.
186 */
187 struct vr_descsoft {
188 struct mbuf *ds_mbuf; /* head of mbuf chain */
189 bus_dmamap_t ds_dmamap; /* our DMA map */
190 };
191
192 struct vr_softc {
193 device_t vr_dev;
194 void *vr_ih; /* interrupt cookie */
195 bus_space_tag_t vr_bst; /* bus space tag */
196 bus_space_handle_t vr_bsh; /* bus space handle */
197 bus_dma_tag_t vr_dmat; /* bus DMA tag */
198 pci_chipset_tag_t vr_pc; /* PCI chipset info */
199 pcitag_t vr_tag; /* PCI tag */
200 struct ethercom vr_ec; /* Ethernet common info */
201 uint8_t vr_enaddr[ETHER_ADDR_LEN];
202 struct mii_data vr_mii; /* MII/media info */
203
204 pcireg_t vr_id; /* vendor/product ID */
205 uint8_t vr_revid; /* Rhine chip revision */
206
207 callout_t vr_tick_ch; /* tick callout */
208
209 bus_dmamap_t vr_cddmamap; /* control data DMA map */
210 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
211
212 /*
213 * Software state for transmit and receive descriptors.
214 */
215 struct vr_descsoft vr_txsoft[VR_NTXDESC];
216 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
217
218 /*
219 * Control data structures.
220 */
221 struct vr_control_data *vr_control_data;
222
223 int vr_txpending; /* number of TX requests pending */
224 int vr_txdirty; /* first dirty TX descriptor */
225 int vr_txlast; /* last used TX descriptor */
226
227 int vr_rxptr; /* next ready RX descriptor */
228
229 uint32_t vr_save_iobase;
230 uint32_t vr_save_membase;
231 uint32_t vr_save_irq;
232
233 bool vr_link;
234 int vr_flags;
235 #define VR_F_RESTART 0x1 /* restart on next tick */
236 int vr_if_flags;
237
238 krndsource_t rnd_source; /* random source */
239 };
240
241 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
242 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
243
244 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
245 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
246
247 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
248 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
249
250 #define VR_CDTXSYNC(sc, x, ops) \
251 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
252 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
253
254 #define VR_CDRXSYNC(sc, x, ops) \
255 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
257
258 /*
259 * Note we rely on MCLBYTES being a power of two below.
260 */
261 #define VR_INIT_RXDESC(sc, i) \
262 do { \
263 struct vr_desc *__d = VR_CDRX((sc), (i)); \
264 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
265 \
266 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
267 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
268 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
269 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
270 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
271 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
272 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (/* CONSTCOND */ 0)
274
275 /*
276 * register space access macros
277 */
278 #define CSR_WRITE_4(sc, reg, val) \
279 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define CSR_WRITE_2(sc, reg, val) \
281 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_1(sc, reg, val) \
283 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
284
285 #define CSR_READ_4(sc, reg) \
286 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
287 #define CSR_READ_2(sc, reg) \
288 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_1(sc, reg) \
290 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
291
292 #define VR_TIMEOUT 1000
293
294 static int vr_add_rxbuf(struct vr_softc *, int);
295
296 static void vr_rxeof(struct vr_softc *);
297 static void vr_rxeoc(struct vr_softc *);
298 static void vr_txeof(struct vr_softc *);
299 static int vr_intr(void *);
300 static void vr_start(struct ifnet *);
301 static int vr_ioctl(struct ifnet *, u_long, void *);
302 static int vr_init(struct ifnet *);
303 static void vr_stop(struct ifnet *, int);
304 static void vr_rxdrain(struct vr_softc *);
305 static void vr_watchdog(struct ifnet *);
306 static void vr_tick(void *);
307
308 static int vr_mii_readreg(device_t, int, int);
309 static void vr_mii_writereg(device_t, int, int, int);
310 static void vr_mii_statchg(struct ifnet *);
311
312 static void vr_setmulti(struct vr_softc *);
313 static void vr_reset(struct vr_softc *);
314 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
315 pcireg_t);
316 static bool vr_resume(device_t, const pmf_qual_t *);
317
318 int vr_copy_small = 0;
319
320 #define VR_SETBIT(sc, reg, x) \
321 CSR_WRITE_1(sc, reg, \
322 CSR_READ_1(sc, reg) | (x))
323
324 #define VR_CLRBIT(sc, reg, x) \
325 CSR_WRITE_1(sc, reg, \
326 CSR_READ_1(sc, reg) & ~(x))
327
328 #define VR_SETBIT16(sc, reg, x) \
329 CSR_WRITE_2(sc, reg, \
330 CSR_READ_2(sc, reg) | (x))
331
332 #define VR_CLRBIT16(sc, reg, x) \
333 CSR_WRITE_2(sc, reg, \
334 CSR_READ_2(sc, reg) & ~(x))
335
336 #define VR_SETBIT32(sc, reg, x) \
337 CSR_WRITE_4(sc, reg, \
338 CSR_READ_4(sc, reg) | (x))
339
340 #define VR_CLRBIT32(sc, reg, x) \
341 CSR_WRITE_4(sc, reg, \
342 CSR_READ_4(sc, reg) & ~(x))
343
344 /*
345 * MII bit-bang glue.
346 */
347 static uint32_t vr_mii_bitbang_read(device_t);
348 static void vr_mii_bitbang_write(device_t, uint32_t);
349
350 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
351 vr_mii_bitbang_read,
352 vr_mii_bitbang_write,
353 {
354 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
355 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
356 VR_MIICMD_CLK, /* MII_BIT_MDC */
357 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
358 0, /* MII_BIT_DIR_PHY_HOST */
359 }
360 };
361
362 static uint32_t
363 vr_mii_bitbang_read(device_t self)
364 {
365 struct vr_softc *sc = device_private(self);
366
367 return (CSR_READ_1(sc, VR_MIICMD));
368 }
369
370 static void
371 vr_mii_bitbang_write(device_t self, uint32_t val)
372 {
373 struct vr_softc *sc = device_private(self);
374
375 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
376 }
377
378 /*
379 * Read an PHY register through the MII.
380 */
381 static int
382 vr_mii_readreg(device_t self, int phy, int reg)
383 {
384 struct vr_softc *sc = device_private(self);
385
386 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
387 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
388 }
389
390 /*
391 * Write to a PHY register through the MII.
392 */
393 static void
394 vr_mii_writereg(device_t self, int phy, int reg, int val)
395 {
396 struct vr_softc *sc = device_private(self);
397
398 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
400 }
401
402 static void
403 vr_mii_statchg(struct ifnet *ifp)
404 {
405 struct vr_softc *sc = ifp->if_softc;
406 int i;
407
408 /*
409 * In order to fiddle with the 'full-duplex' bit in the netconfig
410 * register, we first have to put the transmit and/or receive logic
411 * in the idle state.
412 */
413 if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
414 IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
415 sc->vr_link = true;
416
417 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
418 VR_CLRBIT16(sc, VR_COMMAND,
419 (VR_CMD_TX_ON|VR_CMD_RX_ON));
420
421 if (sc->vr_mii.mii_media_active & IFM_FDX)
422 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
423 else
424 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
425
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
427 } else {
428 sc->vr_link = false;
429 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
430 for (i = VR_TIMEOUT; i > 0; i--) {
431 delay(10);
432 if (!(CSR_READ_2(sc, VR_COMMAND) &
433 (VR_CMD_TX_ON|VR_CMD_RX_ON)))
434 break;
435 }
436 if (i == 0) {
437 #ifdef VR_DEBUG
438 printf("%s: rx shutdown error!\n",
439 device_xname(sc->vr_dev));
440 #endif
441 sc->vr_flags |= VR_F_RESTART;
442 }
443 }
444 }
445
446 #define vr_calchash(addr) \
447 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
448
449 /*
450 * Program the 64-bit multicast hash filter.
451 */
452 static void
453 vr_setmulti(struct vr_softc *sc)
454 {
455 struct ifnet *ifp;
456 int h = 0;
457 uint32_t hashes[2] = { 0, 0 };
458 struct ether_multistep step;
459 struct ether_multi *enm;
460 int mcnt = 0;
461 uint8_t rxfilt;
462
463 ifp = &sc->vr_ec.ec_if;
464
465 rxfilt = CSR_READ_1(sc, VR_RXCFG);
466
467 if (ifp->if_flags & IFF_PROMISC) {
468 allmulti:
469 ifp->if_flags |= IFF_ALLMULTI;
470 rxfilt |= VR_RXCFG_RX_MULTI;
471 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
472 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
473 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
474 return;
475 }
476
477 /* first, zot all the existing hash bits */
478 CSR_WRITE_4(sc, VR_MAR0, 0);
479 CSR_WRITE_4(sc, VR_MAR1, 0);
480
481 /* now program new ones */
482 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
483 while (enm != NULL) {
484 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
485 ETHER_ADDR_LEN) != 0)
486 goto allmulti;
487
488 h = vr_calchash(enm->enm_addrlo);
489
490 if (h < 32)
491 hashes[0] |= (1 << h);
492 else
493 hashes[1] |= (1 << (h - 32));
494 ETHER_NEXT_MULTI(step, enm);
495 mcnt++;
496 }
497
498 ifp->if_flags &= ~IFF_ALLMULTI;
499
500 if (mcnt)
501 rxfilt |= VR_RXCFG_RX_MULTI;
502 else
503 rxfilt &= ~VR_RXCFG_RX_MULTI;
504
505 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
506 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
507 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
508 }
509
510 static void
511 vr_reset(struct vr_softc *sc)
512 {
513 int i;
514
515 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
516
517 for (i = 0; i < VR_TIMEOUT; i++) {
518 DELAY(10);
519 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
520 break;
521 }
522 if (i == VR_TIMEOUT) {
523 if (sc->vr_revid < REV_ID_VT3065_A) {
524 printf("%s: reset never completed!\n",
525 device_xname(sc->vr_dev));
526 } else {
527 /* Use newer force reset command */
528 printf("%s: using force reset command.\n",
529 device_xname(sc->vr_dev));
530 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
531 }
532 }
533
534 /* Wait a little while for the chip to get its brains in order. */
535 DELAY(1000);
536 }
537
538 /*
539 * Initialize an RX descriptor and attach an MBUF cluster.
540 * Note: the length fields are only 11 bits wide, which means the
541 * largest size we can specify is 2047. This is important because
542 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
543 * overflow the field and make a mess.
544 */
545 static int
546 vr_add_rxbuf(struct vr_softc *sc, int i)
547 {
548 struct vr_descsoft *ds = VR_DSRX(sc, i);
549 struct mbuf *m_new;
550 int error;
551
552 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
553 if (m_new == NULL)
554 return (ENOBUFS);
555
556 MCLGET(m_new, M_DONTWAIT);
557 if ((m_new->m_flags & M_EXT) == 0) {
558 m_freem(m_new);
559 return (ENOBUFS);
560 }
561
562 if (ds->ds_mbuf != NULL)
563 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
564
565 ds->ds_mbuf = m_new;
566
567 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
568 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
569 BUS_DMA_READ|BUS_DMA_NOWAIT);
570 if (error) {
571 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
572 i, error);
573 panic("vr_add_rxbuf"); /* XXX */
574 }
575
576 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
577 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
578
579 VR_INIT_RXDESC(sc, i);
580
581 return (0);
582 }
583
584 /*
585 * A frame has been uploaded: pass the resulting mbuf chain up to
586 * the higher level protocols.
587 */
588 static void
589 vr_rxeof(struct vr_softc *sc)
590 {
591 struct mbuf *m;
592 struct ifnet *ifp;
593 struct vr_desc *d;
594 struct vr_descsoft *ds;
595 int i, total_len;
596 uint32_t rxstat;
597
598 ifp = &sc->vr_ec.ec_if;
599
600 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
601 d = VR_CDRX(sc, i);
602 ds = VR_DSRX(sc, i);
603
604 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
605
606 rxstat = le32toh(d->vr_status);
607
608 if (rxstat & VR_RXSTAT_OWN) {
609 /*
610 * We have processed all of the receive buffers.
611 */
612 break;
613 }
614
615 /*
616 * If an error occurs, update stats, clear the
617 * status word and leave the mbuf cluster in place:
618 * it should simply get re-used next time this descriptor
619 * comes up in the ring.
620 */
621 if (rxstat & VR_RXSTAT_RXERR) {
622 const char *errstr;
623
624 ifp->if_ierrors++;
625 switch (rxstat & 0x000000FF) {
626 case VR_RXSTAT_CRCERR:
627 errstr = "crc error";
628 break;
629 case VR_RXSTAT_FRAMEALIGNERR:
630 errstr = "frame alignment error";
631 break;
632 case VR_RXSTAT_FIFOOFLOW:
633 errstr = "FIFO overflow";
634 break;
635 case VR_RXSTAT_GIANT:
636 errstr = "received giant packet";
637 break;
638 case VR_RXSTAT_RUNT:
639 errstr = "received runt packet";
640 break;
641 case VR_RXSTAT_BUSERR:
642 errstr = "system bus error";
643 break;
644 case VR_RXSTAT_BUFFERR:
645 errstr = "rx buffer error";
646 break;
647 default:
648 errstr = "unknown rx error";
649 break;
650 }
651 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
652 errstr);
653
654 VR_INIT_RXDESC(sc, i);
655
656 continue;
657 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
658 !(rxstat & VR_RXSTAT_LASTFRAG)) {
659 /*
660 * This driver expects to receive whole packets every
661 * time. In case we receive a fragment that is not
662 * a complete packet, we discard it.
663 */
664 ifp->if_ierrors++;
665
666 printf("%s: receive error: incomplete frame; "
667 "size = %d, status = 0x%x\n",
668 device_xname(sc->vr_dev),
669 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
670
671 VR_INIT_RXDESC(sc, i);
672
673 continue;
674 }
675
676 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
677 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
678
679 /* No errors; receive the packet. */
680 total_len = VR_RXBYTES(le32toh(d->vr_status));
681 #ifdef DIAGNOSTIC
682 if (total_len == 0) {
683 /*
684 * If we receive a zero-length packet, we probably
685 * missed to handle an error condition above.
686 * Discard it to avoid a later crash.
687 */
688 ifp->if_ierrors++;
689
690 printf("%s: receive error: zero-length packet; "
691 "status = 0x%x\n",
692 device_xname(sc->vr_dev), rxstat);
693
694 VR_INIT_RXDESC(sc, i);
695
696 continue;
697 }
698 #endif
699
700 /*
701 * The Rhine chip includes the CRC with every packet.
702 * Trim it off here.
703 */
704 total_len -= ETHER_CRC_LEN;
705
706 #ifdef __NO_STRICT_ALIGNMENT
707 /*
708 * If the packet is small enough to fit in a
709 * single header mbuf, allocate one and copy
710 * the data into it. This greatly reduces
711 * memory consumption when we receive lots
712 * of small packets.
713 *
714 * Otherwise, we add a new buffer to the receive
715 * chain. If this fails, we drop the packet and
716 * recycle the old buffer.
717 */
718 if (vr_copy_small != 0 && total_len <= MHLEN) {
719 MGETHDR(m, M_DONTWAIT, MT_DATA);
720 if (m == NULL)
721 goto dropit;
722 memcpy(mtod(m, void *),
723 mtod(ds->ds_mbuf, void *), total_len);
724 VR_INIT_RXDESC(sc, i);
725 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
726 ds->ds_dmamap->dm_mapsize,
727 BUS_DMASYNC_PREREAD);
728 } else {
729 m = ds->ds_mbuf;
730 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
731 dropit:
732 ifp->if_ierrors++;
733 VR_INIT_RXDESC(sc, i);
734 bus_dmamap_sync(sc->vr_dmat,
735 ds->ds_dmamap, 0,
736 ds->ds_dmamap->dm_mapsize,
737 BUS_DMASYNC_PREREAD);
738 continue;
739 }
740 }
741 #else
742 /*
743 * The Rhine's packet buffers must be 4-byte aligned.
744 * But this means that the data after the Ethernet header
745 * is misaligned. We must allocate a new buffer and
746 * copy the data, shifted forward 2 bytes.
747 */
748 MGETHDR(m, M_DONTWAIT, MT_DATA);
749 if (m == NULL) {
750 dropit:
751 ifp->if_ierrors++;
752 VR_INIT_RXDESC(sc, i);
753 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
754 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
755 continue;
756 }
757 if (total_len > (MHLEN - 2)) {
758 MCLGET(m, M_DONTWAIT);
759 if ((m->m_flags & M_EXT) == 0) {
760 m_freem(m);
761 goto dropit;
762 }
763 }
764 m->m_data += 2;
765
766 /*
767 * Note that we use clusters for incoming frames, so the
768 * buffer is virtually contiguous.
769 */
770 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
771 total_len);
772
773 /* Allow the receive descriptor to continue using its mbuf. */
774 VR_INIT_RXDESC(sc, i);
775 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
776 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
777 #endif /* __NO_STRICT_ALIGNMENT */
778
779 ifp->if_ipackets++;
780 m->m_pkthdr.rcvif = ifp;
781 m->m_pkthdr.len = m->m_len = total_len;
782 /*
783 * Handle BPF listeners. Let the BPF user see the packet, but
784 * don't pass it up to the ether_input() layer unless it's
785 * a broadcast packet, multicast packet, matches our ethernet
786 * address or the interface is in promiscuous mode.
787 */
788 bpf_mtap(ifp, m);
789 /* Pass it on. */
790 if_percpuq_enqueue(ifp->if_percpuq, m);
791 }
792
793 /* Update the receive pointer. */
794 sc->vr_rxptr = i;
795 }
796
797 void
798 vr_rxeoc(struct vr_softc *sc)
799 {
800 struct ifnet *ifp;
801 int i;
802
803 ifp = &sc->vr_ec.ec_if;
804
805 ifp->if_ierrors++;
806
807 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
808 for (i = 0; i < VR_TIMEOUT; i++) {
809 DELAY(10);
810 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
811 break;
812 }
813 if (i == VR_TIMEOUT) {
814 /* XXX need reset? */
815 printf("%s: RX shutdown never complete\n",
816 device_xname(sc->vr_dev));
817 }
818
819 vr_rxeof(sc);
820
821 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
822 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
823 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
824 }
825
826 /*
827 * A frame was downloaded to the chip. It's safe for us to clean up
828 * the list buffers.
829 */
830 static void
831 vr_txeof(struct vr_softc *sc)
832 {
833 struct ifnet *ifp = &sc->vr_ec.ec_if;
834 struct vr_desc *d;
835 struct vr_descsoft *ds;
836 uint32_t txstat;
837 int i, j;
838
839 ifp->if_flags &= ~IFF_OACTIVE;
840
841 /*
842 * Go through our tx list and free mbufs for those
843 * frames that have been transmitted.
844 */
845 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
846 i = VR_NEXTTX(i), sc->vr_txpending--) {
847 d = VR_CDTX(sc, i);
848 ds = VR_DSTX(sc, i);
849
850 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
851
852 txstat = le32toh(d->vr_status);
853
854 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
855 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
856 for (j = 0; j < VR_TIMEOUT; j++) {
857 DELAY(10);
858 if ((CSR_READ_2(sc, VR_COMMAND) &
859 VR_CMD_TX_ON) == 0)
860 break;
861 }
862 if (j == VR_TIMEOUT) {
863 /* XXX need reset? */
864 printf("%s: TX shutdown never complete\n",
865 device_xname(sc->vr_dev));
866 }
867 d->vr_status = htole32(VR_TXSTAT_OWN);
868 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
869 break;
870 }
871
872 if (txstat & VR_TXSTAT_OWN)
873 break;
874
875 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
876 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
877 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
878 m_freem(ds->ds_mbuf);
879 ds->ds_mbuf = NULL;
880
881 if (txstat & VR_TXSTAT_ERRSUM) {
882 ifp->if_oerrors++;
883 if (txstat & VR_TXSTAT_DEFER)
884 ifp->if_collisions++;
885 if (txstat & VR_TXSTAT_LATECOLL)
886 ifp->if_collisions++;
887 }
888
889 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
890 ifp->if_opackets++;
891 }
892
893 /* Update the dirty transmit buffer pointer. */
894 sc->vr_txdirty = i;
895
896 /*
897 * Cancel the watchdog timer if there are no pending
898 * transmissions.
899 */
900 if (sc->vr_txpending == 0)
901 ifp->if_timer = 0;
902 }
903
904 static int
905 vr_intr(void *arg)
906 {
907 struct vr_softc *sc;
908 struct ifnet *ifp;
909 uint16_t status;
910 int handled = 0, dotx = 0;
911
912 sc = arg;
913 ifp = &sc->vr_ec.ec_if;
914
915 /* Suppress unwanted interrupts. */
916 if ((ifp->if_flags & IFF_UP) == 0) {
917 vr_stop(ifp, 1);
918 return (0);
919 }
920
921 /* Disable interrupts. */
922 CSR_WRITE_2(sc, VR_IMR, 0x0000);
923
924 for (;;) {
925 status = CSR_READ_2(sc, VR_ISR);
926 if (status)
927 CSR_WRITE_2(sc, VR_ISR, status);
928
929 if ((status & VR_INTRS) == 0)
930 break;
931
932 handled = 1;
933
934 rnd_add_uint32(&sc->rnd_source, status);
935
936 if (status & VR_ISR_RX_OK)
937 vr_rxeof(sc);
938
939 if (status & VR_ISR_RX_DROPPED) {
940 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
941 ifp->if_ierrors++;
942 }
943
944 if (status &
945 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
946 vr_rxeoc(sc);
947
948
949 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
950 if (status & VR_ISR_BUSERR)
951 printf("%s: PCI bus error\n",
952 device_xname(sc->vr_dev));
953 if (status & VR_ISR_TX_UNDERRUN)
954 printf("%s: transmit underrun\n",
955 device_xname(sc->vr_dev));
956 /* vr_init() calls vr_start() */
957 dotx = 0;
958 (void)vr_init(ifp);
959
960 }
961
962 if (status & VR_ISR_TX_OK) {
963 dotx = 1;
964 vr_txeof(sc);
965 }
966
967 if (status &
968 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
969 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
970 printf("%s: transmit aborted\n",
971 device_xname(sc->vr_dev));
972 if (status & VR_ISR_TX_UDFI)
973 printf("%s: transmit underflow\n",
974 device_xname(sc->vr_dev));
975 ifp->if_oerrors++;
976 dotx = 1;
977 vr_txeof(sc);
978 if (sc->vr_txpending) {
979 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
980 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
981 }
982 }
983 }
984
985 /* Re-enable interrupts. */
986 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
987
988 if (dotx)
989 vr_start(ifp);
990
991 return (handled);
992 }
993
994 /*
995 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
996 * to the mbuf data regions directly in the transmit lists. We also save a
997 * copy of the pointers since the transmit list fragment pointers are
998 * physical addresses.
999 */
1000 static void
1001 vr_start(struct ifnet *ifp)
1002 {
1003 struct vr_softc *sc = ifp->if_softc;
1004 struct mbuf *m0, *m;
1005 struct vr_desc *d;
1006 struct vr_descsoft *ds;
1007 int error, firsttx, nexttx, opending;
1008
1009 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1010 return;
1011 if (sc->vr_link == false)
1012 return;
1013
1014 /*
1015 * Remember the previous txpending and the first transmit
1016 * descriptor we use.
1017 */
1018 opending = sc->vr_txpending;
1019 firsttx = VR_NEXTTX(sc->vr_txlast);
1020
1021 /*
1022 * Loop through the send queue, setting up transmit descriptors
1023 * until we drain the queue, or use up all available transmit
1024 * descriptors.
1025 */
1026 while (sc->vr_txpending < VR_NTXDESC) {
1027 /*
1028 * Grab a packet off the queue.
1029 */
1030 IFQ_POLL(&ifp->if_snd, m0);
1031 if (m0 == NULL)
1032 break;
1033 m = NULL;
1034
1035 /*
1036 * Get the next available transmit descriptor.
1037 */
1038 nexttx = VR_NEXTTX(sc->vr_txlast);
1039 d = VR_CDTX(sc, nexttx);
1040 ds = VR_DSTX(sc, nexttx);
1041
1042 /*
1043 * Load the DMA map. If this fails, the packet didn't
1044 * fit in one DMA segment, and we need to copy. Note,
1045 * the packet must also be aligned.
1046 * if the packet is too small, copy it too, so we're sure
1047 * we have enough room for the pad buffer.
1048 */
1049 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1050 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1051 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1052 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1053 MGETHDR(m, M_DONTWAIT, MT_DATA);
1054 if (m == NULL) {
1055 printf("%s: unable to allocate Tx mbuf\n",
1056 device_xname(sc->vr_dev));
1057 break;
1058 }
1059 if (m0->m_pkthdr.len > MHLEN) {
1060 MCLGET(m, M_DONTWAIT);
1061 if ((m->m_flags & M_EXT) == 0) {
1062 printf("%s: unable to allocate Tx "
1063 "cluster\n", device_xname(sc->vr_dev));
1064 m_freem(m);
1065 break;
1066 }
1067 }
1068 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1069 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1070 /*
1071 * The Rhine doesn't auto-pad, so we have to do this
1072 * ourselves.
1073 */
1074 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1075 memset(mtod(m, char *) + m0->m_pkthdr.len,
1076 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1077 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1078 }
1079 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1080 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1081 if (error) {
1082 m_freem(m);
1083 printf("%s: unable to load Tx buffer, "
1084 "error = %d\n", device_xname(sc->vr_dev), error);
1085 break;
1086 }
1087 }
1088
1089 IFQ_DEQUEUE(&ifp->if_snd, m0);
1090 if (m != NULL) {
1091 m_freem(m0);
1092 m0 = m;
1093 }
1094
1095 /* Sync the DMA map. */
1096 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1097 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1098
1099 /*
1100 * Store a pointer to the packet so we can free it later.
1101 */
1102 ds->ds_mbuf = m0;
1103
1104 /*
1105 * If there's a BPF listener, bounce a copy of this frame
1106 * to him.
1107 */
1108 bpf_mtap(ifp, m0);
1109
1110 /*
1111 * Fill in the transmit descriptor.
1112 */
1113 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1114 d->vr_ctl = htole32(m0->m_pkthdr.len);
1115 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1116
1117 /*
1118 * If this is the first descriptor we're enqueuing,
1119 * don't give it to the Rhine yet. That could cause
1120 * a race condition. We'll do it below.
1121 */
1122 if (nexttx == firsttx)
1123 d->vr_status = 0;
1124 else
1125 d->vr_status = htole32(VR_TXSTAT_OWN);
1126
1127 VR_CDTXSYNC(sc, nexttx,
1128 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1129
1130 /* Advance the tx pointer. */
1131 sc->vr_txpending++;
1132 sc->vr_txlast = nexttx;
1133 }
1134
1135 if (sc->vr_txpending == VR_NTXDESC) {
1136 /* No more slots left; notify upper layer. */
1137 ifp->if_flags |= IFF_OACTIVE;
1138 }
1139
1140 if (sc->vr_txpending != opending) {
1141 /*
1142 * We enqueued packets. If the transmitter was idle,
1143 * reset the txdirty pointer.
1144 */
1145 if (opending == 0)
1146 sc->vr_txdirty = firsttx;
1147
1148 /*
1149 * Cause a transmit interrupt to happen on the
1150 * last packet we enqueued.
1151 */
1152 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1153 VR_CDTXSYNC(sc, sc->vr_txlast,
1154 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1155
1156 /*
1157 * The entire packet chain is set up. Give the
1158 * first descriptor to the Rhine now.
1159 */
1160 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1161 VR_CDTXSYNC(sc, firsttx,
1162 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1163
1164 /* Start the transmitter. */
1165 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1166
1167 /* Set the watchdog timer in case the chip flakes out. */
1168 ifp->if_timer = 5;
1169 }
1170 }
1171
1172 /*
1173 * Initialize the interface. Must be called at splnet.
1174 */
1175 static int
1176 vr_init(struct ifnet *ifp)
1177 {
1178 struct vr_softc *sc = ifp->if_softc;
1179 struct vr_desc *d;
1180 struct vr_descsoft *ds;
1181 int i, error = 0;
1182
1183 /* Cancel pending I/O. */
1184 vr_stop(ifp, 0);
1185
1186 /* Reset the Rhine to a known state. */
1187 vr_reset(sc);
1188
1189 /* set DMA length in BCR0 and BCR1 */
1190 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1191 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1192
1193 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1194 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1195
1196 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1197 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1198
1199 /* set DMA threshold length in RXCFG and TXCFG */
1200 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1201 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1202
1203 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1204 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1205
1206 /*
1207 * Initialize the transmit descriptor ring. txlast is initialized
1208 * to the end of the list so that it will wrap around to the first
1209 * descriptor when the first packet is transmitted.
1210 */
1211 for (i = 0; i < VR_NTXDESC; i++) {
1212 d = VR_CDTX(sc, i);
1213 memset(d, 0, sizeof(struct vr_desc));
1214 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1215 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1216 }
1217 sc->vr_txpending = 0;
1218 sc->vr_txdirty = 0;
1219 sc->vr_txlast = VR_NTXDESC - 1;
1220
1221 /*
1222 * Initialize the receive descriptor ring.
1223 */
1224 for (i = 0; i < VR_NRXDESC; i++) {
1225 ds = VR_DSRX(sc, i);
1226 if (ds->ds_mbuf == NULL) {
1227 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1228 printf("%s: unable to allocate or map rx "
1229 "buffer %d, error = %d\n",
1230 device_xname(sc->vr_dev), i, error);
1231 /*
1232 * XXX Should attempt to run with fewer receive
1233 * XXX buffers instead of just failing.
1234 */
1235 vr_rxdrain(sc);
1236 goto out;
1237 }
1238 } else
1239 VR_INIT_RXDESC(sc, i);
1240 }
1241 sc->vr_rxptr = 0;
1242
1243 /* If we want promiscuous mode, set the allframes bit. */
1244 if (ifp->if_flags & IFF_PROMISC)
1245 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1246 else
1247 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1248
1249 /* Set capture broadcast bit to capture broadcast frames. */
1250 if (ifp->if_flags & IFF_BROADCAST)
1251 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1252 else
1253 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1254
1255 /* Program the multicast filter, if necessary. */
1256 vr_setmulti(sc);
1257
1258 /* Give the transmit and receive rings to the Rhine. */
1259 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1260 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1261
1262 /* Set current media. */
1263 sc->vr_link = true;
1264 if ((error = ether_mediachange(ifp)) != 0)
1265 goto out;
1266
1267 /* Enable receiver and transmitter. */
1268 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1269 VR_CMD_TX_ON|VR_CMD_RX_ON|
1270 VR_CMD_RX_GO);
1271
1272 /* Enable interrupts. */
1273 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1274 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1275
1276 ifp->if_flags |= IFF_RUNNING;
1277 ifp->if_flags &= ~IFF_OACTIVE;
1278
1279 /* Start one second timer. */
1280 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1281
1282 /* Attempt to start output on the interface. */
1283 vr_start(ifp);
1284
1285 out:
1286 if (error)
1287 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1288 return (error);
1289 }
1290
1291 static int
1292 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1293 {
1294 struct vr_softc *sc = ifp->if_softc;
1295 int s, error = 0;
1296
1297 s = splnet();
1298
1299 switch (command) {
1300 case SIOCSIFFLAGS:
1301 if ((error = ifioctl_common(ifp, command, data)) != 0)
1302 break;
1303
1304 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1305 case IFF_RUNNING:
1306 vr_stop(ifp, 1);
1307 break;
1308 case IFF_UP:
1309 vr_init(ifp);
1310 break;
1311 case IFF_UP | IFF_RUNNING:
1312 if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1313 vr_setmulti(sc);
1314 else
1315 vr_init(ifp);
1316 break;
1317 }
1318 sc->vr_if_flags = ifp->if_flags;
1319 break;
1320 default:
1321 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1322 break;
1323 error = 0;
1324 if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1325 vr_setmulti(sc);
1326 }
1327 splx(s);
1328
1329 return error;
1330 }
1331
1332 static void
1333 vr_watchdog(struct ifnet *ifp)
1334 {
1335 struct vr_softc *sc = ifp->if_softc;
1336
1337 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1338 ifp->if_oerrors++;
1339
1340 (void) vr_init(ifp);
1341 }
1342
1343 /*
1344 * One second timer, used to tick MII.
1345 */
1346 static void
1347 vr_tick(void *arg)
1348 {
1349 struct vr_softc *sc = arg;
1350 int s;
1351
1352 s = splnet();
1353 if (sc->vr_flags & VR_F_RESTART) {
1354 printf("%s: restarting\n", device_xname(sc->vr_dev));
1355 vr_init(&sc->vr_ec.ec_if);
1356 sc->vr_flags &= ~VR_F_RESTART;
1357 }
1358 mii_tick(&sc->vr_mii);
1359 splx(s);
1360
1361 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1362 }
1363
1364 /*
1365 * Drain the receive queue.
1366 */
1367 static void
1368 vr_rxdrain(struct vr_softc *sc)
1369 {
1370 struct vr_descsoft *ds;
1371 int i;
1372
1373 for (i = 0; i < VR_NRXDESC; i++) {
1374 ds = VR_DSRX(sc, i);
1375 if (ds->ds_mbuf != NULL) {
1376 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1377 m_freem(ds->ds_mbuf);
1378 ds->ds_mbuf = NULL;
1379 }
1380 }
1381 }
1382
1383 /*
1384 * Stop the adapter and free any mbufs allocated to the
1385 * transmit lists.
1386 */
1387 static void
1388 vr_stop(struct ifnet *ifp, int disable)
1389 {
1390 struct vr_softc *sc = ifp->if_softc;
1391 struct vr_descsoft *ds;
1392 int i;
1393
1394 /* Cancel one second timer. */
1395 callout_stop(&sc->vr_tick_ch);
1396
1397 /* Down the MII. */
1398 mii_down(&sc->vr_mii);
1399
1400 ifp = &sc->vr_ec.ec_if;
1401 ifp->if_timer = 0;
1402
1403 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1404 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1405 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1406 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1407 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1408
1409 /*
1410 * Release any queued transmit buffers.
1411 */
1412 for (i = 0; i < VR_NTXDESC; i++) {
1413 ds = VR_DSTX(sc, i);
1414 if (ds->ds_mbuf != NULL) {
1415 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1416 m_freem(ds->ds_mbuf);
1417 ds->ds_mbuf = NULL;
1418 }
1419 }
1420
1421 /*
1422 * Mark the interface down and cancel the watchdog timer.
1423 */
1424 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1425 ifp->if_timer = 0;
1426
1427 if (disable)
1428 vr_rxdrain(sc);
1429 }
1430
1431 static int vr_probe(device_t, cfdata_t, void *);
1432 static void vr_attach(device_t, device_t, void *);
1433 static bool vr_shutdown(device_t, int);
1434
1435 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1436 vr_probe, vr_attach, NULL, NULL);
1437
1438 static const struct vr_type *
1439 vr_lookup(struct pci_attach_args *pa)
1440 {
1441 const struct vr_type *vrt;
1442 int i;
1443
1444 for (i = 0; i < __arraycount(vr_devs); i++) {
1445 vrt = &vr_devs[i];
1446 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1447 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1448 return (vrt);
1449 }
1450 return (NULL);
1451 }
1452
1453 static int
1454 vr_probe(device_t parent, cfdata_t match, void *aux)
1455 {
1456 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1457
1458 if (vr_lookup(pa) != NULL)
1459 return (1);
1460
1461 return (0);
1462 }
1463
1464 /*
1465 * Stop all chip I/O so that the kernel's probe routines don't
1466 * get confused by errant DMAs when rebooting.
1467 */
1468 static bool
1469 vr_shutdown(device_t self, int howto)
1470 {
1471 struct vr_softc *sc = device_private(self);
1472
1473 vr_stop(&sc->vr_ec.ec_if, 1);
1474
1475 return true;
1476 }
1477
1478 /*
1479 * Attach the interface. Allocate softc structures, do ifmedia
1480 * setup and ethernet/BPF attach.
1481 */
1482 static void
1483 vr_attach(device_t parent, device_t self, void *aux)
1484 {
1485 struct vr_softc *sc = device_private(self);
1486 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1487 bus_dma_segment_t seg;
1488 uint32_t reg;
1489 struct ifnet *ifp;
1490 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1491 int i, rseg, error;
1492 char intrbuf[PCI_INTRSTR_LEN];
1493
1494 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1495 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1496
1497 sc->vr_dev = self;
1498 sc->vr_pc = pa->pa_pc;
1499 sc->vr_tag = pa->pa_tag;
1500 sc->vr_id = pa->pa_id;
1501 callout_init(&sc->vr_tick_ch, 0);
1502
1503 pci_aprint_devinfo(pa, NULL);
1504
1505 /*
1506 * Handle power management nonsense.
1507 */
1508
1509 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1510 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1511 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1512
1513 /* power up chip */
1514 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1515 vr_restore_state)) && error != EOPNOTSUPP) {
1516 aprint_error_dev(self, "cannot activate %d\n",
1517 error);
1518 return;
1519 }
1520
1521 /* Make sure bus mastering is enabled. */
1522 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1523 reg |= PCI_COMMAND_MASTER_ENABLE;
1524 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1525
1526 /* Get revision */
1527 sc->vr_revid = PCI_REVISION(pa->pa_class);
1528
1529 /*
1530 * Map control/status registers.
1531 */
1532 {
1533 bus_space_tag_t iot, memt;
1534 bus_space_handle_t ioh, memh;
1535 int ioh_valid, memh_valid;
1536 pci_intr_handle_t intrhandle;
1537 const char *intrstr;
1538
1539 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1540 PCI_MAPREG_TYPE_IO, 0,
1541 &iot, &ioh, NULL, NULL) == 0);
1542 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1543 PCI_MAPREG_TYPE_MEM |
1544 PCI_MAPREG_MEM_TYPE_32BIT,
1545 0, &memt, &memh, NULL, NULL) == 0);
1546 #if defined(VR_USEIOSPACE)
1547 if (ioh_valid) {
1548 sc->vr_bst = iot;
1549 sc->vr_bsh = ioh;
1550 } else if (memh_valid) {
1551 sc->vr_bst = memt;
1552 sc->vr_bsh = memh;
1553 }
1554 #else
1555 if (memh_valid) {
1556 sc->vr_bst = memt;
1557 sc->vr_bsh = memh;
1558 } else if (ioh_valid) {
1559 sc->vr_bst = iot;
1560 sc->vr_bsh = ioh;
1561 }
1562 #endif
1563 else {
1564 printf(": unable to map device registers\n");
1565 return;
1566 }
1567
1568 /* Allocate interrupt */
1569 if (pci_intr_map(pa, &intrhandle)) {
1570 aprint_error_dev(self, "couldn't map interrupt\n");
1571 return;
1572 }
1573 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
1574 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1575 vr_intr, sc);
1576 if (sc->vr_ih == NULL) {
1577 aprint_error_dev(self, "couldn't establish interrupt");
1578 if (intrstr != NULL)
1579 aprint_error(" at %s", intrstr);
1580 aprint_error("\n");
1581 }
1582 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1583 }
1584
1585 /*
1586 * Windows may put the chip in suspend mode when it
1587 * shuts down. Be sure to kick it in the head to wake it
1588 * up again.
1589 *
1590 * Don't touch this register on VT3043 since it causes
1591 * kernel MCHK trap on macppc.
1592 * (Note some VT86C100A chip returns a product ID of VT3043)
1593 */
1594 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1595 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1596
1597 /* Reset the adapter. */
1598 vr_reset(sc);
1599
1600 /*
1601 * Get station address. The way the Rhine chips work,
1602 * you're not allowed to directly access the EEPROM once
1603 * they've been programmed a special way. Consequently,
1604 * we need to read the node address from the PAR0 and PAR1
1605 * registers.
1606 *
1607 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1608 * of the *whole* EEPROM, not just the MAC address. This is
1609 * pretty pointless since the chip does this automatically
1610 * at powerup/reset.
1611 * I suspect the same thing applies to the other Rhine
1612 * variants, but in the absence of a data sheet for those
1613 * (and the lack of anyone else noticing the problems this
1614 * causes) I'm going to retain the old behaviour for the
1615 * other parts.
1616 * In some cases, the chip really does startup without having
1617 * read the EEPROM (kern/34812). To handle this case, we force
1618 * a reload if we see an all-zeroes MAC address.
1619 */
1620 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1621 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1622
1623 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1624 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1625 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1626 DELAY(200);
1627 for (i = 0; i < ETHER_ADDR_LEN; i++)
1628 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1629 }
1630
1631 /*
1632 * A Rhine chip was detected. Inform the world.
1633 */
1634 aprint_normal("%s: Ethernet address: %s\n",
1635 device_xname(self), ether_sprintf(eaddr));
1636
1637 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1638
1639 sc->vr_dmat = pa->pa_dmat;
1640
1641 /*
1642 * Allocate the control data structures, and create and load
1643 * the DMA map for it.
1644 */
1645 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1646 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1647 0)) != 0) {
1648 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1649 goto fail_0;
1650 }
1651
1652 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1653 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1654 BUS_DMA_COHERENT)) != 0) {
1655 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1656 goto fail_1;
1657 }
1658
1659 if ((error = bus_dmamap_create(sc->vr_dmat,
1660 sizeof(struct vr_control_data), 1,
1661 sizeof(struct vr_control_data), 0, 0,
1662 &sc->vr_cddmamap)) != 0) {
1663 aprint_error_dev(self, "unable to create control data DMA map, "
1664 "error = %d\n", error);
1665 goto fail_2;
1666 }
1667
1668 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1669 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1670 0)) != 0) {
1671 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1672 error);
1673 goto fail_3;
1674 }
1675
1676 /*
1677 * Create the transmit buffer DMA maps.
1678 */
1679 for (i = 0; i < VR_NTXDESC; i++) {
1680 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1681 1, MCLBYTES, 0, 0,
1682 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1683 aprint_error_dev(self, "unable to create tx DMA map %d, "
1684 "error = %d\n", i, error);
1685 goto fail_4;
1686 }
1687 }
1688
1689 /*
1690 * Create the receive buffer DMA maps.
1691 */
1692 for (i = 0; i < VR_NRXDESC; i++) {
1693 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1694 MCLBYTES, 0, 0,
1695 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1696 aprint_error_dev(self, "unable to create rx DMA map %d, "
1697 "error = %d\n", i, error);
1698 goto fail_5;
1699 }
1700 VR_DSRX(sc, i)->ds_mbuf = NULL;
1701 }
1702
1703 ifp = &sc->vr_ec.ec_if;
1704 ifp->if_softc = sc;
1705 ifp->if_mtu = ETHERMTU;
1706 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1707 ifp->if_ioctl = vr_ioctl;
1708 ifp->if_start = vr_start;
1709 ifp->if_watchdog = vr_watchdog;
1710 ifp->if_init = vr_init;
1711 ifp->if_stop = vr_stop;
1712 IFQ_SET_READY(&ifp->if_snd);
1713
1714 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1715
1716 /*
1717 * Initialize MII/media info.
1718 */
1719 sc->vr_mii.mii_ifp = ifp;
1720 sc->vr_mii.mii_readreg = vr_mii_readreg;
1721 sc->vr_mii.mii_writereg = vr_mii_writereg;
1722 sc->vr_mii.mii_statchg = vr_mii_statchg;
1723
1724 sc->vr_ec.ec_mii = &sc->vr_mii;
1725 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1726 ether_mediastatus);
1727 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1728 MII_OFFSET_ANY, MIIF_FORCEANEG);
1729 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1730 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1731 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1732 } else
1733 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1734
1735 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1736
1737 /*
1738 * Call MI attach routines.
1739 */
1740 if_attach(ifp);
1741 ether_ifattach(ifp, sc->vr_enaddr);
1742
1743 rnd_attach_source(&sc->rnd_source, device_xname(self),
1744 RND_TYPE_NET, RND_FLAG_DEFAULT);
1745
1746 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1747 pmf_class_network_register(self, ifp);
1748 else
1749 aprint_error_dev(self, "couldn't establish power handler\n");
1750
1751 return;
1752
1753 fail_5:
1754 for (i = 0; i < VR_NRXDESC; i++) {
1755 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1756 bus_dmamap_destroy(sc->vr_dmat,
1757 sc->vr_rxsoft[i].ds_dmamap);
1758 }
1759 fail_4:
1760 for (i = 0; i < VR_NTXDESC; i++) {
1761 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1762 bus_dmamap_destroy(sc->vr_dmat,
1763 sc->vr_txsoft[i].ds_dmamap);
1764 }
1765 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1766 fail_3:
1767 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1768 fail_2:
1769 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1770 sizeof(struct vr_control_data));
1771 fail_1:
1772 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1773 fail_0:
1774 return;
1775 }
1776
1777 static int
1778 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1779 pcireg_t state)
1780 {
1781 struct vr_softc *sc = device_private(self);
1782 int error;
1783
1784 if (state == PCI_PMCSR_STATE_D0)
1785 return 0;
1786 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1787 return error;
1788
1789 /* Restore PCI config data. */
1790 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1791 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1792 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1793 return 0;
1794 }
1795
1796 static bool
1797 vr_resume(device_t self, const pmf_qual_t *qual)
1798 {
1799 struct vr_softc *sc = device_private(self);
1800
1801 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1802 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1803
1804 return true;
1805 }
1806