if_vr.c revision 1.114.4.5 1 /* $NetBSD: if_vr.c,v 1.114.4.5 2017/02/05 13:40:30 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.114.4.5 2017/02/05 13:40:30 skrll Exp $");
101
102
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #include <sys/rndsource.h>
115
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121
122 #include <net/bpf.h>
123
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135
136 #include <dev/pci/if_vrreg.h>
137
138 #define VR_USEIOSPACE
139
140 /*
141 * Various supported device vendors/types and their names.
142 */
143 static const struct vr_type {
144 pci_vendor_id_t vr_vid;
145 pci_product_id_t vr_did;
146 } vr_devs[] = {
147 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
148 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
152 };
153
154 /*
155 * Transmit descriptor list size.
156 */
157 #define VR_NTXDESC 64
158 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
159 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
160
161 /*
162 * Receive descriptor list size.
163 */
164 #define VR_NRXDESC 64
165 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
166 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
167
168 /*
169 * Control data structres that are DMA'd to the Rhine chip. We allocate
170 * them in a single clump that maps to a single DMA segment to make several
171 * things easier.
172 *
173 * Note that since we always copy outgoing packets to aligned transmit
174 * buffers, we can reduce the transmit descriptors to one per packet.
175 */
176 struct vr_control_data {
177 struct vr_desc vr_txdescs[VR_NTXDESC];
178 struct vr_desc vr_rxdescs[VR_NRXDESC];
179 };
180
181 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
182 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
183 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
184
185 /*
186 * Software state of transmit and receive descriptors.
187 */
188 struct vr_descsoft {
189 struct mbuf *ds_mbuf; /* head of mbuf chain */
190 bus_dmamap_t ds_dmamap; /* our DMA map */
191 };
192
193 struct vr_softc {
194 device_t vr_dev;
195 void *vr_ih; /* interrupt cookie */
196 bus_space_tag_t vr_bst; /* bus space tag */
197 bus_space_handle_t vr_bsh; /* bus space handle */
198 bus_dma_tag_t vr_dmat; /* bus DMA tag */
199 pci_chipset_tag_t vr_pc; /* PCI chipset info */
200 pcitag_t vr_tag; /* PCI tag */
201 struct ethercom vr_ec; /* Ethernet common info */
202 uint8_t vr_enaddr[ETHER_ADDR_LEN];
203 struct mii_data vr_mii; /* MII/media info */
204
205 pcireg_t vr_id; /* vendor/product ID */
206 uint8_t vr_revid; /* Rhine chip revision */
207
208 callout_t vr_tick_ch; /* tick callout */
209
210 bus_dmamap_t vr_cddmamap; /* control data DMA map */
211 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
212
213 /*
214 * Software state for transmit and receive descriptors.
215 */
216 struct vr_descsoft vr_txsoft[VR_NTXDESC];
217 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
218
219 /*
220 * Control data structures.
221 */
222 struct vr_control_data *vr_control_data;
223
224 int vr_txpending; /* number of TX requests pending */
225 int vr_txdirty; /* first dirty TX descriptor */
226 int vr_txlast; /* last used TX descriptor */
227
228 int vr_rxptr; /* next ready RX descriptor */
229
230 uint32_t vr_save_iobase;
231 uint32_t vr_save_membase;
232 uint32_t vr_save_irq;
233
234 bool vr_link;
235 int vr_flags;
236 #define VR_F_RESTART 0x1 /* restart on next tick */
237 int vr_if_flags;
238
239 krndsource_t rnd_source; /* random source */
240 };
241
242 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
243 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
244
245 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
246 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
247
248 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
249 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
250
251 #define VR_CDTXSYNC(sc, x, ops) \
252 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
253 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
254
255 #define VR_CDRXSYNC(sc, x, ops) \
256 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
257 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
258
259 /*
260 * Note we rely on MCLBYTES being a power of two below.
261 */
262 #define VR_INIT_RXDESC(sc, i) \
263 do { \
264 struct vr_desc *__d = VR_CDRX((sc), (i)); \
265 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
266 \
267 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
268 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
269 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
270 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
271 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
272 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
273 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
274 } while (/* CONSTCOND */ 0)
275
276 /*
277 * register space access macros
278 */
279 #define CSR_WRITE_4(sc, reg, val) \
280 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
281 #define CSR_WRITE_2(sc, reg, val) \
282 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
283 #define CSR_WRITE_1(sc, reg, val) \
284 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
285
286 #define CSR_READ_4(sc, reg) \
287 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
288 #define CSR_READ_2(sc, reg) \
289 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
290 #define CSR_READ_1(sc, reg) \
291 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
292
293 #define VR_TIMEOUT 1000
294
295 static int vr_add_rxbuf(struct vr_softc *, int);
296
297 static void vr_rxeof(struct vr_softc *);
298 static void vr_rxeoc(struct vr_softc *);
299 static void vr_txeof(struct vr_softc *);
300 static int vr_intr(void *);
301 static void vr_start(struct ifnet *);
302 static int vr_ioctl(struct ifnet *, u_long, void *);
303 static int vr_init(struct ifnet *);
304 static void vr_stop(struct ifnet *, int);
305 static void vr_rxdrain(struct vr_softc *);
306 static void vr_watchdog(struct ifnet *);
307 static void vr_tick(void *);
308
309 static int vr_mii_readreg(device_t, int, int);
310 static void vr_mii_writereg(device_t, int, int, int);
311 static void vr_mii_statchg(struct ifnet *);
312
313 static void vr_setmulti(struct vr_softc *);
314 static void vr_reset(struct vr_softc *);
315 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
316 pcireg_t);
317 static bool vr_resume(device_t, const pmf_qual_t *);
318
319 int vr_copy_small = 0;
320
321 #define VR_SETBIT(sc, reg, x) \
322 CSR_WRITE_1(sc, reg, \
323 CSR_READ_1(sc, reg) | (x))
324
325 #define VR_CLRBIT(sc, reg, x) \
326 CSR_WRITE_1(sc, reg, \
327 CSR_READ_1(sc, reg) & ~(x))
328
329 #define VR_SETBIT16(sc, reg, x) \
330 CSR_WRITE_2(sc, reg, \
331 CSR_READ_2(sc, reg) | (x))
332
333 #define VR_CLRBIT16(sc, reg, x) \
334 CSR_WRITE_2(sc, reg, \
335 CSR_READ_2(sc, reg) & ~(x))
336
337 #define VR_SETBIT32(sc, reg, x) \
338 CSR_WRITE_4(sc, reg, \
339 CSR_READ_4(sc, reg) | (x))
340
341 #define VR_CLRBIT32(sc, reg, x) \
342 CSR_WRITE_4(sc, reg, \
343 CSR_READ_4(sc, reg) & ~(x))
344
345 /*
346 * MII bit-bang glue.
347 */
348 static uint32_t vr_mii_bitbang_read(device_t);
349 static void vr_mii_bitbang_write(device_t, uint32_t);
350
351 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
352 vr_mii_bitbang_read,
353 vr_mii_bitbang_write,
354 {
355 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
356 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
357 VR_MIICMD_CLK, /* MII_BIT_MDC */
358 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
359 0, /* MII_BIT_DIR_PHY_HOST */
360 }
361 };
362
363 static uint32_t
364 vr_mii_bitbang_read(device_t self)
365 {
366 struct vr_softc *sc = device_private(self);
367
368 return (CSR_READ_1(sc, VR_MIICMD));
369 }
370
371 static void
372 vr_mii_bitbang_write(device_t self, uint32_t val)
373 {
374 struct vr_softc *sc = device_private(self);
375
376 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378
379 /*
380 * Read an PHY register through the MII.
381 */
382 static int
383 vr_mii_readreg(device_t self, int phy, int reg)
384 {
385 struct vr_softc *sc = device_private(self);
386
387 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
388 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
389 }
390
391 /*
392 * Write to a PHY register through the MII.
393 */
394 static void
395 vr_mii_writereg(device_t self, int phy, int reg, int val)
396 {
397 struct vr_softc *sc = device_private(self);
398
399 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
400 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
401 }
402
403 static void
404 vr_mii_statchg(struct ifnet *ifp)
405 {
406 struct vr_softc *sc = ifp->if_softc;
407 int i;
408
409 /*
410 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 * register, we first have to put the transmit and/or receive logic
412 * in the idle state.
413 */
414 if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
415 IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
416 sc->vr_link = true;
417
418 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
419 VR_CLRBIT16(sc, VR_COMMAND,
420 (VR_CMD_TX_ON|VR_CMD_RX_ON));
421
422 if (sc->vr_mii.mii_media_active & IFM_FDX)
423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 else
425 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426
427 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
428 } else {
429 sc->vr_link = false;
430 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
431 for (i = VR_TIMEOUT; i > 0; i--) {
432 delay(10);
433 if (!(CSR_READ_2(sc, VR_COMMAND) &
434 (VR_CMD_TX_ON|VR_CMD_RX_ON)))
435 break;
436 }
437 if (i == 0) {
438 #ifdef VR_DEBUG
439 printf("%s: rx shutdown error!\n",
440 device_xname(sc->vr_dev));
441 #endif
442 sc->vr_flags |= VR_F_RESTART;
443 }
444 }
445 }
446
447 #define vr_calchash(addr) \
448 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
449
450 /*
451 * Program the 64-bit multicast hash filter.
452 */
453 static void
454 vr_setmulti(struct vr_softc *sc)
455 {
456 struct ifnet *ifp;
457 int h = 0;
458 uint32_t hashes[2] = { 0, 0 };
459 struct ether_multistep step;
460 struct ether_multi *enm;
461 int mcnt = 0;
462 uint8_t rxfilt;
463
464 ifp = &sc->vr_ec.ec_if;
465
466 rxfilt = CSR_READ_1(sc, VR_RXCFG);
467
468 if (ifp->if_flags & IFF_PROMISC) {
469 allmulti:
470 ifp->if_flags |= IFF_ALLMULTI;
471 rxfilt |= VR_RXCFG_RX_MULTI;
472 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
473 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
474 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
475 return;
476 }
477
478 /* first, zot all the existing hash bits */
479 CSR_WRITE_4(sc, VR_MAR0, 0);
480 CSR_WRITE_4(sc, VR_MAR1, 0);
481
482 /* now program new ones */
483 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
484 while (enm != NULL) {
485 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
486 ETHER_ADDR_LEN) != 0)
487 goto allmulti;
488
489 h = vr_calchash(enm->enm_addrlo);
490
491 if (h < 32)
492 hashes[0] |= (1 << h);
493 else
494 hashes[1] |= (1 << (h - 32));
495 ETHER_NEXT_MULTI(step, enm);
496 mcnt++;
497 }
498
499 ifp->if_flags &= ~IFF_ALLMULTI;
500
501 if (mcnt)
502 rxfilt |= VR_RXCFG_RX_MULTI;
503 else
504 rxfilt &= ~VR_RXCFG_RX_MULTI;
505
506 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
507 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
508 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
509 }
510
511 static void
512 vr_reset(struct vr_softc *sc)
513 {
514 int i;
515
516 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
517
518 for (i = 0; i < VR_TIMEOUT; i++) {
519 DELAY(10);
520 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
521 break;
522 }
523 if (i == VR_TIMEOUT) {
524 if (sc->vr_revid < REV_ID_VT3065_A) {
525 printf("%s: reset never completed!\n",
526 device_xname(sc->vr_dev));
527 } else {
528 /* Use newer force reset command */
529 printf("%s: using force reset command.\n",
530 device_xname(sc->vr_dev));
531 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
532 }
533 }
534
535 /* Wait a little while for the chip to get its brains in order. */
536 DELAY(1000);
537 }
538
539 /*
540 * Initialize an RX descriptor and attach an MBUF cluster.
541 * Note: the length fields are only 11 bits wide, which means the
542 * largest size we can specify is 2047. This is important because
543 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
544 * overflow the field and make a mess.
545 */
546 static int
547 vr_add_rxbuf(struct vr_softc *sc, int i)
548 {
549 struct vr_descsoft *ds = VR_DSRX(sc, i);
550 struct mbuf *m_new;
551 int error;
552
553 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
554 if (m_new == NULL)
555 return (ENOBUFS);
556
557 MCLGET(m_new, M_DONTWAIT);
558 if ((m_new->m_flags & M_EXT) == 0) {
559 m_freem(m_new);
560 return (ENOBUFS);
561 }
562
563 if (ds->ds_mbuf != NULL)
564 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
565
566 ds->ds_mbuf = m_new;
567
568 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
569 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
570 BUS_DMA_READ|BUS_DMA_NOWAIT);
571 if (error) {
572 aprint_error_dev(sc->vr_dev,
573 "unable to load rx DMA map %d, error = %d\n", i, error);
574 panic("vr_add_rxbuf"); /* XXX */
575 }
576
577 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
578 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
579
580 VR_INIT_RXDESC(sc, i);
581
582 return (0);
583 }
584
585 /*
586 * A frame has been uploaded: pass the resulting mbuf chain up to
587 * the higher level protocols.
588 */
589 static void
590 vr_rxeof(struct vr_softc *sc)
591 {
592 struct mbuf *m;
593 struct ifnet *ifp;
594 struct vr_desc *d;
595 struct vr_descsoft *ds;
596 int i, total_len;
597 uint32_t rxstat;
598
599 ifp = &sc->vr_ec.ec_if;
600
601 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
602 d = VR_CDRX(sc, i);
603 ds = VR_DSRX(sc, i);
604
605 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
606
607 rxstat = le32toh(d->vr_status);
608
609 if (rxstat & VR_RXSTAT_OWN) {
610 /*
611 * We have processed all of the receive buffers.
612 */
613 break;
614 }
615
616 /*
617 * If an error occurs, update stats, clear the
618 * status word and leave the mbuf cluster in place:
619 * it should simply get re-used next time this descriptor
620 * comes up in the ring.
621 */
622 if (rxstat & VR_RXSTAT_RXERR) {
623 const char *errstr;
624
625 ifp->if_ierrors++;
626 switch (rxstat & 0x000000FF) {
627 case VR_RXSTAT_CRCERR:
628 errstr = "crc error";
629 break;
630 case VR_RXSTAT_FRAMEALIGNERR:
631 errstr = "frame alignment error";
632 break;
633 case VR_RXSTAT_FIFOOFLOW:
634 errstr = "FIFO overflow";
635 break;
636 case VR_RXSTAT_GIANT:
637 errstr = "received giant packet";
638 break;
639 case VR_RXSTAT_RUNT:
640 errstr = "received runt packet";
641 break;
642 case VR_RXSTAT_BUSERR:
643 errstr = "system bus error";
644 break;
645 case VR_RXSTAT_BUFFERR:
646 errstr = "rx buffer error";
647 break;
648 default:
649 errstr = "unknown rx error";
650 break;
651 }
652 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
653 errstr);
654
655 VR_INIT_RXDESC(sc, i);
656
657 continue;
658 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
659 !(rxstat & VR_RXSTAT_LASTFRAG)) {
660 /*
661 * This driver expects to receive whole packets every
662 * time. In case we receive a fragment that is not
663 * a complete packet, we discard it.
664 */
665 ifp->if_ierrors++;
666
667 printf("%s: receive error: incomplete frame; "
668 "size = %d, status = 0x%x\n",
669 device_xname(sc->vr_dev),
670 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
671
672 VR_INIT_RXDESC(sc, i);
673
674 continue;
675 }
676
677 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
678 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
679
680 /* No errors; receive the packet. */
681 total_len = VR_RXBYTES(le32toh(d->vr_status));
682 #ifdef DIAGNOSTIC
683 if (total_len == 0) {
684 /*
685 * If we receive a zero-length packet, we probably
686 * missed to handle an error condition above.
687 * Discard it to avoid a later crash.
688 */
689 ifp->if_ierrors++;
690
691 printf("%s: receive error: zero-length packet; "
692 "status = 0x%x\n",
693 device_xname(sc->vr_dev), rxstat);
694
695 VR_INIT_RXDESC(sc, i);
696
697 continue;
698 }
699 #endif
700
701 /*
702 * The Rhine chip includes the CRC with every packet.
703 * Trim it off here.
704 */
705 total_len -= ETHER_CRC_LEN;
706
707 #ifdef __NO_STRICT_ALIGNMENT
708 /*
709 * If the packet is small enough to fit in a
710 * single header mbuf, allocate one and copy
711 * the data into it. This greatly reduces
712 * memory consumption when we receive lots
713 * of small packets.
714 *
715 * Otherwise, we add a new buffer to the receive
716 * chain. If this fails, we drop the packet and
717 * recycle the old buffer.
718 */
719 if (vr_copy_small != 0 && total_len <= MHLEN) {
720 MGETHDR(m, M_DONTWAIT, MT_DATA);
721 if (m == NULL)
722 goto dropit;
723 memcpy(mtod(m, void *),
724 mtod(ds->ds_mbuf, void *), total_len);
725 VR_INIT_RXDESC(sc, i);
726 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
727 ds->ds_dmamap->dm_mapsize,
728 BUS_DMASYNC_PREREAD);
729 } else {
730 m = ds->ds_mbuf;
731 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
732 dropit:
733 ifp->if_ierrors++;
734 VR_INIT_RXDESC(sc, i);
735 bus_dmamap_sync(sc->vr_dmat,
736 ds->ds_dmamap, 0,
737 ds->ds_dmamap->dm_mapsize,
738 BUS_DMASYNC_PREREAD);
739 continue;
740 }
741 }
742 #else
743 /*
744 * The Rhine's packet buffers must be 4-byte aligned.
745 * But this means that the data after the Ethernet header
746 * is misaligned. We must allocate a new buffer and
747 * copy the data, shifted forward 2 bytes.
748 */
749 MGETHDR(m, M_DONTWAIT, MT_DATA);
750 if (m == NULL) {
751 dropit:
752 ifp->if_ierrors++;
753 VR_INIT_RXDESC(sc, i);
754 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 continue;
757 }
758 if (total_len > (MHLEN - 2)) {
759 MCLGET(m, M_DONTWAIT);
760 if ((m->m_flags & M_EXT) == 0) {
761 m_freem(m);
762 goto dropit;
763 }
764 }
765 m->m_data += 2;
766
767 /*
768 * Note that we use clusters for incoming frames, so the
769 * buffer is virtually contiguous.
770 */
771 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
772 total_len);
773
774 /* Allow the receive descriptor to continue using its mbuf. */
775 VR_INIT_RXDESC(sc, i);
776 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
777 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
778 #endif /* __NO_STRICT_ALIGNMENT */
779
780 m_set_rcvif(m, ifp);
781 m->m_pkthdr.len = m->m_len = total_len;
782 /* Pass it on. */
783 if_percpuq_enqueue(ifp->if_percpuq, m);
784 }
785
786 /* Update the receive pointer. */
787 sc->vr_rxptr = i;
788 }
789
790 void
791 vr_rxeoc(struct vr_softc *sc)
792 {
793 struct ifnet *ifp;
794 int i;
795
796 ifp = &sc->vr_ec.ec_if;
797
798 ifp->if_ierrors++;
799
800 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
801 for (i = 0; i < VR_TIMEOUT; i++) {
802 DELAY(10);
803 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
804 break;
805 }
806 if (i == VR_TIMEOUT) {
807 /* XXX need reset? */
808 printf("%s: RX shutdown never complete\n",
809 device_xname(sc->vr_dev));
810 }
811
812 vr_rxeof(sc);
813
814 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
815 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
816 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
817 }
818
819 /*
820 * A frame was downloaded to the chip. It's safe for us to clean up
821 * the list buffers.
822 */
823 static void
824 vr_txeof(struct vr_softc *sc)
825 {
826 struct ifnet *ifp = &sc->vr_ec.ec_if;
827 struct vr_desc *d;
828 struct vr_descsoft *ds;
829 uint32_t txstat;
830 int i, j;
831
832 ifp->if_flags &= ~IFF_OACTIVE;
833
834 /*
835 * Go through our tx list and free mbufs for those
836 * frames that have been transmitted.
837 */
838 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
839 i = VR_NEXTTX(i), sc->vr_txpending--) {
840 d = VR_CDTX(sc, i);
841 ds = VR_DSTX(sc, i);
842
843 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
844
845 txstat = le32toh(d->vr_status);
846
847 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
848 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
849 for (j = 0; j < VR_TIMEOUT; j++) {
850 DELAY(10);
851 if ((CSR_READ_2(sc, VR_COMMAND) &
852 VR_CMD_TX_ON) == 0)
853 break;
854 }
855 if (j == VR_TIMEOUT) {
856 /* XXX need reset? */
857 printf("%s: TX shutdown never complete\n",
858 device_xname(sc->vr_dev));
859 }
860 d->vr_status = htole32(VR_TXSTAT_OWN);
861 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
862 break;
863 }
864
865 if (txstat & VR_TXSTAT_OWN)
866 break;
867
868 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
869 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
870 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
871 m_freem(ds->ds_mbuf);
872 ds->ds_mbuf = NULL;
873
874 if (txstat & VR_TXSTAT_ERRSUM) {
875 ifp->if_oerrors++;
876 if (txstat & VR_TXSTAT_DEFER)
877 ifp->if_collisions++;
878 if (txstat & VR_TXSTAT_LATECOLL)
879 ifp->if_collisions++;
880 }
881
882 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
883 ifp->if_opackets++;
884 }
885
886 /* Update the dirty transmit buffer pointer. */
887 sc->vr_txdirty = i;
888
889 /*
890 * Cancel the watchdog timer if there are no pending
891 * transmissions.
892 */
893 if (sc->vr_txpending == 0)
894 ifp->if_timer = 0;
895 }
896
897 static int
898 vr_intr(void *arg)
899 {
900 struct vr_softc *sc;
901 struct ifnet *ifp;
902 uint16_t status;
903 int handled = 0, dotx = 0;
904
905 sc = arg;
906 ifp = &sc->vr_ec.ec_if;
907
908 /* Suppress unwanted interrupts. */
909 if ((ifp->if_flags & IFF_UP) == 0) {
910 vr_stop(ifp, 1);
911 return (0);
912 }
913
914 /* Disable interrupts. */
915 CSR_WRITE_2(sc, VR_IMR, 0x0000);
916
917 for (;;) {
918 status = CSR_READ_2(sc, VR_ISR);
919 if (status)
920 CSR_WRITE_2(sc, VR_ISR, status);
921
922 if ((status & VR_INTRS) == 0)
923 break;
924
925 handled = 1;
926
927 rnd_add_uint32(&sc->rnd_source, status);
928
929 if (status & VR_ISR_RX_OK)
930 vr_rxeof(sc);
931
932 if (status & VR_ISR_RX_DROPPED) {
933 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
934 ifp->if_ierrors++;
935 }
936
937 if (status &
938 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
939 vr_rxeoc(sc);
940
941
942 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
943 if (status & VR_ISR_BUSERR)
944 printf("%s: PCI bus error\n",
945 device_xname(sc->vr_dev));
946 if (status & VR_ISR_TX_UNDERRUN)
947 printf("%s: transmit underrun\n",
948 device_xname(sc->vr_dev));
949 /* vr_init() calls vr_start() */
950 dotx = 0;
951 (void)vr_init(ifp);
952
953 }
954
955 if (status & VR_ISR_TX_OK) {
956 dotx = 1;
957 vr_txeof(sc);
958 }
959
960 if (status &
961 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
962 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
963 printf("%s: transmit aborted\n",
964 device_xname(sc->vr_dev));
965 if (status & VR_ISR_TX_UDFI)
966 printf("%s: transmit underflow\n",
967 device_xname(sc->vr_dev));
968 ifp->if_oerrors++;
969 dotx = 1;
970 vr_txeof(sc);
971 if (sc->vr_txpending) {
972 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
973 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
974 }
975 }
976 }
977
978 /* Re-enable interrupts. */
979 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
980
981 if (dotx)
982 if_schedule_deferred_start(ifp);
983
984 return (handled);
985 }
986
987 /*
988 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
989 * to the mbuf data regions directly in the transmit lists. We also save a
990 * copy of the pointers since the transmit list fragment pointers are
991 * physical addresses.
992 */
993 static void
994 vr_start(struct ifnet *ifp)
995 {
996 struct vr_softc *sc = ifp->if_softc;
997 struct mbuf *m0, *m;
998 struct vr_desc *d;
999 struct vr_descsoft *ds;
1000 int error, firsttx, nexttx, opending;
1001
1002 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1003 return;
1004 if (sc->vr_link == false)
1005 return;
1006
1007 /*
1008 * Remember the previous txpending and the first transmit
1009 * descriptor we use.
1010 */
1011 opending = sc->vr_txpending;
1012 firsttx = VR_NEXTTX(sc->vr_txlast);
1013
1014 /*
1015 * Loop through the send queue, setting up transmit descriptors
1016 * until we drain the queue, or use up all available transmit
1017 * descriptors.
1018 */
1019 while (sc->vr_txpending < VR_NTXDESC) {
1020 /*
1021 * Grab a packet off the queue.
1022 */
1023 IFQ_POLL(&ifp->if_snd, m0);
1024 if (m0 == NULL)
1025 break;
1026 m = NULL;
1027
1028 /*
1029 * Get the next available transmit descriptor.
1030 */
1031 nexttx = VR_NEXTTX(sc->vr_txlast);
1032 d = VR_CDTX(sc, nexttx);
1033 ds = VR_DSTX(sc, nexttx);
1034
1035 /*
1036 * Load the DMA map. If this fails, the packet didn't
1037 * fit in one DMA segment, and we need to copy. Note,
1038 * the packet must also be aligned.
1039 * if the packet is too small, copy it too, so we're sure
1040 * we have enough room for the pad buffer.
1041 */
1042 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1043 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1044 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1045 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1046 MGETHDR(m, M_DONTWAIT, MT_DATA);
1047 if (m == NULL) {
1048 printf("%s: unable to allocate Tx mbuf\n",
1049 device_xname(sc->vr_dev));
1050 break;
1051 }
1052 if (m0->m_pkthdr.len > MHLEN) {
1053 MCLGET(m, M_DONTWAIT);
1054 if ((m->m_flags & M_EXT) == 0) {
1055 printf("%s: unable to allocate Tx "
1056 "cluster\n", device_xname(sc->vr_dev));
1057 m_freem(m);
1058 break;
1059 }
1060 }
1061 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1062 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1063 /*
1064 * The Rhine doesn't auto-pad, so we have to do this
1065 * ourselves.
1066 */
1067 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1068 memset(mtod(m, char *) + m0->m_pkthdr.len,
1069 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1070 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1071 }
1072 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1073 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1074 if (error) {
1075 m_freem(m);
1076 printf("%s: unable to load Tx buffer, "
1077 "error = %d\n", device_xname(sc->vr_dev), error);
1078 break;
1079 }
1080 }
1081
1082 IFQ_DEQUEUE(&ifp->if_snd, m0);
1083 if (m != NULL) {
1084 m_freem(m0);
1085 m0 = m;
1086 }
1087
1088 /* Sync the DMA map. */
1089 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1090 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1091
1092 /*
1093 * Store a pointer to the packet so we can free it later.
1094 */
1095 ds->ds_mbuf = m0;
1096
1097 /*
1098 * If there's a BPF listener, bounce a copy of this frame
1099 * to him.
1100 */
1101 bpf_mtap(ifp, m0);
1102
1103 /*
1104 * Fill in the transmit descriptor.
1105 */
1106 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1107 d->vr_ctl = htole32(m0->m_pkthdr.len);
1108 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1109
1110 /*
1111 * If this is the first descriptor we're enqueuing,
1112 * don't give it to the Rhine yet. That could cause
1113 * a race condition. We'll do it below.
1114 */
1115 if (nexttx == firsttx)
1116 d->vr_status = 0;
1117 else
1118 d->vr_status = htole32(VR_TXSTAT_OWN);
1119
1120 VR_CDTXSYNC(sc, nexttx,
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122
1123 /* Advance the tx pointer. */
1124 sc->vr_txpending++;
1125 sc->vr_txlast = nexttx;
1126 }
1127
1128 if (sc->vr_txpending == VR_NTXDESC) {
1129 /* No more slots left; notify upper layer. */
1130 ifp->if_flags |= IFF_OACTIVE;
1131 }
1132
1133 if (sc->vr_txpending != opending) {
1134 /*
1135 * We enqueued packets. If the transmitter was idle,
1136 * reset the txdirty pointer.
1137 */
1138 if (opending == 0)
1139 sc->vr_txdirty = firsttx;
1140
1141 /*
1142 * Cause a transmit interrupt to happen on the
1143 * last packet we enqueued.
1144 */
1145 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1146 VR_CDTXSYNC(sc, sc->vr_txlast,
1147 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148
1149 /*
1150 * The entire packet chain is set up. Give the
1151 * first descriptor to the Rhine now.
1152 */
1153 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1154 VR_CDTXSYNC(sc, firsttx,
1155 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1156
1157 /* Start the transmitter. */
1158 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1159
1160 /* Set the watchdog timer in case the chip flakes out. */
1161 ifp->if_timer = 5;
1162 }
1163 }
1164
1165 /*
1166 * Initialize the interface. Must be called at splnet.
1167 */
1168 static int
1169 vr_init(struct ifnet *ifp)
1170 {
1171 struct vr_softc *sc = ifp->if_softc;
1172 struct vr_desc *d;
1173 struct vr_descsoft *ds;
1174 int i, error = 0;
1175
1176 /* Cancel pending I/O. */
1177 vr_stop(ifp, 0);
1178
1179 /* Reset the Rhine to a known state. */
1180 vr_reset(sc);
1181
1182 /* set DMA length in BCR0 and BCR1 */
1183 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1184 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1185
1186 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1187 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1188
1189 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1190 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1191
1192 /* set DMA threshold length in RXCFG and TXCFG */
1193 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1194 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1195
1196 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1197 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1198
1199 /*
1200 * Initialize the transmit descriptor ring. txlast is initialized
1201 * to the end of the list so that it will wrap around to the first
1202 * descriptor when the first packet is transmitted.
1203 */
1204 for (i = 0; i < VR_NTXDESC; i++) {
1205 d = VR_CDTX(sc, i);
1206 memset(d, 0, sizeof(struct vr_desc));
1207 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1208 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1209 }
1210 sc->vr_txpending = 0;
1211 sc->vr_txdirty = 0;
1212 sc->vr_txlast = VR_NTXDESC - 1;
1213
1214 /*
1215 * Initialize the receive descriptor ring.
1216 */
1217 for (i = 0; i < VR_NRXDESC; i++) {
1218 ds = VR_DSRX(sc, i);
1219 if (ds->ds_mbuf == NULL) {
1220 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1221 printf("%s: unable to allocate or map rx "
1222 "buffer %d, error = %d\n",
1223 device_xname(sc->vr_dev), i, error);
1224 /*
1225 * XXX Should attempt to run with fewer receive
1226 * XXX buffers instead of just failing.
1227 */
1228 vr_rxdrain(sc);
1229 goto out;
1230 }
1231 } else
1232 VR_INIT_RXDESC(sc, i);
1233 }
1234 sc->vr_rxptr = 0;
1235
1236 /* If we want promiscuous mode, set the allframes bit. */
1237 if (ifp->if_flags & IFF_PROMISC)
1238 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1239 else
1240 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1241
1242 /* Set capture broadcast bit to capture broadcast frames. */
1243 if (ifp->if_flags & IFF_BROADCAST)
1244 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1245 else
1246 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1247
1248 /* Program the multicast filter, if necessary. */
1249 vr_setmulti(sc);
1250
1251 /* Give the transmit and receive rings to the Rhine. */
1252 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1253 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1254
1255 /* Set current media. */
1256 sc->vr_link = true;
1257 if ((error = ether_mediachange(ifp)) != 0)
1258 goto out;
1259
1260 /* Enable receiver and transmitter. */
1261 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1262 VR_CMD_TX_ON|VR_CMD_RX_ON|
1263 VR_CMD_RX_GO);
1264
1265 /* Enable interrupts. */
1266 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1267 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1268
1269 ifp->if_flags |= IFF_RUNNING;
1270 ifp->if_flags &= ~IFF_OACTIVE;
1271
1272 /* Start one second timer. */
1273 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1274
1275 /* Attempt to start output on the interface. */
1276 vr_start(ifp);
1277
1278 out:
1279 if (error)
1280 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1281 return (error);
1282 }
1283
1284 static int
1285 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1286 {
1287 struct vr_softc *sc = ifp->if_softc;
1288 int s, error = 0;
1289
1290 s = splnet();
1291
1292 switch (command) {
1293 case SIOCSIFFLAGS:
1294 if ((error = ifioctl_common(ifp, command, data)) != 0)
1295 break;
1296
1297 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1298 case IFF_RUNNING:
1299 vr_stop(ifp, 1);
1300 break;
1301 case IFF_UP:
1302 vr_init(ifp);
1303 break;
1304 case IFF_UP | IFF_RUNNING:
1305 if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1306 vr_setmulti(sc);
1307 else
1308 vr_init(ifp);
1309 break;
1310 }
1311 sc->vr_if_flags = ifp->if_flags;
1312 break;
1313 default:
1314 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1315 break;
1316 error = 0;
1317 if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1318 vr_setmulti(sc);
1319 }
1320 splx(s);
1321
1322 return error;
1323 }
1324
1325 static void
1326 vr_watchdog(struct ifnet *ifp)
1327 {
1328 struct vr_softc *sc = ifp->if_softc;
1329
1330 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1331 ifp->if_oerrors++;
1332
1333 (void) vr_init(ifp);
1334 }
1335
1336 /*
1337 * One second timer, used to tick MII.
1338 */
1339 static void
1340 vr_tick(void *arg)
1341 {
1342 struct vr_softc *sc = arg;
1343 int s;
1344
1345 s = splnet();
1346 if (sc->vr_flags & VR_F_RESTART) {
1347 printf("%s: restarting\n", device_xname(sc->vr_dev));
1348 vr_init(&sc->vr_ec.ec_if);
1349 sc->vr_flags &= ~VR_F_RESTART;
1350 }
1351 mii_tick(&sc->vr_mii);
1352 splx(s);
1353
1354 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1355 }
1356
1357 /*
1358 * Drain the receive queue.
1359 */
1360 static void
1361 vr_rxdrain(struct vr_softc *sc)
1362 {
1363 struct vr_descsoft *ds;
1364 int i;
1365
1366 for (i = 0; i < VR_NRXDESC; i++) {
1367 ds = VR_DSRX(sc, i);
1368 if (ds->ds_mbuf != NULL) {
1369 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1370 m_freem(ds->ds_mbuf);
1371 ds->ds_mbuf = NULL;
1372 }
1373 }
1374 }
1375
1376 /*
1377 * Stop the adapter and free any mbufs allocated to the
1378 * transmit lists.
1379 */
1380 static void
1381 vr_stop(struct ifnet *ifp, int disable)
1382 {
1383 struct vr_softc *sc = ifp->if_softc;
1384 struct vr_descsoft *ds;
1385 int i;
1386
1387 /* Cancel one second timer. */
1388 callout_stop(&sc->vr_tick_ch);
1389
1390 /* Down the MII. */
1391 mii_down(&sc->vr_mii);
1392
1393 ifp = &sc->vr_ec.ec_if;
1394 ifp->if_timer = 0;
1395
1396 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1397 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1398 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1399 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1400 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1401
1402 /*
1403 * Release any queued transmit buffers.
1404 */
1405 for (i = 0; i < VR_NTXDESC; i++) {
1406 ds = VR_DSTX(sc, i);
1407 if (ds->ds_mbuf != NULL) {
1408 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1409 m_freem(ds->ds_mbuf);
1410 ds->ds_mbuf = NULL;
1411 }
1412 }
1413
1414 /*
1415 * Mark the interface down and cancel the watchdog timer.
1416 */
1417 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1418 ifp->if_timer = 0;
1419
1420 if (disable)
1421 vr_rxdrain(sc);
1422 }
1423
1424 static int vr_probe(device_t, cfdata_t, void *);
1425 static void vr_attach(device_t, device_t, void *);
1426 static bool vr_shutdown(device_t, int);
1427
1428 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1429 vr_probe, vr_attach, NULL, NULL);
1430
1431 static const struct vr_type *
1432 vr_lookup(struct pci_attach_args *pa)
1433 {
1434 const struct vr_type *vrt;
1435 int i;
1436
1437 for (i = 0; i < __arraycount(vr_devs); i++) {
1438 vrt = &vr_devs[i];
1439 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1440 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1441 return (vrt);
1442 }
1443 return (NULL);
1444 }
1445
1446 static int
1447 vr_probe(device_t parent, cfdata_t match, void *aux)
1448 {
1449 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1450
1451 if (vr_lookup(pa) != NULL)
1452 return (1);
1453
1454 return (0);
1455 }
1456
1457 /*
1458 * Stop all chip I/O so that the kernel's probe routines don't
1459 * get confused by errant DMAs when rebooting.
1460 */
1461 static bool
1462 vr_shutdown(device_t self, int howto)
1463 {
1464 struct vr_softc *sc = device_private(self);
1465
1466 vr_stop(&sc->vr_ec.ec_if, 1);
1467
1468 return true;
1469 }
1470
1471 /*
1472 * Attach the interface. Allocate softc structures, do ifmedia
1473 * setup and ethernet/BPF attach.
1474 */
1475 static void
1476 vr_attach(device_t parent, device_t self, void *aux)
1477 {
1478 struct vr_softc *sc = device_private(self);
1479 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1480 bus_dma_segment_t seg;
1481 uint32_t reg;
1482 struct ifnet *ifp;
1483 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1484 int i, rseg, error;
1485 char intrbuf[PCI_INTRSTR_LEN];
1486
1487 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1488 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1489
1490 sc->vr_dev = self;
1491 sc->vr_pc = pa->pa_pc;
1492 sc->vr_tag = pa->pa_tag;
1493 sc->vr_id = pa->pa_id;
1494 callout_init(&sc->vr_tick_ch, 0);
1495
1496 pci_aprint_devinfo(pa, NULL);
1497
1498 /*
1499 * Handle power management nonsense.
1500 */
1501
1502 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1503 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1504 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1505
1506 /* power up chip */
1507 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1508 vr_restore_state)) && error != EOPNOTSUPP) {
1509 aprint_error_dev(self, "cannot activate %d\n", error);
1510 return;
1511 }
1512
1513 /* Make sure bus mastering is enabled. */
1514 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1515 reg |= PCI_COMMAND_MASTER_ENABLE;
1516 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1517
1518 /* Get revision */
1519 sc->vr_revid = PCI_REVISION(pa->pa_class);
1520
1521 /*
1522 * Map control/status registers.
1523 */
1524 {
1525 bus_space_tag_t iot, memt;
1526 bus_space_handle_t ioh, memh;
1527 int ioh_valid, memh_valid;
1528 pci_intr_handle_t intrhandle;
1529 const char *intrstr;
1530
1531 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1532 PCI_MAPREG_TYPE_IO, 0,
1533 &iot, &ioh, NULL, NULL) == 0);
1534 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1535 PCI_MAPREG_TYPE_MEM |
1536 PCI_MAPREG_MEM_TYPE_32BIT,
1537 0, &memt, &memh, NULL, NULL) == 0);
1538 #if defined(VR_USEIOSPACE)
1539 if (ioh_valid) {
1540 sc->vr_bst = iot;
1541 sc->vr_bsh = ioh;
1542 } else if (memh_valid) {
1543 sc->vr_bst = memt;
1544 sc->vr_bsh = memh;
1545 }
1546 #else
1547 if (memh_valid) {
1548 sc->vr_bst = memt;
1549 sc->vr_bsh = memh;
1550 } else if (ioh_valid) {
1551 sc->vr_bst = iot;
1552 sc->vr_bsh = ioh;
1553 }
1554 #endif
1555 else {
1556 aprint_error(": unable to map device registers\n");
1557 return;
1558 }
1559
1560 /* Allocate interrupt */
1561 if (pci_intr_map(pa, &intrhandle)) {
1562 aprint_error_dev(self, "couldn't map interrupt\n");
1563 return;
1564 }
1565 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1566 sizeof(intrbuf));
1567 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1568 vr_intr, sc);
1569 if (sc->vr_ih == NULL) {
1570 aprint_error_dev(self, "couldn't establish interrupt");
1571 if (intrstr != NULL)
1572 aprint_error(" at %s", intrstr);
1573 aprint_error("\n");
1574 }
1575 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1576 }
1577
1578 /*
1579 * Windows may put the chip in suspend mode when it
1580 * shuts down. Be sure to kick it in the head to wake it
1581 * up again.
1582 *
1583 * Don't touch this register on VT3043 since it causes
1584 * kernel MCHK trap on macppc.
1585 * (Note some VT86C100A chip returns a product ID of VT3043)
1586 */
1587 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1588 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1589
1590 /* Reset the adapter. */
1591 vr_reset(sc);
1592
1593 /*
1594 * Get station address. The way the Rhine chips work,
1595 * you're not allowed to directly access the EEPROM once
1596 * they've been programmed a special way. Consequently,
1597 * we need to read the node address from the PAR0 and PAR1
1598 * registers.
1599 *
1600 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1601 * of the *whole* EEPROM, not just the MAC address. This is
1602 * pretty pointless since the chip does this automatically
1603 * at powerup/reset.
1604 * I suspect the same thing applies to the other Rhine
1605 * variants, but in the absence of a data sheet for those
1606 * (and the lack of anyone else noticing the problems this
1607 * causes) I'm going to retain the old behaviour for the
1608 * other parts.
1609 * In some cases, the chip really does startup without having
1610 * read the EEPROM (kern/34812). To handle this case, we force
1611 * a reload if we see an all-zeroes MAC address.
1612 */
1613 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1614 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1615
1616 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1617 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1618 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1619 DELAY(200);
1620 for (i = 0; i < ETHER_ADDR_LEN; i++)
1621 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1622 }
1623
1624 /*
1625 * A Rhine chip was detected. Inform the world.
1626 */
1627 aprint_normal("%s: Ethernet address: %s\n",
1628 device_xname(self), ether_sprintf(eaddr));
1629
1630 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1631
1632 sc->vr_dmat = pa->pa_dmat;
1633
1634 /*
1635 * Allocate the control data structures, and create and load
1636 * the DMA map for it.
1637 */
1638 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1639 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1640 0)) != 0) {
1641 aprint_error_dev(self,
1642 "unable to allocate control data, error = %d\n", error);
1643 goto fail_0;
1644 }
1645
1646 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1647 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1648 BUS_DMA_COHERENT)) != 0) {
1649 aprint_error_dev(self,
1650 "unable to map control data, error = %d\n", error);
1651 goto fail_1;
1652 }
1653
1654 if ((error = bus_dmamap_create(sc->vr_dmat,
1655 sizeof(struct vr_control_data), 1,
1656 sizeof(struct vr_control_data), 0, 0,
1657 &sc->vr_cddmamap)) != 0) {
1658 aprint_error_dev(self,
1659 "unable to create control data DMA map, error = %d\n",
1660 error);
1661 goto fail_2;
1662 }
1663
1664 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1665 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1666 0)) != 0) {
1667 aprint_error_dev(self,
1668 "unable to load control data DMA map, error = %d\n",
1669 error);
1670 goto fail_3;
1671 }
1672
1673 /*
1674 * Create the transmit buffer DMA maps.
1675 */
1676 for (i = 0; i < VR_NTXDESC; i++) {
1677 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1678 1, MCLBYTES, 0, 0,
1679 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1680 aprint_error_dev(self,
1681 "unable to create tx DMA map %d, error = %d\n", i,
1682 error);
1683 goto fail_4;
1684 }
1685 }
1686
1687 /*
1688 * Create the receive buffer DMA maps.
1689 */
1690 for (i = 0; i < VR_NRXDESC; i++) {
1691 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1692 MCLBYTES, 0, 0,
1693 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1694 aprint_error_dev(self,
1695 "unable to create rx DMA map %d, error = %d\n", i,
1696 error);
1697 goto fail_5;
1698 }
1699 VR_DSRX(sc, i)->ds_mbuf = NULL;
1700 }
1701
1702 ifp = &sc->vr_ec.ec_if;
1703 ifp->if_softc = sc;
1704 ifp->if_mtu = ETHERMTU;
1705 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1706 ifp->if_ioctl = vr_ioctl;
1707 ifp->if_start = vr_start;
1708 ifp->if_watchdog = vr_watchdog;
1709 ifp->if_init = vr_init;
1710 ifp->if_stop = vr_stop;
1711 IFQ_SET_READY(&ifp->if_snd);
1712
1713 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1714
1715 /*
1716 * Initialize MII/media info.
1717 */
1718 sc->vr_mii.mii_ifp = ifp;
1719 sc->vr_mii.mii_readreg = vr_mii_readreg;
1720 sc->vr_mii.mii_writereg = vr_mii_writereg;
1721 sc->vr_mii.mii_statchg = vr_mii_statchg;
1722
1723 sc->vr_ec.ec_mii = &sc->vr_mii;
1724 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1725 ether_mediastatus);
1726 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1727 MII_OFFSET_ANY, MIIF_FORCEANEG);
1728 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1729 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1730 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1731 } else
1732 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1733
1734 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1735
1736 /*
1737 * Call MI attach routines.
1738 */
1739 if_attach(ifp);
1740 if_deferred_start_init(ifp, NULL);
1741 ether_ifattach(ifp, sc->vr_enaddr);
1742
1743 rnd_attach_source(&sc->rnd_source, device_xname(self),
1744 RND_TYPE_NET, RND_FLAG_DEFAULT);
1745
1746 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1747 pmf_class_network_register(self, ifp);
1748 else
1749 aprint_error_dev(self, "couldn't establish power handler\n");
1750
1751 return;
1752
1753 fail_5:
1754 for (i = 0; i < VR_NRXDESC; i++) {
1755 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1756 bus_dmamap_destroy(sc->vr_dmat,
1757 sc->vr_rxsoft[i].ds_dmamap);
1758 }
1759 fail_4:
1760 for (i = 0; i < VR_NTXDESC; i++) {
1761 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1762 bus_dmamap_destroy(sc->vr_dmat,
1763 sc->vr_txsoft[i].ds_dmamap);
1764 }
1765 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1766 fail_3:
1767 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1768 fail_2:
1769 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1770 sizeof(struct vr_control_data));
1771 fail_1:
1772 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1773 fail_0:
1774 return;
1775 }
1776
1777 static int
1778 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1779 pcireg_t state)
1780 {
1781 struct vr_softc *sc = device_private(self);
1782 int error;
1783
1784 if (state == PCI_PMCSR_STATE_D0)
1785 return 0;
1786 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1787 return error;
1788
1789 /* Restore PCI config data. */
1790 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1791 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1792 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1793 return 0;
1794 }
1795
1796 static bool
1797 vr_resume(device_t self, const pmf_qual_t *qual)
1798 {
1799 struct vr_softc *sc = device_private(self);
1800
1801 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1802 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1803
1804 return true;
1805 }
1806