Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.127
      1 /*	$NetBSD: if_vr.c,v 1.127 2019/01/22 03:42:27 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1997, 1998
     35  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by Bill Paul.
     48  * 4. Neither the name of the author nor the names of any co-contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     62  * THE POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     65  */
     66 
     67 /*
     68  * VIA Rhine fast ethernet PCI NIC driver
     69  *
     70  * Supports various network adapters based on the VIA Rhine
     71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     72  * Datasheets are available at http://www.via.com.tw.
     73  *
     74  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     75  * Electrical Engineering Department
     76  * Columbia University, New York City
     77  */
     78 
     79 /*
     80  * The VIA Rhine controllers are similar in some respects to the
     81  * the DEC tulip chips, except less complicated. The controller
     82  * uses an MII bus and an external physical layer interface. The
     83  * receiver has a one entry perfect filter and a 64-bit hash table
     84  * multicast filter. Transmit and receive descriptors are similar
     85  * to the tulip.
     86  *
     87  * The Rhine has a serious flaw in its transmit DMA mechanism:
     88  * transmit buffers must be longword aligned. Unfortunately,
     89  * the kernel doesn't guarantee that mbufs will be filled in starting
     90  * at longword boundaries, so we have to do a buffer copy before
     91  * transmission.
     92  *
     93  * Apparently, the receive DMA mechanism also has the same flaw.  This
     94  * means that on systems with struct alignment requirements, incoming
     95  * frames must be copied to a new buffer which shifts the data forward
     96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
     97  */
     98 
     99 #include <sys/cdefs.h>
    100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.127 2019/01/22 03:42:27 msaitoh Exp $");
    101 
    102 
    103 
    104 #include <sys/param.h>
    105 #include <sys/systm.h>
    106 #include <sys/callout.h>
    107 #include <sys/sockio.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/malloc.h>
    110 #include <sys/kernel.h>
    111 #include <sys/socket.h>
    112 #include <sys/device.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <net/if.h>
    117 #include <net/if_arp.h>
    118 #include <net/if_dl.h>
    119 #include <net/if_media.h>
    120 #include <net/if_ether.h>
    121 
    122 #include <net/bpf.h>
    123 
    124 #include <sys/bus.h>
    125 #include <sys/intr.h>
    126 #include <machine/endian.h>
    127 
    128 #include <dev/mii/mii.h>
    129 #include <dev/mii/miivar.h>
    130 #include <dev/mii/mii_bitbang.h>
    131 
    132 #include <dev/pci/pcireg.h>
    133 #include <dev/pci/pcivar.h>
    134 #include <dev/pci/pcidevs.h>
    135 
    136 #include <dev/pci/if_vrreg.h>
    137 
    138 #define	VR_USEIOSPACE
    139 
    140 /*
    141  * Various supported device vendors/types and their names.
    142  */
    143 static const struct vr_type {
    144 	pci_vendor_id_t		vr_vid;
    145 	pci_product_id_t	vr_did;
    146 } vr_devs[] = {
    147 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
    148 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
    149 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
    150 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
    151 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
    152 };
    153 
    154 /*
    155  * Transmit descriptor list size.
    156  */
    157 #define	VR_NTXDESC		64
    158 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    159 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    160 
    161 /*
    162  * Receive descriptor list size.
    163  */
    164 #define	VR_NRXDESC		64
    165 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    166 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    167 
    168 /*
    169  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    170  * them in a single clump that maps to a single DMA segment to make several
    171  * things easier.
    172  *
    173  * Note that since we always copy outgoing packets to aligned transmit
    174  * buffers, we can reduce the transmit descriptors to one per packet.
    175  */
    176 struct vr_control_data {
    177 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    178 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    179 };
    180 
    181 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    182 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    183 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    184 
    185 /*
    186  * Software state of transmit and receive descriptors.
    187  */
    188 struct vr_descsoft {
    189 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    190 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    191 };
    192 
    193 struct vr_softc {
    194 	device_t		vr_dev;
    195 	void			*vr_ih;		/* interrupt cookie */
    196 	bus_space_tag_t		vr_bst;		/* bus space tag */
    197 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    198 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    199 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    200 	pcitag_t		vr_tag;		/* PCI tag */
    201 	struct ethercom		vr_ec;		/* Ethernet common info */
    202 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
    203 	struct mii_data		vr_mii;		/* MII/media info */
    204 
    205 	pcireg_t		vr_id;		/* vendor/product ID */
    206 	uint8_t			vr_revid;	/* Rhine chip revision */
    207 
    208 	callout_t		vr_tick_ch;	/* tick callout */
    209 
    210 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    211 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    212 
    213 	/*
    214 	 * Software state for transmit and receive descriptors.
    215 	 */
    216 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    217 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    218 
    219 	/*
    220 	 * Control data structures.
    221 	 */
    222 	struct vr_control_data	*vr_control_data;
    223 
    224 	int	vr_txpending;		/* number of TX requests pending */
    225 	int	vr_txdirty;		/* first dirty TX descriptor */
    226 	int	vr_txlast;		/* last used TX descriptor */
    227 
    228 	int	vr_rxptr;		/* next ready RX descriptor */
    229 
    230 	uint32_t	vr_save_iobase;
    231 	uint32_t	vr_save_membase;
    232 	uint32_t	vr_save_irq;
    233 
    234 	bool		vr_link;
    235 	int		vr_flags;
    236 #define VR_F_RESTART	0x1		/* restart on next tick */
    237 	int		vr_if_flags;
    238 
    239 	krndsource_t rnd_source;	/* random source */
    240 };
    241 
    242 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    243 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    244 
    245 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    246 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    247 
    248 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    249 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    250 
    251 #define	VR_CDTXSYNC(sc, x, ops)						\
    252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    253 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    254 
    255 #define	VR_CDRXSYNC(sc, x, ops)						\
    256 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    257 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    258 
    259 /*
    260  * Note we rely on MCLBYTES being a power of two below.
    261  */
    262 #define	VR_INIT_RXDESC(sc, i)						\
    263 do {									\
    264 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    265 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    266 									\
    267 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    268 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    269 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    270 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    271 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    272 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    273 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    274 } while (/* CONSTCOND */ 0)
    275 
    276 /*
    277  * register space access macros
    278  */
    279 #define	CSR_WRITE_4(sc, reg, val)					\
    280 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    281 #define	CSR_WRITE_2(sc, reg, val)					\
    282 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    283 #define	CSR_WRITE_1(sc, reg, val)					\
    284 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    285 
    286 #define	CSR_READ_4(sc, reg)						\
    287 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    288 #define	CSR_READ_2(sc, reg)						\
    289 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    290 #define	CSR_READ_1(sc, reg)						\
    291 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    292 
    293 #define	VR_TIMEOUT		1000
    294 
    295 static int	vr_add_rxbuf(struct vr_softc *, int);
    296 
    297 static void	vr_rxeof(struct vr_softc *);
    298 static void	vr_rxeoc(struct vr_softc *);
    299 static void	vr_txeof(struct vr_softc *);
    300 static int	vr_intr(void *);
    301 static void	vr_start(struct ifnet *);
    302 static int	vr_ioctl(struct ifnet *, u_long, void *);
    303 static int	vr_init(struct ifnet *);
    304 static void	vr_stop(struct ifnet *, int);
    305 static void	vr_rxdrain(struct vr_softc *);
    306 static void	vr_watchdog(struct ifnet *);
    307 static void	vr_tick(void *);
    308 
    309 static int	vr_mii_readreg(device_t, int, int, uint16_t *);
    310 static int	vr_mii_writereg(device_t, int, int, uint16_t);
    311 static void	vr_mii_statchg(struct ifnet *);
    312 
    313 static void	vr_setmulti(struct vr_softc *);
    314 static void	vr_reset(struct vr_softc *);
    315 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
    316     pcireg_t);
    317 static bool	vr_resume(device_t, const pmf_qual_t *);
    318 
    319 int	vr_copy_small = 0;
    320 
    321 #define	VR_SETBIT(sc, reg, x)				\
    322 	CSR_WRITE_1(sc, reg,				\
    323 	    CSR_READ_1(sc, reg) | (x))
    324 
    325 #define	VR_CLRBIT(sc, reg, x)				\
    326 	CSR_WRITE_1(sc, reg,				\
    327 	    CSR_READ_1(sc, reg) & ~(x))
    328 
    329 #define	VR_SETBIT16(sc, reg, x)				\
    330 	CSR_WRITE_2(sc, reg,				\
    331 	    CSR_READ_2(sc, reg) | (x))
    332 
    333 #define	VR_CLRBIT16(sc, reg, x)				\
    334 	CSR_WRITE_2(sc, reg,				\
    335 	    CSR_READ_2(sc, reg) & ~(x))
    336 
    337 #define	VR_SETBIT32(sc, reg, x)				\
    338 	CSR_WRITE_4(sc, reg,				\
    339 	    CSR_READ_4(sc, reg) | (x))
    340 
    341 #define	VR_CLRBIT32(sc, reg, x)				\
    342 	CSR_WRITE_4(sc, reg,				\
    343 	    CSR_READ_4(sc, reg) & ~(x))
    344 
    345 /*
    346  * MII bit-bang glue.
    347  */
    348 static uint32_t vr_mii_bitbang_read(device_t);
    349 static void	vr_mii_bitbang_write(device_t, uint32_t);
    350 
    351 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    352 	vr_mii_bitbang_read,
    353 	vr_mii_bitbang_write,
    354 	{
    355 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    356 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    357 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    358 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    359 		0,			/* MII_BIT_DIR_PHY_HOST */
    360 	}
    361 };
    362 
    363 static uint32_t
    364 vr_mii_bitbang_read(device_t self)
    365 {
    366 	struct vr_softc *sc = device_private(self);
    367 
    368 	return (CSR_READ_1(sc, VR_MIICMD));
    369 }
    370 
    371 static void
    372 vr_mii_bitbang_write(device_t self, uint32_t val)
    373 {
    374 	struct vr_softc *sc = device_private(self);
    375 
    376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    377 }
    378 
    379 /*
    380  * Read an PHY register through the MII.
    381  */
    382 static int
    383 vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    384 {
    385 	struct vr_softc *sc = device_private(self);
    386 
    387 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    388 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val));
    389 }
    390 
    391 /*
    392  * Write to a PHY register through the MII.
    393  */
    394 static int
    395 vr_mii_writereg(device_t self, int phy, int reg, uint16_t val)
    396 {
    397 	struct vr_softc *sc = device_private(self);
    398 
    399 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    400 	return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    401 }
    402 
    403 static void
    404 vr_mii_statchg(struct ifnet *ifp)
    405 {
    406 	struct vr_softc *sc = ifp->if_softc;
    407 	int i;
    408 
    409 	/*
    410 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    411 	 * register, we first have to put the transmit and/or receive logic
    412 	 * in the idle state.
    413 	 */
    414 	if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
    415 	    IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
    416 		sc->vr_link = true;
    417 
    418 		if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
    419 			VR_CLRBIT16(sc, VR_COMMAND,
    420 			    (VR_CMD_TX_ON|VR_CMD_RX_ON));
    421 
    422 		if (sc->vr_mii.mii_media_active & IFM_FDX)
    423 			VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    424 		else
    425 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    426 
    427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    428 	} else {
    429 		sc->vr_link = false;
    430 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    431 		for (i = VR_TIMEOUT; i > 0; i--) {
    432 			delay(10);
    433 			if (!(CSR_READ_2(sc, VR_COMMAND) &
    434 			    (VR_CMD_TX_ON|VR_CMD_RX_ON)))
    435 				break;
    436 		}
    437 		if (i == 0) {
    438 #ifdef VR_DEBUG
    439 			aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
    440 #endif
    441 			sc->vr_flags |= VR_F_RESTART;
    442 		}
    443 	}
    444 }
    445 
    446 #define	vr_calchash(addr) \
    447 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    448 
    449 /*
    450  * Program the 64-bit multicast hash filter.
    451  */
    452 static void
    453 vr_setmulti(struct vr_softc *sc)
    454 {
    455 	struct ifnet *ifp;
    456 	int h = 0;
    457 	uint32_t hashes[2] = { 0, 0 };
    458 	struct ether_multistep step;
    459 	struct ether_multi *enm;
    460 	int mcnt = 0;
    461 	uint8_t rxfilt;
    462 
    463 	ifp = &sc->vr_ec.ec_if;
    464 
    465 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    466 
    467 	if (ifp->if_flags & IFF_PROMISC) {
    468 allmulti:
    469 		ifp->if_flags |= IFF_ALLMULTI;
    470 		rxfilt |= VR_RXCFG_RX_MULTI;
    471 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    472 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    473 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    474 		return;
    475 	}
    476 
    477 	/* first, zot all the existing hash bits */
    478 	CSR_WRITE_4(sc, VR_MAR0, 0);
    479 	CSR_WRITE_4(sc, VR_MAR1, 0);
    480 
    481 	/* now program new ones */
    482 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    483 	while (enm != NULL) {
    484 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    485 		    ETHER_ADDR_LEN) != 0)
    486 			goto allmulti;
    487 
    488 		h = vr_calchash(enm->enm_addrlo);
    489 
    490 		if (h < 32)
    491 			hashes[0] |= (1 << h);
    492 		else
    493 			hashes[1] |= (1 << (h - 32));
    494 		ETHER_NEXT_MULTI(step, enm);
    495 		mcnt++;
    496 	}
    497 
    498 	ifp->if_flags &= ~IFF_ALLMULTI;
    499 
    500 	if (mcnt)
    501 		rxfilt |= VR_RXCFG_RX_MULTI;
    502 	else
    503 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    504 
    505 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    506 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    507 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    508 }
    509 
    510 static void
    511 vr_reset(struct vr_softc *sc)
    512 {
    513 	int i;
    514 
    515 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    516 
    517 	for (i = 0; i < VR_TIMEOUT; i++) {
    518 		DELAY(10);
    519 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    520 			break;
    521 	}
    522 	if (i == VR_TIMEOUT) {
    523 		if (sc->vr_revid < REV_ID_VT3065_A) {
    524 			aprint_error_dev(sc->vr_dev,
    525 			    "reset never completed!\n");
    526 		} else {
    527 			/* Use newer force reset command */
    528 			aprint_normal_dev(sc->vr_dev,
    529 			    "using force reset command.\n");
    530 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    531 		}
    532 	}
    533 
    534 	/* Wait a little while for the chip to get its brains in order. */
    535 	DELAY(1000);
    536 }
    537 
    538 /*
    539  * Initialize an RX descriptor and attach an MBUF cluster.
    540  * Note: the length fields are only 11 bits wide, which means the
    541  * largest size we can specify is 2047. This is important because
    542  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    543  * overflow the field and make a mess.
    544  */
    545 static int
    546 vr_add_rxbuf(struct vr_softc *sc, int i)
    547 {
    548 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    549 	struct mbuf *m_new;
    550 	int error;
    551 
    552 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    553 	if (m_new == NULL)
    554 		return (ENOBUFS);
    555 
    556 	MCLGET(m_new, M_DONTWAIT);
    557 	if ((m_new->m_flags & M_EXT) == 0) {
    558 		m_freem(m_new);
    559 		return (ENOBUFS);
    560 	}
    561 
    562 	if (ds->ds_mbuf != NULL)
    563 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    564 
    565 	ds->ds_mbuf = m_new;
    566 
    567 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    568 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    569 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    570 	if (error) {
    571 		aprint_error_dev(sc->vr_dev,
    572 		    "unable to load rx DMA map %d, error = %d\n", i, error);
    573 		panic("vr_add_rxbuf");		/* XXX */
    574 	}
    575 
    576 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    577 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    578 
    579 	VR_INIT_RXDESC(sc, i);
    580 
    581 	return (0);
    582 }
    583 
    584 /*
    585  * A frame has been uploaded: pass the resulting mbuf chain up to
    586  * the higher level protocols.
    587  */
    588 static void
    589 vr_rxeof(struct vr_softc *sc)
    590 {
    591 	struct mbuf *m;
    592 	struct ifnet *ifp;
    593 	struct vr_desc *d;
    594 	struct vr_descsoft *ds;
    595 	int i, total_len;
    596 	uint32_t rxstat;
    597 
    598 	ifp = &sc->vr_ec.ec_if;
    599 
    600 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    601 		d = VR_CDRX(sc, i);
    602 		ds = VR_DSRX(sc, i);
    603 
    604 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    605 
    606 		rxstat = le32toh(d->vr_status);
    607 
    608 		if (rxstat & VR_RXSTAT_OWN) {
    609 			/*
    610 			 * We have processed all of the receive buffers.
    611 			 */
    612 			break;
    613 		}
    614 
    615 		/*
    616 		 * If an error occurs, update stats, clear the
    617 		 * status word and leave the mbuf cluster in place:
    618 		 * it should simply get re-used next time this descriptor
    619 		 * comes up in the ring.
    620 		 */
    621 		if (rxstat & VR_RXSTAT_RXERR) {
    622 			const char *errstr;
    623 
    624 			ifp->if_ierrors++;
    625 			switch (rxstat & 0x000000FF) {
    626 			case VR_RXSTAT_CRCERR:
    627 				errstr = "crc error";
    628 				break;
    629 			case VR_RXSTAT_FRAMEALIGNERR:
    630 				errstr = "frame alignment error";
    631 				break;
    632 			case VR_RXSTAT_FIFOOFLOW:
    633 				errstr = "FIFO overflow";
    634 				break;
    635 			case VR_RXSTAT_GIANT:
    636 				errstr = "received giant packet";
    637 				break;
    638 			case VR_RXSTAT_RUNT:
    639 				errstr = "received runt packet";
    640 				break;
    641 			case VR_RXSTAT_BUSERR:
    642 				errstr = "system bus error";
    643 				break;
    644 			case VR_RXSTAT_BUFFERR:
    645 				errstr = "rx buffer error";
    646 				break;
    647 			default:
    648 				errstr = "unknown rx error";
    649 				break;
    650 			}
    651 			aprint_error_dev(sc->vr_dev, "receive error: %s\n",
    652 			    errstr);
    653 
    654 			VR_INIT_RXDESC(sc, i);
    655 
    656 			continue;
    657 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
    658 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
    659 			/*
    660 			 * This driver expects to receive whole packets every
    661 			 * time.  In case we receive a fragment that is not
    662 			 * a complete packet, we discard it.
    663 			 */
    664 			ifp->if_ierrors++;
    665 
    666 			aprint_error_dev(sc->vr_dev,
    667 			    "receive error: incomplete frame; "
    668 			    "size = %d, status = 0x%x\n",
    669 			    VR_RXBYTES(le32toh(d->vr_status)), rxstat);
    670 
    671 			VR_INIT_RXDESC(sc, i);
    672 
    673 			continue;
    674 		}
    675 
    676 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    677 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    678 
    679 		/* No errors; receive the packet. */
    680 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    681 #ifdef DIAGNOSTIC
    682 		if (total_len == 0) {
    683 			/*
    684 			 * If we receive a zero-length packet, we probably
    685 			 * missed to handle an error condition above.
    686 			 * Discard it to avoid a later crash.
    687 			 */
    688 			ifp->if_ierrors++;
    689 
    690 			aprint_error_dev(sc->vr_dev,
    691 			    "receive error: zero-length packet; "
    692 			    "status = 0x%x\n", rxstat);
    693 
    694 			VR_INIT_RXDESC(sc, i);
    695 
    696 			continue;
    697 		}
    698 #endif
    699 
    700 		/*
    701 		 * The Rhine chip includes the CRC with every packet.
    702 		 * Trim it off here.
    703 		 */
    704 		total_len -= ETHER_CRC_LEN;
    705 
    706 #ifdef __NO_STRICT_ALIGNMENT
    707 		/*
    708 		 * If the packet is small enough to fit in a
    709 		 * single header mbuf, allocate one and copy
    710 		 * the data into it.  This greatly reduces
    711 		 * memory consumption when we receive lots
    712 		 * of small packets.
    713 		 *
    714 		 * Otherwise, we add a new buffer to the receive
    715 		 * chain.  If this fails, we drop the packet and
    716 		 * recycle the old buffer.
    717 		 */
    718 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    719 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    720 			if (m == NULL)
    721 				goto dropit;
    722 			memcpy(mtod(m, void *),
    723 			    mtod(ds->ds_mbuf, void *), total_len);
    724 			VR_INIT_RXDESC(sc, i);
    725 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    726 			    ds->ds_dmamap->dm_mapsize,
    727 			    BUS_DMASYNC_PREREAD);
    728 		} else {
    729 			m = ds->ds_mbuf;
    730 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    731  dropit:
    732 				ifp->if_ierrors++;
    733 				VR_INIT_RXDESC(sc, i);
    734 				bus_dmamap_sync(sc->vr_dmat,
    735 				    ds->ds_dmamap, 0,
    736 				    ds->ds_dmamap->dm_mapsize,
    737 				    BUS_DMASYNC_PREREAD);
    738 				continue;
    739 			}
    740 		}
    741 #else
    742 		/*
    743 		 * The Rhine's packet buffers must be 4-byte aligned.
    744 		 * But this means that the data after the Ethernet header
    745 		 * is misaligned.  We must allocate a new buffer and
    746 		 * copy the data, shifted forward 2 bytes.
    747 		 */
    748 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    749 		if (m == NULL) {
    750  dropit:
    751 			ifp->if_ierrors++;
    752 			VR_INIT_RXDESC(sc, i);
    753 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    754 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    755 			continue;
    756 		}
    757 		if (total_len > (MHLEN - 2)) {
    758 			MCLGET(m, M_DONTWAIT);
    759 			if ((m->m_flags & M_EXT) == 0) {
    760 				m_freem(m);
    761 				goto dropit;
    762 			}
    763 		}
    764 		m->m_data += 2;
    765 
    766 		/*
    767 		 * Note that we use clusters for incoming frames, so the
    768 		 * buffer is virtually contiguous.
    769 		 */
    770 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
    771 		    total_len);
    772 
    773 		/* Allow the receive descriptor to continue using its mbuf. */
    774 		VR_INIT_RXDESC(sc, i);
    775 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    776 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    777 #endif /* __NO_STRICT_ALIGNMENT */
    778 
    779 		m_set_rcvif(m, ifp);
    780 		m->m_pkthdr.len = m->m_len = total_len;
    781 		/* Pass it on. */
    782 		if_percpuq_enqueue(ifp->if_percpuq, m);
    783 	}
    784 
    785 	/* Update the receive pointer. */
    786 	sc->vr_rxptr = i;
    787 }
    788 
    789 void
    790 vr_rxeoc(struct vr_softc *sc)
    791 {
    792 	struct ifnet *ifp;
    793 	int i;
    794 
    795 	ifp = &sc->vr_ec.ec_if;
    796 
    797 	ifp->if_ierrors++;
    798 
    799 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    800 	for (i = 0; i < VR_TIMEOUT; i++) {
    801 		DELAY(10);
    802 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
    803 			break;
    804 	}
    805 	if (i == VR_TIMEOUT) {
    806 		/* XXX need reset? */
    807 		aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
    808 	}
    809 
    810 	vr_rxeof(sc);
    811 
    812 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    813 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    814 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    815 }
    816 
    817 /*
    818  * A frame was downloaded to the chip. It's safe for us to clean up
    819  * the list buffers.
    820  */
    821 static void
    822 vr_txeof(struct vr_softc *sc)
    823 {
    824 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    825 	struct vr_desc *d;
    826 	struct vr_descsoft *ds;
    827 	uint32_t txstat;
    828 	int i, j;
    829 
    830 	ifp->if_flags &= ~IFF_OACTIVE;
    831 
    832 	/*
    833 	 * Go through our tx list and free mbufs for those
    834 	 * frames that have been transmitted.
    835 	 */
    836 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    837 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    838 		d = VR_CDTX(sc, i);
    839 		ds = VR_DSTX(sc, i);
    840 
    841 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    842 
    843 		txstat = le32toh(d->vr_status);
    844 
    845 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
    846 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    847 			for (j = 0; j < VR_TIMEOUT; j++) {
    848 				DELAY(10);
    849 				if ((CSR_READ_2(sc, VR_COMMAND) &
    850 				    VR_CMD_TX_ON) == 0)
    851 					break;
    852 			}
    853 			if (j == VR_TIMEOUT) {
    854 				/* XXX need reset? */
    855 				aprint_error_dev(sc->vr_dev,
    856 				    "TX shutdown never completed\n");
    857 			}
    858 			d->vr_status = htole32(VR_TXSTAT_OWN);
    859 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
    860 			break;
    861 		}
    862 
    863 		if (txstat & VR_TXSTAT_OWN)
    864 			break;
    865 
    866 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    867 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    868 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    869 		m_freem(ds->ds_mbuf);
    870 		ds->ds_mbuf = NULL;
    871 
    872 		if (txstat & VR_TXSTAT_ERRSUM) {
    873 			ifp->if_oerrors++;
    874 			if (txstat & VR_TXSTAT_DEFER)
    875 				ifp->if_collisions++;
    876 			if (txstat & VR_TXSTAT_LATECOLL)
    877 				ifp->if_collisions++;
    878 		}
    879 
    880 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    881 		ifp->if_opackets++;
    882 	}
    883 
    884 	/* Update the dirty transmit buffer pointer. */
    885 	sc->vr_txdirty = i;
    886 
    887 	/*
    888 	 * Cancel the watchdog timer if there are no pending
    889 	 * transmissions.
    890 	 */
    891 	if (sc->vr_txpending == 0)
    892 		ifp->if_timer = 0;
    893 }
    894 
    895 static int
    896 vr_intr(void *arg)
    897 {
    898 	struct vr_softc *sc;
    899 	struct ifnet *ifp;
    900 	uint16_t status;
    901 	int handled = 0, dotx = 0;
    902 
    903 	sc = arg;
    904 	ifp = &sc->vr_ec.ec_if;
    905 
    906 	/* Suppress unwanted interrupts. */
    907 	if ((ifp->if_flags & IFF_UP) == 0) {
    908 		vr_stop(ifp, 1);
    909 		return (0);
    910 	}
    911 
    912 	/* Disable interrupts. */
    913 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    914 
    915 	for (;;) {
    916 		status = CSR_READ_2(sc, VR_ISR);
    917 		if (status)
    918 			CSR_WRITE_2(sc, VR_ISR, status);
    919 
    920 		if ((status & VR_INTRS) == 0)
    921 			break;
    922 
    923 		handled = 1;
    924 
    925 		rnd_add_uint32(&sc->rnd_source, status);
    926 
    927 		if (status & VR_ISR_RX_OK)
    928 			vr_rxeof(sc);
    929 
    930 		if (status & VR_ISR_RX_DROPPED) {
    931 			aprint_error_dev(sc->vr_dev, "rx packet lost\n");
    932 			ifp->if_ierrors++;
    933 		}
    934 
    935 		if (status &
    936 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
    937 			vr_rxeoc(sc);
    938 
    939 
    940 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
    941 			if (status & VR_ISR_BUSERR)
    942 				aprint_error_dev(sc->vr_dev, "PCI bus error\n");
    943 			if (status & VR_ISR_TX_UNDERRUN)
    944 				aprint_error_dev(sc->vr_dev,
    945 				    "transmit underrun\n");
    946 			/* vr_init() calls vr_start() */
    947 			dotx = 0;
    948 			(void)vr_init(ifp);
    949 
    950 		}
    951 
    952 		if (status & VR_ISR_TX_OK) {
    953 			dotx = 1;
    954 			vr_txeof(sc);
    955 		}
    956 
    957 		if (status &
    958 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
    959 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
    960 				aprint_error_dev(sc->vr_dev,
    961 				    "transmit aborted\n");
    962 			if (status & VR_ISR_TX_UDFI)
    963 				aprint_error_dev(sc->vr_dev,
    964 				    "transmit underflow\n");
    965 			ifp->if_oerrors++;
    966 			dotx = 1;
    967 			vr_txeof(sc);
    968 			if (sc->vr_txpending) {
    969 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    970 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    971 			}
    972 		}
    973 	}
    974 
    975 	/* Re-enable interrupts. */
    976 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    977 
    978 	if (dotx)
    979 		if_schedule_deferred_start(ifp);
    980 
    981 	return (handled);
    982 }
    983 
    984 /*
    985  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    986  * to the mbuf data regions directly in the transmit lists. We also save a
    987  * copy of the pointers since the transmit list fragment pointers are
    988  * physical addresses.
    989  */
    990 static void
    991 vr_start(struct ifnet *ifp)
    992 {
    993 	struct vr_softc *sc = ifp->if_softc;
    994 	struct mbuf *m0, *m;
    995 	struct vr_desc *d;
    996 	struct vr_descsoft *ds;
    997 	int error, firsttx, nexttx, opending;
    998 
    999 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1000 		return;
   1001 	if (sc->vr_link == false)
   1002 		return;
   1003 
   1004 	/*
   1005 	 * Remember the previous txpending and the first transmit
   1006 	 * descriptor we use.
   1007 	 */
   1008 	opending = sc->vr_txpending;
   1009 	firsttx = VR_NEXTTX(sc->vr_txlast);
   1010 
   1011 	/*
   1012 	 * Loop through the send queue, setting up transmit descriptors
   1013 	 * until we drain the queue, or use up all available transmit
   1014 	 * descriptors.
   1015 	 */
   1016 	while (sc->vr_txpending < VR_NTXDESC) {
   1017 		/*
   1018 		 * Grab a packet off the queue.
   1019 		 */
   1020 		IFQ_POLL(&ifp->if_snd, m0);
   1021 		if (m0 == NULL)
   1022 			break;
   1023 		m = NULL;
   1024 
   1025 		/*
   1026 		 * Get the next available transmit descriptor.
   1027 		 */
   1028 		nexttx = VR_NEXTTX(sc->vr_txlast);
   1029 		d = VR_CDTX(sc, nexttx);
   1030 		ds = VR_DSTX(sc, nexttx);
   1031 
   1032 		/*
   1033 		 * Load the DMA map.  If this fails, the packet didn't
   1034 		 * fit in one DMA segment, and we need to copy.  Note,
   1035 		 * the packet must also be aligned.
   1036 		 * if the packet is too small, copy it too, so we're sure
   1037 		 * we have enough room for the pad buffer.
   1038 		 */
   1039 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
   1040 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
   1041 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1042 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1043 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1044 			if (m == NULL) {
   1045 				aprint_error_dev(sc->vr_dev,
   1046 				    "unable to allocate Tx mbuf\n");
   1047 				break;
   1048 			}
   1049 			if (m0->m_pkthdr.len > MHLEN) {
   1050 				MCLGET(m, M_DONTWAIT);
   1051 				if ((m->m_flags & M_EXT) == 0) {
   1052 					aprint_error_dev(sc->vr_dev,
   1053 					    "unable to allocate Tx cluster\n");
   1054 					m_freem(m);
   1055 					break;
   1056 				}
   1057 			}
   1058 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1059 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1060 			/*
   1061 			 * The Rhine doesn't auto-pad, so we have to do this
   1062 			 * ourselves.
   1063 			 */
   1064 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
   1065 				memset(mtod(m, char *) + m0->m_pkthdr.len,
   1066 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
   1067 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
   1068 			}
   1069 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1070 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1071 			if (error) {
   1072 				m_freem(m);
   1073 				aprint_error_dev(sc->vr_dev, "unable to load "
   1074 				    "Tx buffer, error = %d\n", error);
   1075 				break;
   1076 			}
   1077 		}
   1078 
   1079 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1080 		if (m != NULL) {
   1081 			m_freem(m0);
   1082 			m0 = m;
   1083 		}
   1084 
   1085 		/* Sync the DMA map. */
   1086 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1087 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1088 
   1089 		/*
   1090 		 * Store a pointer to the packet so we can free it later.
   1091 		 */
   1092 		ds->ds_mbuf = m0;
   1093 
   1094 		/*
   1095 		 * If there's a BPF listener, bounce a copy of this frame
   1096 		 * to him.
   1097 		 */
   1098 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1099 
   1100 		/*
   1101 		 * Fill in the transmit descriptor.
   1102 		 */
   1103 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1104 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1105 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1106 
   1107 		/*
   1108 		 * If this is the first descriptor we're enqueuing,
   1109 		 * don't give it to the Rhine yet.  That could cause
   1110 		 * a race condition.  We'll do it below.
   1111 		 */
   1112 		if (nexttx == firsttx)
   1113 			d->vr_status = 0;
   1114 		else
   1115 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1116 
   1117 		VR_CDTXSYNC(sc, nexttx,
   1118 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1119 
   1120 		/* Advance the tx pointer. */
   1121 		sc->vr_txpending++;
   1122 		sc->vr_txlast = nexttx;
   1123 	}
   1124 
   1125 	if (sc->vr_txpending == VR_NTXDESC) {
   1126 		/* No more slots left; notify upper layer. */
   1127 		ifp->if_flags |= IFF_OACTIVE;
   1128 	}
   1129 
   1130 	if (sc->vr_txpending != opending) {
   1131 		/*
   1132 		 * We enqueued packets.  If the transmitter was idle,
   1133 		 * reset the txdirty pointer.
   1134 		 */
   1135 		if (opending == 0)
   1136 			sc->vr_txdirty = firsttx;
   1137 
   1138 		/*
   1139 		 * Cause a transmit interrupt to happen on the
   1140 		 * last packet we enqueued.
   1141 		 */
   1142 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1143 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1144 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1145 
   1146 		/*
   1147 		 * The entire packet chain is set up.  Give the
   1148 		 * first descriptor to the Rhine now.
   1149 		 */
   1150 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1151 		VR_CDTXSYNC(sc, firsttx,
   1152 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1153 
   1154 		/* Start the transmitter. */
   1155 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1156 
   1157 		/* Set the watchdog timer in case the chip flakes out. */
   1158 		ifp->if_timer = 5;
   1159 	}
   1160 }
   1161 
   1162 /*
   1163  * Initialize the interface.  Must be called at splnet.
   1164  */
   1165 static int
   1166 vr_init(struct ifnet *ifp)
   1167 {
   1168 	struct vr_softc *sc = ifp->if_softc;
   1169 	struct vr_desc *d;
   1170 	struct vr_descsoft *ds;
   1171 	int i, error = 0;
   1172 
   1173 	/* Cancel pending I/O. */
   1174 	vr_stop(ifp, 0);
   1175 
   1176 	/* Reset the Rhine to a known state. */
   1177 	vr_reset(sc);
   1178 
   1179 	/* set DMA length in BCR0 and BCR1 */
   1180 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1181 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1182 
   1183 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1184 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1185 
   1186 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1187 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1188 
   1189 	/* set DMA threshold length in RXCFG and TXCFG */
   1190 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1191 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1192 
   1193 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1194 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1195 
   1196 	/*
   1197 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1198 	 * to the end of the list so that it will wrap around to the first
   1199 	 * descriptor when the first packet is transmitted.
   1200 	 */
   1201 	for (i = 0; i < VR_NTXDESC; i++) {
   1202 		d = VR_CDTX(sc, i);
   1203 		memset(d, 0, sizeof(struct vr_desc));
   1204 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1205 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1206 	}
   1207 	sc->vr_txpending = 0;
   1208 	sc->vr_txdirty = 0;
   1209 	sc->vr_txlast = VR_NTXDESC - 1;
   1210 
   1211 	/*
   1212 	 * Initialize the receive descriptor ring.
   1213 	 */
   1214 	for (i = 0; i < VR_NRXDESC; i++) {
   1215 		ds = VR_DSRX(sc, i);
   1216 		if (ds->ds_mbuf == NULL) {
   1217 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1218 				aprint_error_dev(sc->vr_dev,
   1219 				    "unable to allocate or map rx buffer %d, "
   1220 				    "error = %d\n", i, error);
   1221 				/*
   1222 				 * XXX Should attempt to run with fewer receive
   1223 				 * XXX buffers instead of just failing.
   1224 				 */
   1225 				vr_rxdrain(sc);
   1226 				goto out;
   1227 			}
   1228 		} else
   1229 			VR_INIT_RXDESC(sc, i);
   1230 	}
   1231 	sc->vr_rxptr = 0;
   1232 
   1233 	/* If we want promiscuous mode, set the allframes bit. */
   1234 	if (ifp->if_flags & IFF_PROMISC)
   1235 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1236 	else
   1237 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1238 
   1239 	/* Set capture broadcast bit to capture broadcast frames. */
   1240 	if (ifp->if_flags & IFF_BROADCAST)
   1241 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1242 	else
   1243 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1244 
   1245 	/* Program the multicast filter, if necessary. */
   1246 	vr_setmulti(sc);
   1247 
   1248 	/* Give the transmit and receive rings to the Rhine. */
   1249 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1250 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1251 
   1252 	/* Set current media. */
   1253 	sc->vr_link = true;
   1254 	if ((error = ether_mediachange(ifp)) != 0)
   1255 		goto out;
   1256 
   1257 	/* Enable receiver and transmitter. */
   1258 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1259 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1260 				    VR_CMD_RX_GO);
   1261 
   1262 	/* Enable interrupts. */
   1263 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1264 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1265 
   1266 	ifp->if_flags |= IFF_RUNNING;
   1267 	ifp->if_flags &= ~IFF_OACTIVE;
   1268 
   1269 	/* Start one second timer. */
   1270 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1271 
   1272 	/* Attempt to start output on the interface. */
   1273 	vr_start(ifp);
   1274 
   1275  out:
   1276 	if (error)
   1277 		aprint_error_dev(sc->vr_dev, "interface not running\n");
   1278 	return (error);
   1279 }
   1280 
   1281 static int
   1282 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
   1283 {
   1284 	struct vr_softc *sc = ifp->if_softc;
   1285 	int s, error = 0;
   1286 
   1287 	s = splnet();
   1288 
   1289 	switch (command) {
   1290 	case SIOCSIFFLAGS:
   1291 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1292 			break;
   1293 
   1294 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1295 		case IFF_RUNNING:
   1296 			vr_stop(ifp, 1);
   1297 			break;
   1298 		case IFF_UP:
   1299 			vr_init(ifp);
   1300 			break;
   1301 		case IFF_UP | IFF_RUNNING:
   1302 			if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
   1303 				vr_setmulti(sc);
   1304 			else
   1305 				vr_init(ifp);
   1306 			break;
   1307 		}
   1308 		sc->vr_if_flags = ifp->if_flags;
   1309 		break;
   1310 	default:
   1311 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1312 			break;
   1313 		error = 0;
   1314 		if (command == SIOCADDMULTI || command == SIOCDELMULTI)
   1315 			vr_setmulti(sc);
   1316 	}
   1317 	splx(s);
   1318 
   1319 	return error;
   1320 }
   1321 
   1322 static void
   1323 vr_watchdog(struct ifnet *ifp)
   1324 {
   1325 	struct vr_softc *sc = ifp->if_softc;
   1326 
   1327 	aprint_error_dev(sc->vr_dev, "device timeout\n");
   1328 	ifp->if_oerrors++;
   1329 
   1330 	(void) vr_init(ifp);
   1331 }
   1332 
   1333 /*
   1334  * One second timer, used to tick MII.
   1335  */
   1336 static void
   1337 vr_tick(void *arg)
   1338 {
   1339 	struct vr_softc *sc = arg;
   1340 	int s;
   1341 
   1342 	s = splnet();
   1343 	if (sc->vr_flags & VR_F_RESTART) {
   1344 		aprint_normal_dev(sc->vr_dev, "restarting\n");
   1345 		vr_init(&sc->vr_ec.ec_if);
   1346 		sc->vr_flags &= ~VR_F_RESTART;
   1347 	}
   1348 	mii_tick(&sc->vr_mii);
   1349 	splx(s);
   1350 
   1351 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1352 }
   1353 
   1354 /*
   1355  * Drain the receive queue.
   1356  */
   1357 static void
   1358 vr_rxdrain(struct vr_softc *sc)
   1359 {
   1360 	struct vr_descsoft *ds;
   1361 	int i;
   1362 
   1363 	for (i = 0; i < VR_NRXDESC; i++) {
   1364 		ds = VR_DSRX(sc, i);
   1365 		if (ds->ds_mbuf != NULL) {
   1366 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1367 			m_freem(ds->ds_mbuf);
   1368 			ds->ds_mbuf = NULL;
   1369 		}
   1370 	}
   1371 }
   1372 
   1373 /*
   1374  * Stop the adapter and free any mbufs allocated to the
   1375  * transmit lists.
   1376  */
   1377 static void
   1378 vr_stop(struct ifnet *ifp, int disable)
   1379 {
   1380 	struct vr_softc *sc = ifp->if_softc;
   1381 	struct vr_descsoft *ds;
   1382 	int i;
   1383 
   1384 	/* Cancel one second timer. */
   1385 	callout_stop(&sc->vr_tick_ch);
   1386 
   1387 	/* Down the MII. */
   1388 	mii_down(&sc->vr_mii);
   1389 
   1390 	ifp = &sc->vr_ec.ec_if;
   1391 	ifp->if_timer = 0;
   1392 
   1393 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1394 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1395 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1396 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1397 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1398 
   1399 	/*
   1400 	 * Release any queued transmit buffers.
   1401 	 */
   1402 	for (i = 0; i < VR_NTXDESC; i++) {
   1403 		ds = VR_DSTX(sc, i);
   1404 		if (ds->ds_mbuf != NULL) {
   1405 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1406 			m_freem(ds->ds_mbuf);
   1407 			ds->ds_mbuf = NULL;
   1408 		}
   1409 	}
   1410 
   1411 	/*
   1412 	 * Mark the interface down and cancel the watchdog timer.
   1413 	 */
   1414 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1415 	ifp->if_timer = 0;
   1416 
   1417 	if (disable)
   1418 		vr_rxdrain(sc);
   1419 }
   1420 
   1421 static int	vr_probe(device_t, cfdata_t, void *);
   1422 static void	vr_attach(device_t, device_t, void *);
   1423 static bool	vr_shutdown(device_t, int);
   1424 
   1425 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
   1426     vr_probe, vr_attach, NULL, NULL);
   1427 
   1428 static const struct vr_type *
   1429 vr_lookup(struct pci_attach_args *pa)
   1430 {
   1431 	const struct vr_type *vrt;
   1432 	int i;
   1433 
   1434 	for (i = 0; i < __arraycount(vr_devs); i++) {
   1435 		vrt = &vr_devs[i];
   1436 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1437 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1438 			return (vrt);
   1439 	}
   1440 	return (NULL);
   1441 }
   1442 
   1443 static int
   1444 vr_probe(device_t parent, cfdata_t match, void *aux)
   1445 {
   1446 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1447 
   1448 	if (vr_lookup(pa) != NULL)
   1449 		return (1);
   1450 
   1451 	return (0);
   1452 }
   1453 
   1454 /*
   1455  * Stop all chip I/O so that the kernel's probe routines don't
   1456  * get confused by errant DMAs when rebooting.
   1457  */
   1458 static bool
   1459 vr_shutdown(device_t self, int howto)
   1460 {
   1461 	struct vr_softc *sc = device_private(self);
   1462 
   1463 	vr_stop(&sc->vr_ec.ec_if, 1);
   1464 
   1465 	return true;
   1466 }
   1467 
   1468 /*
   1469  * Attach the interface. Allocate softc structures, do ifmedia
   1470  * setup and ethernet/BPF attach.
   1471  */
   1472 static void
   1473 vr_attach(device_t parent, device_t self, void *aux)
   1474 {
   1475 	struct vr_softc *sc = device_private(self);
   1476 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1477 	bus_dma_segment_t seg;
   1478 	uint32_t reg;
   1479 	struct ifnet *ifp;
   1480 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
   1481 	int i, rseg, error;
   1482 	char intrbuf[PCI_INTRSTR_LEN];
   1483 
   1484 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
   1485 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
   1486 
   1487 	sc->vr_dev = self;
   1488 	sc->vr_pc = pa->pa_pc;
   1489 	sc->vr_tag = pa->pa_tag;
   1490 	sc->vr_id = pa->pa_id;
   1491 	callout_init(&sc->vr_tick_ch, 0);
   1492 
   1493 	pci_aprint_devinfo(pa, NULL);
   1494 
   1495 	/*
   1496 	 * Handle power management nonsense.
   1497 	 */
   1498 
   1499 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1500 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1501 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1502 
   1503 	/* power up chip */
   1504 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1505 	    vr_restore_state)) && error != EOPNOTSUPP) {
   1506 		aprint_error_dev(self, "cannot activate %d\n", error);
   1507 		return;
   1508 	}
   1509 
   1510 	/* Make sure bus mastering is enabled. */
   1511 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1512 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1513 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1514 
   1515 	/* Get revision */
   1516 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1517 
   1518 	/*
   1519 	 * Map control/status registers.
   1520 	 */
   1521 	{
   1522 		bus_space_tag_t iot, memt;
   1523 		bus_space_handle_t ioh, memh;
   1524 		int ioh_valid, memh_valid;
   1525 		pci_intr_handle_t intrhandle;
   1526 		const char *intrstr;
   1527 
   1528 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1529 			PCI_MAPREG_TYPE_IO, 0,
   1530 			&iot, &ioh, NULL, NULL) == 0);
   1531 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1532 			PCI_MAPREG_TYPE_MEM |
   1533 			PCI_MAPREG_MEM_TYPE_32BIT,
   1534 			0, &memt, &memh, NULL, NULL) == 0);
   1535 #if defined(VR_USEIOSPACE)
   1536 		if (ioh_valid) {
   1537 			sc->vr_bst = iot;
   1538 			sc->vr_bsh = ioh;
   1539 		} else if (memh_valid) {
   1540 			sc->vr_bst = memt;
   1541 			sc->vr_bsh = memh;
   1542 		}
   1543 #else
   1544 		if (memh_valid) {
   1545 			sc->vr_bst = memt;
   1546 			sc->vr_bsh = memh;
   1547 		} else if (ioh_valid) {
   1548 			sc->vr_bst = iot;
   1549 			sc->vr_bsh = ioh;
   1550 		}
   1551 #endif
   1552 		else {
   1553 			aprint_error_dev(self,
   1554 			    "unable to map device registers\n");
   1555 			return;
   1556 		}
   1557 
   1558 		/* Allocate interrupt */
   1559 		if (pci_intr_map(pa, &intrhandle)) {
   1560 			aprint_error_dev(self, "couldn't map interrupt\n");
   1561 			return;
   1562 		}
   1563 		intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
   1564 		    sizeof(intrbuf));
   1565 		sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle,
   1566 		    IPL_NET, vr_intr, sc, device_xname(self));
   1567 		if (sc->vr_ih == NULL) {
   1568 			aprint_error_dev(self, "couldn't establish interrupt");
   1569 			if (intrstr != NULL)
   1570 				aprint_error(" at %s", intrstr);
   1571 			aprint_error("\n");
   1572 			return;
   1573 		}
   1574 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
   1575 	}
   1576 
   1577 	/*
   1578 	 * Windows may put the chip in suspend mode when it
   1579 	 * shuts down. Be sure to kick it in the head to wake it
   1580 	 * up again.
   1581 	 *
   1582 	 * Don't touch this register on VT3043 since it causes
   1583 	 * kernel MCHK trap on macppc.
   1584 	 * (Note some VT86C100A chip returns a product ID of VT3043)
   1585 	 */
   1586 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
   1587 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1588 
   1589 	/* Reset the adapter. */
   1590 	vr_reset(sc);
   1591 
   1592 	/*
   1593 	 * Get station address. The way the Rhine chips work,
   1594 	 * you're not allowed to directly access the EEPROM once
   1595 	 * they've been programmed a special way. Consequently,
   1596 	 * we need to read the node address from the PAR registers.
   1597 	 *
   1598 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1599 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1600 	 *         pretty pointless since the chip does this automatically
   1601 	 *         at powerup/reset.
   1602 	 *         I suspect the same thing applies to the other Rhine
   1603 	 *         variants, but in the absence of a data sheet for those
   1604 	 *         (and the lack of anyone else noticing the problems this
   1605 	 *         causes) I'm going to retain the old behaviour for the
   1606 	 *         other parts.
   1607 	 *         In some cases, the chip really does startup without having
   1608 	 *         read the EEPROM (kern/34812). To handle this case, we force
   1609 	 *         a reload if we see an all-zeroes MAC address.
   1610 	 */
   1611 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
   1612 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
   1613 
   1614 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1615 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
   1616 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1617 		DELAY(200);
   1618 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1619 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1620 	}
   1621 
   1622 	/*
   1623 	 * A Rhine chip was detected. Inform the world.
   1624 	 */
   1625 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
   1626 
   1627 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1628 
   1629 	sc->vr_dmat = pa->pa_dmat;
   1630 
   1631 	/*
   1632 	 * Allocate the control data structures, and create and load
   1633 	 * the DMA map for it.
   1634 	 */
   1635 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1636 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1637 	    0)) != 0) {
   1638 		aprint_error_dev(self,
   1639 		    "unable to allocate control data, error = %d\n", error);
   1640 		goto fail_0;
   1641 	}
   1642 
   1643 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1644 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
   1645 	    BUS_DMA_COHERENT)) != 0) {
   1646 		aprint_error_dev(self,
   1647 		    "unable to map control data, error = %d\n", error);
   1648 		goto fail_1;
   1649 	}
   1650 
   1651 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1652 	    sizeof(struct vr_control_data), 1,
   1653 	    sizeof(struct vr_control_data), 0, 0,
   1654 	    &sc->vr_cddmamap)) != 0) {
   1655 		aprint_error_dev(self,
   1656 		    "unable to create control data DMA map, error = %d\n",
   1657 		    error);
   1658 		goto fail_2;
   1659 	}
   1660 
   1661 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1662 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1663 	    0)) != 0) {
   1664 		aprint_error_dev(self,
   1665 		    "unable to load control data DMA map, error = %d\n",
   1666 		    error);
   1667 		goto fail_3;
   1668 	}
   1669 
   1670 	/*
   1671 	 * Create the transmit buffer DMA maps.
   1672 	 */
   1673 	for (i = 0; i < VR_NTXDESC; i++) {
   1674 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1675 		    1, MCLBYTES, 0, 0,
   1676 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1677 			aprint_error_dev(self,
   1678 			    "unable to create tx DMA map %d, error = %d\n", i,
   1679 			    error);
   1680 			goto fail_4;
   1681 		}
   1682 	}
   1683 
   1684 	/*
   1685 	 * Create the receive buffer DMA maps.
   1686 	 */
   1687 	for (i = 0; i < VR_NRXDESC; i++) {
   1688 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1689 		    MCLBYTES, 0, 0,
   1690 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1691 			aprint_error_dev(self,
   1692 			    "unable to create rx DMA map %d, error = %d\n", i,
   1693 			    error);
   1694 			goto fail_5;
   1695 		}
   1696 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1697 	}
   1698 
   1699 	ifp = &sc->vr_ec.ec_if;
   1700 	ifp->if_softc = sc;
   1701 	ifp->if_mtu = ETHERMTU;
   1702 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1703 	ifp->if_ioctl = vr_ioctl;
   1704 	ifp->if_start = vr_start;
   1705 	ifp->if_watchdog = vr_watchdog;
   1706 	ifp->if_init = vr_init;
   1707 	ifp->if_stop = vr_stop;
   1708 	IFQ_SET_READY(&ifp->if_snd);
   1709 
   1710 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1711 
   1712 	/*
   1713 	 * Initialize MII/media info.
   1714 	 */
   1715 	sc->vr_mii.mii_ifp = ifp;
   1716 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1717 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1718 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1719 
   1720 	sc->vr_ec.ec_mii = &sc->vr_mii;
   1721 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
   1722 		ether_mediastatus);
   1723 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1724 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1725 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1726 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1727 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1728 	} else
   1729 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1730 
   1731 	sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1732 
   1733 	/*
   1734 	 * Call MI attach routines.
   1735 	 */
   1736 	if_attach(ifp);
   1737 	if_deferred_start_init(ifp, NULL);
   1738 	ether_ifattach(ifp, sc->vr_enaddr);
   1739 
   1740 	rnd_attach_source(&sc->rnd_source, device_xname(self),
   1741 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1742 
   1743 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
   1744 		pmf_class_network_register(self, ifp);
   1745 	else
   1746 		aprint_error_dev(self, "couldn't establish power handler\n");
   1747 
   1748 	return;
   1749 
   1750  fail_5:
   1751 	for (i = 0; i < VR_NRXDESC; i++) {
   1752 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1753 			bus_dmamap_destroy(sc->vr_dmat,
   1754 			    sc->vr_rxsoft[i].ds_dmamap);
   1755 	}
   1756  fail_4:
   1757 	for (i = 0; i < VR_NTXDESC; i++) {
   1758 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1759 			bus_dmamap_destroy(sc->vr_dmat,
   1760 			    sc->vr_txsoft[i].ds_dmamap);
   1761 	}
   1762 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1763  fail_3:
   1764 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1765  fail_2:
   1766 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
   1767 	    sizeof(struct vr_control_data));
   1768  fail_1:
   1769 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1770  fail_0:
   1771 	return;
   1772 }
   1773 
   1774 static int
   1775 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
   1776     pcireg_t state)
   1777 {
   1778 	struct vr_softc *sc = device_private(self);
   1779 	int error;
   1780 
   1781 	if (state == PCI_PMCSR_STATE_D0)
   1782 		return 0;
   1783 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
   1784 		return error;
   1785 
   1786 	/* Restore PCI config data. */
   1787 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
   1788 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
   1789 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
   1790 	return 0;
   1791 }
   1792 
   1793 static bool
   1794 vr_resume(device_t self, const pmf_qual_t *qual)
   1795 {
   1796 	struct vr_softc *sc = device_private(self);
   1797 
   1798 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
   1799 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1800 
   1801 	return true;
   1802 }
   1803