if_vr.c revision 1.131 1 /* $NetBSD: if_vr.c,v 1.131 2019/09/13 07:55:07 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.131 2019/09/13 07:55:07 msaitoh Exp $");
101
102
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #include <sys/rndsource.h>
115
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121
122 #include <net/bpf.h>
123
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135
136 #include <dev/pci/if_vrreg.h>
137
138 #define VR_USEIOSPACE
139
140 /*
141 * Various supported device vendors/types and their names.
142 */
143 static const struct vr_type {
144 pci_vendor_id_t vr_vid;
145 pci_product_id_t vr_did;
146 } vr_devs[] = {
147 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
148 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
149 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
150 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
151 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
152 };
153
154 /*
155 * Transmit descriptor list size.
156 */
157 #define VR_NTXDESC 64
158 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
159 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
160
161 /*
162 * Receive descriptor list size.
163 */
164 #define VR_NRXDESC 64
165 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
166 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
167
168 /*
169 * Control data structres that are DMA'd to the Rhine chip. We allocate
170 * them in a single clump that maps to a single DMA segment to make several
171 * things easier.
172 *
173 * Note that since we always copy outgoing packets to aligned transmit
174 * buffers, we can reduce the transmit descriptors to one per packet.
175 */
176 struct vr_control_data {
177 struct vr_desc vr_txdescs[VR_NTXDESC];
178 struct vr_desc vr_rxdescs[VR_NRXDESC];
179 };
180
181 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
182 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
183 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
184
185 /*
186 * Software state of transmit and receive descriptors.
187 */
188 struct vr_descsoft {
189 struct mbuf *ds_mbuf; /* head of mbuf chain */
190 bus_dmamap_t ds_dmamap; /* our DMA map */
191 };
192
193 struct vr_softc {
194 device_t vr_dev;
195 void *vr_ih; /* interrupt cookie */
196 bus_space_tag_t vr_bst; /* bus space tag */
197 bus_space_handle_t vr_bsh; /* bus space handle */
198 bus_dma_tag_t vr_dmat; /* bus DMA tag */
199 pci_chipset_tag_t vr_pc; /* PCI chipset info */
200 pcitag_t vr_tag; /* PCI tag */
201 struct ethercom vr_ec; /* Ethernet common info */
202 uint8_t vr_enaddr[ETHER_ADDR_LEN];
203 struct mii_data vr_mii; /* MII/media info */
204
205 pcireg_t vr_id; /* vendor/product ID */
206 uint8_t vr_revid; /* Rhine chip revision */
207
208 callout_t vr_tick_ch; /* tick callout */
209
210 bus_dmamap_t vr_cddmamap; /* control data DMA map */
211 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
212
213 /*
214 * Software state for transmit and receive descriptors.
215 */
216 struct vr_descsoft vr_txsoft[VR_NTXDESC];
217 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
218
219 /*
220 * Control data structures.
221 */
222 struct vr_control_data *vr_control_data;
223
224 int vr_txpending; /* number of TX requests pending */
225 int vr_txdirty; /* first dirty TX descriptor */
226 int vr_txlast; /* last used TX descriptor */
227
228 int vr_rxptr; /* next ready RX descriptor */
229
230 uint32_t vr_save_iobase;
231 uint32_t vr_save_membase;
232 uint32_t vr_save_irq;
233
234 bool vr_link;
235 int vr_flags;
236 #define VR_F_RESTART 0x1 /* restart on next tick */
237 u_short vr_if_flags;
238
239 krndsource_t rnd_source; /* random source */
240 };
241
242 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
243 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
244
245 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
246 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
247
248 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
249 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
250
251 #define VR_CDTXSYNC(sc, x, ops) \
252 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
253 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
254
255 #define VR_CDRXSYNC(sc, x, ops) \
256 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
257 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
258
259 /*
260 * Note we rely on MCLBYTES being a power of two below.
261 */
262 #define VR_INIT_RXDESC(sc, i) \
263 do { \
264 struct vr_desc *__d = VR_CDRX((sc), (i)); \
265 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
266 \
267 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
268 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
269 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
270 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
271 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
272 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
273 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
274 } while (/* CONSTCOND */ 0)
275
276 /*
277 * register space access macros
278 */
279 #define CSR_WRITE_4(sc, reg, val) \
280 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
281 #define CSR_WRITE_2(sc, reg, val) \
282 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
283 #define CSR_WRITE_1(sc, reg, val) \
284 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
285
286 #define CSR_READ_4(sc, reg) \
287 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
288 #define CSR_READ_2(sc, reg) \
289 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
290 #define CSR_READ_1(sc, reg) \
291 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
292
293 #define VR_TIMEOUT 1000
294
295 static int vr_add_rxbuf(struct vr_softc *, int);
296
297 static void vr_rxeof(struct vr_softc *);
298 static void vr_rxeoc(struct vr_softc *);
299 static void vr_txeof(struct vr_softc *);
300 static int vr_intr(void *);
301 static void vr_start(struct ifnet *);
302 static int vr_ioctl(struct ifnet *, u_long, void *);
303 static int vr_init(struct ifnet *);
304 static void vr_stop(struct ifnet *, int);
305 static void vr_rxdrain(struct vr_softc *);
306 static void vr_watchdog(struct ifnet *);
307 static void vr_tick(void *);
308
309 static int vr_mii_readreg(device_t, int, int, uint16_t *);
310 static int vr_mii_writereg(device_t, int, int, uint16_t);
311 static void vr_mii_statchg(struct ifnet *);
312
313 static void vr_setmulti(struct vr_softc *);
314 static void vr_reset(struct vr_softc *);
315 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
316 pcireg_t);
317 static bool vr_resume(device_t, const pmf_qual_t *);
318
319 int vr_copy_small = 0;
320
321 #define VR_SETBIT(sc, reg, x) \
322 CSR_WRITE_1(sc, reg, \
323 CSR_READ_1(sc, reg) | (x))
324
325 #define VR_CLRBIT(sc, reg, x) \
326 CSR_WRITE_1(sc, reg, \
327 CSR_READ_1(sc, reg) & ~(x))
328
329 #define VR_SETBIT16(sc, reg, x) \
330 CSR_WRITE_2(sc, reg, \
331 CSR_READ_2(sc, reg) | (x))
332
333 #define VR_CLRBIT16(sc, reg, x) \
334 CSR_WRITE_2(sc, reg, \
335 CSR_READ_2(sc, reg) & ~(x))
336
337 #define VR_SETBIT32(sc, reg, x) \
338 CSR_WRITE_4(sc, reg, \
339 CSR_READ_4(sc, reg) | (x))
340
341 #define VR_CLRBIT32(sc, reg, x) \
342 CSR_WRITE_4(sc, reg, \
343 CSR_READ_4(sc, reg) & ~(x))
344
345 /*
346 * MII bit-bang glue.
347 */
348 static uint32_t vr_mii_bitbang_read(device_t);
349 static void vr_mii_bitbang_write(device_t, uint32_t);
350
351 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
352 vr_mii_bitbang_read,
353 vr_mii_bitbang_write,
354 {
355 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
356 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
357 VR_MIICMD_CLK, /* MII_BIT_MDC */
358 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
359 0, /* MII_BIT_DIR_PHY_HOST */
360 }
361 };
362
363 static uint32_t
364 vr_mii_bitbang_read(device_t self)
365 {
366 struct vr_softc *sc = device_private(self);
367
368 return (CSR_READ_1(sc, VR_MIICMD));
369 }
370
371 static void
372 vr_mii_bitbang_write(device_t self, uint32_t val)
373 {
374 struct vr_softc *sc = device_private(self);
375
376 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378
379 /*
380 * Read an PHY register through the MII.
381 */
382 static int
383 vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
384 {
385 struct vr_softc *sc = device_private(self);
386
387 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
388 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val));
389 }
390
391 /*
392 * Write to a PHY register through the MII.
393 */
394 static int
395 vr_mii_writereg(device_t self, int phy, int reg, uint16_t val)
396 {
397 struct vr_softc *sc = device_private(self);
398
399 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
400 return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
401 }
402
403 static void
404 vr_mii_statchg(struct ifnet *ifp)
405 {
406 struct vr_softc *sc = ifp->if_softc;
407 int i;
408
409 /*
410 * In order to fiddle with the 'full-duplex' bit in the netconfig
411 * register, we first have to put the transmit and/or receive logic
412 * in the idle state.
413 */
414 if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
415 IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
416 sc->vr_link = true;
417
418 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON))
419 VR_CLRBIT16(sc, VR_COMMAND,
420 (VR_CMD_TX_ON | VR_CMD_RX_ON));
421
422 if (sc->vr_mii.mii_media_active & IFM_FDX)
423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 else
425 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426
427 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
428 } else {
429 sc->vr_link = false;
430 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
431 for (i = VR_TIMEOUT; i > 0; i--) {
432 delay(10);
433 if (!(CSR_READ_2(sc, VR_COMMAND) &
434 (VR_CMD_TX_ON | VR_CMD_RX_ON)))
435 break;
436 }
437 if (i == 0) {
438 #ifdef VR_DEBUG
439 aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
440 #endif
441 sc->vr_flags |= VR_F_RESTART;
442 }
443 }
444 }
445
446 #define vr_calchash(addr) \
447 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
448
449 /*
450 * Program the 64-bit multicast hash filter.
451 */
452 static void
453 vr_setmulti(struct vr_softc *sc)
454 {
455 struct ethercom *ec = &sc->vr_ec;
456 struct ifnet *ifp = &ec->ec_if;
457 int h = 0;
458 uint32_t hashes[2] = { 0, 0 };
459 struct ether_multistep step;
460 struct ether_multi *enm;
461 int mcnt = 0;
462 uint8_t rxfilt;
463
464 rxfilt = CSR_READ_1(sc, VR_RXCFG);
465
466 if (ifp->if_flags & IFF_PROMISC) {
467 allmulti:
468 ifp->if_flags |= IFF_ALLMULTI;
469 rxfilt |= VR_RXCFG_RX_MULTI;
470 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
471 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
472 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
473 return;
474 }
475
476 /* first, zot all the existing hash bits */
477 CSR_WRITE_4(sc, VR_MAR0, 0);
478 CSR_WRITE_4(sc, VR_MAR1, 0);
479
480 /* now program new ones */
481 ETHER_LOCK(ec);
482 ETHER_FIRST_MULTI(step, ec, enm);
483 while (enm != NULL) {
484 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
485 ETHER_ADDR_LEN) != 0) {
486 ETHER_UNLOCK(ec);
487 goto allmulti;
488 }
489
490 h = vr_calchash(enm->enm_addrlo);
491
492 if (h < 32)
493 hashes[0] |= (1 << h);
494 else
495 hashes[1] |= (1 << (h - 32));
496 ETHER_NEXT_MULTI(step, enm);
497 mcnt++;
498 }
499 ETHER_UNLOCK(ec);
500
501 ifp->if_flags &= ~IFF_ALLMULTI;
502
503 if (mcnt)
504 rxfilt |= VR_RXCFG_RX_MULTI;
505 else
506 rxfilt &= ~VR_RXCFG_RX_MULTI;
507
508 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
509 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
510 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
511 }
512
513 static void
514 vr_reset(struct vr_softc *sc)
515 {
516 int i;
517
518 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
519
520 for (i = 0; i < VR_TIMEOUT; i++) {
521 DELAY(10);
522 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
523 break;
524 }
525 if (i == VR_TIMEOUT) {
526 if (sc->vr_revid < REV_ID_VT3065_A) {
527 aprint_error_dev(sc->vr_dev,
528 "reset never completed!\n");
529 } else {
530 /* Use newer force reset command */
531 aprint_normal_dev(sc->vr_dev,
532 "using force reset command.\n");
533 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
534 }
535 }
536
537 /* Wait a little while for the chip to get its brains in order. */
538 DELAY(1000);
539 }
540
541 /*
542 * Initialize an RX descriptor and attach an MBUF cluster.
543 * Note: the length fields are only 11 bits wide, which means the
544 * largest size we can specify is 2047. This is important because
545 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
546 * overflow the field and make a mess.
547 */
548 static int
549 vr_add_rxbuf(struct vr_softc *sc, int i)
550 {
551 struct vr_descsoft *ds = VR_DSRX(sc, i);
552 struct mbuf *m_new;
553 int error;
554
555 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
556 if (m_new == NULL)
557 return (ENOBUFS);
558
559 MCLGET(m_new, M_DONTWAIT);
560 if ((m_new->m_flags & M_EXT) == 0) {
561 m_freem(m_new);
562 return (ENOBUFS);
563 }
564
565 if (ds->ds_mbuf != NULL)
566 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
567
568 ds->ds_mbuf = m_new;
569
570 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
571 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
572 BUS_DMA_READ | BUS_DMA_NOWAIT);
573 if (error) {
574 aprint_error_dev(sc->vr_dev,
575 "unable to load rx DMA map %d, error = %d\n", i, error);
576 panic("vr_add_rxbuf"); /* XXX */
577 }
578
579 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
580 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
581
582 VR_INIT_RXDESC(sc, i);
583
584 return (0);
585 }
586
587 /*
588 * A frame has been uploaded: pass the resulting mbuf chain up to
589 * the higher level protocols.
590 */
591 static void
592 vr_rxeof(struct vr_softc *sc)
593 {
594 struct mbuf *m;
595 struct ifnet *ifp;
596 struct vr_desc *d;
597 struct vr_descsoft *ds;
598 int i, total_len;
599 uint32_t rxstat;
600
601 ifp = &sc->vr_ec.ec_if;
602
603 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
604 d = VR_CDRX(sc, i);
605 ds = VR_DSRX(sc, i);
606
607 VR_CDRXSYNC(sc, i,
608 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
609
610 rxstat = le32toh(d->vr_status);
611
612 if (rxstat & VR_RXSTAT_OWN) {
613 /*
614 * We have processed all of the receive buffers.
615 */
616 break;
617 }
618
619 /*
620 * If an error occurs, update stats, clear the
621 * status word and leave the mbuf cluster in place:
622 * it should simply get re-used next time this descriptor
623 * comes up in the ring.
624 */
625 if (rxstat & VR_RXSTAT_RXERR) {
626 const char *errstr;
627
628 ifp->if_ierrors++;
629 switch (rxstat & 0x000000FF) {
630 case VR_RXSTAT_CRCERR:
631 errstr = "crc error";
632 break;
633 case VR_RXSTAT_FRAMEALIGNERR:
634 errstr = "frame alignment error";
635 break;
636 case VR_RXSTAT_FIFOOFLOW:
637 errstr = "FIFO overflow";
638 break;
639 case VR_RXSTAT_GIANT:
640 errstr = "received giant packet";
641 break;
642 case VR_RXSTAT_RUNT:
643 errstr = "received runt packet";
644 break;
645 case VR_RXSTAT_BUSERR:
646 errstr = "system bus error";
647 break;
648 case VR_RXSTAT_BUFFERR:
649 errstr = "rx buffer error";
650 break;
651 default:
652 errstr = "unknown rx error";
653 break;
654 }
655 aprint_error_dev(sc->vr_dev, "receive error: %s\n",
656 errstr);
657
658 VR_INIT_RXDESC(sc, i);
659
660 continue;
661 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
662 !(rxstat & VR_RXSTAT_LASTFRAG)) {
663 /*
664 * This driver expects to receive whole packets every
665 * time. In case we receive a fragment that is not
666 * a complete packet, we discard it.
667 */
668 ifp->if_ierrors++;
669
670 aprint_error_dev(sc->vr_dev,
671 "receive error: incomplete frame; "
672 "size = %d, status = 0x%x\n",
673 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
674
675 VR_INIT_RXDESC(sc, i);
676
677 continue;
678 }
679
680 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
681 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
682
683 /* No errors; receive the packet. */
684 total_len = VR_RXBYTES(le32toh(d->vr_status));
685 #ifdef DIAGNOSTIC
686 if (total_len == 0) {
687 /*
688 * If we receive a zero-length packet, we probably
689 * missed to handle an error condition above.
690 * Discard it to avoid a later crash.
691 */
692 ifp->if_ierrors++;
693
694 aprint_error_dev(sc->vr_dev,
695 "receive error: zero-length packet; "
696 "status = 0x%x\n", rxstat);
697
698 VR_INIT_RXDESC(sc, i);
699
700 continue;
701 }
702 #endif
703
704 /*
705 * The Rhine chip includes the CRC with every packet.
706 * Trim it off here.
707 */
708 total_len -= ETHER_CRC_LEN;
709
710 #ifdef __NO_STRICT_ALIGNMENT
711 /*
712 * If the packet is small enough to fit in a
713 * single header mbuf, allocate one and copy
714 * the data into it. This greatly reduces
715 * memory consumption when we receive lots
716 * of small packets.
717 *
718 * Otherwise, we add a new buffer to the receive
719 * chain. If this fails, we drop the packet and
720 * recycle the old buffer.
721 */
722 if (vr_copy_small != 0 && total_len <= MHLEN) {
723 MGETHDR(m, M_DONTWAIT, MT_DATA);
724 if (m == NULL)
725 goto dropit;
726 memcpy(mtod(m, void *),
727 mtod(ds->ds_mbuf, void *), total_len);
728 VR_INIT_RXDESC(sc, i);
729 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
730 ds->ds_dmamap->dm_mapsize,
731 BUS_DMASYNC_PREREAD);
732 } else {
733 m = ds->ds_mbuf;
734 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
735 dropit:
736 ifp->if_ierrors++;
737 VR_INIT_RXDESC(sc, i);
738 bus_dmamap_sync(sc->vr_dmat,
739 ds->ds_dmamap, 0,
740 ds->ds_dmamap->dm_mapsize,
741 BUS_DMASYNC_PREREAD);
742 continue;
743 }
744 }
745 #else
746 /*
747 * The Rhine's packet buffers must be 4-byte aligned.
748 * But this means that the data after the Ethernet header
749 * is misaligned. We must allocate a new buffer and
750 * copy the data, shifted forward 2 bytes.
751 */
752 MGETHDR(m, M_DONTWAIT, MT_DATA);
753 if (m == NULL) {
754 dropit:
755 ifp->if_ierrors++;
756 VR_INIT_RXDESC(sc, i);
757 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
758 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
759 continue;
760 }
761 if (total_len > (MHLEN - 2)) {
762 MCLGET(m, M_DONTWAIT);
763 if ((m->m_flags & M_EXT) == 0) {
764 m_freem(m);
765 goto dropit;
766 }
767 }
768 m->m_data += 2;
769
770 /*
771 * Note that we use clusters for incoming frames, so the
772 * buffer is virtually contiguous.
773 */
774 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
775 total_len);
776
777 /* Allow the receive descriptor to continue using its mbuf. */
778 VR_INIT_RXDESC(sc, i);
779 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
780 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
781 #endif /* __NO_STRICT_ALIGNMENT */
782
783 m_set_rcvif(m, ifp);
784 m->m_pkthdr.len = m->m_len = total_len;
785 /* Pass it on. */
786 if_percpuq_enqueue(ifp->if_percpuq, m);
787 }
788
789 /* Update the receive pointer. */
790 sc->vr_rxptr = i;
791 }
792
793 void
794 vr_rxeoc(struct vr_softc *sc)
795 {
796 struct ifnet *ifp;
797 int i;
798
799 ifp = &sc->vr_ec.ec_if;
800
801 ifp->if_ierrors++;
802
803 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
804 for (i = 0; i < VR_TIMEOUT; i++) {
805 DELAY(10);
806 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
807 break;
808 }
809 if (i == VR_TIMEOUT) {
810 /* XXX need reset? */
811 aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
812 }
813
814 vr_rxeof(sc);
815
816 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
817 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
818 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
819 }
820
821 /*
822 * A frame was downloaded to the chip. It's safe for us to clean up
823 * the list buffers.
824 */
825 static void
826 vr_txeof(struct vr_softc *sc)
827 {
828 struct ifnet *ifp = &sc->vr_ec.ec_if;
829 struct vr_desc *d;
830 struct vr_descsoft *ds;
831 uint32_t txstat;
832 int i, j;
833
834 ifp->if_flags &= ~IFF_OACTIVE;
835
836 /*
837 * Go through our tx list and free mbufs for those
838 * frames that have been transmitted.
839 */
840 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
841 i = VR_NEXTTX(i), sc->vr_txpending--) {
842 d = VR_CDTX(sc, i);
843 ds = VR_DSTX(sc, i);
844
845 VR_CDTXSYNC(sc, i,
846 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
847
848 txstat = le32toh(d->vr_status);
849
850 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
851 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
852 for (j = 0; j < VR_TIMEOUT; j++) {
853 DELAY(10);
854 if ((CSR_READ_2(sc, VR_COMMAND) &
855 VR_CMD_TX_ON) == 0)
856 break;
857 }
858 if (j == VR_TIMEOUT) {
859 /* XXX need reset? */
860 aprint_error_dev(sc->vr_dev,
861 "TX shutdown never completed\n");
862 }
863 d->vr_status = htole32(VR_TXSTAT_OWN);
864 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
865 break;
866 }
867
868 if (txstat & VR_TXSTAT_OWN)
869 break;
870
871 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
872 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
873 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
874 m_freem(ds->ds_mbuf);
875 ds->ds_mbuf = NULL;
876
877 if (txstat & VR_TXSTAT_ERRSUM) {
878 ifp->if_oerrors++;
879 if (txstat & VR_TXSTAT_DEFER)
880 ifp->if_collisions++;
881 if (txstat & VR_TXSTAT_LATECOLL)
882 ifp->if_collisions++;
883 }
884
885 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
886 ifp->if_opackets++;
887 }
888
889 /* Update the dirty transmit buffer pointer. */
890 sc->vr_txdirty = i;
891
892 /*
893 * Cancel the watchdog timer if there are no pending
894 * transmissions.
895 */
896 if (sc->vr_txpending == 0)
897 ifp->if_timer = 0;
898 }
899
900 static int
901 vr_intr(void *arg)
902 {
903 struct vr_softc *sc;
904 struct ifnet *ifp;
905 uint16_t status;
906 int handled = 0, dotx = 0;
907
908 sc = arg;
909 ifp = &sc->vr_ec.ec_if;
910
911 /* Suppress unwanted interrupts. */
912 if ((ifp->if_flags & IFF_UP) == 0) {
913 vr_stop(ifp, 1);
914 return (0);
915 }
916
917 /* Disable interrupts. */
918 CSR_WRITE_2(sc, VR_IMR, 0x0000);
919
920 for (;;) {
921 status = CSR_READ_2(sc, VR_ISR);
922 if (status)
923 CSR_WRITE_2(sc, VR_ISR, status);
924
925 if ((status & VR_INTRS) == 0)
926 break;
927
928 handled = 1;
929
930 rnd_add_uint32(&sc->rnd_source, status);
931
932 if (status & VR_ISR_RX_OK)
933 vr_rxeof(sc);
934
935 if (status & VR_ISR_RX_DROPPED) {
936 aprint_error_dev(sc->vr_dev, "rx packet lost\n");
937 ifp->if_ierrors++;
938 }
939
940 if (status &
941 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
942 vr_rxeoc(sc);
943
944
945 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
946 if (status & VR_ISR_BUSERR)
947 aprint_error_dev(sc->vr_dev, "PCI bus error\n");
948 if (status & VR_ISR_TX_UNDERRUN)
949 aprint_error_dev(sc->vr_dev,
950 "transmit underrun\n");
951 /* vr_init() calls vr_start() */
952 dotx = 0;
953 (void)vr_init(ifp);
954
955 }
956
957 if (status & VR_ISR_TX_OK) {
958 dotx = 1;
959 vr_txeof(sc);
960 }
961
962 if (status &
963 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
964 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
965 aprint_error_dev(sc->vr_dev,
966 "transmit aborted\n");
967 if (status & VR_ISR_TX_UDFI)
968 aprint_error_dev(sc->vr_dev,
969 "transmit underflow\n");
970 ifp->if_oerrors++;
971 dotx = 1;
972 vr_txeof(sc);
973 if (sc->vr_txpending) {
974 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
975 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
976 }
977 }
978 }
979
980 /* Re-enable interrupts. */
981 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
982
983 if (dotx)
984 if_schedule_deferred_start(ifp);
985
986 return (handled);
987 }
988
989 /*
990 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
991 * to the mbuf data regions directly in the transmit lists. We also save a
992 * copy of the pointers since the transmit list fragment pointers are
993 * physical addresses.
994 */
995 static void
996 vr_start(struct ifnet *ifp)
997 {
998 struct vr_softc *sc = ifp->if_softc;
999 struct mbuf *m0, *m;
1000 struct vr_desc *d;
1001 struct vr_descsoft *ds;
1002 int error, firsttx, nexttx, opending;
1003
1004 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1005 return;
1006 if (sc->vr_link == false)
1007 return;
1008
1009 /*
1010 * Remember the previous txpending and the first transmit
1011 * descriptor we use.
1012 */
1013 opending = sc->vr_txpending;
1014 firsttx = VR_NEXTTX(sc->vr_txlast);
1015
1016 /*
1017 * Loop through the send queue, setting up transmit descriptors
1018 * until we drain the queue, or use up all available transmit
1019 * descriptors.
1020 */
1021 while (sc->vr_txpending < VR_NTXDESC) {
1022 /*
1023 * Grab a packet off the queue.
1024 */
1025 IFQ_POLL(&ifp->if_snd, m0);
1026 if (m0 == NULL)
1027 break;
1028 m = NULL;
1029
1030 /*
1031 * Get the next available transmit descriptor.
1032 */
1033 nexttx = VR_NEXTTX(sc->vr_txlast);
1034 d = VR_CDTX(sc, nexttx);
1035 ds = VR_DSTX(sc, nexttx);
1036
1037 /*
1038 * Load the DMA map. If this fails, the packet didn't
1039 * fit in one DMA segment, and we need to copy. Note,
1040 * the packet must also be aligned.
1041 * if the packet is too small, copy it too, so we're sure
1042 * we have enough room for the pad buffer.
1043 */
1044 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1045 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1046 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1047 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1048 MGETHDR(m, M_DONTWAIT, MT_DATA);
1049 if (m == NULL) {
1050 aprint_error_dev(sc->vr_dev,
1051 "unable to allocate Tx mbuf\n");
1052 break;
1053 }
1054 if (m0->m_pkthdr.len > MHLEN) {
1055 MCLGET(m, M_DONTWAIT);
1056 if ((m->m_flags & M_EXT) == 0) {
1057 aprint_error_dev(sc->vr_dev,
1058 "unable to allocate Tx cluster\n");
1059 m_freem(m);
1060 break;
1061 }
1062 }
1063 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1064 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1065 /*
1066 * The Rhine doesn't auto-pad, so we have to do this
1067 * ourselves.
1068 */
1069 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1070 memset(mtod(m, char *) + m0->m_pkthdr.len,
1071 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1072 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1073 }
1074 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1075 ds->ds_dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1076 if (error) {
1077 m_freem(m);
1078 aprint_error_dev(sc->vr_dev, "unable to load "
1079 "Tx buffer, error = %d\n", error);
1080 break;
1081 }
1082 }
1083
1084 IFQ_DEQUEUE(&ifp->if_snd, m0);
1085 if (m != NULL) {
1086 m_freem(m0);
1087 m0 = m;
1088 }
1089
1090 /* Sync the DMA map. */
1091 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1092 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1093
1094 /*
1095 * Store a pointer to the packet so we can free it later.
1096 */
1097 ds->ds_mbuf = m0;
1098
1099 /*
1100 * If there's a BPF listener, bounce a copy of this frame
1101 * to him.
1102 */
1103 bpf_mtap(ifp, m0, BPF_D_OUT);
1104
1105 /*
1106 * Fill in the transmit descriptor.
1107 */
1108 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1109 d->vr_ctl = htole32(m0->m_pkthdr.len);
1110 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1111
1112 /*
1113 * If this is the first descriptor we're enqueuing,
1114 * don't give it to the Rhine yet. That could cause
1115 * a race condition. We'll do it below.
1116 */
1117 if (nexttx == firsttx)
1118 d->vr_status = 0;
1119 else
1120 d->vr_status = htole32(VR_TXSTAT_OWN);
1121
1122 VR_CDTXSYNC(sc, nexttx,
1123 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1124
1125 /* Advance the tx pointer. */
1126 sc->vr_txpending++;
1127 sc->vr_txlast = nexttx;
1128 }
1129
1130 if (sc->vr_txpending == VR_NTXDESC) {
1131 /* No more slots left; notify upper layer. */
1132 ifp->if_flags |= IFF_OACTIVE;
1133 }
1134
1135 if (sc->vr_txpending != opending) {
1136 /*
1137 * We enqueued packets. If the transmitter was idle,
1138 * reset the txdirty pointer.
1139 */
1140 if (opending == 0)
1141 sc->vr_txdirty = firsttx;
1142
1143 /*
1144 * Cause a transmit interrupt to happen on the
1145 * last packet we enqueued.
1146 */
1147 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1148 VR_CDTXSYNC(sc, sc->vr_txlast,
1149 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150
1151 /*
1152 * The entire packet chain is set up. Give the
1153 * first descriptor to the Rhine now.
1154 */
1155 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1156 VR_CDTXSYNC(sc, firsttx,
1157 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1158
1159 /* Start the transmitter. */
1160 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1161
1162 /* Set the watchdog timer in case the chip flakes out. */
1163 ifp->if_timer = 5;
1164 }
1165 }
1166
1167 /*
1168 * Initialize the interface. Must be called at splnet.
1169 */
1170 static int
1171 vr_init(struct ifnet *ifp)
1172 {
1173 struct vr_softc *sc = ifp->if_softc;
1174 struct vr_desc *d;
1175 struct vr_descsoft *ds;
1176 int i, error = 0;
1177
1178 /* Cancel pending I/O. */
1179 vr_stop(ifp, 0);
1180
1181 /* Reset the Rhine to a known state. */
1182 vr_reset(sc);
1183
1184 /* set DMA length in BCR0 and BCR1 */
1185 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1186 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1187
1188 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1189 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1190
1191 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1192 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1193
1194 /* set DMA threshold length in RXCFG and TXCFG */
1195 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1196 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1197
1198 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1199 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1200
1201 /*
1202 * Initialize the transmit descriptor ring. txlast is initialized
1203 * to the end of the list so that it will wrap around to the first
1204 * descriptor when the first packet is transmitted.
1205 */
1206 for (i = 0; i < VR_NTXDESC; i++) {
1207 d = VR_CDTX(sc, i);
1208 memset(d, 0, sizeof(struct vr_desc));
1209 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1210 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1211 }
1212 sc->vr_txpending = 0;
1213 sc->vr_txdirty = 0;
1214 sc->vr_txlast = VR_NTXDESC - 1;
1215
1216 /*
1217 * Initialize the receive descriptor ring.
1218 */
1219 for (i = 0; i < VR_NRXDESC; i++) {
1220 ds = VR_DSRX(sc, i);
1221 if (ds->ds_mbuf == NULL) {
1222 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1223 aprint_error_dev(sc->vr_dev,
1224 "unable to allocate or map rx buffer %d, "
1225 "error = %d\n", i, error);
1226 /*
1227 * XXX Should attempt to run with fewer receive
1228 * XXX buffers instead of just failing.
1229 */
1230 vr_rxdrain(sc);
1231 goto out;
1232 }
1233 } else
1234 VR_INIT_RXDESC(sc, i);
1235 }
1236 sc->vr_rxptr = 0;
1237
1238 /* If we want promiscuous mode, set the allframes bit. */
1239 if (ifp->if_flags & IFF_PROMISC)
1240 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1241 else
1242 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1243
1244 /* Set capture broadcast bit to capture broadcast frames. */
1245 if (ifp->if_flags & IFF_BROADCAST)
1246 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1247 else
1248 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1249
1250 /* Program the multicast filter, if necessary. */
1251 vr_setmulti(sc);
1252
1253 /* Give the transmit and receive rings to the Rhine. */
1254 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1255 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1256
1257 /* Set current media. */
1258 sc->vr_link = true;
1259 if ((error = ether_mediachange(ifp)) != 0)
1260 goto out;
1261
1262 /* Enable receiver and transmitter. */
1263 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL | VR_CMD_START |
1264 VR_CMD_TX_ON | VR_CMD_RX_ON |
1265 VR_CMD_RX_GO);
1266
1267 /* Enable interrupts. */
1268 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1269 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1270
1271 ifp->if_flags |= IFF_RUNNING;
1272 ifp->if_flags &= ~IFF_OACTIVE;
1273
1274 /* Start one second timer. */
1275 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1276
1277 /* Attempt to start output on the interface. */
1278 vr_start(ifp);
1279
1280 out:
1281 if (error)
1282 aprint_error_dev(sc->vr_dev, "interface not running\n");
1283 return (error);
1284 }
1285
1286 static int
1287 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1288 {
1289 struct vr_softc *sc = ifp->if_softc;
1290 int s, error = 0;
1291
1292 s = splnet();
1293
1294 switch (command) {
1295 case SIOCSIFFLAGS:
1296 if ((error = ifioctl_common(ifp, command, data)) != 0)
1297 break;
1298
1299 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1300 case IFF_RUNNING:
1301 vr_stop(ifp, 1);
1302 break;
1303 case IFF_UP:
1304 vr_init(ifp);
1305 break;
1306 case IFF_UP | IFF_RUNNING:
1307 if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1308 vr_setmulti(sc);
1309 else
1310 vr_init(ifp);
1311 break;
1312 }
1313 sc->vr_if_flags = ifp->if_flags;
1314 break;
1315 default:
1316 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1317 break;
1318 error = 0;
1319 if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1320 vr_setmulti(sc);
1321 }
1322 splx(s);
1323
1324 return error;
1325 }
1326
1327 static void
1328 vr_watchdog(struct ifnet *ifp)
1329 {
1330 struct vr_softc *sc = ifp->if_softc;
1331
1332 aprint_error_dev(sc->vr_dev, "device timeout\n");
1333 ifp->if_oerrors++;
1334
1335 (void) vr_init(ifp);
1336 }
1337
1338 /*
1339 * One second timer, used to tick MII.
1340 */
1341 static void
1342 vr_tick(void *arg)
1343 {
1344 struct vr_softc *sc = arg;
1345 int s;
1346
1347 s = splnet();
1348 if (sc->vr_flags & VR_F_RESTART) {
1349 aprint_normal_dev(sc->vr_dev, "restarting\n");
1350 vr_init(&sc->vr_ec.ec_if);
1351 sc->vr_flags &= ~VR_F_RESTART;
1352 }
1353 mii_tick(&sc->vr_mii);
1354 splx(s);
1355
1356 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1357 }
1358
1359 /*
1360 * Drain the receive queue.
1361 */
1362 static void
1363 vr_rxdrain(struct vr_softc *sc)
1364 {
1365 struct vr_descsoft *ds;
1366 int i;
1367
1368 for (i = 0; i < VR_NRXDESC; i++) {
1369 ds = VR_DSRX(sc, i);
1370 if (ds->ds_mbuf != NULL) {
1371 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1372 m_freem(ds->ds_mbuf);
1373 ds->ds_mbuf = NULL;
1374 }
1375 }
1376 }
1377
1378 /*
1379 * Stop the adapter and free any mbufs allocated to the
1380 * transmit lists.
1381 */
1382 static void
1383 vr_stop(struct ifnet *ifp, int disable)
1384 {
1385 struct vr_softc *sc = ifp->if_softc;
1386 struct vr_descsoft *ds;
1387 int i;
1388
1389 /* Cancel one second timer. */
1390 callout_stop(&sc->vr_tick_ch);
1391
1392 /* Down the MII. */
1393 mii_down(&sc->vr_mii);
1394
1395 ifp = &sc->vr_ec.ec_if;
1396 ifp->if_timer = 0;
1397
1398 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1399 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON | VR_CMD_TX_ON));
1400 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1401 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1402 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1403
1404 /*
1405 * Release any queued transmit buffers.
1406 */
1407 for (i = 0; i < VR_NTXDESC; i++) {
1408 ds = VR_DSTX(sc, i);
1409 if (ds->ds_mbuf != NULL) {
1410 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1411 m_freem(ds->ds_mbuf);
1412 ds->ds_mbuf = NULL;
1413 }
1414 }
1415
1416 /*
1417 * Mark the interface down and cancel the watchdog timer.
1418 */
1419 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1420 ifp->if_timer = 0;
1421
1422 if (disable)
1423 vr_rxdrain(sc);
1424 }
1425
1426 static int vr_probe(device_t, cfdata_t, void *);
1427 static void vr_attach(device_t, device_t, void *);
1428 static bool vr_shutdown(device_t, int);
1429
1430 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1431 vr_probe, vr_attach, NULL, NULL);
1432
1433 static const struct vr_type *
1434 vr_lookup(struct pci_attach_args *pa)
1435 {
1436 const struct vr_type *vrt;
1437 int i;
1438
1439 for (i = 0; i < __arraycount(vr_devs); i++) {
1440 vrt = &vr_devs[i];
1441 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1442 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1443 return (vrt);
1444 }
1445 return (NULL);
1446 }
1447
1448 static int
1449 vr_probe(device_t parent, cfdata_t match, void *aux)
1450 {
1451 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1452
1453 if (vr_lookup(pa) != NULL)
1454 return (1);
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Stop all chip I/O so that the kernel's probe routines don't
1461 * get confused by errant DMAs when rebooting.
1462 */
1463 static bool
1464 vr_shutdown(device_t self, int howto)
1465 {
1466 struct vr_softc *sc = device_private(self);
1467
1468 vr_stop(&sc->vr_ec.ec_if, 1);
1469
1470 return true;
1471 }
1472
1473 /*
1474 * Attach the interface. Allocate softc structures, do ifmedia
1475 * setup and ethernet/BPF attach.
1476 */
1477 static void
1478 vr_attach(device_t parent, device_t self, void *aux)
1479 {
1480 struct vr_softc *sc = device_private(self);
1481 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1482 bus_dma_segment_t seg;
1483 uint32_t reg;
1484 struct ifnet *ifp;
1485 struct mii_data * const mii = &sc->vr_mii;
1486 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1487 int i, rseg, error;
1488 char intrbuf[PCI_INTRSTR_LEN];
1489
1490 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1491 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1492
1493 sc->vr_dev = self;
1494 sc->vr_pc = pa->pa_pc;
1495 sc->vr_tag = pa->pa_tag;
1496 sc->vr_id = pa->pa_id;
1497 callout_init(&sc->vr_tick_ch, 0);
1498
1499 pci_aprint_devinfo(pa, NULL);
1500
1501 /*
1502 * Handle power management nonsense.
1503 */
1504
1505 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1506 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1507 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1508
1509 /* power up chip */
1510 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1511 vr_restore_state)) && error != EOPNOTSUPP) {
1512 aprint_error_dev(self, "cannot activate %d\n", error);
1513 return;
1514 }
1515
1516 /* Make sure bus mastering is enabled. */
1517 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1518 reg |= PCI_COMMAND_MASTER_ENABLE;
1519 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1520
1521 /* Get revision */
1522 sc->vr_revid = PCI_REVISION(pa->pa_class);
1523
1524 /*
1525 * Map control/status registers.
1526 */
1527 {
1528 bus_space_tag_t iot, memt;
1529 bus_space_handle_t ioh, memh;
1530 int ioh_valid, memh_valid;
1531 pci_intr_handle_t intrhandle;
1532 const char *intrstr;
1533
1534 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1535 PCI_MAPREG_TYPE_IO, 0,
1536 &iot, &ioh, NULL, NULL) == 0);
1537 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1538 PCI_MAPREG_TYPE_MEM |
1539 PCI_MAPREG_MEM_TYPE_32BIT,
1540 0, &memt, &memh, NULL, NULL) == 0);
1541 #if defined(VR_USEIOSPACE)
1542 if (ioh_valid) {
1543 sc->vr_bst = iot;
1544 sc->vr_bsh = ioh;
1545 } else if (memh_valid) {
1546 sc->vr_bst = memt;
1547 sc->vr_bsh = memh;
1548 }
1549 #else
1550 if (memh_valid) {
1551 sc->vr_bst = memt;
1552 sc->vr_bsh = memh;
1553 } else if (ioh_valid) {
1554 sc->vr_bst = iot;
1555 sc->vr_bsh = ioh;
1556 }
1557 #endif
1558 else {
1559 aprint_error_dev(self,
1560 "unable to map device registers\n");
1561 return;
1562 }
1563
1564 /* Allocate interrupt */
1565 if (pci_intr_map(pa, &intrhandle)) {
1566 aprint_error_dev(self, "couldn't map interrupt\n");
1567 return;
1568 }
1569 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1570 sizeof(intrbuf));
1571 sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle,
1572 IPL_NET, vr_intr, sc, device_xname(self));
1573 if (sc->vr_ih == NULL) {
1574 aprint_error_dev(self, "couldn't establish interrupt");
1575 if (intrstr != NULL)
1576 aprint_error(" at %s", intrstr);
1577 aprint_error("\n");
1578 return;
1579 }
1580 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1581 }
1582
1583 /*
1584 * Windows may put the chip in suspend mode when it
1585 * shuts down. Be sure to kick it in the head to wake it
1586 * up again.
1587 *
1588 * Don't touch this register on VT3043 since it causes
1589 * kernel MCHK trap on macppc.
1590 * (Note some VT86C100A chip returns a product ID of VT3043)
1591 */
1592 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1593 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1594
1595 /* Reset the adapter. */
1596 vr_reset(sc);
1597
1598 /*
1599 * Get station address. The way the Rhine chips work,
1600 * you're not allowed to directly access the EEPROM once
1601 * they've been programmed a special way. Consequently,
1602 * we need to read the node address from the PAR registers.
1603 *
1604 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1605 * of the *whole* EEPROM, not just the MAC address. This is
1606 * pretty pointless since the chip does this automatically
1607 * at powerup/reset.
1608 * I suspect the same thing applies to the other Rhine
1609 * variants, but in the absence of a data sheet for those
1610 * (and the lack of anyone else noticing the problems this
1611 * causes) I'm going to retain the old behaviour for the
1612 * other parts.
1613 * In some cases, the chip really does startup without having
1614 * read the EEPROM (kern/34812). To handle this case, we force
1615 * a reload if we see an all-zeroes MAC address.
1616 */
1617 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1618 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1619
1620 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1621 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1622 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1623 DELAY(200);
1624 for (i = 0; i < ETHER_ADDR_LEN; i++)
1625 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1626 }
1627
1628 /*
1629 * A Rhine chip was detected. Inform the world.
1630 */
1631 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1632
1633 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1634
1635 sc->vr_dmat = pa->pa_dmat;
1636
1637 /*
1638 * Allocate the control data structures, and create and load
1639 * the DMA map for it.
1640 */
1641 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1642 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1643 0)) != 0) {
1644 aprint_error_dev(self,
1645 "unable to allocate control data, error = %d\n", error);
1646 goto fail_0;
1647 }
1648
1649 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1650 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1651 BUS_DMA_COHERENT)) != 0) {
1652 aprint_error_dev(self,
1653 "unable to map control data, error = %d\n", error);
1654 goto fail_1;
1655 }
1656
1657 if ((error = bus_dmamap_create(sc->vr_dmat,
1658 sizeof(struct vr_control_data), 1,
1659 sizeof(struct vr_control_data), 0, 0,
1660 &sc->vr_cddmamap)) != 0) {
1661 aprint_error_dev(self,
1662 "unable to create control data DMA map, error = %d\n",
1663 error);
1664 goto fail_2;
1665 }
1666
1667 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1668 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1669 0)) != 0) {
1670 aprint_error_dev(self,
1671 "unable to load control data DMA map, error = %d\n",
1672 error);
1673 goto fail_3;
1674 }
1675
1676 /*
1677 * Create the transmit buffer DMA maps.
1678 */
1679 for (i = 0; i < VR_NTXDESC; i++) {
1680 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1681 1, MCLBYTES, 0, 0,
1682 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1683 aprint_error_dev(self,
1684 "unable to create tx DMA map %d, error = %d\n", i,
1685 error);
1686 goto fail_4;
1687 }
1688 }
1689
1690 /*
1691 * Create the receive buffer DMA maps.
1692 */
1693 for (i = 0; i < VR_NRXDESC; i++) {
1694 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1695 MCLBYTES, 0, 0,
1696 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1697 aprint_error_dev(self,
1698 "unable to create rx DMA map %d, error = %d\n", i,
1699 error);
1700 goto fail_5;
1701 }
1702 VR_DSRX(sc, i)->ds_mbuf = NULL;
1703 }
1704
1705 ifp = &sc->vr_ec.ec_if;
1706 ifp->if_softc = sc;
1707 ifp->if_mtu = ETHERMTU;
1708 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1709 ifp->if_ioctl = vr_ioctl;
1710 ifp->if_start = vr_start;
1711 ifp->if_watchdog = vr_watchdog;
1712 ifp->if_init = vr_init;
1713 ifp->if_stop = vr_stop;
1714 IFQ_SET_READY(&ifp->if_snd);
1715
1716 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1717
1718 /*
1719 * Initialize MII/media info.
1720 */
1721 mii->mii_ifp = ifp;
1722 mii->mii_readreg = vr_mii_readreg;
1723 mii->mii_writereg = vr_mii_writereg;
1724 mii->mii_statchg = vr_mii_statchg;
1725
1726 sc->vr_ec.ec_mii = mii;
1727 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1728 ether_mediastatus);
1729 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1730 MII_OFFSET_ANY, MIIF_FORCEANEG);
1731 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1732 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1733 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1734 } else
1735 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1736
1737 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1738
1739 /*
1740 * Call MI attach routines.
1741 */
1742 if_attach(ifp);
1743 if_deferred_start_init(ifp, NULL);
1744 ether_ifattach(ifp, sc->vr_enaddr);
1745
1746 rnd_attach_source(&sc->rnd_source, device_xname(self),
1747 RND_TYPE_NET, RND_FLAG_DEFAULT);
1748
1749 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1750 pmf_class_network_register(self, ifp);
1751 else
1752 aprint_error_dev(self, "couldn't establish power handler\n");
1753
1754 return;
1755
1756 fail_5:
1757 for (i = 0; i < VR_NRXDESC; i++) {
1758 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1759 bus_dmamap_destroy(sc->vr_dmat,
1760 sc->vr_rxsoft[i].ds_dmamap);
1761 }
1762 fail_4:
1763 for (i = 0; i < VR_NTXDESC; i++) {
1764 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1765 bus_dmamap_destroy(sc->vr_dmat,
1766 sc->vr_txsoft[i].ds_dmamap);
1767 }
1768 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1769 fail_3:
1770 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1771 fail_2:
1772 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1773 sizeof(struct vr_control_data));
1774 fail_1:
1775 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1776 fail_0:
1777 return;
1778 }
1779
1780 static int
1781 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1782 pcireg_t state)
1783 {
1784 struct vr_softc *sc = device_private(self);
1785 int error;
1786
1787 if (state == PCI_PMCSR_STATE_D0)
1788 return 0;
1789 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1790 return error;
1791
1792 /* Restore PCI config data. */
1793 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1794 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1795 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1796 return 0;
1797 }
1798
1799 static bool
1800 vr_resume(device_t self, const pmf_qual_t *qual)
1801 {
1802 struct vr_softc *sc = device_private(self);
1803
1804 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1805 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1806
1807 return true;
1808 }
1809