if_vr.c revision 1.133.10.2 1 /* $NetBSD: if_vr.c,v 1.133.10.2 2021/08/01 22:42:25 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.133.10.2 2021/08/01 22:42:25 thorpej Exp $");
101
102
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #include <sys/rndsource.h>
115
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_ether.h>
121
122 #include <net/bpf.h>
123
124 #include <sys/bus.h>
125 #include <sys/intr.h>
126 #include <machine/endian.h>
127
128 #include <dev/mii/mii.h>
129 #include <dev/mii/miivar.h>
130 #include <dev/mii/mii_bitbang.h>
131
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135
136 #include <dev/pci/if_vrreg.h>
137
138 #define VR_USEIOSPACE
139
140 /*
141 * Various supported device vendors/types and their names.
142 */
143 static const struct device_compatible_entry compat_data[] = {
144 { .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
145 PCI_PRODUCT_VIATECH_VT3043) },
146
147 { .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
148 PCI_PRODUCT_VIATECH_VT6102) },
149
150 { .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
151 PCI_PRODUCT_VIATECH_VT6105) },
152
153 { .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
154 PCI_PRODUCT_VIATECH_VT6105M) },
155
156 { .id = PCI_ID_CODE(PCI_VENDOR_VIATECH,
157 PCI_PRODUCT_VIATECH_VT86C100A) },
158
159 PCI_COMPAT_EOL
160 };
161
162 /*
163 * Transmit descriptor list size.
164 */
165 #define VR_NTXDESC 64
166 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
167 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
168
169 /*
170 * Receive descriptor list size.
171 */
172 #define VR_NRXDESC 64
173 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
174 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
175
176 /*
177 * Control data structures that are DMA'd to the Rhine chip. We allocate
178 * them in a single clump that maps to a single DMA segment to make several
179 * things easier.
180 *
181 * Note that since we always copy outgoing packets to aligned transmit
182 * buffers, we can reduce the transmit descriptors to one per packet.
183 */
184 struct vr_control_data {
185 struct vr_desc vr_txdescs[VR_NTXDESC];
186 struct vr_desc vr_rxdescs[VR_NRXDESC];
187 };
188
189 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
190 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
191 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
192
193 /*
194 * Software state of transmit and receive descriptors.
195 */
196 struct vr_descsoft {
197 struct mbuf *ds_mbuf; /* head of mbuf chain */
198 bus_dmamap_t ds_dmamap; /* our DMA map */
199 };
200
201 struct vr_softc {
202 device_t vr_dev;
203 void *vr_ih; /* interrupt cookie */
204 bus_space_tag_t vr_bst; /* bus space tag */
205 bus_space_handle_t vr_bsh; /* bus space handle */
206 bus_dma_tag_t vr_dmat; /* bus DMA tag */
207 pci_chipset_tag_t vr_pc; /* PCI chipset info */
208 pcitag_t vr_tag; /* PCI tag */
209 struct ethercom vr_ec; /* Ethernet common info */
210 uint8_t vr_enaddr[ETHER_ADDR_LEN];
211 struct mii_data vr_mii; /* MII/media info */
212
213 pcireg_t vr_id; /* vendor/product ID */
214 uint8_t vr_revid; /* Rhine chip revision */
215
216 callout_t vr_tick_ch; /* tick callout */
217
218 bus_dmamap_t vr_cddmamap; /* control data DMA map */
219 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
220
221 /*
222 * Software state for transmit and receive descriptors.
223 */
224 struct vr_descsoft vr_txsoft[VR_NTXDESC];
225 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
226
227 /*
228 * Control data structures.
229 */
230 struct vr_control_data *vr_control_data;
231
232 int vr_txpending; /* number of TX requests pending */
233 int vr_txdirty; /* first dirty TX descriptor */
234 int vr_txlast; /* last used TX descriptor */
235
236 int vr_rxptr; /* next ready RX descriptor */
237
238 uint32_t vr_save_iobase;
239 uint32_t vr_save_membase;
240 uint32_t vr_save_irq;
241
242 bool vr_link;
243 int vr_flags;
244 #define VR_F_RESTART 0x1 /* restart on next tick */
245 u_short vr_if_flags;
246
247 krndsource_t rnd_source; /* random source */
248 };
249
250 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
251 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
252
253 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
254 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
255
256 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
257 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
258
259 #define VR_CDTXSYNC(sc, x, ops) \
260 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
261 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
262
263 #define VR_CDRXSYNC(sc, x, ops) \
264 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
265 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
266
267 /*
268 * Note we rely on MCLBYTES being a power of two below.
269 */
270 #define VR_INIT_RXDESC(sc, i) \
271 do { \
272 struct vr_desc *__d = VR_CDRX((sc), (i)); \
273 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
274 \
275 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
276 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
277 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
278 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
279 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
280 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
281 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
282 } while (/* CONSTCOND */ 0)
283
284 /*
285 * register space access macros
286 */
287 #define CSR_WRITE_4(sc, reg, val) \
288 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
289 #define CSR_WRITE_2(sc, reg, val) \
290 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
291 #define CSR_WRITE_1(sc, reg, val) \
292 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
293
294 #define CSR_READ_4(sc, reg) \
295 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
296 #define CSR_READ_2(sc, reg) \
297 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
298 #define CSR_READ_1(sc, reg) \
299 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
300
301 #define VR_TIMEOUT 1000
302
303 static int vr_add_rxbuf(struct vr_softc *, int);
304
305 static void vr_rxeof(struct vr_softc *);
306 static void vr_rxeoc(struct vr_softc *);
307 static void vr_txeof(struct vr_softc *);
308 static int vr_intr(void *);
309 static void vr_start(struct ifnet *);
310 static int vr_ioctl(struct ifnet *, u_long, void *);
311 static int vr_init(struct ifnet *);
312 static void vr_stop(struct ifnet *, int);
313 static void vr_rxdrain(struct vr_softc *);
314 static void vr_watchdog(struct ifnet *);
315 static void vr_tick(void *);
316
317 static int vr_mii_readreg(device_t, int, int, uint16_t *);
318 static int vr_mii_writereg(device_t, int, int, uint16_t);
319 static void vr_mii_statchg(struct ifnet *);
320
321 static void vr_setmulti(struct vr_softc *);
322 static void vr_reset(struct vr_softc *);
323 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
324 pcireg_t);
325 static bool vr_resume(device_t, const pmf_qual_t *);
326
327 int vr_copy_small = 0;
328
329 #define VR_SETBIT(sc, reg, x) \
330 CSR_WRITE_1(sc, reg, \
331 CSR_READ_1(sc, reg) | (x))
332
333 #define VR_CLRBIT(sc, reg, x) \
334 CSR_WRITE_1(sc, reg, \
335 CSR_READ_1(sc, reg) & ~(x))
336
337 #define VR_SETBIT16(sc, reg, x) \
338 CSR_WRITE_2(sc, reg, \
339 CSR_READ_2(sc, reg) | (x))
340
341 #define VR_CLRBIT16(sc, reg, x) \
342 CSR_WRITE_2(sc, reg, \
343 CSR_READ_2(sc, reg) & ~(x))
344
345 #define VR_SETBIT32(sc, reg, x) \
346 CSR_WRITE_4(sc, reg, \
347 CSR_READ_4(sc, reg) | (x))
348
349 #define VR_CLRBIT32(sc, reg, x) \
350 CSR_WRITE_4(sc, reg, \
351 CSR_READ_4(sc, reg) & ~(x))
352
353 /*
354 * MII bit-bang glue.
355 */
356 static uint32_t vr_mii_bitbang_read(device_t);
357 static void vr_mii_bitbang_write(device_t, uint32_t);
358
359 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
360 vr_mii_bitbang_read,
361 vr_mii_bitbang_write,
362 {
363 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
364 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
365 VR_MIICMD_CLK, /* MII_BIT_MDC */
366 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
367 0, /* MII_BIT_DIR_PHY_HOST */
368 }
369 };
370
371 static uint32_t
372 vr_mii_bitbang_read(device_t self)
373 {
374 struct vr_softc *sc = device_private(self);
375
376 return (CSR_READ_1(sc, VR_MIICMD));
377 }
378
379 static void
380 vr_mii_bitbang_write(device_t self, uint32_t val)
381 {
382 struct vr_softc *sc = device_private(self);
383
384 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
385 }
386
387 /*
388 * Read an PHY register through the MII.
389 */
390 static int
391 vr_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
392 {
393 struct vr_softc *sc = device_private(self);
394
395 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
396 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg, val));
397 }
398
399 /*
400 * Write to a PHY register through the MII.
401 */
402 static int
403 vr_mii_writereg(device_t self, int phy, int reg, uint16_t val)
404 {
405 struct vr_softc *sc = device_private(self);
406
407 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
408 return mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
409 }
410
411 static void
412 vr_mii_statchg(struct ifnet *ifp)
413 {
414 struct vr_softc *sc = ifp->if_softc;
415 int i;
416
417 /*
418 * In order to fiddle with the 'full-duplex' bit in the netconfig
419 * register, we first have to put the transmit and/or receive logic
420 * in the idle state.
421 */
422 if ((sc->vr_mii.mii_media_status & IFM_ACTIVE) &&
423 IFM_SUBTYPE(sc->vr_mii.mii_media_active) != IFM_NONE) {
424 sc->vr_link = true;
425
426 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON | VR_CMD_RX_ON))
427 VR_CLRBIT16(sc, VR_COMMAND,
428 (VR_CMD_TX_ON | VR_CMD_RX_ON));
429
430 if (sc->vr_mii.mii_media_active & IFM_FDX)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
432 else
433 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
434
435 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
436 } else {
437 sc->vr_link = false;
438 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON | VR_CMD_RX_ON);
439 for (i = VR_TIMEOUT; i > 0; i--) {
440 delay(10);
441 if (!(CSR_READ_2(sc, VR_COMMAND) &
442 (VR_CMD_TX_ON | VR_CMD_RX_ON)))
443 break;
444 }
445 if (i == 0) {
446 #ifdef VR_DEBUG
447 aprint_error_dev(sc->vr_dev, "rx shutdown error!\n");
448 #endif
449 sc->vr_flags |= VR_F_RESTART;
450 }
451 }
452 }
453
454 #define vr_calchash(addr) \
455 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
456
457 /*
458 * Program the 64-bit multicast hash filter.
459 */
460 static void
461 vr_setmulti(struct vr_softc *sc)
462 {
463 struct ethercom *ec = &sc->vr_ec;
464 struct ifnet *ifp = &ec->ec_if;
465 int h = 0;
466 uint32_t hashes[2] = { 0, 0 };
467 struct ether_multistep step;
468 struct ether_multi *enm;
469 int mcnt = 0;
470 uint8_t rxfilt;
471
472 rxfilt = CSR_READ_1(sc, VR_RXCFG);
473
474 if (ifp->if_flags & IFF_PROMISC) {
475 allmulti:
476 ifp->if_flags |= IFF_ALLMULTI;
477 rxfilt |= VR_RXCFG_RX_MULTI;
478 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
479 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
480 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
481 return;
482 }
483
484 /* first, zot all the existing hash bits */
485 CSR_WRITE_4(sc, VR_MAR0, 0);
486 CSR_WRITE_4(sc, VR_MAR1, 0);
487
488 /* now program new ones */
489 ETHER_LOCK(ec);
490 ETHER_FIRST_MULTI(step, ec, enm);
491 while (enm != NULL) {
492 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
493 ETHER_ADDR_LEN) != 0) {
494 ETHER_UNLOCK(ec);
495 goto allmulti;
496 }
497
498 h = vr_calchash(enm->enm_addrlo);
499
500 if (h < 32)
501 hashes[0] |= (1 << h);
502 else
503 hashes[1] |= (1 << (h - 32));
504 ETHER_NEXT_MULTI(step, enm);
505 mcnt++;
506 }
507 ETHER_UNLOCK(ec);
508
509 ifp->if_flags &= ~IFF_ALLMULTI;
510
511 if (mcnt)
512 rxfilt |= VR_RXCFG_RX_MULTI;
513 else
514 rxfilt &= ~VR_RXCFG_RX_MULTI;
515
516 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
517 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
518 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
519 }
520
521 static void
522 vr_reset(struct vr_softc *sc)
523 {
524 int i;
525
526 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
527
528 for (i = 0; i < VR_TIMEOUT; i++) {
529 DELAY(10);
530 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
531 break;
532 }
533 if (i == VR_TIMEOUT) {
534 if (sc->vr_revid < REV_ID_VT3065_A) {
535 aprint_error_dev(sc->vr_dev,
536 "reset never completed!\n");
537 } else {
538 /* Use newer force reset command */
539 aprint_normal_dev(sc->vr_dev,
540 "using force reset command.\n");
541 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
542 }
543 }
544
545 /* Wait a little while for the chip to get its brains in order. */
546 DELAY(1000);
547 }
548
549 /*
550 * Initialize an RX descriptor and attach an MBUF cluster.
551 * Note: the length fields are only 11 bits wide, which means the
552 * largest size we can specify is 2047. This is important because
553 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
554 * overflow the field and make a mess.
555 */
556 static int
557 vr_add_rxbuf(struct vr_softc *sc, int i)
558 {
559 struct vr_descsoft *ds = VR_DSRX(sc, i);
560 struct mbuf *m_new;
561 int error;
562
563 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
564 if (m_new == NULL)
565 return (ENOBUFS);
566
567 MCLGET(m_new, M_DONTWAIT);
568 if ((m_new->m_flags & M_EXT) == 0) {
569 m_freem(m_new);
570 return (ENOBUFS);
571 }
572
573 if (ds->ds_mbuf != NULL)
574 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
575
576 ds->ds_mbuf = m_new;
577
578 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
579 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
580 BUS_DMA_READ | BUS_DMA_NOWAIT);
581 if (error) {
582 aprint_error_dev(sc->vr_dev,
583 "unable to load rx DMA map %d, error = %d\n", i, error);
584 panic("vr_add_rxbuf"); /* XXX */
585 }
586
587 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
588 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
589
590 VR_INIT_RXDESC(sc, i);
591
592 return (0);
593 }
594
595 /*
596 * A frame has been uploaded: pass the resulting mbuf chain up to
597 * the higher level protocols.
598 */
599 static void
600 vr_rxeof(struct vr_softc *sc)
601 {
602 struct mbuf *m;
603 struct ifnet *ifp;
604 struct vr_desc *d;
605 struct vr_descsoft *ds;
606 int i, total_len;
607 uint32_t rxstat;
608
609 ifp = &sc->vr_ec.ec_if;
610
611 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
612 d = VR_CDRX(sc, i);
613 ds = VR_DSRX(sc, i);
614
615 VR_CDRXSYNC(sc, i,
616 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
617
618 rxstat = le32toh(d->vr_status);
619
620 if (rxstat & VR_RXSTAT_OWN) {
621 /*
622 * We have processed all of the receive buffers.
623 */
624 break;
625 }
626
627 /*
628 * If an error occurs, update stats, clear the
629 * status word and leave the mbuf cluster in place:
630 * it should simply get re-used next time this descriptor
631 * comes up in the ring.
632 */
633 if (rxstat & VR_RXSTAT_RXERR) {
634 const char *errstr;
635
636 if_statinc(ifp, if_ierrors);
637 switch (rxstat & 0x000000FF) {
638 case VR_RXSTAT_CRCERR:
639 errstr = "crc error";
640 break;
641 case VR_RXSTAT_FRAMEALIGNERR:
642 errstr = "frame alignment error";
643 break;
644 case VR_RXSTAT_FIFOOFLOW:
645 errstr = "FIFO overflow";
646 break;
647 case VR_RXSTAT_GIANT:
648 errstr = "received giant packet";
649 break;
650 case VR_RXSTAT_RUNT:
651 errstr = "received runt packet";
652 break;
653 case VR_RXSTAT_BUSERR:
654 errstr = "system bus error";
655 break;
656 case VR_RXSTAT_BUFFERR:
657 errstr = "rx buffer error";
658 break;
659 default:
660 errstr = "unknown rx error";
661 break;
662 }
663 aprint_error_dev(sc->vr_dev, "receive error: %s\n",
664 errstr);
665
666 VR_INIT_RXDESC(sc, i);
667
668 continue;
669 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
670 !(rxstat & VR_RXSTAT_LASTFRAG)) {
671 /*
672 * This driver expects to receive whole packets every
673 * time. In case we receive a fragment that is not
674 * a complete packet, we discard it.
675 */
676 if_statinc(ifp, if_ierrors);
677
678 aprint_error_dev(sc->vr_dev,
679 "receive error: incomplete frame; "
680 "size = %d, status = 0x%x\n",
681 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
682
683 VR_INIT_RXDESC(sc, i);
684
685 continue;
686 }
687
688 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
689 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
690
691 /* No errors; receive the packet. */
692 total_len = VR_RXBYTES(le32toh(d->vr_status));
693 #ifdef DIAGNOSTIC
694 if (total_len == 0) {
695 /*
696 * If we receive a zero-length packet, we probably
697 * missed to handle an error condition above.
698 * Discard it to avoid a later crash.
699 */
700 if_statinc(ifp, if_ierrors);
701
702 aprint_error_dev(sc->vr_dev,
703 "receive error: zero-length packet; "
704 "status = 0x%x\n", rxstat);
705
706 VR_INIT_RXDESC(sc, i);
707
708 continue;
709 }
710 #endif
711
712 /*
713 * The Rhine chip includes the CRC with every packet.
714 * Trim it off here.
715 */
716 total_len -= ETHER_CRC_LEN;
717
718 #ifdef __NO_STRICT_ALIGNMENT
719 /*
720 * If the packet is small enough to fit in a
721 * single header mbuf, allocate one and copy
722 * the data into it. This greatly reduces
723 * memory consumption when we receive lots
724 * of small packets.
725 *
726 * Otherwise, we add a new buffer to the receive
727 * chain. If this fails, we drop the packet and
728 * recycle the old buffer.
729 */
730 if (vr_copy_small != 0 && total_len <= MHLEN) {
731 MGETHDR(m, M_DONTWAIT, MT_DATA);
732 if (m == NULL)
733 goto dropit;
734 memcpy(mtod(m, void *),
735 mtod(ds->ds_mbuf, void *), total_len);
736 VR_INIT_RXDESC(sc, i);
737 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
738 ds->ds_dmamap->dm_mapsize,
739 BUS_DMASYNC_PREREAD);
740 } else {
741 m = ds->ds_mbuf;
742 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
743 dropit:
744 if_statinc(ifp, if_ierrors);
745 VR_INIT_RXDESC(sc, i);
746 bus_dmamap_sync(sc->vr_dmat,
747 ds->ds_dmamap, 0,
748 ds->ds_dmamap->dm_mapsize,
749 BUS_DMASYNC_PREREAD);
750 continue;
751 }
752 }
753 #else
754 /*
755 * The Rhine's packet buffers must be 4-byte aligned.
756 * But this means that the data after the Ethernet header
757 * is misaligned. We must allocate a new buffer and
758 * copy the data, shifted forward 2 bytes.
759 */
760 MGETHDR(m, M_DONTWAIT, MT_DATA);
761 if (m == NULL) {
762 dropit:
763 if_statinc(ifp, if_ierrors);
764 VR_INIT_RXDESC(sc, i);
765 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
766 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
767 continue;
768 }
769 if (total_len > (MHLEN - 2)) {
770 MCLGET(m, M_DONTWAIT);
771 if ((m->m_flags & M_EXT) == 0) {
772 m_freem(m);
773 goto dropit;
774 }
775 }
776 m->m_data += 2;
777
778 /*
779 * Note that we use clusters for incoming frames, so the
780 * buffer is virtually contiguous.
781 */
782 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
783 total_len);
784
785 /* Allow the receive descriptor to continue using its mbuf. */
786 VR_INIT_RXDESC(sc, i);
787 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
788 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
789 #endif /* __NO_STRICT_ALIGNMENT */
790
791 m_set_rcvif(m, ifp);
792 m->m_pkthdr.len = m->m_len = total_len;
793 /* Pass it on. */
794 if_percpuq_enqueue(ifp->if_percpuq, m);
795 }
796
797 /* Update the receive pointer. */
798 sc->vr_rxptr = i;
799 }
800
801 void
802 vr_rxeoc(struct vr_softc *sc)
803 {
804 struct ifnet *ifp;
805 int i;
806
807 ifp = &sc->vr_ec.ec_if;
808
809 if_statinc(ifp, if_ierrors);
810
811 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
812 for (i = 0; i < VR_TIMEOUT; i++) {
813 DELAY(10);
814 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
815 break;
816 }
817 if (i == VR_TIMEOUT) {
818 /* XXX need reset? */
819 aprint_error_dev(sc->vr_dev, "RX shutdown never completed\n");
820 }
821
822 vr_rxeof(sc);
823
824 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
825 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
826 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
827 }
828
829 /*
830 * A frame was downloaded to the chip. It's safe for us to clean up
831 * the list buffers.
832 */
833 static void
834 vr_txeof(struct vr_softc *sc)
835 {
836 struct ifnet *ifp = &sc->vr_ec.ec_if;
837 struct vr_desc *d;
838 struct vr_descsoft *ds;
839 uint32_t txstat;
840 int i, j;
841
842 ifp->if_flags &= ~IFF_OACTIVE;
843
844 /*
845 * Go through our tx list and free mbufs for those
846 * frames that have been transmitted.
847 */
848 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
849 i = VR_NEXTTX(i), sc->vr_txpending--) {
850 d = VR_CDTX(sc, i);
851 ds = VR_DSTX(sc, i);
852
853 VR_CDTXSYNC(sc, i,
854 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
855
856 txstat = le32toh(d->vr_status);
857
858 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
859 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
860 for (j = 0; j < VR_TIMEOUT; j++) {
861 DELAY(10);
862 if ((CSR_READ_2(sc, VR_COMMAND) &
863 VR_CMD_TX_ON) == 0)
864 break;
865 }
866 if (j == VR_TIMEOUT) {
867 /* XXX need reset? */
868 aprint_error_dev(sc->vr_dev,
869 "TX shutdown never completed\n");
870 }
871 d->vr_status = htole32(VR_TXSTAT_OWN);
872 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
873 break;
874 }
875
876 if (txstat & VR_TXSTAT_OWN)
877 break;
878
879 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
880 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
881 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
882 m_freem(ds->ds_mbuf);
883 ds->ds_mbuf = NULL;
884
885 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
886 if (txstat & VR_TXSTAT_ERRSUM) {
887 if_statinc_ref(nsr, if_oerrors);
888 if (txstat & VR_TXSTAT_DEFER)
889 if_statinc_ref(nsr, if_collisions);
890 if (txstat & VR_TXSTAT_LATECOLL)
891 if_statinc_ref(nsr, if_collisions);
892 }
893
894 if_statadd_ref(nsr, if_collisions,
895 (txstat & VR_TXSTAT_COLLCNT) >> 3);
896 if_statinc_ref(nsr, if_opackets);
897 IF_STAT_PUTREF(ifp);
898 }
899
900 /* Update the dirty transmit buffer pointer. */
901 sc->vr_txdirty = i;
902
903 /*
904 * Cancel the watchdog timer if there are no pending
905 * transmissions.
906 */
907 if (sc->vr_txpending == 0)
908 ifp->if_timer = 0;
909 }
910
911 static int
912 vr_intr(void *arg)
913 {
914 struct vr_softc *sc;
915 struct ifnet *ifp;
916 uint16_t status;
917 int handled = 0, dotx = 0;
918
919 sc = arg;
920 ifp = &sc->vr_ec.ec_if;
921
922 /* Suppress unwanted interrupts. */
923 if ((ifp->if_flags & IFF_UP) == 0) {
924 vr_stop(ifp, 1);
925 return (0);
926 }
927
928 /* Disable interrupts. */
929 CSR_WRITE_2(sc, VR_IMR, 0x0000);
930
931 for (;;) {
932 status = CSR_READ_2(sc, VR_ISR);
933 if (status)
934 CSR_WRITE_2(sc, VR_ISR, status);
935
936 if ((status & VR_INTRS) == 0)
937 break;
938
939 handled = 1;
940
941 rnd_add_uint32(&sc->rnd_source, status);
942
943 if (status & VR_ISR_RX_OK)
944 vr_rxeof(sc);
945
946 if (status & VR_ISR_RX_DROPPED) {
947 aprint_error_dev(sc->vr_dev, "rx packet lost\n");
948 if_statinc(ifp, if_ierrors);
949 }
950
951 if (status &
952 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
953 vr_rxeoc(sc);
954
955
956 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
957 if (status & VR_ISR_BUSERR)
958 aprint_error_dev(sc->vr_dev, "PCI bus error\n");
959 if (status & VR_ISR_TX_UNDERRUN)
960 aprint_error_dev(sc->vr_dev,
961 "transmit underrun\n");
962 /* vr_init() calls vr_start() */
963 dotx = 0;
964 (void)vr_init(ifp);
965
966 }
967
968 if (status & VR_ISR_TX_OK) {
969 dotx = 1;
970 vr_txeof(sc);
971 }
972
973 if (status &
974 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
975 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
976 aprint_error_dev(sc->vr_dev,
977 "transmit aborted\n");
978 if (status & VR_ISR_TX_UDFI)
979 aprint_error_dev(sc->vr_dev,
980 "transmit underflow\n");
981 if_statinc(ifp, if_oerrors);
982 dotx = 1;
983 vr_txeof(sc);
984 if (sc->vr_txpending) {
985 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
986 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
987 }
988 }
989 }
990
991 /* Re-enable interrupts. */
992 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
993
994 if (dotx)
995 if_schedule_deferred_start(ifp);
996
997 return (handled);
998 }
999
1000 /*
1001 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1002 * to the mbuf data regions directly in the transmit lists. We also save a
1003 * copy of the pointers since the transmit list fragment pointers are
1004 * physical addresses.
1005 */
1006 static void
1007 vr_start(struct ifnet *ifp)
1008 {
1009 struct vr_softc *sc = ifp->if_softc;
1010 struct mbuf *m0, *m;
1011 struct vr_desc *d;
1012 struct vr_descsoft *ds;
1013 int error, firsttx, nexttx, opending;
1014
1015 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1016 return;
1017 if (sc->vr_link == false)
1018 return;
1019
1020 /*
1021 * Remember the previous txpending and the first transmit
1022 * descriptor we use.
1023 */
1024 opending = sc->vr_txpending;
1025 firsttx = VR_NEXTTX(sc->vr_txlast);
1026
1027 /*
1028 * Loop through the send queue, setting up transmit descriptors
1029 * until we drain the queue, or use up all available transmit
1030 * descriptors.
1031 */
1032 while (sc->vr_txpending < VR_NTXDESC) {
1033 /*
1034 * Grab a packet off the queue.
1035 */
1036 IFQ_POLL(&ifp->if_snd, m0);
1037 if (m0 == NULL)
1038 break;
1039 m = NULL;
1040
1041 /*
1042 * Get the next available transmit descriptor.
1043 */
1044 nexttx = VR_NEXTTX(sc->vr_txlast);
1045 d = VR_CDTX(sc, nexttx);
1046 ds = VR_DSTX(sc, nexttx);
1047
1048 /*
1049 * Load the DMA map. If this fails, the packet didn't
1050 * fit in one DMA segment, and we need to copy. Note,
1051 * the packet must also be aligned.
1052 * if the packet is too small, copy it too, so we're sure
1053 * we have enough room for the pad buffer.
1054 */
1055 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1056 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1057 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1058 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1059 MGETHDR(m, M_DONTWAIT, MT_DATA);
1060 if (m == NULL) {
1061 aprint_error_dev(sc->vr_dev,
1062 "unable to allocate Tx mbuf\n");
1063 break;
1064 }
1065 if (m0->m_pkthdr.len > MHLEN) {
1066 MCLGET(m, M_DONTWAIT);
1067 if ((m->m_flags & M_EXT) == 0) {
1068 aprint_error_dev(sc->vr_dev,
1069 "unable to allocate Tx cluster\n");
1070 m_freem(m);
1071 break;
1072 }
1073 }
1074 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1075 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1076 /*
1077 * The Rhine doesn't auto-pad, so we have to do this
1078 * ourselves.
1079 */
1080 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1081 memset(mtod(m, char *) + m0->m_pkthdr.len,
1082 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1083 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1084 }
1085 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1086 ds->ds_dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1087 if (error) {
1088 m_freem(m);
1089 aprint_error_dev(sc->vr_dev, "unable to load "
1090 "Tx buffer, error = %d\n", error);
1091 break;
1092 }
1093 }
1094
1095 IFQ_DEQUEUE(&ifp->if_snd, m0);
1096 if (m != NULL) {
1097 m_freem(m0);
1098 m0 = m;
1099 }
1100
1101 /* Sync the DMA map. */
1102 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1103 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1104
1105 /*
1106 * Store a pointer to the packet so we can free it later.
1107 */
1108 ds->ds_mbuf = m0;
1109
1110 /*
1111 * If there's a BPF listener, bounce a copy of this frame
1112 * to him.
1113 */
1114 bpf_mtap(ifp, m0, BPF_D_OUT);
1115
1116 /*
1117 * Fill in the transmit descriptor.
1118 */
1119 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1120 d->vr_ctl = htole32(m0->m_pkthdr.len);
1121 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1122
1123 /*
1124 * If this is the first descriptor we're enqueuing,
1125 * don't give it to the Rhine yet. That could cause
1126 * a race condition. We'll do it below.
1127 */
1128 if (nexttx == firsttx)
1129 d->vr_status = 0;
1130 else
1131 d->vr_status = htole32(VR_TXSTAT_OWN);
1132
1133 VR_CDTXSYNC(sc, nexttx,
1134 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1135
1136 /* Advance the tx pointer. */
1137 sc->vr_txpending++;
1138 sc->vr_txlast = nexttx;
1139 }
1140
1141 if (sc->vr_txpending == VR_NTXDESC) {
1142 /* No more slots left; notify upper layer. */
1143 ifp->if_flags |= IFF_OACTIVE;
1144 }
1145
1146 if (sc->vr_txpending != opending) {
1147 /*
1148 * We enqueued packets. If the transmitter was idle,
1149 * reset the txdirty pointer.
1150 */
1151 if (opending == 0)
1152 sc->vr_txdirty = firsttx;
1153
1154 /*
1155 * Cause a transmit interrupt to happen on the
1156 * last packet we enqueued.
1157 */
1158 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1159 VR_CDTXSYNC(sc, sc->vr_txlast,
1160 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1161
1162 /*
1163 * The entire packet chain is set up. Give the
1164 * first descriptor to the Rhine now.
1165 */
1166 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1167 VR_CDTXSYNC(sc, firsttx,
1168 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1169
1170 /* Start the transmitter. */
1171 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1172
1173 /* Set the watchdog timer in case the chip flakes out. */
1174 ifp->if_timer = 5;
1175 }
1176 }
1177
1178 /*
1179 * Initialize the interface. Must be called at splnet.
1180 */
1181 static int
1182 vr_init(struct ifnet *ifp)
1183 {
1184 struct vr_softc *sc = ifp->if_softc;
1185 struct vr_desc *d;
1186 struct vr_descsoft *ds;
1187 int i, error = 0;
1188
1189 /* Cancel pending I/O. */
1190 vr_stop(ifp, 0);
1191
1192 /* Reset the Rhine to a known state. */
1193 vr_reset(sc);
1194
1195 /* set DMA length in BCR0 and BCR1 */
1196 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1197 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1198
1199 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1200 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1201
1202 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1203 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1204
1205 /* set DMA threshold length in RXCFG and TXCFG */
1206 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1207 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1208
1209 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1210 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1211
1212 /*
1213 * Initialize the transmit descriptor ring. txlast is initialized
1214 * to the end of the list so that it will wrap around to the first
1215 * descriptor when the first packet is transmitted.
1216 */
1217 for (i = 0; i < VR_NTXDESC; i++) {
1218 d = VR_CDTX(sc, i);
1219 memset(d, 0, sizeof(struct vr_desc));
1220 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1221 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1222 }
1223 sc->vr_txpending = 0;
1224 sc->vr_txdirty = 0;
1225 sc->vr_txlast = VR_NTXDESC - 1;
1226
1227 /*
1228 * Initialize the receive descriptor ring.
1229 */
1230 for (i = 0; i < VR_NRXDESC; i++) {
1231 ds = VR_DSRX(sc, i);
1232 if (ds->ds_mbuf == NULL) {
1233 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1234 aprint_error_dev(sc->vr_dev,
1235 "unable to allocate or map rx buffer %d, "
1236 "error = %d\n", i, error);
1237 /*
1238 * XXX Should attempt to run with fewer receive
1239 * XXX buffers instead of just failing.
1240 */
1241 vr_rxdrain(sc);
1242 goto out;
1243 }
1244 } else
1245 VR_INIT_RXDESC(sc, i);
1246 }
1247 sc->vr_rxptr = 0;
1248
1249 /* If we want promiscuous mode, set the allframes bit. */
1250 if (ifp->if_flags & IFF_PROMISC)
1251 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1252 else
1253 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1254
1255 /* Set capture broadcast bit to capture broadcast frames. */
1256 if (ifp->if_flags & IFF_BROADCAST)
1257 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1258 else
1259 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1260
1261 /* Program the multicast filter, if necessary. */
1262 vr_setmulti(sc);
1263
1264 /* Give the transmit and receive rings to the Rhine. */
1265 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1266 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1267
1268 /* Set current media. */
1269 sc->vr_link = true;
1270 if ((error = ether_mediachange(ifp)) != 0)
1271 goto out;
1272
1273 /* Enable receiver and transmitter. */
1274 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL | VR_CMD_START |
1275 VR_CMD_TX_ON | VR_CMD_RX_ON |
1276 VR_CMD_RX_GO);
1277
1278 /* Enable interrupts. */
1279 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1280 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1281
1282 ifp->if_flags |= IFF_RUNNING;
1283 ifp->if_flags &= ~IFF_OACTIVE;
1284
1285 /* Start one second timer. */
1286 callout_schedule(&sc->vr_tick_ch, hz);
1287
1288 /* Attempt to start output on the interface. */
1289 vr_start(ifp);
1290
1291 out:
1292 if (error)
1293 aprint_error_dev(sc->vr_dev, "interface not running\n");
1294 return (error);
1295 }
1296
1297 static int
1298 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1299 {
1300 struct vr_softc *sc = ifp->if_softc;
1301 int s, error = 0;
1302
1303 s = splnet();
1304
1305 switch (command) {
1306 case SIOCSIFFLAGS:
1307 if ((error = ifioctl_common(ifp, command, data)) != 0)
1308 break;
1309
1310 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1311 case IFF_RUNNING:
1312 vr_stop(ifp, 1);
1313 break;
1314 case IFF_UP:
1315 vr_init(ifp);
1316 break;
1317 case IFF_UP | IFF_RUNNING:
1318 if ((ifp->if_flags ^ sc->vr_if_flags) == IFF_PROMISC)
1319 vr_setmulti(sc);
1320 else
1321 vr_init(ifp);
1322 break;
1323 }
1324 sc->vr_if_flags = ifp->if_flags;
1325 break;
1326 default:
1327 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1328 break;
1329 error = 0;
1330 if (command == SIOCADDMULTI || command == SIOCDELMULTI)
1331 vr_setmulti(sc);
1332 }
1333 splx(s);
1334
1335 return error;
1336 }
1337
1338 static void
1339 vr_watchdog(struct ifnet *ifp)
1340 {
1341 struct vr_softc *sc = ifp->if_softc;
1342
1343 aprint_error_dev(sc->vr_dev, "device timeout\n");
1344 if_statinc(ifp, if_oerrors);
1345
1346 (void) vr_init(ifp);
1347 }
1348
1349 /*
1350 * One second timer, used to tick MII.
1351 */
1352 static void
1353 vr_tick(void *arg)
1354 {
1355 struct vr_softc *sc = arg;
1356 int s;
1357
1358 s = splnet();
1359 if (sc->vr_flags & VR_F_RESTART) {
1360 aprint_normal_dev(sc->vr_dev, "restarting\n");
1361 vr_init(&sc->vr_ec.ec_if);
1362 sc->vr_flags &= ~VR_F_RESTART;
1363 }
1364 mii_tick(&sc->vr_mii);
1365 splx(s);
1366
1367 callout_schedule(&sc->vr_tick_ch, hz);
1368 }
1369
1370 /*
1371 * Drain the receive queue.
1372 */
1373 static void
1374 vr_rxdrain(struct vr_softc *sc)
1375 {
1376 struct vr_descsoft *ds;
1377 int i;
1378
1379 for (i = 0; i < VR_NRXDESC; i++) {
1380 ds = VR_DSRX(sc, i);
1381 if (ds->ds_mbuf != NULL) {
1382 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1383 m_freem(ds->ds_mbuf);
1384 ds->ds_mbuf = NULL;
1385 }
1386 }
1387 }
1388
1389 /*
1390 * Stop the adapter and free any mbufs allocated to the
1391 * transmit lists.
1392 */
1393 static void
1394 vr_stop(struct ifnet *ifp, int disable)
1395 {
1396 struct vr_softc *sc = ifp->if_softc;
1397 struct vr_descsoft *ds;
1398 int i;
1399
1400 /* Cancel one second timer. */
1401 callout_stop(&sc->vr_tick_ch);
1402
1403 /* Down the MII. */
1404 mii_down(&sc->vr_mii);
1405
1406 ifp = &sc->vr_ec.ec_if;
1407 ifp->if_timer = 0;
1408
1409 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1410 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON | VR_CMD_TX_ON));
1411 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1412 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1413 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1414
1415 /*
1416 * Release any queued transmit buffers.
1417 */
1418 for (i = 0; i < VR_NTXDESC; i++) {
1419 ds = VR_DSTX(sc, i);
1420 if (ds->ds_mbuf != NULL) {
1421 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1422 m_freem(ds->ds_mbuf);
1423 ds->ds_mbuf = NULL;
1424 }
1425 }
1426
1427 /*
1428 * Mark the interface down and cancel the watchdog timer.
1429 */
1430 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1431 ifp->if_timer = 0;
1432
1433 if (disable)
1434 vr_rxdrain(sc);
1435 }
1436
1437 static int vr_probe(device_t, cfdata_t, void *);
1438 static void vr_attach(device_t, device_t, void *);
1439 static bool vr_shutdown(device_t, int);
1440
1441 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1442 vr_probe, vr_attach, NULL, NULL);
1443
1444 static int
1445 vr_probe(device_t parent, cfdata_t match, void *aux)
1446 {
1447 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1448
1449 return pci_compatible_match(pa, compat_data);
1450 }
1451
1452 /*
1453 * Stop all chip I/O so that the kernel's probe routines don't
1454 * get confused by errant DMAs when rebooting.
1455 */
1456 static bool
1457 vr_shutdown(device_t self, int howto)
1458 {
1459 struct vr_softc *sc = device_private(self);
1460
1461 vr_stop(&sc->vr_ec.ec_if, 1);
1462
1463 return true;
1464 }
1465
1466 /*
1467 * Attach the interface. Allocate softc structures, do ifmedia
1468 * setup and ethernet/BPF attach.
1469 */
1470 static void
1471 vr_attach(device_t parent, device_t self, void *aux)
1472 {
1473 struct vr_softc *sc = device_private(self);
1474 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1475 bus_dma_segment_t seg;
1476 uint32_t reg;
1477 struct ifnet *ifp;
1478 struct mii_data * const mii = &sc->vr_mii;
1479 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1480 int i, rseg, error;
1481 char intrbuf[PCI_INTRSTR_LEN];
1482
1483 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1484 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1485
1486 sc->vr_dev = self;
1487 sc->vr_pc = pa->pa_pc;
1488 sc->vr_tag = pa->pa_tag;
1489 sc->vr_id = pa->pa_id;
1490 callout_init(&sc->vr_tick_ch, 0);
1491 callout_setfunc(&sc->vr_tick_ch, vr_tick, sc);
1492
1493 pci_aprint_devinfo(pa, NULL);
1494
1495 /*
1496 * Handle power management nonsense.
1497 */
1498
1499 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1500 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1501 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1502
1503 /* power up chip */
1504 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1505 vr_restore_state)) && error != EOPNOTSUPP) {
1506 aprint_error_dev(self, "cannot activate %d\n", error);
1507 return;
1508 }
1509
1510 /* Make sure bus mastering is enabled. */
1511 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1512 reg |= PCI_COMMAND_MASTER_ENABLE;
1513 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1514
1515 /* Get revision */
1516 sc->vr_revid = PCI_REVISION(pa->pa_class);
1517
1518 /*
1519 * Map control/status registers.
1520 */
1521 {
1522 bus_space_tag_t iot, memt;
1523 bus_space_handle_t ioh, memh;
1524 int ioh_valid, memh_valid;
1525 pci_intr_handle_t intrhandle;
1526 const char *intrstr;
1527
1528 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1529 PCI_MAPREG_TYPE_IO, 0,
1530 &iot, &ioh, NULL, NULL) == 0);
1531 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1532 PCI_MAPREG_TYPE_MEM |
1533 PCI_MAPREG_MEM_TYPE_32BIT,
1534 0, &memt, &memh, NULL, NULL) == 0);
1535 #if defined(VR_USEIOSPACE)
1536 if (ioh_valid) {
1537 sc->vr_bst = iot;
1538 sc->vr_bsh = ioh;
1539 } else if (memh_valid) {
1540 sc->vr_bst = memt;
1541 sc->vr_bsh = memh;
1542 }
1543 #else
1544 if (memh_valid) {
1545 sc->vr_bst = memt;
1546 sc->vr_bsh = memh;
1547 } else if (ioh_valid) {
1548 sc->vr_bst = iot;
1549 sc->vr_bsh = ioh;
1550 }
1551 #endif
1552 else {
1553 aprint_error_dev(self,
1554 "unable to map device registers\n");
1555 return;
1556 }
1557
1558 /* Allocate interrupt */
1559 if (pci_intr_map(pa, &intrhandle)) {
1560 aprint_error_dev(self, "couldn't map interrupt\n");
1561 return;
1562 }
1563 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
1564 sizeof(intrbuf));
1565 sc->vr_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle,
1566 IPL_NET, vr_intr, sc, device_xname(self));
1567 if (sc->vr_ih == NULL) {
1568 aprint_error_dev(self, "couldn't establish interrupt");
1569 if (intrstr != NULL)
1570 aprint_error(" at %s", intrstr);
1571 aprint_error("\n");
1572 return;
1573 }
1574 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1575 }
1576
1577 /*
1578 * Windows may put the chip in suspend mode when it
1579 * shuts down. Be sure to kick it in the head to wake it
1580 * up again.
1581 *
1582 * Don't touch this register on VT3043 since it causes
1583 * kernel MCHK trap on macppc.
1584 * (Note some VT86C100A chip returns a product ID of VT3043)
1585 */
1586 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1587 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1588
1589 /* Reset the adapter. */
1590 vr_reset(sc);
1591
1592 /*
1593 * Get station address. The way the Rhine chips work,
1594 * you're not allowed to directly access the EEPROM once
1595 * they've been programmed a special way. Consequently,
1596 * we need to read the node address from the PAR registers.
1597 *
1598 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1599 * of the *whole* EEPROM, not just the MAC address. This is
1600 * pretty pointless since the chip does this automatically
1601 * at powerup/reset.
1602 * I suspect the same thing applies to the other Rhine
1603 * variants, but in the absence of a data sheet for those
1604 * (and the lack of anyone else noticing the problems this
1605 * causes) I'm going to retain the old behaviour for the
1606 * other parts.
1607 * In some cases, the chip really does startup without having
1608 * read the EEPROM (kern/34812). To handle this case, we force
1609 * a reload if we see an all-zeroes MAC address.
1610 */
1611 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1612 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1613
1614 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1615 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1616 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1617 DELAY(200);
1618 for (i = 0; i < ETHER_ADDR_LEN; i++)
1619 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1620 }
1621
1622 /*
1623 * A Rhine chip was detected. Inform the world.
1624 */
1625 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1626
1627 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1628
1629 sc->vr_dmat = pa->pa_dmat;
1630
1631 /*
1632 * Allocate the control data structures, and create and load
1633 * the DMA map for it.
1634 */
1635 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1636 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1637 0)) != 0) {
1638 aprint_error_dev(self,
1639 "unable to allocate control data, error = %d\n", error);
1640 goto fail_0;
1641 }
1642
1643 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1644 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1645 BUS_DMA_COHERENT)) != 0) {
1646 aprint_error_dev(self,
1647 "unable to map control data, error = %d\n", error);
1648 goto fail_1;
1649 }
1650
1651 if ((error = bus_dmamap_create(sc->vr_dmat,
1652 sizeof(struct vr_control_data), 1,
1653 sizeof(struct vr_control_data), 0, 0,
1654 &sc->vr_cddmamap)) != 0) {
1655 aprint_error_dev(self,
1656 "unable to create control data DMA map, error = %d\n",
1657 error);
1658 goto fail_2;
1659 }
1660
1661 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1662 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1663 0)) != 0) {
1664 aprint_error_dev(self,
1665 "unable to load control data DMA map, error = %d\n",
1666 error);
1667 goto fail_3;
1668 }
1669
1670 /*
1671 * Create the transmit buffer DMA maps.
1672 */
1673 for (i = 0; i < VR_NTXDESC; i++) {
1674 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1675 1, MCLBYTES, 0, 0,
1676 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1677 aprint_error_dev(self,
1678 "unable to create tx DMA map %d, error = %d\n", i,
1679 error);
1680 goto fail_4;
1681 }
1682 }
1683
1684 /*
1685 * Create the receive buffer DMA maps.
1686 */
1687 for (i = 0; i < VR_NRXDESC; i++) {
1688 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1689 MCLBYTES, 0, 0,
1690 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1691 aprint_error_dev(self,
1692 "unable to create rx DMA map %d, error = %d\n", i,
1693 error);
1694 goto fail_5;
1695 }
1696 VR_DSRX(sc, i)->ds_mbuf = NULL;
1697 }
1698
1699 ifp = &sc->vr_ec.ec_if;
1700 ifp->if_softc = sc;
1701 ifp->if_mtu = ETHERMTU;
1702 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1703 ifp->if_ioctl = vr_ioctl;
1704 ifp->if_start = vr_start;
1705 ifp->if_watchdog = vr_watchdog;
1706 ifp->if_init = vr_init;
1707 ifp->if_stop = vr_stop;
1708 IFQ_SET_READY(&ifp->if_snd);
1709
1710 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1711
1712 /*
1713 * Initialize MII/media info.
1714 */
1715 mii->mii_ifp = ifp;
1716 mii->mii_readreg = vr_mii_readreg;
1717 mii->mii_writereg = vr_mii_writereg;
1718 mii->mii_statchg = vr_mii_statchg;
1719
1720 sc->vr_ec.ec_mii = mii;
1721 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1722 ether_mediastatus);
1723 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1724 MII_OFFSET_ANY, MIIF_FORCEANEG);
1725 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1726 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1727 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1728 } else
1729 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1730
1731 sc->vr_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1732
1733 /*
1734 * Call MI attach routines.
1735 */
1736 if_attach(ifp);
1737 if_deferred_start_init(ifp, NULL);
1738 ether_ifattach(ifp, sc->vr_enaddr);
1739
1740 rnd_attach_source(&sc->rnd_source, device_xname(self),
1741 RND_TYPE_NET, RND_FLAG_DEFAULT);
1742
1743 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1744 pmf_class_network_register(self, ifp);
1745 else
1746 aprint_error_dev(self, "couldn't establish power handler\n");
1747
1748 return;
1749
1750 fail_5:
1751 for (i = 0; i < VR_NRXDESC; i++) {
1752 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1753 bus_dmamap_destroy(sc->vr_dmat,
1754 sc->vr_rxsoft[i].ds_dmamap);
1755 }
1756 fail_4:
1757 for (i = 0; i < VR_NTXDESC; i++) {
1758 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1759 bus_dmamap_destroy(sc->vr_dmat,
1760 sc->vr_txsoft[i].ds_dmamap);
1761 }
1762 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1763 fail_3:
1764 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1765 fail_2:
1766 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1767 sizeof(struct vr_control_data));
1768 fail_1:
1769 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1770 fail_0:
1771 return;
1772 }
1773
1774 static int
1775 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1776 pcireg_t state)
1777 {
1778 struct vr_softc *sc = device_private(self);
1779 int error;
1780
1781 if (state == PCI_PMCSR_STATE_D0)
1782 return 0;
1783 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1784 return error;
1785
1786 /* Restore PCI config data. */
1787 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1788 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1789 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1790 return 0;
1791 }
1792
1793 static bool
1794 vr_resume(device_t self, const pmf_qual_t *qual)
1795 {
1796 struct vr_softc *sc = device_private(self);
1797
1798 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1799 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0 | VR_STICKHW_DS1));
1800
1801 return true;
1802 }
1803