if_vr.c revision 1.14 1 /* $NetBSD: if_vr.c,v 1.14 1999/02/05 08:27:46 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998
5 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
35 */
36
37 /*
38 * VIA Rhine fast ethernet PCI NIC driver
39 *
40 * Supports various network adapters based on the VIA Rhine
41 * and Rhine II PCI controllers, including the D-Link DFE530TX.
42 * Datasheets are available at http://www.via.com.tw.
43 *
44 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49 /*
50 * The VIA Rhine controllers are similar in some respects to the
51 * the DEC tulip chips, except less complicated. The controller
52 * uses an MII bus and an external physical layer interface. The
53 * receiver has a one entry perfect filter and a 64-bit hash table
54 * multicast filter. Transmit and receive descriptors are similar
55 * to the tulip.
56 *
57 * The Rhine has a serious flaw in its transmit DMA mechanism:
58 * transmit buffers must be longword aligned. Unfortunately,
59 * FreeBSD doesn't guarantee that mbufs will be filled in starting
60 * at longword boundaries, so we have to do a buffer copy before
61 * transmission.
62 */
63
64 #include "opt_inet.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/sockio.h>
69 #include <sys/mbuf.h>
70 #include <sys/malloc.h>
71 #include <sys/kernel.h>
72 #include <sys/socket.h>
73 #include <sys/device.h>
74
75 #include <net/if.h>
76 #include <net/if_arp.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_ether.h>
80
81 #if defined(INET)
82 #include <netinet/in.h>
83 #include <netinet/if_inarp.h>
84 #endif
85
86 #include "bpfilter.h"
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90
91 #include <vm/vm.h> /* for vtophys */
92
93 #include <machine/bus.h>
94 #include <machine/intr.h>
95
96 #include <dev/mii/mii.h>
97 #include <dev/mii/miivar.h>
98
99 #include <dev/pci/pcireg.h>
100 #include <dev/pci/pcivar.h>
101 #include <dev/pci/pcidevs.h>
102
103 #include <dev/pci/if_vrreg.h>
104
105 #if defined(__NetBSD__) && defined(__alpha__)
106 /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
107 #undef vtophys
108 #define vtophys(va) alpha_XXX_dmamap((vaddr_t)(va))
109 #endif
110
111 #define VR_USEIOSPACE
112
113 #define ETHER_CRC_LEN 4 /* XXX Should be in a common header. */
114
115 /*
116 * Various supported device vendors/types and their names.
117 */
118 static struct vr_type {
119 pci_vendor_id_t vr_vid;
120 pci_product_id_t vr_did;
121 const char *vr_name;
122 } vr_devs[] = {
123 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
124 "VIA VT3043 Rhine I 10/100BaseTX" },
125 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
126 "VIA VT86C100A Rhine II 10/100BaseTX" },
127 { 0, 0, NULL }
128 };
129
130 struct vr_list_data {
131 struct vr_desc vr_rx_list[VR_RX_LIST_CNT];
132 struct vr_desc vr_tx_list[VR_TX_LIST_CNT];
133 };
134
135 struct vr_chain {
136 struct vr_desc *vr_ptr;
137 struct mbuf *vr_mbuf;
138 struct vr_chain *vr_nextdesc;
139 };
140
141 struct vr_chain_onefrag {
142 struct vr_desc *vr_ptr;
143 struct mbuf *vr_mbuf;
144 struct vr_chain_onefrag *vr_nextdesc;
145 };
146
147 struct vr_chain_data {
148 struct vr_chain_onefrag vr_rx_chain[VR_RX_LIST_CNT];
149 struct vr_chain vr_tx_chain[VR_TX_LIST_CNT];
150
151 struct vr_chain_onefrag *vr_rx_head;
152
153 struct vr_chain *vr_tx_head;
154 struct vr_chain *vr_tx_tail;
155 struct vr_chain *vr_tx_free;
156 };
157
158 struct vr_softc {
159 struct device vr_dev; /* generic device glue */
160 void *vr_ih; /* interrupt cookie */
161 void *vr_ats; /* shutdown hook */
162 bus_space_tag_t vr_bst; /* bus space tag */
163 bus_space_handle_t vr_bsh; /* bus space handle */
164 pci_chipset_tag_t vr_pc; /* PCI chipset info */
165 struct ethercom vr_ec; /* Ethernet common info */
166 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
167 struct mii_data vr_mii; /* MII/media info */
168 caddr_t vr_ldata_ptr;
169 struct vr_list_data *vr_ldata;
170 struct vr_chain_data vr_cdata;
171 };
172
173 /*
174 * register space access macros
175 */
176 #define CSR_WRITE_4(sc, reg, val) \
177 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
178 #define CSR_WRITE_2(sc, reg, val) \
179 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
180 #define CSR_WRITE_1(sc, reg, val) \
181 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
182
183 #define CSR_READ_4(sc, reg) \
184 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
185 #define CSR_READ_2(sc, reg) \
186 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
187 #define CSR_READ_1(sc, reg) \
188 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
189
190 #define VR_TIMEOUT 1000
191
192 static int vr_newbuf __P((struct vr_softc *,
193 struct vr_chain_onefrag *));
194 static int vr_encap __P((struct vr_softc *, struct vr_chain *,
195 struct mbuf *));
196
197 static void vr_rxeof __P((struct vr_softc *));
198 static void vr_rxeoc __P((struct vr_softc *));
199 static void vr_txeof __P((struct vr_softc *));
200 static void vr_txeoc __P((struct vr_softc *));
201 static void vr_intr __P((void *));
202 static void vr_start __P((struct ifnet *));
203 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
204 static void vr_init __P((void *));
205 static void vr_stop __P((struct vr_softc *));
206 static void vr_watchdog __P((struct ifnet *));
207 static void vr_tick __P((void *));
208
209 static int vr_ifmedia_upd __P((struct ifnet *));
210 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
211
212 static void vr_mii_sync __P((struct vr_softc *));
213 static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
214 static int vr_mii_readreg __P((struct device *, int, int));
215 static void vr_mii_writereg __P((struct device *, int, int, int));
216 static void vr_mii_statchg __P((struct device *));
217
218 static u_int8_t vr_calchash __P((u_int8_t *));
219 static void vr_setmulti __P((struct vr_softc *));
220 static void vr_reset __P((struct vr_softc *));
221 static int vr_list_rx_init __P((struct vr_softc *));
222 static int vr_list_tx_init __P((struct vr_softc *));
223
224 #define VR_SETBIT(sc, reg, x) \
225 CSR_WRITE_1(sc, reg, \
226 CSR_READ_1(sc, reg) | x)
227
228 #define VR_CLRBIT(sc, reg, x) \
229 CSR_WRITE_1(sc, reg, \
230 CSR_READ_1(sc, reg) & ~x)
231
232 #define VR_SETBIT16(sc, reg, x) \
233 CSR_WRITE_2(sc, reg, \
234 CSR_READ_2(sc, reg) | x)
235
236 #define VR_CLRBIT16(sc, reg, x) \
237 CSR_WRITE_2(sc, reg, \
238 CSR_READ_2(sc, reg) & ~x)
239
240 #define VR_SETBIT32(sc, reg, x) \
241 CSR_WRITE_4(sc, reg, \
242 CSR_READ_4(sc, reg) | x)
243
244 #define VR_CLRBIT32(sc, reg, x) \
245 CSR_WRITE_4(sc, reg, \
246 CSR_READ_4(sc, reg) & ~x)
247
248 #define SIO_SET(x) \
249 CSR_WRITE_1(sc, VR_MIICMD, \
250 CSR_READ_1(sc, VR_MIICMD) | x)
251
252 #define SIO_CLR(x) \
253 CSR_WRITE_1(sc, VR_MIICMD, \
254 CSR_READ_1(sc, VR_MIICMD) & ~x)
255
256 /*
257 * Sync the PHYs by setting data bit and strobing the clock 32 times.
258 */
259 static void vr_mii_sync(sc)
260 struct vr_softc *sc;
261 {
262 register int i;
263
264 SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
265
266 for (i = 0; i < 32; i++) {
267 SIO_SET(VR_MIICMD_CLK);
268 DELAY(1);
269 SIO_CLR(VR_MIICMD_CLK);
270 DELAY(1);
271 }
272
273 return;
274 }
275
276 /*
277 * Clock a series of bits through the MII.
278 */
279 static void vr_mii_send(sc, bits, cnt)
280 struct vr_softc *sc;
281 u_int32_t bits;
282 int cnt;
283 {
284 int i;
285
286 SIO_CLR(VR_MIICMD_CLK);
287
288 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
289 if (bits & i) {
290 SIO_SET(VR_MIICMD_DATAOUT);
291 } else {
292 SIO_CLR(VR_MIICMD_DATAOUT);
293 }
294 DELAY(1);
295 SIO_CLR(VR_MIICMD_CLK);
296 DELAY(1);
297 SIO_SET(VR_MIICMD_CLK);
298 }
299 }
300
301 /*
302 * Read an PHY register through the MII.
303 */
304 static int vr_mii_readreg(self, phy, reg)
305 struct device *self;
306 int phy, reg;
307 {
308 struct vr_softc *sc = (struct vr_softc *)self;
309 int i, ack, val = 0;
310
311 CSR_WRITE_1(sc, VR_MIICMD, 0);
312 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
313
314 /*
315 * Turn on data xmit.
316 */
317 SIO_SET(VR_MIICMD_DIR);
318
319 vr_mii_sync(sc);
320
321 /*
322 * Send command/address info.
323 */
324 vr_mii_send(sc, MII_COMMAND_START, 2);
325 vr_mii_send(sc, MII_COMMAND_READ, 2);
326 vr_mii_send(sc, phy, 5);
327 vr_mii_send(sc, reg, 5);
328
329 /* Idle bit */
330 SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
331 DELAY(1);
332 SIO_SET(VR_MIICMD_CLK);
333 DELAY(1);
334
335 /* Turn off xmit. */
336 SIO_CLR(VR_MIICMD_DIR);
337
338 /* Check for ack */
339 SIO_CLR(VR_MIICMD_CLK);
340 DELAY(1);
341 SIO_SET(VR_MIICMD_CLK);
342 DELAY(1);
343 ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
344
345 /*
346 * Now try reading data bits. If the ack failed, we still
347 * need to clock through 16 cycles to keep the PHY(s) in sync.
348 */
349 if (ack) {
350 for (i = 0; i < 16; i++) {
351 SIO_CLR(VR_MIICMD_CLK);
352 DELAY(1);
353 SIO_SET(VR_MIICMD_CLK);
354 DELAY(1);
355 }
356 goto fail;
357 }
358
359 for (i = 0x8000; i; i >>= 1) {
360 SIO_CLR(VR_MIICMD_CLK);
361 DELAY(1);
362 if (!ack) {
363 if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
364 val |= i;
365 DELAY(1);
366 }
367 SIO_SET(VR_MIICMD_CLK);
368 DELAY(1);
369 }
370
371 fail:
372
373 SIO_CLR(VR_MIICMD_CLK);
374 DELAY(1);
375 SIO_SET(VR_MIICMD_CLK);
376 DELAY(1);
377
378 return (val);
379 }
380
381 /*
382 * Write to a PHY register through the MII.
383 */
384 static void vr_mii_writereg(self, phy, reg, val)
385 struct device *self;
386 int phy, reg, val;
387 {
388 struct vr_softc *sc = (struct vr_softc *)self;
389
390 CSR_WRITE_1(sc, VR_MIICMD, 0);
391 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
392
393 /*
394 * Turn on data output.
395 */
396 SIO_SET(VR_MIICMD_DIR);
397
398 vr_mii_sync(sc);
399
400 vr_mii_send(sc, MII_COMMAND_START, 2);
401 vr_mii_send(sc, MII_COMMAND_WRITE, 2);
402 vr_mii_send(sc, phy, 5);
403 vr_mii_send(sc, reg, 5);
404 vr_mii_send(sc, MII_COMMAND_ACK, 2);
405 vr_mii_send(sc, val, 16);
406
407 /* Idle bit. */
408 SIO_SET(VR_MIICMD_CLK);
409 DELAY(1);
410 SIO_CLR(VR_MIICMD_CLK);
411 DELAY(1);
412
413 /*
414 * Turn off xmit.
415 */
416 SIO_CLR(VR_MIICMD_DIR);
417 }
418
419 static void vr_mii_statchg(self)
420 struct device *self;
421 {
422 struct vr_softc *sc = (struct vr_softc *)self;
423 int restart = 0;
424
425 /*
426 * In order to fiddle with the 'full-duplex' bit in the netconfig
427 * register, we first have to put the transmit and/or receive logic
428 * in the idle state.
429 */
430 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) {
431 restart = 1;
432 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
433 }
434
435 if (sc->vr_mii.mii_media_active & IFM_FDX)
436 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
437 else
438 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
439
440 if (restart)
441 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
442
443 /* XXX Update ifp->if_baudrate */
444 }
445
446 /*
447 * Calculate CRC of a multicast group address, return the lower 6 bits.
448 */
449 static u_int8_t vr_calchash(addr)
450 u_int8_t *addr;
451 {
452 u_int32_t crc, carry;
453 int i, j;
454 u_int8_t c;
455
456 /* Compute CRC for the address value. */
457 crc = 0xFFFFFFFF; /* initial value */
458
459 for (i = 0; i < 6; i++) {
460 c = *(addr + i);
461 for (j = 0; j < 8; j++) {
462 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
463 crc <<= 1;
464 c >>= 1;
465 if (carry)
466 crc = (crc ^ 0x04c11db6) | carry;
467 }
468 }
469
470 /* return the filter bit position */
471 return ((crc >> 26) & 0x0000003F);
472 }
473
474 /*
475 * Program the 64-bit multicast hash filter.
476 */
477 static void vr_setmulti(sc)
478 struct vr_softc *sc;
479 {
480 struct ifnet *ifp;
481 int h = 0;
482 u_int32_t hashes[2] = { 0, 0 };
483 struct ether_multistep step;
484 struct ether_multi *enm;
485 int mcnt = 0;
486 u_int8_t rxfilt;
487
488 ifp = &sc->vr_ec.ec_if;
489
490 rxfilt = CSR_READ_1(sc, VR_RXCFG);
491
492 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
493 rxfilt |= VR_RXCFG_RX_MULTI;
494 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
495 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
496 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
497 return;
498 }
499
500 /* first, zot all the existing hash bits */
501 CSR_WRITE_4(sc, VR_MAR0, 0);
502 CSR_WRITE_4(sc, VR_MAR1, 0);
503
504 /* now program new ones */
505 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
506 while (enm != NULL) {
507 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
508 continue;
509
510 h = vr_calchash(enm->enm_addrlo);
511
512 if (h < 32)
513 hashes[0] |= (1 << h);
514 else
515 hashes[1] |= (1 << (h - 32));
516 ETHER_NEXT_MULTI(step, enm);
517 mcnt++;
518 }
519
520 if (mcnt)
521 rxfilt |= VR_RXCFG_RX_MULTI;
522 else
523 rxfilt &= ~VR_RXCFG_RX_MULTI;
524
525 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
526 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
527 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
528
529 return;
530 }
531
532 static void vr_reset(sc)
533 struct vr_softc *sc;
534 {
535 register int i;
536
537 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
538
539 for (i = 0; i < VR_TIMEOUT; i++) {
540 DELAY(10);
541 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
542 break;
543 }
544 if (i == VR_TIMEOUT)
545 printf("%s: reset never completed!\n",
546 sc->vr_dev.dv_xname);
547
548 /* Wait a little while for the chip to get its brains in order. */
549 DELAY(1000);
550
551 return;
552 }
553
554 /*
555 * Initialize the transmit descriptors.
556 */
557 static int vr_list_tx_init(sc)
558 struct vr_softc *sc;
559 {
560 struct vr_chain_data *cd;
561 struct vr_list_data *ld;
562 int i;
563
564 cd = &sc->vr_cdata;
565 ld = sc->vr_ldata;
566 for (i = 0; i < VR_TX_LIST_CNT; i++) {
567 cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
568 if (i == (VR_TX_LIST_CNT - 1))
569 cd->vr_tx_chain[i].vr_nextdesc =
570 &cd->vr_tx_chain[0];
571 else
572 cd->vr_tx_chain[i].vr_nextdesc =
573 &cd->vr_tx_chain[i + 1];
574 }
575
576 cd->vr_tx_free = &cd->vr_tx_chain[0];
577 cd->vr_tx_tail = cd->vr_tx_head = NULL;
578
579 return (0);
580 }
581
582
583 /*
584 * Initialize the RX descriptors and allocate mbufs for them. Note that
585 * we arrange the descriptors in a closed ring, so that the last descriptor
586 * points back to the first.
587 */
588 static int vr_list_rx_init(sc)
589 struct vr_softc *sc;
590 {
591 struct vr_chain_data *cd;
592 struct vr_list_data *ld;
593 int i;
594
595 cd = &sc->vr_cdata;
596 ld = sc->vr_ldata;
597
598 for (i = 0; i < VR_RX_LIST_CNT; i++) {
599 cd->vr_rx_chain[i].vr_ptr =
600 (struct vr_desc *)&ld->vr_rx_list[i];
601 if (vr_newbuf(sc, &cd->vr_rx_chain[i]) == ENOBUFS)
602 return (ENOBUFS);
603 if (i == (VR_RX_LIST_CNT - 1)) {
604 cd->vr_rx_chain[i].vr_nextdesc =
605 &cd->vr_rx_chain[0];
606 ld->vr_rx_list[i].vr_next =
607 vtophys(&ld->vr_rx_list[0]);
608 } else {
609 cd->vr_rx_chain[i].vr_nextdesc =
610 &cd->vr_rx_chain[i + 1];
611 ld->vr_rx_list[i].vr_next =
612 vtophys(&ld->vr_rx_list[i + 1]);
613 }
614 }
615
616 cd->vr_rx_head = &cd->vr_rx_chain[0];
617
618 return (0);
619 }
620
621 /*
622 * Initialize an RX descriptor and attach an MBUF cluster.
623 * Note: the length fields are only 11 bits wide, which means the
624 * largest size we can specify is 2047. This is important because
625 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
626 * overflow the field and make a mess.
627 */
628 static int vr_newbuf(sc, c)
629 struct vr_softc *sc;
630 struct vr_chain_onefrag *c;
631 {
632 struct mbuf *m_new = NULL;
633
634 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
635 if (m_new == NULL) {
636 printf("%s: no memory for rx list -- packet dropped!\n",
637 sc->vr_dev.dv_xname);
638 return (ENOBUFS);
639 }
640
641 MCLGET(m_new, M_DONTWAIT);
642 if (!(m_new->m_flags & M_EXT)) {
643 printf("%s: no memory for rx list -- packet dropped!\n",
644 sc->vr_dev.dv_xname);
645 m_freem(m_new);
646 return (ENOBUFS);
647 }
648
649 c->vr_mbuf = m_new;
650 c->vr_ptr->vr_status = VR_RXSTAT;
651 c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t));
652 c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN;
653
654 return (0);
655 }
656
657 /*
658 * A frame has been uploaded: pass the resulting mbuf chain up to
659 * the higher level protocols.
660 */
661 static void vr_rxeof(sc)
662 struct vr_softc *sc;
663 {
664 struct ether_header *eh;
665 struct mbuf *m;
666 struct ifnet *ifp;
667 struct vr_chain_onefrag *cur_rx;
668 int total_len = 0;
669 u_int32_t rxstat;
670
671 ifp = &sc->vr_ec.ec_if;
672
673 while (!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) &
674 VR_RXSTAT_OWN)) {
675 cur_rx = sc->vr_cdata.vr_rx_head;
676 sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc;
677
678 /*
679 * If an error occurs, update stats, clear the
680 * status word and leave the mbuf cluster in place:
681 * it should simply get re-used next time this descriptor
682 * comes up in the ring.
683 */
684 if (rxstat & VR_RXSTAT_RXERR) {
685 ifp->if_ierrors++;
686 printf("%s: rx error: ", sc->vr_dev.dv_xname);
687 switch (rxstat & 0x000000FF) {
688 case VR_RXSTAT_CRCERR:
689 printf("crc error\n");
690 break;
691 case VR_RXSTAT_FRAMEALIGNERR:
692 printf("frame alignment error\n");
693 break;
694 case VR_RXSTAT_FIFOOFLOW:
695 printf("FIFO overflow\n");
696 break;
697 case VR_RXSTAT_GIANT:
698 printf("received giant packet\n");
699 break;
700 case VR_RXSTAT_RUNT:
701 printf("received runt packet\n");
702 break;
703 case VR_RXSTAT_BUSERR:
704 printf("system bus error\n");
705 break;
706 case VR_RXSTAT_BUFFERR:
707 printf("rx buffer error\n");
708 break;
709 default:
710 printf("unknown rx error\n");
711 break;
712 }
713 cur_rx->vr_ptr->vr_status = VR_RXSTAT;
714 cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
715 continue;
716 }
717
718 /* No errors; receive the packet. */
719 m = cur_rx->vr_mbuf;
720 total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status);
721
722 /*
723 * XXX The VIA Rhine chip includes the CRC with every
724 * received frame, and there's no way to turn this
725 * behavior off (at least, I can't find anything in
726 * the manual that explains how to do it) so we have
727 * to trim off the CRC manually.
728 */
729 total_len -= ETHER_CRC_LEN;
730
731 /*
732 * Try to conjure up a new mbuf cluster. If that
733 * fails, it means we have an out of memory condition and
734 * should leave the buffer in place and continue. This will
735 * result in a lost packet, but there's little else we
736 * can do in this situation.
737 */
738 if (vr_newbuf(sc, cur_rx) == ENOBUFS) {
739 ifp->if_ierrors++;
740 cur_rx->vr_ptr->vr_status = VR_RXSTAT;
741 cur_rx->vr_ptr->vr_ctl = VR_RXCTL|VR_RXLEN;
742 continue;
743 }
744
745 ifp->if_ipackets++;
746 eh = mtod(m, struct ether_header *);
747 m->m_pkthdr.rcvif = ifp;
748 m->m_pkthdr.len = m->m_len = total_len;
749 #if NBPFILTER > 0
750 /*
751 * Handle BPF listeners. Let the BPF user see the packet, but
752 * don't pass it up to the ether_input() layer unless it's
753 * a broadcast packet, multicast packet, matches our ethernet
754 * address or the interface is in promiscuous mode.
755 */
756 if (ifp->if_bpf) {
757 bpf_mtap(ifp->if_bpf, m);
758 if (ifp->if_flags & IFF_PROMISC &&
759 (memcmp(eh->ether_dhost, sc->vr_enaddr,
760 ETHER_ADDR_LEN) &&
761 (eh->ether_dhost[0] & 1) == 0)) {
762 m_freem(m);
763 continue;
764 }
765 }
766 #endif
767 /* Remove header from mbuf and pass it on. */
768 m_adj(m, sizeof (struct ether_header));
769 ether_input(ifp, eh, m);
770 }
771
772 return;
773 }
774
775 void vr_rxeoc(sc)
776 struct vr_softc *sc;
777 {
778
779 vr_rxeof(sc);
780 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
781 CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
782 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
783 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
784
785 return;
786 }
787
788 /*
789 * A frame was downloaded to the chip. It's safe for us to clean up
790 * the list buffers.
791 */
792
793 static void vr_txeof(sc)
794 struct vr_softc *sc;
795 {
796 struct vr_chain *cur_tx;
797 struct ifnet *ifp;
798 register struct mbuf *n;
799
800 ifp = &sc->vr_ec.ec_if;
801
802 /* Clear the timeout timer. */
803 ifp->if_timer = 0;
804
805 /* Sanity check. */
806 if (sc->vr_cdata.vr_tx_head == NULL)
807 return;
808
809 /*
810 * Go through our tx list and free mbufs for those
811 * frames that have been transmitted.
812 */
813 while (sc->vr_cdata.vr_tx_head->vr_mbuf != NULL) {
814 u_int32_t txstat;
815
816 cur_tx = sc->vr_cdata.vr_tx_head;
817 txstat = cur_tx->vr_ptr->vr_status;
818
819 if (txstat & VR_TXSTAT_OWN)
820 break;
821
822 if (txstat & VR_TXSTAT_ERRSUM) {
823 ifp->if_oerrors++;
824 if (txstat & VR_TXSTAT_DEFER)
825 ifp->if_collisions++;
826 if (txstat & VR_TXSTAT_LATECOLL)
827 ifp->if_collisions++;
828 }
829
830 ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
831
832 ifp->if_opackets++;
833 MFREE(cur_tx->vr_mbuf, n);
834 cur_tx->vr_mbuf = NULL;
835
836 if (sc->vr_cdata.vr_tx_head == sc->vr_cdata.vr_tx_tail) {
837 sc->vr_cdata.vr_tx_head = NULL;
838 sc->vr_cdata.vr_tx_tail = NULL;
839 break;
840 }
841
842 sc->vr_cdata.vr_tx_head = cur_tx->vr_nextdesc;
843 }
844
845 return;
846 }
847
848 /*
849 * TX 'end of channel' interrupt handler.
850 */
851 static void vr_txeoc(sc)
852 struct vr_softc *sc;
853 {
854 struct ifnet *ifp;
855
856 ifp = &sc->vr_ec.ec_if;
857
858 ifp->if_timer = 0;
859
860 if (sc->vr_cdata.vr_tx_head == NULL) {
861 ifp->if_flags &= ~IFF_OACTIVE;
862 sc->vr_cdata.vr_tx_tail = NULL;
863 }
864
865 return;
866 }
867
868 static void vr_intr(arg)
869 void *arg;
870 {
871 struct vr_softc *sc;
872 struct ifnet *ifp;
873 u_int16_t status;
874
875 sc = arg;
876 ifp = &sc->vr_ec.ec_if;
877
878 /* Supress unwanted interrupts. */
879 if (!(ifp->if_flags & IFF_UP)) {
880 vr_stop(sc);
881 return;
882 }
883
884 /* Disable interrupts. */
885 CSR_WRITE_2(sc, VR_IMR, 0x0000);
886
887 for (;;) {
888
889 status = CSR_READ_2(sc, VR_ISR);
890 if (status)
891 CSR_WRITE_2(sc, VR_ISR, status);
892
893 if ((status & VR_INTRS) == 0)
894 break;
895
896 if (status & VR_ISR_RX_OK)
897 vr_rxeof(sc);
898
899 if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
900 (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW) ||
901 (status & VR_ISR_RX_DROPPED)) {
902 vr_rxeof(sc);
903 vr_rxeoc(sc);
904 }
905
906 if (status & VR_ISR_TX_OK) {
907 vr_txeof(sc);
908 vr_txeoc(sc);
909 }
910
911 if ((status & VR_ISR_TX_UNDERRUN)||(status & VR_ISR_TX_ABRT)) {
912 ifp->if_oerrors++;
913 vr_txeof(sc);
914 if (sc->vr_cdata.vr_tx_head != NULL) {
915 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
916 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
917 }
918 }
919
920 if (status & VR_ISR_BUSERR) {
921 vr_reset(sc);
922 vr_init(sc);
923 }
924 }
925
926 /* Re-enable interrupts. */
927 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
928
929 if (ifp->if_snd.ifq_head != NULL) {
930 vr_start(ifp);
931 }
932
933 return;
934 }
935
936 /*
937 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
938 * pointers to the fragment pointers.
939 */
940 static int vr_encap(sc, c, m_head)
941 struct vr_softc *sc;
942 struct vr_chain *c;
943 struct mbuf *m_head;
944 {
945 int frag = 0;
946 struct vr_desc *f = NULL;
947 int total_len;
948 struct mbuf *m;
949
950 m = m_head;
951 total_len = 0;
952
953 /*
954 * The VIA Rhine wants packet buffers to be longword
955 * aligned, but very often our mbufs aren't. Rather than
956 * waste time trying to decide when to copy and when not
957 * to copy, just do it all the time.
958 */
959 if (m != NULL) {
960 struct mbuf *m_new = NULL;
961
962 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
963 if (m_new == NULL) {
964 printf("%s: no memory for tx list",
965 sc->vr_dev.dv_xname);
966 return (1);
967 }
968 if (m_head->m_pkthdr.len > MHLEN) {
969 MCLGET(m_new, M_DONTWAIT);
970 if (!(m_new->m_flags & M_EXT)) {
971 m_freem(m_new);
972 printf("%s: no memory for tx list",
973 sc->vr_dev.dv_xname);
974 return (1);
975 }
976 }
977 m_copydata(m_head, 0, m_head->m_pkthdr.len,
978 mtod(m_new, caddr_t));
979 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
980 m_freem(m_head);
981 m_head = m_new;
982 /*
983 * The Rhine chip doesn't auto-pad, so we have to make
984 * sure to pad short frames out to the minimum frame length
985 * ourselves.
986 */
987 if (m_head->m_len < VR_MIN_FRAMELEN) {
988 m_new->m_pkthdr.len += VR_MIN_FRAMELEN - m_new->m_len;
989 m_new->m_len = m_new->m_pkthdr.len;
990 }
991 f = c->vr_ptr;
992 f->vr_data = vtophys(mtod(m_new, caddr_t));
993 f->vr_ctl = total_len = m_new->m_len;
994 f->vr_ctl |= VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG;
995 f->vr_status = 0;
996 frag = 1;
997 }
998
999 c->vr_mbuf = m_head;
1000 c->vr_ptr->vr_ctl |= VR_TXCTL_LASTFRAG|VR_TXCTL_FINT;
1001 c->vr_ptr->vr_next = vtophys(c->vr_nextdesc->vr_ptr);
1002
1003 return (0);
1004 }
1005
1006 /*
1007 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1008 * to the mbuf data regions directly in the transmit lists. We also save a
1009 * copy of the pointers since the transmit list fragment pointers are
1010 * physical addresses.
1011 */
1012
1013 static void vr_start(ifp)
1014 struct ifnet *ifp;
1015 {
1016 struct vr_softc *sc;
1017 struct mbuf *m_head = NULL;
1018 struct vr_chain *cur_tx = NULL, *start_tx;
1019
1020 sc = ifp->if_softc;
1021
1022 /*
1023 * Check for an available queue slot. If there are none,
1024 * punt.
1025 */
1026 if (sc->vr_cdata.vr_tx_free->vr_mbuf != NULL) {
1027 ifp->if_flags |= IFF_OACTIVE;
1028 return;
1029 }
1030
1031 start_tx = sc->vr_cdata.vr_tx_free;
1032
1033 while (sc->vr_cdata.vr_tx_free->vr_mbuf == NULL) {
1034 IF_DEQUEUE(&ifp->if_snd, m_head);
1035 if (m_head == NULL)
1036 break;
1037
1038 /* Pick a descriptor off the free list. */
1039 cur_tx = sc->vr_cdata.vr_tx_free;
1040 sc->vr_cdata.vr_tx_free = cur_tx->vr_nextdesc;
1041
1042 /* Pack the data into the descriptor. */
1043 vr_encap(sc, cur_tx, m_head);
1044
1045 if (cur_tx != start_tx)
1046 VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1047
1048 #if NBPFILTER > 0
1049 /*
1050 * If there's a BPF listener, bounce a copy of this frame
1051 * to him.
1052 */
1053 if (ifp->if_bpf)
1054 bpf_mtap(ifp->if_bpf, cur_tx->vr_mbuf);
1055 #endif
1056 VR_TXOWN(cur_tx) = VR_TXSTAT_OWN;
1057 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1058 }
1059
1060 /*
1061 * If there are no frames queued, bail.
1062 */
1063 if (cur_tx == NULL)
1064 return;
1065
1066 sc->vr_cdata.vr_tx_tail = cur_tx;
1067
1068 if (sc->vr_cdata.vr_tx_head == NULL)
1069 sc->vr_cdata.vr_tx_head = start_tx;
1070
1071 /*
1072 * Set a timeout in case the chip goes out to lunch.
1073 */
1074 ifp->if_timer = 5;
1075
1076 return;
1077 }
1078
1079 /*
1080 * Initialize the interface. Must be called at splnet.
1081 */
1082 static void vr_init(xsc)
1083 void *xsc;
1084 {
1085 struct vr_softc *sc = xsc;
1086 struct ifnet *ifp = &sc->vr_ec.ec_if;
1087
1088 /*
1089 * Cancel pending I/O and free all RX/TX buffers.
1090 */
1091 vr_stop(sc);
1092 vr_reset(sc);
1093
1094 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1095 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1096
1097 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1098 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1099
1100 /* Init circular RX list. */
1101 if (vr_list_rx_init(sc) == ENOBUFS) {
1102 printf("%s: initialization failed: no "
1103 "memory for rx buffers\n", sc->vr_dev.dv_xname);
1104 vr_stop(sc);
1105 return;
1106 }
1107
1108 /*
1109 * Init tx descriptors.
1110 */
1111 vr_list_tx_init(sc);
1112
1113 /* If we want promiscuous mode, set the allframes bit. */
1114 if (ifp->if_flags & IFF_PROMISC)
1115 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1116 else
1117 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1118
1119 /* Set capture broadcast bit to capture broadcast frames. */
1120 if (ifp->if_flags & IFF_BROADCAST)
1121 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1122 else
1123 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1124
1125 /*
1126 * Program the multicast filter, if necessary.
1127 */
1128 vr_setmulti(sc);
1129
1130 /*
1131 * Load the address of the RX list.
1132 */
1133 CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr));
1134
1135 /* Enable receiver and transmitter. */
1136 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1137 VR_CMD_TX_ON|VR_CMD_RX_ON|
1138 VR_CMD_RX_GO);
1139
1140 /* Set current media. */
1141 mii_mediachg(&sc->vr_mii);
1142
1143 CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0]));
1144
1145 /*
1146 * Enable interrupts.
1147 */
1148 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1149 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1150
1151 ifp->if_flags |= IFF_RUNNING;
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153
1154 /* Start one second timer. */
1155 timeout(vr_tick, sc, hz);
1156
1157 return;
1158 }
1159
1160 /*
1161 * Set media options.
1162 */
1163 static int vr_ifmedia_upd(ifp)
1164 struct ifnet *ifp;
1165 {
1166 struct vr_softc *sc = ifp->if_softc;
1167
1168 if (ifp->if_flags & IFF_UP)
1169 mii_mediachg(&sc->vr_mii);
1170 return (0);
1171 }
1172
1173 /*
1174 * Report current media status.
1175 */
1176 static void vr_ifmedia_sts(ifp, ifmr)
1177 struct ifnet *ifp;
1178 struct ifmediareq *ifmr;
1179 {
1180 struct vr_softc *sc = ifp->if_softc;
1181
1182 mii_pollstat(&sc->vr_mii);
1183 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1184 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1185 }
1186
1187 static int vr_ioctl(ifp, command, data)
1188 struct ifnet *ifp;
1189 u_long command;
1190 caddr_t data;
1191 {
1192 struct vr_softc *sc = ifp->if_softc;
1193 struct ifreq *ifr = (struct ifreq *)data;
1194 struct ifaddr *ifa = (struct ifaddr *)data;
1195 int s, error = 0;
1196
1197 s = splnet();
1198
1199 switch (command) {
1200 case SIOCSIFADDR:
1201 ifp->if_flags |= IFF_UP;
1202
1203 switch (ifa->ifa_addr->sa_family) {
1204 #ifdef INET
1205 case AF_INET:
1206 vr_init(sc);
1207 arp_ifinit(ifp, ifa);
1208 break;
1209 #endif /* INET */
1210 default:
1211 vr_init(sc);
1212 break;
1213 }
1214 break;
1215
1216 case SIOCGIFADDR:
1217 bcopy((caddr_t) sc->vr_enaddr,
1218 (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1219 ETHER_ADDR_LEN);
1220 break;
1221
1222 case SIOCSIFMTU:
1223 if (ifr->ifr_mtu > ETHERMTU)
1224 error = EINVAL;
1225 else
1226 ifp->if_mtu = ifr->ifr_mtu;
1227 break;
1228
1229 case SIOCSIFFLAGS:
1230 if (ifp->if_flags & IFF_UP) {
1231 vr_init(sc);
1232 } else {
1233 if (ifp->if_flags & IFF_RUNNING)
1234 vr_stop(sc);
1235 }
1236 error = 0;
1237 break;
1238 case SIOCADDMULTI:
1239 case SIOCDELMULTI:
1240 if (command == SIOCADDMULTI)
1241 error = ether_addmulti(ifr, &sc->vr_ec);
1242 else
1243 error = ether_delmulti(ifr, &sc->vr_ec);
1244
1245 if (error == ENETRESET) {
1246 vr_setmulti(sc);
1247 error = 0;
1248 }
1249 break;
1250 case SIOCGIFMEDIA:
1251 case SIOCSIFMEDIA:
1252 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1253 break;
1254 default:
1255 error = EINVAL;
1256 break;
1257 }
1258
1259 splx(s);
1260
1261 return (error);
1262 }
1263
1264 static void vr_watchdog(ifp)
1265 struct ifnet *ifp;
1266 {
1267 struct vr_softc *sc;
1268
1269 sc = ifp->if_softc;
1270
1271 ifp->if_oerrors++;
1272 printf("%s: watchdog timeout\n", sc->vr_dev.dv_xname);
1273
1274 vr_stop(sc);
1275 vr_reset(sc);
1276 vr_init(sc);
1277
1278 if (ifp->if_snd.ifq_head != NULL)
1279 vr_start(ifp);
1280
1281 return;
1282 }
1283
1284 /*
1285 * One second timer, used to tick MII.
1286 */
1287 static void
1288 vr_tick(arg)
1289 void *arg;
1290 {
1291 struct vr_softc *sc = arg;
1292 int s;
1293
1294 s = splnet();
1295 mii_tick(&sc->vr_mii);
1296 splx(s);
1297
1298 timeout(vr_tick, sc, hz);
1299 }
1300
1301 /*
1302 * Stop the adapter and free any mbufs allocated to the
1303 * RX and TX lists.
1304 */
1305 static void vr_stop(sc)
1306 struct vr_softc *sc;
1307 {
1308 register int i;
1309 struct ifnet *ifp;
1310
1311 /* Cancel one second timer. */
1312 untimeout(vr_tick, sc);
1313
1314 ifp = &sc->vr_ec.ec_if;
1315 ifp->if_timer = 0;
1316
1317 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1318 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1319 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1320 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1321 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1322
1323 /*
1324 * Free data in the RX lists.
1325 */
1326 for (i = 0; i < VR_RX_LIST_CNT; i++) {
1327 if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
1328 m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
1329 sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
1330 }
1331 }
1332 bzero((char *)&sc->vr_ldata->vr_rx_list,
1333 sizeof (sc->vr_ldata->vr_rx_list));
1334
1335 /*
1336 * Free the TX list buffers.
1337 */
1338 for (i = 0; i < VR_TX_LIST_CNT; i++) {
1339 if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
1340 m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
1341 sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
1342 }
1343 }
1344
1345 bzero((char *)&sc->vr_ldata->vr_tx_list,
1346 sizeof (sc->vr_ldata->vr_tx_list));
1347
1348 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1349
1350 return;
1351 }
1352
1353 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1354 static int vr_probe __P((struct device *, struct cfdata *, void *));
1355 static void vr_attach __P((struct device *, struct device *, void *));
1356 static void vr_shutdown __P((void *));
1357
1358 struct cfattach vr_ca = {
1359 sizeof (struct vr_softc), vr_probe, vr_attach
1360 };
1361
1362 static struct vr_type *
1363 vr_lookup(pa)
1364 struct pci_attach_args *pa;
1365 {
1366 struct vr_type *vrt;
1367
1368 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1369 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1370 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1371 return (vrt);
1372 }
1373 return (NULL);
1374 }
1375
1376 static int
1377 vr_probe(parent, match, aux)
1378 struct device *parent;
1379 struct cfdata *match;
1380 void *aux;
1381 {
1382 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1383
1384 if (vr_lookup(pa) != NULL)
1385 return (1);
1386
1387 return (0);
1388 }
1389
1390 /*
1391 * Stop all chip I/O so that the kernel's probe routines don't
1392 * get confused by errant DMAs when rebooting.
1393 */
1394 static void vr_shutdown(arg)
1395 void *arg;
1396 {
1397 struct vr_softc *sc = (struct vr_softc *)arg;
1398
1399 vr_stop(sc);
1400
1401 return;
1402 }
1403
1404 /*
1405 * Attach the interface. Allocate softc structures, do ifmedia
1406 * setup and ethernet/BPF attach.
1407 */
1408 static void
1409 vr_attach(parent, self, aux)
1410 struct device * const parent;
1411 struct device * const self;
1412 void * const aux;
1413 {
1414 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1415 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1416 struct vr_softc * const sc = (struct vr_softc *) self;
1417 struct pci_attach_args * const pa = (struct pci_attach_args *) aux;
1418 struct vr_type *vrt;
1419 int i;
1420 u_int32_t command;
1421 struct ifnet *ifp;
1422 unsigned int round;
1423 caddr_t roundptr;
1424 u_char eaddr[ETHER_ADDR_LEN];
1425
1426 vrt = vr_lookup(pa);
1427 if (vrt == NULL) {
1428 printf("\n");
1429 panic("vr_attach: impossible");
1430 }
1431
1432 printf(": %s Ethernet\n", vrt->vr_name);
1433
1434 /*
1435 * Handle power management nonsense.
1436 */
1437
1438 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1439 if (command == 0x01) {
1440
1441 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1442 if (command & VR_PSTATE_MASK) {
1443 u_int32_t iobase, membase, irq;
1444
1445 /* Save important PCI config data. */
1446 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1447 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1448 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1449
1450 /* Reset the power state. */
1451 printf("%s: chip is in D%d power mode "
1452 "-- setting to D0\n",
1453 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1454 command &= 0xFFFFFFFC;
1455 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1456
1457 /* Restore PCI config data. */
1458 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1459 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1460 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1461 }
1462 }
1463
1464 /*
1465 * Map control/status registers.
1466 */
1467 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1468 command |= (PCI_COMMAND_IO_ENABLE |
1469 PCI_COMMAND_MEM_ENABLE |
1470 PCI_COMMAND_MASTER_ENABLE);
1471 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1472 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1473
1474 {
1475 bus_space_tag_t iot, memt;
1476 bus_space_handle_t ioh, memh;
1477 int ioh_valid, memh_valid;
1478 pci_intr_handle_t intrhandle;
1479 const char *intrstr;
1480
1481 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1482 PCI_MAPREG_TYPE_IO, 0,
1483 &iot, &ioh, NULL, NULL) == 0);
1484 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1485 PCI_MAPREG_TYPE_MEM |
1486 PCI_MAPREG_MEM_TYPE_32BIT,
1487 0, &memt, &memh, NULL, NULL) == 0);
1488 #if defined(VR_USEIOSPACE)
1489 if (ioh_valid) {
1490 sc->vr_bst = iot;
1491 sc->vr_bsh = ioh;
1492 } else if (memh_valid) {
1493 sc->vr_bst = memt;
1494 sc->vr_bsh = memh;
1495 }
1496 #else
1497 if (memh_valid) {
1498 sc->vr_bst = memt;
1499 sc->vr_bsh = memh;
1500 } else if (ioh_valid) {
1501 sc->vr_bst = iot;
1502 sc->vr_bsh = ioh;
1503 }
1504 #endif
1505 else {
1506 printf(": unable to map device registers\n");
1507 return;
1508 }
1509
1510 /* Allocate interrupt */
1511 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1512 pa->pa_intrline, &intrhandle)) {
1513 printf("%s: couldn't map interrupt\n",
1514 sc->vr_dev.dv_xname);
1515 goto fail;
1516 }
1517 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1518 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1519 (void *)vr_intr, sc);
1520 if (sc->vr_ih == NULL) {
1521 printf("%s: couldn't establish interrupt",
1522 sc->vr_dev.dv_xname);
1523 if (intrstr != NULL)
1524 printf(" at %s", intrstr);
1525 printf("\n");
1526 }
1527 printf("%s: interrupting at %s\n",
1528 sc->vr_dev.dv_xname, intrstr);
1529 }
1530 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1531 if (sc->vr_ats == NULL)
1532 printf("%s: warning: couldn't establish shutdown hook\n",
1533 sc->vr_dev.dv_xname);
1534
1535 /* Reset the adapter. */
1536 vr_reset(sc);
1537
1538 /*
1539 * Get station address. The way the Rhine chips work,
1540 * you're not allowed to directly access the EEPROM once
1541 * they've been programmed a special way. Consequently,
1542 * we need to read the node address from the PAR0 and PAR1
1543 * registers.
1544 */
1545 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1546 DELAY(200);
1547 for (i = 0; i < ETHER_ADDR_LEN; i++)
1548 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1549
1550 /*
1551 * A Rhine chip was detected. Inform the world.
1552 */
1553 printf("%s: Ethernet address: %s\n",
1554 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1555
1556 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1557
1558 sc->vr_ldata_ptr = malloc(sizeof (struct vr_list_data) + 8,
1559 M_DEVBUF, M_NOWAIT);
1560 if (sc->vr_ldata_ptr == NULL) {
1561 free(sc, M_DEVBUF);
1562 printf("%s: no memory for list buffers!\n",
1563 sc->vr_dev.dv_xname);
1564 return;
1565 }
1566
1567 sc->vr_ldata = (struct vr_list_data *)sc->vr_ldata_ptr;
1568 round = (unsigned long)sc->vr_ldata_ptr & 0xF;
1569 roundptr = sc->vr_ldata_ptr;
1570 for (i = 0; i < 8; i++) {
1571 if (round % 8) {
1572 round++;
1573 roundptr++;
1574 } else
1575 break;
1576 }
1577 sc->vr_ldata = (struct vr_list_data *)roundptr;
1578 bzero(sc->vr_ldata, sizeof (struct vr_list_data));
1579
1580 ifp = &sc->vr_ec.ec_if;
1581 ifp->if_softc = sc;
1582 ifp->if_mtu = ETHERMTU;
1583 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1584 ifp->if_ioctl = vr_ioctl;
1585 ifp->if_output = ether_output;
1586 ifp->if_start = vr_start;
1587 ifp->if_watchdog = vr_watchdog;
1588 ifp->if_baudrate = 10000000;
1589 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1590
1591 /*
1592 * Initialize MII/media info.
1593 */
1594 sc->vr_mii.mii_ifp = ifp;
1595 sc->vr_mii.mii_readreg = vr_mii_readreg;
1596 sc->vr_mii.mii_writereg = vr_mii_writereg;
1597 sc->vr_mii.mii_statchg = vr_mii_statchg;
1598 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1599 mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
1600 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1601 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1602 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1603 } else
1604 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1605
1606 /*
1607 * Call MI attach routines.
1608 */
1609 if_attach(ifp);
1610 ether_ifattach(ifp, sc->vr_enaddr);
1611
1612 #if NBPFILTER > 0
1613 bpfattach(&sc->vr_ec.ec_if.if_bpf,
1614 ifp, DLT_EN10MB, sizeof (struct ether_header));
1615 #endif
1616
1617 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1618 if (sc->vr_ats == NULL)
1619 printf("%s: warning: couldn't establish shutdown hook\n",
1620 sc->vr_dev.dv_xname);
1621
1622 fail:
1623 return;
1624 }
1625