if_vr.c revision 1.19 1 /* $NetBSD: if_vr.c,v 1.19 1999/03/24 01:07:59 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/sockio.h>
111 #include <sys/mbuf.h>
112 #include <sys/malloc.h>
113 #include <sys/kernel.h>
114 #include <sys/socket.h>
115 #include <sys/device.h>
116
117 #include <vm/vm.h> /* for PAGE_SIZE */
118
119 #include <net/if.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_ether.h>
124
125 #if defined(INET)
126 #include <netinet/in.h>
127 #include <netinet/if_inarp.h>
128 #endif
129
130 #include "bpfilter.h"
131 #if NBPFILTER > 0
132 #include <net/bpf.h>
133 #endif
134
135 #include <machine/bus.h>
136 #include <machine/intr.h>
137
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 #include <dev/pci/pcidevs.h>
144
145 #include <dev/pci/if_vrreg.h>
146
147 #define VR_USEIOSPACE
148
149 /*
150 * Various supported device vendors/types and their names.
151 */
152 static struct vr_type {
153 pci_vendor_id_t vr_vid;
154 pci_product_id_t vr_did;
155 const char *vr_name;
156 } vr_devs[] = {
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
158 "VIA VT3043 (Rhine) 10/100 Ethernet" },
159 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
160 "VIA VT86C100A (Rhine-II) 10/100 Ethernet" },
161 { 0, 0, NULL }
162 };
163
164 /*
165 * Transmit descriptor list size.
166 */
167 #define VR_NTXDESC 64
168 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
169 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
170
171 /*
172 * Receive descriptor list size.
173 */
174 #define VR_NRXDESC 64
175 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
176 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
177
178 /*
179 * Control data structres that are DMA'd to the Rhine chip. We allocate
180 * them in a single clump that maps to a single DMA segment to make several
181 * things easier.
182 *
183 * Note that since we always copy outgoing packets to aligned transmit
184 * buffers, we can reduce the transmit descriptors to one per packet.
185 */
186 struct vr_control_data {
187 struct vr_desc vr_txdescs[VR_NTXDESC];
188 struct vr_desc vr_rxdescs[VR_NRXDESC];
189 };
190
191 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
192 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
193 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
194
195 /*
196 * Software state of transmit and receive descriptors.
197 */
198 struct vr_descsoft {
199 struct mbuf *ds_mbuf; /* head of mbuf chain */
200 bus_dmamap_t ds_dmamap; /* our DMA map */
201 };
202
203 struct vr_softc {
204 struct device vr_dev; /* generic device glue */
205 void *vr_ih; /* interrupt cookie */
206 void *vr_ats; /* shutdown hook */
207 bus_space_tag_t vr_bst; /* bus space tag */
208 bus_space_handle_t vr_bsh; /* bus space handle */
209 bus_dma_tag_t vr_dmat; /* bus DMA tag */
210 pci_chipset_tag_t vr_pc; /* PCI chipset info */
211 struct ethercom vr_ec; /* Ethernet common info */
212 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
213 struct mii_data vr_mii; /* MII/media info */
214
215 bus_dmamap_t vr_cddmamap; /* control data DMA map */
216 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
217
218 /*
219 * Software state for transmit and receive descriptors.
220 */
221 struct vr_descsoft vr_txsoft[VR_NTXDESC];
222 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
223
224 /*
225 * Control data structures.
226 */
227 struct vr_control_data *vr_control_data;
228
229 int vr_txpending; /* number of TX requests pending */
230 int vr_txdirty; /* first dirty TX descriptor */
231 int vr_txlast; /* last used TX descriptor */
232
233 int vr_rxptr; /* next ready RX descriptor */
234 };
235
236 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
237 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
238
239 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
240 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
241
242 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
243 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
244
245 #define VR_CDTXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
247 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
248
249 #define VR_CDRXSYNC(sc, x, ops) \
250 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
251 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
252
253 /*
254 * Note we rely on MCLBYTES being a power of two below.
255 */
256 #define VR_INIT_RXDESC(sc, i) \
257 do { \
258 struct vr_desc *__d = VR_CDRX((sc), (i)); \
259 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
260 \
261 __d->vr_next = VR_CDRXADDR((sc), VR_NEXTRX((i))); \
262 __d->vr_status = VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG | \
263 VR_RXSTAT_OWN; \
264 __d->vr_data = __ds->ds_dmamap->dm_segs[0].ds_addr; \
265 __d->vr_ctl = VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
266 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN); \
267 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
268 } while (0)
269
270 /*
271 * register space access macros
272 */
273 #define CSR_WRITE_4(sc, reg, val) \
274 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
275 #define CSR_WRITE_2(sc, reg, val) \
276 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
277 #define CSR_WRITE_1(sc, reg, val) \
278 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
279
280 #define CSR_READ_4(sc, reg) \
281 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
282 #define CSR_READ_2(sc, reg) \
283 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
284 #define CSR_READ_1(sc, reg) \
285 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
286
287 #define VR_TIMEOUT 1000
288
289 static int vr_add_rxbuf __P((struct vr_softc *, int));
290
291 static void vr_rxeof __P((struct vr_softc *));
292 static void vr_rxeoc __P((struct vr_softc *));
293 static void vr_txeof __P((struct vr_softc *));
294 static int vr_intr __P((void *));
295 static void vr_start __P((struct ifnet *));
296 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
297 static void vr_init __P((void *));
298 static void vr_stop __P((struct vr_softc *));
299 static void vr_watchdog __P((struct ifnet *));
300 static void vr_tick __P((void *));
301
302 static int vr_ifmedia_upd __P((struct ifnet *));
303 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
304
305 static void vr_mii_sync __P((struct vr_softc *));
306 static void vr_mii_send __P((struct vr_softc *, u_int32_t, int));
307 static int vr_mii_readreg __P((struct device *, int, int));
308 static void vr_mii_writereg __P((struct device *, int, int, int));
309 static void vr_mii_statchg __P((struct device *));
310
311 static u_int8_t vr_calchash __P((u_int8_t *));
312 static void vr_setmulti __P((struct vr_softc *));
313 static void vr_reset __P((struct vr_softc *));
314
315 #define VR_SETBIT(sc, reg, x) \
316 CSR_WRITE_1(sc, reg, \
317 CSR_READ_1(sc, reg) | x)
318
319 #define VR_CLRBIT(sc, reg, x) \
320 CSR_WRITE_1(sc, reg, \
321 CSR_READ_1(sc, reg) & ~x)
322
323 #define VR_SETBIT16(sc, reg, x) \
324 CSR_WRITE_2(sc, reg, \
325 CSR_READ_2(sc, reg) | x)
326
327 #define VR_CLRBIT16(sc, reg, x) \
328 CSR_WRITE_2(sc, reg, \
329 CSR_READ_2(sc, reg) & ~x)
330
331 #define VR_SETBIT32(sc, reg, x) \
332 CSR_WRITE_4(sc, reg, \
333 CSR_READ_4(sc, reg) | x)
334
335 #define VR_CLRBIT32(sc, reg, x) \
336 CSR_WRITE_4(sc, reg, \
337 CSR_READ_4(sc, reg) & ~x)
338
339 #define SIO_SET(x) \
340 CSR_WRITE_1(sc, VR_MIICMD, \
341 CSR_READ_1(sc, VR_MIICMD) | x)
342
343 #define SIO_CLR(x) \
344 CSR_WRITE_1(sc, VR_MIICMD, \
345 CSR_READ_1(sc, VR_MIICMD) & ~x)
346
347 /*
348 * Sync the PHYs by setting data bit and strobing the clock 32 times.
349 */
350 static void
351 vr_mii_sync(sc)
352 struct vr_softc *sc;
353 {
354 int i;
355
356 SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
357
358 for (i = 0; i < 32; i++) {
359 SIO_SET(VR_MIICMD_CLK);
360 DELAY(1);
361 SIO_CLR(VR_MIICMD_CLK);
362 DELAY(1);
363 }
364 }
365
366 /*
367 * Clock a series of bits through the MII.
368 */
369 static void
370 vr_mii_send(sc, bits, cnt)
371 struct vr_softc *sc;
372 u_int32_t bits;
373 int cnt;
374 {
375 int i;
376
377 SIO_CLR(VR_MIICMD_CLK);
378
379 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
380 if (bits & i) {
381 SIO_SET(VR_MIICMD_DATAOUT);
382 } else {
383 SIO_CLR(VR_MIICMD_DATAOUT);
384 }
385 DELAY(1);
386 SIO_CLR(VR_MIICMD_CLK);
387 DELAY(1);
388 SIO_SET(VR_MIICMD_CLK);
389 }
390 }
391
392 /*
393 * Read an PHY register through the MII.
394 */
395 static int
396 vr_mii_readreg(self, phy, reg)
397 struct device *self;
398 int phy, reg;
399 {
400 struct vr_softc *sc = (struct vr_softc *)self;
401 int i, ack, val = 0;
402
403 CSR_WRITE_1(sc, VR_MIICMD, 0);
404 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
405
406 /*
407 * Turn on data xmit.
408 */
409 SIO_SET(VR_MIICMD_DIR);
410
411 vr_mii_sync(sc);
412
413 /*
414 * Send command/address info.
415 */
416 vr_mii_send(sc, MII_COMMAND_START, 2);
417 vr_mii_send(sc, MII_COMMAND_READ, 2);
418 vr_mii_send(sc, phy, 5);
419 vr_mii_send(sc, reg, 5);
420
421 /* Idle bit */
422 SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
423 DELAY(1);
424 SIO_SET(VR_MIICMD_CLK);
425 DELAY(1);
426
427 /* Turn off xmit. */
428 SIO_CLR(VR_MIICMD_DIR);
429
430 /* Check for ack */
431 SIO_CLR(VR_MIICMD_CLK);
432 DELAY(1);
433 SIO_SET(VR_MIICMD_CLK);
434 DELAY(1);
435 ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
436
437 /*
438 * Now try reading data bits. If the ack failed, we still
439 * need to clock through 16 cycles to keep the PHY(s) in sync.
440 */
441 if (ack) {
442 for (i = 0; i < 16; i++) {
443 SIO_CLR(VR_MIICMD_CLK);
444 DELAY(1);
445 SIO_SET(VR_MIICMD_CLK);
446 DELAY(1);
447 }
448 goto fail;
449 }
450
451 for (i = 0x8000; i; i >>= 1) {
452 SIO_CLR(VR_MIICMD_CLK);
453 DELAY(1);
454 if (!ack) {
455 if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
456 val |= i;
457 DELAY(1);
458 }
459 SIO_SET(VR_MIICMD_CLK);
460 DELAY(1);
461 }
462
463 fail:
464
465 SIO_CLR(VR_MIICMD_CLK);
466 DELAY(1);
467 SIO_SET(VR_MIICMD_CLK);
468 DELAY(1);
469
470 return (val);
471 }
472
473 /*
474 * Write to a PHY register through the MII.
475 */
476 static void
477 vr_mii_writereg(self, phy, reg, val)
478 struct device *self;
479 int phy, reg, val;
480 {
481 struct vr_softc *sc = (struct vr_softc *)self;
482
483 CSR_WRITE_1(sc, VR_MIICMD, 0);
484 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
485
486 /*
487 * Turn on data output.
488 */
489 SIO_SET(VR_MIICMD_DIR);
490
491 vr_mii_sync(sc);
492
493 vr_mii_send(sc, MII_COMMAND_START, 2);
494 vr_mii_send(sc, MII_COMMAND_WRITE, 2);
495 vr_mii_send(sc, phy, 5);
496 vr_mii_send(sc, reg, 5);
497 vr_mii_send(sc, MII_COMMAND_ACK, 2);
498 vr_mii_send(sc, val, 16);
499
500 /* Idle bit. */
501 SIO_SET(VR_MIICMD_CLK);
502 DELAY(1);
503 SIO_CLR(VR_MIICMD_CLK);
504 DELAY(1);
505
506 /*
507 * Turn off xmit.
508 */
509 SIO_CLR(VR_MIICMD_DIR);
510 }
511
512 static void
513 vr_mii_statchg(self)
514 struct device *self;
515 {
516 struct vr_softc *sc = (struct vr_softc *)self;
517
518 /*
519 * In order to fiddle with the 'full-duplex' bit in the netconfig
520 * register, we first have to put the transmit and/or receive logic
521 * in the idle state.
522 */
523 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
524
525 if (sc->vr_mii.mii_media_active & IFM_FDX)
526 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
527 else
528 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
529
530 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
531 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
532
533 /* XXX Update ifp->if_baudrate */
534 }
535
536 /*
537 * Calculate CRC of a multicast group address, return the lower 6 bits.
538 */
539 static u_int8_t
540 vr_calchash(addr)
541 u_int8_t *addr;
542 {
543 u_int32_t crc, carry;
544 int i, j;
545 u_int8_t c;
546
547 /* Compute CRC for the address value. */
548 crc = 0xFFFFFFFF; /* initial value */
549
550 for (i = 0; i < 6; i++) {
551 c = *(addr + i);
552 for (j = 0; j < 8; j++) {
553 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
554 crc <<= 1;
555 c >>= 1;
556 if (carry)
557 crc = (crc ^ 0x04c11db6) | carry;
558 }
559 }
560
561 /* return the filter bit position */
562 return ((crc >> 26) & 0x0000003F);
563 }
564
565 /*
566 * Program the 64-bit multicast hash filter.
567 */
568 static void
569 vr_setmulti(sc)
570 struct vr_softc *sc;
571 {
572 struct ifnet *ifp;
573 int h = 0;
574 u_int32_t hashes[2] = { 0, 0 };
575 struct ether_multistep step;
576 struct ether_multi *enm;
577 int mcnt = 0;
578 u_int8_t rxfilt;
579
580 ifp = &sc->vr_ec.ec_if;
581
582 rxfilt = CSR_READ_1(sc, VR_RXCFG);
583
584 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
585 rxfilt |= VR_RXCFG_RX_MULTI;
586 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
587 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
588 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
589 return;
590 }
591
592 /* first, zot all the existing hash bits */
593 CSR_WRITE_4(sc, VR_MAR0, 0);
594 CSR_WRITE_4(sc, VR_MAR1, 0);
595
596 /* now program new ones */
597 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
598 while (enm != NULL) {
599 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
600 continue;
601
602 h = vr_calchash(enm->enm_addrlo);
603
604 if (h < 32)
605 hashes[0] |= (1 << h);
606 else
607 hashes[1] |= (1 << (h - 32));
608 ETHER_NEXT_MULTI(step, enm);
609 mcnt++;
610 }
611
612 if (mcnt)
613 rxfilt |= VR_RXCFG_RX_MULTI;
614 else
615 rxfilt &= ~VR_RXCFG_RX_MULTI;
616
617 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
618 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
619 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
620 }
621
622 static void
623 vr_reset(sc)
624 struct vr_softc *sc;
625 {
626 int i;
627
628 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
629
630 for (i = 0; i < VR_TIMEOUT; i++) {
631 DELAY(10);
632 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
633 break;
634 }
635 if (i == VR_TIMEOUT)
636 printf("%s: reset never completed!\n",
637 sc->vr_dev.dv_xname);
638
639 /* Wait a little while for the chip to get its brains in order. */
640 DELAY(1000);
641 }
642
643 /*
644 * Initialize an RX descriptor and attach an MBUF cluster.
645 * Note: the length fields are only 11 bits wide, which means the
646 * largest size we can specify is 2047. This is important because
647 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
648 * overflow the field and make a mess.
649 */
650 static int
651 vr_add_rxbuf(sc, i)
652 struct vr_softc *sc;
653 int i;
654 {
655 struct vr_descsoft *ds = VR_DSRX(sc, i);
656 struct mbuf *m_new;
657 int error;
658
659 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
660 if (m_new == NULL)
661 return (ENOBUFS);
662
663 MCLGET(m_new, M_DONTWAIT);
664 if ((m_new->m_flags & M_EXT) == 0) {
665 m_freem(m_new);
666 return (ENOBUFS);
667 }
668
669 if (ds->ds_mbuf != NULL)
670 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
671
672 ds->ds_mbuf = m_new;
673
674 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
675 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
676 if (error) {
677 printf("%s: unable to load rx DMA map %d, error = %d\n",
678 sc->vr_dev.dv_xname, i, error);
679 panic("vr_add_rxbuf"); /* XXX */
680 }
681
682 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
683 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
684
685 VR_INIT_RXDESC(sc, i);
686
687 return (0);
688 }
689
690 /*
691 * A frame has been uploaded: pass the resulting mbuf chain up to
692 * the higher level protocols.
693 */
694 static void
695 vr_rxeof(sc)
696 struct vr_softc *sc;
697 {
698 struct ether_header *eh;
699 struct mbuf *m;
700 struct ifnet *ifp;
701 struct vr_desc *d;
702 struct vr_descsoft *ds;
703 int i, total_len;
704 u_int32_t rxstat;
705
706 ifp = &sc->vr_ec.ec_if;
707
708 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
709 d = VR_CDRX(sc, i);
710 ds = VR_DSRX(sc, i);
711
712 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
713
714 rxstat = d->vr_status;
715
716 if (rxstat & VR_RXSTAT_OWN) {
717 /*
718 * We have processed all of the receive buffers.
719 */
720 break;
721 }
722
723 /*
724 * If an error occurs, update stats, clear the
725 * status word and leave the mbuf cluster in place:
726 * it should simply get re-used next time this descriptor
727 * comes up in the ring.
728 */
729 if (rxstat & VR_RXSTAT_RXERR) {
730 const char *errstr;
731
732 ifp->if_ierrors++;
733 switch (rxstat & 0x000000FF) {
734 case VR_RXSTAT_CRCERR:
735 errstr = "crc error";
736 break;
737 case VR_RXSTAT_FRAMEALIGNERR:
738 errstr = "frame alignment error";
739 break;
740 case VR_RXSTAT_FIFOOFLOW:
741 errstr = "FIFO overflow";
742 break;
743 case VR_RXSTAT_GIANT:
744 errstr = "received giant packet";
745 break;
746 case VR_RXSTAT_RUNT:
747 errstr = "received runt packet";
748 break;
749 case VR_RXSTAT_BUSERR:
750 errstr = "system bus error";
751 break;
752 case VR_RXSTAT_BUFFERR:
753 errstr = "rx buffer error";
754 break;
755 default:
756 errstr = "unknown rx error";
757 break;
758 }
759 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
760 errstr);
761
762 VR_INIT_RXDESC(sc, i);
763
764 continue;
765 }
766
767 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
768 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
769
770 /* No errors; receive the packet. */
771 total_len = VR_RXBYTES(d->vr_status);
772
773 /*
774 * XXX The VIA Rhine chip includes the CRC with every
775 * received frame, and there's no way to turn this
776 * behavior off (at least, I can't find anything in
777 * the manual that explains how to do it) so we have
778 * to trim off the CRC manually.
779 */
780 total_len -= ETHER_CRC_LEN;
781
782 #ifdef __NO_STRICT_ALIGNMENT
783 /*
784 * Try to conjure up a new mbuf cluster. If that
785 * fails, it means we have an out of memory condition and
786 * should leave the buffer in place and continue. This will
787 * result in a lost packet, but there's little else we
788 * can do in this situation.
789 */
790 m = ds->ds_mbuf;
791 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
792 ifp->if_ierrors++;
793 VR_INIT_RXDESC(sc, i);
794 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
795 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
796 continue;
797 }
798 #else
799 /*
800 * The Rhine's packet buffers must be 4-byte aligned.
801 * But this means that the data after the Ethernet header
802 * is misaligned. We must allocate a new buffer and
803 * copy the data, shifted forward 2 bytes.
804 */
805 MGETHDR(m, M_DONTWAIT, MT_DATA);
806 if (m == NULL) {
807 dropit:
808 ifp->if_ierrors++;
809 VR_INIT_RXDESC(sc, i);
810 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
811 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
812 continue;
813 }
814 if (total_len > (MHLEN - 2)) {
815 MCLGET(m, M_DONTWAIT);
816 if ((m->m_flags & M_EXT) == 0)
817 goto dropit;
818 }
819 m->m_data += 2;
820
821 /*
822 * Note that we use clusters for incoming frames, so the
823 * buffer is virtually contiguous.
824 */
825 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
826 total_len);
827
828 /* Allow the recieve descriptor to continue using its mbuf. */
829 VR_INIT_RXDESC(sc, i);
830 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
831 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
832 #endif /* __NO_STRICT_ALIGNMENT */
833
834 ifp->if_ipackets++;
835 eh = mtod(m, struct ether_header *);
836 m->m_pkthdr.rcvif = ifp;
837 m->m_pkthdr.len = m->m_len = total_len;
838 #if NBPFILTER > 0
839 /*
840 * Handle BPF listeners. Let the BPF user see the packet, but
841 * don't pass it up to the ether_input() layer unless it's
842 * a broadcast packet, multicast packet, matches our ethernet
843 * address or the interface is in promiscuous mode.
844 */
845 if (ifp->if_bpf) {
846 bpf_mtap(ifp->if_bpf, m);
847 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
848 (rxstat & (VR_RXSTAT_RX_PHYS | VR_RXSTAT_RX_BROAD |
849 VR_RXSTAT_RX_MULTI)) == 0) {
850 m_freem(m);
851 continue;
852 }
853 }
854 #endif
855 /* Remove header from mbuf and pass it on. */
856 m_adj(m, sizeof(struct ether_header));
857 ether_input(ifp, eh, m);
858 }
859
860 /* Update the receive pointer. */
861 sc->vr_rxptr = i;
862 }
863
864 void
865 vr_rxeoc(sc)
866 struct vr_softc *sc;
867 {
868
869 vr_rxeof(sc);
870 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
871 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
872 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
873 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
874 }
875
876 /*
877 * A frame was downloaded to the chip. It's safe for us to clean up
878 * the list buffers.
879 */
880 static void
881 vr_txeof(sc)
882 struct vr_softc *sc;
883 {
884 struct ifnet *ifp = &sc->vr_ec.ec_if;
885 struct vr_desc *d;
886 struct vr_descsoft *ds;
887 u_int32_t txstat;
888 int i;
889
890 ifp->if_flags &= ~IFF_OACTIVE;
891
892 /*
893 * Go through our tx list and free mbufs for those
894 * frames that have been transmitted.
895 */
896 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
897 i = VR_NEXTTX(i), sc->vr_txpending--) {
898 d = VR_CDTX(sc, i);
899 ds = VR_DSTX(sc, i);
900
901 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
902
903 txstat = d->vr_status;
904 if (txstat & VR_TXSTAT_OWN)
905 break;
906
907 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
908 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
909 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
910 m_freem(ds->ds_mbuf);
911 ds->ds_mbuf = NULL;
912
913 if (txstat & VR_TXSTAT_ERRSUM) {
914 ifp->if_oerrors++;
915 if (txstat & VR_TXSTAT_DEFER)
916 ifp->if_collisions++;
917 if (txstat & VR_TXSTAT_LATECOLL)
918 ifp->if_collisions++;
919 }
920
921 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
922 ifp->if_opackets++;
923 }
924
925 /* Update the dirty transmit buffer pointer. */
926 sc->vr_txdirty = i;
927
928 /*
929 * Cancel the watchdog timer if there are no pending
930 * transmissions.
931 */
932 if (sc->vr_txpending == 0)
933 ifp->if_timer = 0;
934 }
935
936 static int
937 vr_intr(arg)
938 void *arg;
939 {
940 struct vr_softc *sc;
941 struct ifnet *ifp;
942 u_int16_t status;
943 int handled = 0, dotx = 0;
944
945 sc = arg;
946 ifp = &sc->vr_ec.ec_if;
947
948 /* Suppress unwanted interrupts. */
949 if ((ifp->if_flags & IFF_UP) == 0) {
950 vr_stop(sc);
951 return (0);
952 }
953
954 /* Disable interrupts. */
955 CSR_WRITE_2(sc, VR_IMR, 0x0000);
956
957 for (;;) {
958 status = CSR_READ_2(sc, VR_ISR);
959 if (status)
960 CSR_WRITE_2(sc, VR_ISR, status);
961
962 if ((status & VR_INTRS) == 0)
963 break;
964
965 handled = 1;
966
967 if (status & VR_ISR_RX_OK)
968 vr_rxeof(sc);
969
970 if (status &
971 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
972 VR_ISR_RX_DROPPED))
973 vr_rxeoc(sc);
974
975 if (status & VR_ISR_TX_OK) {
976 dotx = 1;
977 vr_txeof(sc);
978 }
979
980 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
981 if (status & VR_ISR_TX_UNDERRUN)
982 printf("%s: transmit underrun\n",
983 sc->vr_dev.dv_xname);
984 if (status & VR_ISR_TX_ABRT)
985 printf("%s: transmit aborted\n",
986 sc->vr_dev.dv_xname);
987 ifp->if_oerrors++;
988 dotx = 1;
989 vr_txeof(sc);
990 if (sc->vr_txpending) {
991 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
992 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
993 }
994 }
995
996 if (status & VR_ISR_BUSERR) {
997 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
998 /* vr_init() calls vr_start() */
999 dotx = 0;
1000 vr_init(sc);
1001 }
1002 }
1003
1004 /* Re-enable interrupts. */
1005 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1006
1007 if (dotx)
1008 vr_start(ifp);
1009
1010 return (handled);
1011 }
1012
1013 /*
1014 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1015 * to the mbuf data regions directly in the transmit lists. We also save a
1016 * copy of the pointers since the transmit list fragment pointers are
1017 * physical addresses.
1018 */
1019 static void
1020 vr_start(ifp)
1021 struct ifnet *ifp;
1022 {
1023 struct vr_softc *sc = ifp->if_softc;
1024 struct mbuf *m0, *m;
1025 struct vr_desc *d;
1026 struct vr_descsoft *ds;
1027 int error, firsttx, nexttx, opending;
1028
1029 /*
1030 * Remember the previous txpending and the first transmit
1031 * descriptor we use.
1032 */
1033 opending = sc->vr_txpending;
1034 firsttx = VR_NEXTTX(sc->vr_txlast);
1035
1036 /*
1037 * Loop through the send queue, setting up transmit descriptors
1038 * until we drain the queue, or use up all available transmit
1039 * descriptors.
1040 */
1041 while (sc->vr_txpending < VR_NTXDESC) {
1042 /*
1043 * Grab a packet off the queue.
1044 */
1045 IF_DEQUEUE(&ifp->if_snd, m0);
1046 if (m0 == NULL)
1047 break;
1048
1049 /*
1050 * Get the next available transmit descriptor.
1051 */
1052 nexttx = VR_NEXTTX(sc->vr_txlast);
1053 d = VR_CDTX(sc, nexttx);
1054 ds = VR_DSTX(sc, nexttx);
1055
1056 /*
1057 * Load the DMA map. If this fails, the packet didn't
1058 * fit in one DMA segment, and we need to copy. Note,
1059 * the packet must also be aligned.
1060 */
1061 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
1062 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1063 BUS_DMA_NOWAIT) != 0) {
1064 MGETHDR(m, M_DONTWAIT, MT_DATA);
1065 if (m == NULL) {
1066 printf("%s: unable to allocate Tx mbuf\n",
1067 sc->vr_dev.dv_xname);
1068 IF_PREPEND(&ifp->if_snd, m0);
1069 break;
1070 }
1071 if (m0->m_pkthdr.len > MHLEN) {
1072 MCLGET(m, M_DONTWAIT);
1073 if ((m->m_flags & M_EXT) == 0) {
1074 printf("%s: unable to allocate Tx "
1075 "cluster\n", sc->vr_dev.dv_xname);
1076 m_freem(m);
1077 IF_PREPEND(&ifp->if_snd, m0);
1078 break;
1079 }
1080 }
1081 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1082 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1083 m_freem(m0);
1084 m0 = m;
1085 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1086 ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1087 if (error) {
1088 printf("%s: unable to load Tx buffer, "
1089 "error = %d\n", sc->vr_dev.dv_xname, error);
1090 IF_PREPEND(&ifp->if_snd, m0);
1091 break;
1092 }
1093 }
1094
1095 /* Sync the DMA map. */
1096 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1097 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1098
1099 /*
1100 * Store a pointer to the packet so we can free it later.
1101 */
1102 ds->ds_mbuf = m0;
1103
1104 #if NBPFILTER > 0
1105 /*
1106 * If there's a BPF listener, bounce a copy of this frame
1107 * to him.
1108 */
1109 if (ifp->if_bpf)
1110 bpf_mtap(ifp->if_bpf, m0);
1111 #endif
1112
1113 /*
1114 * Fill in the transmit descriptor. The Rhine
1115 * doesn't auto-pad, so we have to do this ourselves.
1116 */
1117 d->vr_data = ds->ds_dmamap->dm_segs[0].ds_addr;
1118 d->vr_ctl = m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1119 VR_MIN_FRAMELEN : m0->m_pkthdr.len;
1120 d->vr_ctl |=
1121 VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|VR_TXCTL_LASTFRAG;
1122
1123 /*
1124 * If this is the first descriptor we're enqueuing,
1125 * don't give it to the Rhine yet. That could cause
1126 * a race condition. We'll do it below.
1127 */
1128 if (nexttx == firsttx)
1129 d->vr_status = 0;
1130 else
1131 d->vr_status = VR_TXSTAT_OWN;
1132
1133 VR_CDTXSYNC(sc, nexttx,
1134 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1135
1136 /* Advance the tx pointer. */
1137 sc->vr_txpending++;
1138 sc->vr_txlast = nexttx;
1139 }
1140
1141 if (sc->vr_txpending == VR_NTXDESC) {
1142 /* No more slots left; notify upper layer. */
1143 ifp->if_flags |= IFF_OACTIVE;
1144 }
1145
1146 if (sc->vr_txpending != opending) {
1147 /*
1148 * We enqueued packets. If the transmitter was idle,
1149 * reset the txdirty pointer.
1150 */
1151 if (opending == 0)
1152 sc->vr_txdirty = firsttx;
1153
1154 /*
1155 * Cause a transmit interrupt to happen on the
1156 * last packet we enqueued.
1157 */
1158 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= VR_TXCTL_FINT;
1159 VR_CDTXSYNC(sc, sc->vr_txlast,
1160 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161
1162 /*
1163 * The entire packet chain is set up. Give the
1164 * first descriptor to the Rhine now.
1165 */
1166 VR_CDTX(sc, firsttx)->vr_status = VR_TXSTAT_OWN;
1167 VR_CDTXSYNC(sc, firsttx,
1168 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1169
1170 /* Start the transmitter. */
1171 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1172
1173 /* Set the watchdog timer in case the chip flakes out. */
1174 ifp->if_timer = 5;
1175 }
1176 }
1177
1178 /*
1179 * Initialize the interface. Must be called at splnet.
1180 */
1181 static void
1182 vr_init(xsc)
1183 void *xsc;
1184 {
1185 struct vr_softc *sc = xsc;
1186 struct ifnet *ifp = &sc->vr_ec.ec_if;
1187 struct vr_desc *d;
1188 int i;
1189
1190 /* Cancel pending I/O. */
1191 vr_stop(sc);
1192
1193 /* Reset the Rhine to a known state. */
1194 vr_reset(sc);
1195
1196 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1197 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1198
1199 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1200 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1201
1202 /*
1203 * Initialize the transmit desciptor ring. txlast is initialized
1204 * to the end of the list so that it will wrap around to the first
1205 * descriptor when the first packet is transmitted.
1206 */
1207 for (i = 0; i < VR_NTXDESC; i++) {
1208 d = VR_CDTX(sc, i);
1209 memset(d, 0, sizeof(struct vr_desc));
1210 d->vr_next = VR_CDTXADDR(sc, VR_NEXTTX(i));
1211 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1212 }
1213 sc->vr_txpending = 0;
1214 sc->vr_txdirty = 0;
1215 sc->vr_txlast = VR_NTXDESC - 1;
1216
1217 /*
1218 * Initialize the receive descriptor ring. The buffers are
1219 * already allocated.
1220 */
1221 for (i = 0; i < VR_NRXDESC; i++)
1222 VR_INIT_RXDESC(sc, i);
1223 sc->vr_rxptr = 0;
1224
1225 /* If we want promiscuous mode, set the allframes bit. */
1226 if (ifp->if_flags & IFF_PROMISC)
1227 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1228 else
1229 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1230
1231 /* Set capture broadcast bit to capture broadcast frames. */
1232 if (ifp->if_flags & IFF_BROADCAST)
1233 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1234 else
1235 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1236
1237 /* Program the multicast filter, if necessary. */
1238 vr_setmulti(sc);
1239
1240 /* Give the transmit and recieve rings to the Rhine. */
1241 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1242 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1243
1244 /* Set current media. */
1245 mii_mediachg(&sc->vr_mii);
1246
1247 /* Enable receiver and transmitter. */
1248 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1249 VR_CMD_TX_ON|VR_CMD_RX_ON|
1250 VR_CMD_RX_GO);
1251
1252 /* Enable interrupts. */
1253 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1254 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1255
1256 ifp->if_flags |= IFF_RUNNING;
1257 ifp->if_flags &= ~IFF_OACTIVE;
1258
1259 /* Start one second timer. */
1260 timeout(vr_tick, sc, hz);
1261
1262 /* Attempt to start output on the interface. */
1263 vr_start(ifp);
1264 }
1265
1266 /*
1267 * Set media options.
1268 */
1269 static int
1270 vr_ifmedia_upd(ifp)
1271 struct ifnet *ifp;
1272 {
1273 struct vr_softc *sc = ifp->if_softc;
1274
1275 if (ifp->if_flags & IFF_UP)
1276 mii_mediachg(&sc->vr_mii);
1277 return (0);
1278 }
1279
1280 /*
1281 * Report current media status.
1282 */
1283 static void
1284 vr_ifmedia_sts(ifp, ifmr)
1285 struct ifnet *ifp;
1286 struct ifmediareq *ifmr;
1287 {
1288 struct vr_softc *sc = ifp->if_softc;
1289
1290 mii_pollstat(&sc->vr_mii);
1291 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1292 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1293 }
1294
1295 static int
1296 vr_ioctl(ifp, command, data)
1297 struct ifnet *ifp;
1298 u_long command;
1299 caddr_t data;
1300 {
1301 struct vr_softc *sc = ifp->if_softc;
1302 struct ifreq *ifr = (struct ifreq *)data;
1303 struct ifaddr *ifa = (struct ifaddr *)data;
1304 int s, error = 0;
1305
1306 s = splnet();
1307
1308 switch (command) {
1309 case SIOCSIFADDR:
1310 ifp->if_flags |= IFF_UP;
1311
1312 switch (ifa->ifa_addr->sa_family) {
1313 #ifdef INET
1314 case AF_INET:
1315 vr_init(sc);
1316 arp_ifinit(ifp, ifa);
1317 break;
1318 #endif /* INET */
1319 default:
1320 vr_init(sc);
1321 break;
1322 }
1323 break;
1324
1325 case SIOCGIFADDR:
1326 bcopy((caddr_t) sc->vr_enaddr,
1327 (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1328 ETHER_ADDR_LEN);
1329 break;
1330
1331 case SIOCSIFMTU:
1332 if (ifr->ifr_mtu > ETHERMTU)
1333 error = EINVAL;
1334 else
1335 ifp->if_mtu = ifr->ifr_mtu;
1336 break;
1337
1338 case SIOCSIFFLAGS:
1339 if ((ifp->if_flags & IFF_UP) == 0 &&
1340 (ifp->if_flags & IFF_RUNNING) != 0) {
1341 /*
1342 * If interface is marked down and it is running, then
1343 * stop it.
1344 */
1345 vr_stop(sc);
1346 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1347 (ifp->if_flags & IFF_RUNNING) == 0) {
1348 /*
1349 * If interface is marked up and it is stopped, then
1350 * start it.
1351 */
1352 vr_init(sc);
1353 } else if ((ifp->if_flags & IFF_UP) != 0) {
1354 /*
1355 * Reset the interface to pick up changes in any other
1356 * flags that affect the hardware state.
1357 */
1358 vr_init(sc);
1359 }
1360 break;
1361
1362 case SIOCADDMULTI:
1363 case SIOCDELMULTI:
1364 if (command == SIOCADDMULTI)
1365 error = ether_addmulti(ifr, &sc->vr_ec);
1366 else
1367 error = ether_delmulti(ifr, &sc->vr_ec);
1368
1369 if (error == ENETRESET) {
1370 /*
1371 * Multicast list has changed; set the hardware filter
1372 * accordingly.
1373 */
1374 vr_setmulti(sc);
1375 error = 0;
1376 }
1377 break;
1378
1379 case SIOCGIFMEDIA:
1380 case SIOCSIFMEDIA:
1381 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1382 break;
1383
1384 default:
1385 error = EINVAL;
1386 break;
1387 }
1388
1389 splx(s);
1390 return (error);
1391 }
1392
1393 static void
1394 vr_watchdog(ifp)
1395 struct ifnet *ifp;
1396 {
1397 struct vr_softc *sc = ifp->if_softc;
1398
1399 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1400 ifp->if_oerrors++;
1401
1402 vr_init(sc);
1403 }
1404
1405 /*
1406 * One second timer, used to tick MII.
1407 */
1408 static void
1409 vr_tick(arg)
1410 void *arg;
1411 {
1412 struct vr_softc *sc = arg;
1413 int s;
1414
1415 s = splnet();
1416 mii_tick(&sc->vr_mii);
1417 splx(s);
1418
1419 timeout(vr_tick, sc, hz);
1420 }
1421
1422 /*
1423 * Stop the adapter and free any mbufs allocated to the
1424 * transmit lists.
1425 */
1426 static void
1427 vr_stop(sc)
1428 struct vr_softc *sc;
1429 {
1430 struct vr_descsoft *ds;
1431 struct ifnet *ifp;
1432 int i;
1433
1434 /* Cancel one second timer. */
1435 untimeout(vr_tick, sc);
1436
1437 ifp = &sc->vr_ec.ec_if;
1438 ifp->if_timer = 0;
1439
1440 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1441 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1442 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1443 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1444 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1445
1446 /*
1447 * Release any queued transmit buffers.
1448 */
1449 for (i = 0; i < VR_NTXDESC; i++) {
1450 ds = VR_DSTX(sc, i);
1451 if (ds->ds_mbuf != NULL) {
1452 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1453 m_freem(ds->ds_mbuf);
1454 ds->ds_mbuf = NULL;
1455 }
1456 }
1457
1458 /*
1459 * Mark the interface down and cancel the watchdog timer.
1460 */
1461 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462 ifp->if_timer = 0;
1463 }
1464
1465 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1466 static int vr_probe __P((struct device *, struct cfdata *, void *));
1467 static void vr_attach __P((struct device *, struct device *, void *));
1468 static void vr_shutdown __P((void *));
1469
1470 struct cfattach vr_ca = {
1471 sizeof (struct vr_softc), vr_probe, vr_attach
1472 };
1473
1474 static struct vr_type *
1475 vr_lookup(pa)
1476 struct pci_attach_args *pa;
1477 {
1478 struct vr_type *vrt;
1479
1480 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1481 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1482 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1483 return (vrt);
1484 }
1485 return (NULL);
1486 }
1487
1488 static int
1489 vr_probe(parent, match, aux)
1490 struct device *parent;
1491 struct cfdata *match;
1492 void *aux;
1493 {
1494 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1495
1496 if (vr_lookup(pa) != NULL)
1497 return (1);
1498
1499 return (0);
1500 }
1501
1502 /*
1503 * Stop all chip I/O so that the kernel's probe routines don't
1504 * get confused by errant DMAs when rebooting.
1505 */
1506 static void
1507 vr_shutdown(arg)
1508 void *arg;
1509 {
1510 struct vr_softc *sc = (struct vr_softc *)arg;
1511
1512 vr_stop(sc);
1513 }
1514
1515 /*
1516 * Attach the interface. Allocate softc structures, do ifmedia
1517 * setup and ethernet/BPF attach.
1518 */
1519 static void
1520 vr_attach(parent, self, aux)
1521 struct device *parent;
1522 struct device *self;
1523 void *aux;
1524 {
1525 struct vr_softc *sc = (struct vr_softc *) self;
1526 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1527 bus_dma_segment_t seg;
1528 struct vr_type *vrt;
1529 u_int32_t command;
1530 struct ifnet *ifp;
1531 u_char eaddr[ETHER_ADDR_LEN];
1532 int i, rseg, error;
1533
1534 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1535 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1536
1537 vrt = vr_lookup(pa);
1538 if (vrt == NULL) {
1539 printf("\n");
1540 panic("vr_attach: impossible");
1541 }
1542
1543 printf(": %s Ethernet\n", vrt->vr_name);
1544
1545 /*
1546 * Handle power management nonsense.
1547 */
1548
1549 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1550 if (command == 0x01) {
1551 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1552 if (command & VR_PSTATE_MASK) {
1553 u_int32_t iobase, membase, irq;
1554
1555 /* Save important PCI config data. */
1556 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1557 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1558 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1559
1560 /* Reset the power state. */
1561 printf("%s: chip is in D%d power mode "
1562 "-- setting to D0\n",
1563 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1564 command &= 0xFFFFFFFC;
1565 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1566
1567 /* Restore PCI config data. */
1568 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1569 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1570 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1571 }
1572 }
1573
1574 /* Make sure bus mastering is enabled. */
1575 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1576 command |= PCI_COMMAND_MASTER_ENABLE;
1577 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1578
1579 /*
1580 * Map control/status registers.
1581 */
1582 {
1583 bus_space_tag_t iot, memt;
1584 bus_space_handle_t ioh, memh;
1585 int ioh_valid, memh_valid;
1586 pci_intr_handle_t intrhandle;
1587 const char *intrstr;
1588
1589 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1590 PCI_MAPREG_TYPE_IO, 0,
1591 &iot, &ioh, NULL, NULL) == 0);
1592 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1593 PCI_MAPREG_TYPE_MEM |
1594 PCI_MAPREG_MEM_TYPE_32BIT,
1595 0, &memt, &memh, NULL, NULL) == 0);
1596 #if defined(VR_USEIOSPACE)
1597 if (ioh_valid) {
1598 sc->vr_bst = iot;
1599 sc->vr_bsh = ioh;
1600 } else if (memh_valid) {
1601 sc->vr_bst = memt;
1602 sc->vr_bsh = memh;
1603 }
1604 #else
1605 if (memh_valid) {
1606 sc->vr_bst = memt;
1607 sc->vr_bsh = memh;
1608 } else if (ioh_valid) {
1609 sc->vr_bst = iot;
1610 sc->vr_bsh = ioh;
1611 }
1612 #endif
1613 else {
1614 printf(": unable to map device registers\n");
1615 return;
1616 }
1617
1618 /* Allocate interrupt */
1619 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1620 pa->pa_intrline, &intrhandle)) {
1621 printf("%s: couldn't map interrupt\n",
1622 sc->vr_dev.dv_xname);
1623 return;
1624 }
1625 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1626 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1627 vr_intr, sc);
1628 if (sc->vr_ih == NULL) {
1629 printf("%s: couldn't establish interrupt",
1630 sc->vr_dev.dv_xname);
1631 if (intrstr != NULL)
1632 printf(" at %s", intrstr);
1633 printf("\n");
1634 }
1635 printf("%s: interrupting at %s\n",
1636 sc->vr_dev.dv_xname, intrstr);
1637 }
1638
1639 /* Reset the adapter. */
1640 vr_reset(sc);
1641
1642 /*
1643 * Get station address. The way the Rhine chips work,
1644 * you're not allowed to directly access the EEPROM once
1645 * they've been programmed a special way. Consequently,
1646 * we need to read the node address from the PAR0 and PAR1
1647 * registers.
1648 */
1649 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1650 DELAY(200);
1651 for (i = 0; i < ETHER_ADDR_LEN; i++)
1652 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1653
1654 /*
1655 * A Rhine chip was detected. Inform the world.
1656 */
1657 printf("%s: Ethernet address: %s\n",
1658 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1659
1660 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1661
1662 sc->vr_dmat = pa->pa_dmat;
1663
1664 /*
1665 * Allocate the control data structures, and create and load
1666 * the DMA map for it.
1667 */
1668 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1669 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1670 0)) != 0) {
1671 printf("%s: unable to allocate control data, error = %d\n",
1672 sc->vr_dev.dv_xname, error);
1673 goto fail_0;
1674 }
1675
1676 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1677 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1678 BUS_DMA_COHERENT)) != 0) {
1679 printf("%s: unable to map control data, error = %d\n",
1680 sc->vr_dev.dv_xname, error);
1681 goto fail_1;
1682 }
1683
1684 if ((error = bus_dmamap_create(sc->vr_dmat,
1685 sizeof(struct vr_control_data), 1,
1686 sizeof(struct vr_control_data), 0, 0,
1687 &sc->vr_cddmamap)) != 0) {
1688 printf("%s: unable to create control data DMA map, "
1689 "error = %d\n", sc->vr_dev.dv_xname, error);
1690 goto fail_2;
1691 }
1692
1693 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1694 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1695 0)) != 0) {
1696 printf("%s: unable to load control data DMA map, error = %d\n",
1697 sc->vr_dev.dv_xname, error);
1698 goto fail_3;
1699 }
1700
1701 /*
1702 * Create the transmit buffer DMA maps.
1703 */
1704 for (i = 0; i < VR_NTXDESC; i++) {
1705 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1706 1, MCLBYTES, 0, 0,
1707 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1708 printf("%s: unable to create tx DMA map %d, "
1709 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1710 goto fail_4;
1711 }
1712 }
1713
1714 /*
1715 * Create the receive buffer DMA maps.
1716 */
1717 for (i = 0; i < VR_NRXDESC; i++) {
1718 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1719 MCLBYTES, 0, 0,
1720 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1721 printf("%s: unable to create rx DMA map %d, "
1722 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1723 goto fail_5;
1724 }
1725 }
1726
1727 /*
1728 * Pre-allocate the receive buffers.
1729 */
1730 for (i = 0; i < VR_NRXDESC; i++) {
1731 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1732 printf("%s: unable to allocate or map rx buffer %d, "
1733 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1734 goto fail_6;
1735 }
1736 }
1737
1738 ifp = &sc->vr_ec.ec_if;
1739 ifp->if_softc = sc;
1740 ifp->if_mtu = ETHERMTU;
1741 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1742 ifp->if_ioctl = vr_ioctl;
1743 ifp->if_output = ether_output;
1744 ifp->if_start = vr_start;
1745 ifp->if_watchdog = vr_watchdog;
1746 ifp->if_baudrate = 10000000;
1747 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1748
1749 /*
1750 * Initialize MII/media info.
1751 */
1752 sc->vr_mii.mii_ifp = ifp;
1753 sc->vr_mii.mii_readreg = vr_mii_readreg;
1754 sc->vr_mii.mii_writereg = vr_mii_writereg;
1755 sc->vr_mii.mii_statchg = vr_mii_statchg;
1756 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1757 mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
1758 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1759 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1760 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1761 } else
1762 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1763
1764 /*
1765 * Call MI attach routines.
1766 */
1767 if_attach(ifp);
1768 ether_ifattach(ifp, sc->vr_enaddr);
1769
1770 #if NBPFILTER > 0
1771 bpfattach(&sc->vr_ec.ec_if.if_bpf,
1772 ifp, DLT_EN10MB, sizeof (struct ether_header));
1773 #endif
1774
1775 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1776 if (sc->vr_ats == NULL)
1777 printf("%s: warning: couldn't establish shutdown hook\n",
1778 sc->vr_dev.dv_xname);
1779 return;
1780
1781 fail_6:
1782 for (i = 0; i < VR_NRXDESC; i++) {
1783 if (sc->vr_rxsoft[i].ds_mbuf != NULL) {
1784 bus_dmamap_unload(sc->vr_dmat,
1785 sc->vr_rxsoft[i].ds_dmamap);
1786 (void) m_freem(sc->vr_rxsoft[i].ds_mbuf);
1787 }
1788 }
1789 fail_5:
1790 for (i = 0; i < VR_NRXDESC; i++) {
1791 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1792 bus_dmamap_destroy(sc->vr_dmat,
1793 sc->vr_rxsoft[i].ds_dmamap);
1794 }
1795 fail_4:
1796 for (i = 0; i < VR_NTXDESC; i++) {
1797 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1798 bus_dmamap_destroy(sc->vr_dmat,
1799 sc->vr_txsoft[i].ds_dmamap);
1800 }
1801 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1802 fail_3:
1803 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1804 fail_2:
1805 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1806 sizeof(struct vr_control_data));
1807 fail_1:
1808 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1809 fail_0:
1810 return;
1811 }
1812