Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.23
      1 /*	$NetBSD: if_vr.c,v 1.23 1999/08/03 17:25:52 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/sockio.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/malloc.h>
    113 #include <sys/kernel.h>
    114 #include <sys/socket.h>
    115 #include <sys/device.h>
    116 
    117 #include <vm/vm.h>		/* for PAGE_SIZE */
    118 
    119 #include <net/if.h>
    120 #include <net/if_arp.h>
    121 #include <net/if_dl.h>
    122 #include <net/if_media.h>
    123 #include <net/if_ether.h>
    124 
    125 #if defined(INET)
    126 #include <netinet/in.h>
    127 #include <netinet/if_inarp.h>
    128 #endif
    129 
    130 #include "bpfilter.h"
    131 #if NBPFILTER > 0
    132 #include <net/bpf.h>
    133 #endif
    134 
    135 #include <machine/bus.h>
    136 #include <machine/intr.h>
    137 
    138 #include <dev/mii/mii.h>
    139 #include <dev/mii/miivar.h>
    140 
    141 #include <dev/pci/pcireg.h>
    142 #include <dev/pci/pcivar.h>
    143 #include <dev/pci/pcidevs.h>
    144 
    145 #include <dev/pci/if_vrreg.h>
    146 
    147 #if BYTE_ORDER == BIG_ENDIAN
    148 #include <machine/bswap.h>
    149 #define	htopci(x)	bswap32(x)
    150 #define	pcitoh(x)	bswap32(x)
    151 #else
    152 #define	htopci(x)	(x)
    153 #define	pcitoh(x)	(x)
    154 #endif
    155 
    156 #define	VR_USEIOSPACE
    157 
    158 /*
    159  * Various supported device vendors/types and their names.
    160  */
    161 static struct vr_type {
    162 	pci_vendor_id_t		vr_vid;
    163 	pci_product_id_t	vr_did;
    164 	const char		*vr_name;
    165 } vr_devs[] = {
    166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    167 		"VIA VT3043 (Rhine) 10/100 Ethernet" },
    168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    169 		"VIA VT86C100A (Rhine-II) 10/100 Ethernet" },
    170 	{ 0, 0, NULL }
    171 };
    172 
    173 /*
    174  * Transmit descriptor list size.
    175  */
    176 #define	VR_NTXDESC		64
    177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    179 
    180 /*
    181  * Receive descriptor list size.
    182  */
    183 #define	VR_NRXDESC		64
    184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    186 
    187 /*
    188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    189  * them in a single clump that maps to a single DMA segment to make several
    190  * things easier.
    191  *
    192  * Note that since we always copy outgoing packets to aligned transmit
    193  * buffers, we can reduce the transmit descriptors to one per packet.
    194  */
    195 struct vr_control_data {
    196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    198 };
    199 
    200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    203 
    204 /*
    205  * Software state of transmit and receive descriptors.
    206  */
    207 struct vr_descsoft {
    208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    210 };
    211 
    212 struct vr_softc {
    213 	struct device		vr_dev;		/* generic device glue */
    214 	void			*vr_ih;		/* interrupt cookie */
    215 	void			*vr_ats;	/* shutdown hook */
    216 	bus_space_tag_t		vr_bst;		/* bus space tag */
    217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    220 	struct ethercom		vr_ec;		/* Ethernet common info */
    221 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    222 	struct mii_data		vr_mii;		/* MII/media info */
    223 
    224 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    225 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    226 
    227 	/*
    228 	 * Software state for transmit and receive descriptors.
    229 	 */
    230 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    231 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    232 
    233 	/*
    234 	 * Control data structures.
    235 	 */
    236 	struct vr_control_data	*vr_control_data;
    237 
    238 	int	vr_txpending;		/* number of TX requests pending */
    239 	int	vr_txdirty;		/* first dirty TX descriptor */
    240 	int	vr_txlast;		/* last used TX descriptor */
    241 
    242 	int	vr_rxptr;		/* next ready RX descriptor */
    243 };
    244 
    245 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    246 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    247 
    248 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    249 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    250 
    251 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    252 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    253 
    254 #define	VR_CDTXSYNC(sc, x, ops)						\
    255 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    256 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    257 
    258 #define	VR_CDRXSYNC(sc, x, ops)						\
    259 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    260 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    261 
    262 /*
    263  * Note we rely on MCLBYTES being a power of two below.
    264  */
    265 #define	VR_INIT_RXDESC(sc, i)						\
    266 do {									\
    267 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    268 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    269 									\
    270 	__d->vr_next = htopci(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    271 	__d->vr_status = htopci(VR_RXSTAT_FIRSTFRAG |			\
    272 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    273 	__d->vr_data = htopci(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    274 	__d->vr_ctl = htopci(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    275 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    276 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    277 } while (0)
    278 
    279 /*
    280  * register space access macros
    281  */
    282 #define	CSR_WRITE_4(sc, reg, val)					\
    283 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    284 #define	CSR_WRITE_2(sc, reg, val)					\
    285 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    286 #define	CSR_WRITE_1(sc, reg, val)					\
    287 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    288 
    289 #define	CSR_READ_4(sc, reg)						\
    290 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    291 #define	CSR_READ_2(sc, reg)						\
    292 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    293 #define	CSR_READ_1(sc, reg)						\
    294 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    295 
    296 #define	VR_TIMEOUT		1000
    297 
    298 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    299 
    300 static void vr_rxeof		__P((struct vr_softc *));
    301 static void vr_rxeoc		__P((struct vr_softc *));
    302 static void vr_txeof		__P((struct vr_softc *));
    303 static int vr_intr		__P((void *));
    304 static void vr_start		__P((struct ifnet *));
    305 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    306 static int vr_init		__P((struct vr_softc *));
    307 static void vr_stop		__P((struct vr_softc *, int));
    308 static void vr_rxdrain		__P((struct vr_softc *));
    309 static void vr_watchdog		__P((struct ifnet *));
    310 static void vr_tick		__P((void *));
    311 
    312 static int vr_ifmedia_upd	__P((struct ifnet *));
    313 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    314 
    315 static void vr_mii_sync		__P((struct vr_softc *));
    316 static void vr_mii_send		__P((struct vr_softc *, u_int32_t, int));
    317 static int vr_mii_readreg	__P((struct device *, int, int));
    318 static void vr_mii_writereg	__P((struct device *, int, int, int));
    319 static void vr_mii_statchg	__P((struct device *));
    320 
    321 static u_int8_t vr_calchash	__P((u_int8_t *));
    322 static void vr_setmulti		__P((struct vr_softc *));
    323 static void vr_reset		__P((struct vr_softc *));
    324 
    325 int	vr_copy_small = 0;
    326 
    327 #define	VR_SETBIT(sc, reg, x)				\
    328 	CSR_WRITE_1(sc, reg,				\
    329 		CSR_READ_1(sc, reg) | x)
    330 
    331 #define	VR_CLRBIT(sc, reg, x)				\
    332 	CSR_WRITE_1(sc, reg,				\
    333 		CSR_READ_1(sc, reg) & ~x)
    334 
    335 #define	VR_SETBIT16(sc, reg, x)				\
    336 	CSR_WRITE_2(sc, reg,				\
    337 		CSR_READ_2(sc, reg) | x)
    338 
    339 #define	VR_CLRBIT16(sc, reg, x)				\
    340 	CSR_WRITE_2(sc, reg,				\
    341 		CSR_READ_2(sc, reg) & ~x)
    342 
    343 #define	VR_SETBIT32(sc, reg, x)				\
    344 	CSR_WRITE_4(sc, reg,				\
    345 		CSR_READ_4(sc, reg) | x)
    346 
    347 #define	VR_CLRBIT32(sc, reg, x)				\
    348 	CSR_WRITE_4(sc, reg,				\
    349 		CSR_READ_4(sc, reg) & ~x)
    350 
    351 #define	SIO_SET(x)					\
    352 	CSR_WRITE_1(sc, VR_MIICMD,			\
    353 		CSR_READ_1(sc, VR_MIICMD) | x)
    354 
    355 #define	SIO_CLR(x)					\
    356 	CSR_WRITE_1(sc, VR_MIICMD,			\
    357 		CSR_READ_1(sc, VR_MIICMD) & ~x)
    358 
    359 /*
    360  * Sync the PHYs by setting data bit and strobing the clock 32 times.
    361  */
    362 static void
    363 vr_mii_sync(sc)
    364 	struct vr_softc *sc;
    365 {
    366 	int i;
    367 
    368 	SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAOUT);
    369 
    370 	for (i = 0; i < 32; i++) {
    371 		SIO_SET(VR_MIICMD_CLK);
    372 		DELAY(1);
    373 		SIO_CLR(VR_MIICMD_CLK);
    374 		DELAY(1);
    375 	}
    376 }
    377 
    378 /*
    379  * Clock a series of bits through the MII.
    380  */
    381 static void
    382 vr_mii_send(sc, bits, cnt)
    383 	struct vr_softc *sc;
    384 	u_int32_t bits;
    385 	int cnt;
    386 {
    387 	int i;
    388 
    389 	SIO_CLR(VR_MIICMD_CLK);
    390 
    391 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
    392 		if (bits & i) {
    393 			SIO_SET(VR_MIICMD_DATAOUT);
    394 		} else {
    395 			SIO_CLR(VR_MIICMD_DATAOUT);
    396 		}
    397 		DELAY(1);
    398 		SIO_CLR(VR_MIICMD_CLK);
    399 		DELAY(1);
    400 		SIO_SET(VR_MIICMD_CLK);
    401 	}
    402 }
    403 
    404 /*
    405  * Read an PHY register through the MII.
    406  */
    407 static int
    408 vr_mii_readreg(self, phy, reg)
    409 	struct device *self;
    410 	int phy, reg;
    411 {
    412 	struct vr_softc *sc = (struct vr_softc *)self;
    413 	int i, ack, val = 0;
    414 
    415 	CSR_WRITE_1(sc, VR_MIICMD, 0);
    416 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    417 
    418 	/*
    419 	 * Turn on data xmit.
    420 	 */
    421 	SIO_SET(VR_MIICMD_DIR);
    422 
    423 	vr_mii_sync(sc);
    424 
    425 	/*
    426 	 * Send command/address info.
    427 	 */
    428 	vr_mii_send(sc, MII_COMMAND_START, 2);
    429 	vr_mii_send(sc, MII_COMMAND_READ, 2);
    430 	vr_mii_send(sc, phy, 5);
    431 	vr_mii_send(sc, reg, 5);
    432 
    433 	/* Idle bit */
    434 	SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAOUT));
    435 	DELAY(1);
    436 	SIO_SET(VR_MIICMD_CLK);
    437 	DELAY(1);
    438 
    439 	/* Turn off xmit. */
    440 	SIO_CLR(VR_MIICMD_DIR);
    441 
    442 	/* Check for ack */
    443 	SIO_CLR(VR_MIICMD_CLK);
    444 	DELAY(1);
    445 	SIO_SET(VR_MIICMD_CLK);
    446 	DELAY(1);
    447 	ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN;
    448 
    449 	/*
    450 	 * Now try reading data bits. If the ack failed, we still
    451 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
    452 	 */
    453 	if (ack) {
    454 		for (i = 0; i < 16; i++) {
    455 			SIO_CLR(VR_MIICMD_CLK);
    456 			DELAY(1);
    457 			SIO_SET(VR_MIICMD_CLK);
    458 			DELAY(1);
    459 		}
    460 		goto fail;
    461 	}
    462 
    463 	for (i = 0x8000; i; i >>= 1) {
    464 		SIO_CLR(VR_MIICMD_CLK);
    465 		DELAY(1);
    466 		if (!ack) {
    467 			if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAIN)
    468 				val |= i;
    469 			DELAY(1);
    470 		}
    471 		SIO_SET(VR_MIICMD_CLK);
    472 		DELAY(1);
    473 	}
    474 
    475  fail:
    476 
    477 	SIO_CLR(VR_MIICMD_CLK);
    478 	DELAY(1);
    479 	SIO_SET(VR_MIICMD_CLK);
    480 	DELAY(1);
    481 
    482 	return (val);
    483 }
    484 
    485 /*
    486  * Write to a PHY register through the MII.
    487  */
    488 static void
    489 vr_mii_writereg(self, phy, reg, val)
    490 	struct device *self;
    491 	int phy, reg, val;
    492 {
    493 	struct vr_softc *sc = (struct vr_softc *)self;
    494 
    495 	CSR_WRITE_1(sc, VR_MIICMD, 0);
    496 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    497 
    498 	/*
    499 	 * Turn on data output.
    500 	 */
    501 	SIO_SET(VR_MIICMD_DIR);
    502 
    503 	vr_mii_sync(sc);
    504 
    505 	vr_mii_send(sc, MII_COMMAND_START, 2);
    506 	vr_mii_send(sc, MII_COMMAND_WRITE, 2);
    507 	vr_mii_send(sc, phy, 5);
    508 	vr_mii_send(sc, reg, 5);
    509 	vr_mii_send(sc, MII_COMMAND_ACK, 2);
    510 	vr_mii_send(sc, val, 16);
    511 
    512 	/* Idle bit. */
    513 	SIO_SET(VR_MIICMD_CLK);
    514 	DELAY(1);
    515 	SIO_CLR(VR_MIICMD_CLK);
    516 	DELAY(1);
    517 
    518 	/*
    519 	 * Turn off xmit.
    520 	 */
    521 	SIO_CLR(VR_MIICMD_DIR);
    522 }
    523 
    524 static void
    525 vr_mii_statchg(self)
    526 	struct device *self;
    527 {
    528 	struct vr_softc *sc = (struct vr_softc *)self;
    529 
    530 	/*
    531 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    532 	 * register, we first have to put the transmit and/or receive logic
    533 	 * in the idle state.
    534 	 */
    535 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    536 
    537 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    538 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    539 	else
    540 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    541 
    542 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    543 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    544 
    545 	/* XXX Update ifp->if_baudrate */
    546 }
    547 
    548 /*
    549  * Calculate CRC of a multicast group address, return the lower 6 bits.
    550  */
    551 static u_int8_t
    552 vr_calchash(addr)
    553 	u_int8_t *addr;
    554 {
    555 	u_int32_t crc, carry;
    556 	int i, j;
    557 	u_int8_t c;
    558 
    559 	/* Compute CRC for the address value. */
    560 	crc = 0xFFFFFFFF; /* initial value */
    561 
    562 	for (i = 0; i < 6; i++) {
    563 		c = *(addr + i);
    564 		for (j = 0; j < 8; j++) {
    565 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    566 			crc <<= 1;
    567 			c >>= 1;
    568 			if (carry)
    569 				crc = (crc ^ 0x04c11db6) | carry;
    570 		}
    571 	}
    572 
    573 	/* return the filter bit position */
    574 	return ((crc >> 26) & 0x0000003F);
    575 }
    576 
    577 /*
    578  * Program the 64-bit multicast hash filter.
    579  */
    580 static void
    581 vr_setmulti(sc)
    582 	struct vr_softc *sc;
    583 {
    584 	struct ifnet *ifp;
    585 	int h = 0;
    586 	u_int32_t hashes[2] = { 0, 0 };
    587 	struct ether_multistep step;
    588 	struct ether_multi *enm;
    589 	int mcnt = 0;
    590 	u_int8_t rxfilt;
    591 
    592 	ifp = &sc->vr_ec.ec_if;
    593 
    594 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    595 
    596 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    597 		rxfilt |= VR_RXCFG_RX_MULTI;
    598 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    599 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    600 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    601 		return;
    602 	}
    603 
    604 	/* first, zot all the existing hash bits */
    605 	CSR_WRITE_4(sc, VR_MAR0, 0);
    606 	CSR_WRITE_4(sc, VR_MAR1, 0);
    607 
    608 	/* now program new ones */
    609 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    610 	while (enm != NULL) {
    611 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    612 			continue;
    613 
    614 		h = vr_calchash(enm->enm_addrlo);
    615 
    616 		if (h < 32)
    617 			hashes[0] |= (1 << h);
    618 		else
    619 			hashes[1] |= (1 << (h - 32));
    620 		ETHER_NEXT_MULTI(step, enm);
    621 		mcnt++;
    622 	}
    623 
    624 	if (mcnt)
    625 		rxfilt |= VR_RXCFG_RX_MULTI;
    626 	else
    627 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    628 
    629 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    630 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    631 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    632 }
    633 
    634 static void
    635 vr_reset(sc)
    636 	struct vr_softc *sc;
    637 {
    638 	int i;
    639 
    640 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    641 
    642 	for (i = 0; i < VR_TIMEOUT; i++) {
    643 		DELAY(10);
    644 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    645 			break;
    646 	}
    647 	if (i == VR_TIMEOUT)
    648 		printf("%s: reset never completed!\n",
    649 			sc->vr_dev.dv_xname);
    650 
    651 	/* Wait a little while for the chip to get its brains in order. */
    652 	DELAY(1000);
    653 }
    654 
    655 /*
    656  * Initialize an RX descriptor and attach an MBUF cluster.
    657  * Note: the length fields are only 11 bits wide, which means the
    658  * largest size we can specify is 2047. This is important because
    659  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    660  * overflow the field and make a mess.
    661  */
    662 static int
    663 vr_add_rxbuf(sc, i)
    664 	struct vr_softc *sc;
    665 	int i;
    666 {
    667 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    668 	struct mbuf *m_new;
    669 	int error;
    670 
    671 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    672 	if (m_new == NULL)
    673 		return (ENOBUFS);
    674 
    675 	MCLGET(m_new, M_DONTWAIT);
    676 	if ((m_new->m_flags & M_EXT) == 0) {
    677 		m_freem(m_new);
    678 		return (ENOBUFS);
    679 	}
    680 
    681 	if (ds->ds_mbuf != NULL)
    682 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    683 
    684 	ds->ds_mbuf = m_new;
    685 
    686 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    687 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    688 	if (error) {
    689 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    690 		    sc->vr_dev.dv_xname, i, error);
    691 		panic("vr_add_rxbuf");		/* XXX */
    692 	}
    693 
    694 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    695 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    696 
    697 	VR_INIT_RXDESC(sc, i);
    698 
    699 	return (0);
    700 }
    701 
    702 /*
    703  * A frame has been uploaded: pass the resulting mbuf chain up to
    704  * the higher level protocols.
    705  */
    706 static void
    707 vr_rxeof(sc)
    708 	struct vr_softc *sc;
    709 {
    710 	struct ether_header *eh;
    711 	struct mbuf *m;
    712 	struct ifnet *ifp;
    713 	struct vr_desc *d;
    714 	struct vr_descsoft *ds;
    715 	int i, total_len;
    716 	u_int32_t rxstat;
    717 
    718 	ifp = &sc->vr_ec.ec_if;
    719 
    720 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    721 		d = VR_CDRX(sc, i);
    722 		ds = VR_DSRX(sc, i);
    723 
    724 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    725 
    726 		rxstat = pcitoh(d->vr_status);
    727 
    728 		if (rxstat & VR_RXSTAT_OWN) {
    729 			/*
    730 			 * We have processed all of the receive buffers.
    731 			 */
    732 			break;
    733 		}
    734 
    735 		/*
    736 		 * If an error occurs, update stats, clear the
    737 		 * status word and leave the mbuf cluster in place:
    738 		 * it should simply get re-used next time this descriptor
    739 		 * comes up in the ring.
    740 		 */
    741 		if (rxstat & VR_RXSTAT_RXERR) {
    742 			const char *errstr;
    743 
    744 			ifp->if_ierrors++;
    745 			switch (rxstat & 0x000000FF) {
    746 			case VR_RXSTAT_CRCERR:
    747 				errstr = "crc error";
    748 				break;
    749 			case VR_RXSTAT_FRAMEALIGNERR:
    750 				errstr = "frame alignment error";
    751 				break;
    752 			case VR_RXSTAT_FIFOOFLOW:
    753 				errstr = "FIFO overflow";
    754 				break;
    755 			case VR_RXSTAT_GIANT:
    756 				errstr = "received giant packet";
    757 				break;
    758 			case VR_RXSTAT_RUNT:
    759 				errstr = "received runt packet";
    760 				break;
    761 			case VR_RXSTAT_BUSERR:
    762 				errstr = "system bus error";
    763 				break;
    764 			case VR_RXSTAT_BUFFERR:
    765 				errstr = "rx buffer error";
    766 				break;
    767 			default:
    768 				errstr = "unknown rx error";
    769 				break;
    770 			}
    771 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    772 			    errstr);
    773 
    774 			VR_INIT_RXDESC(sc, i);
    775 
    776 			continue;
    777 		}
    778 
    779 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    780 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    781 
    782 		/* No errors; receive the packet. */
    783 		total_len = VR_RXBYTES(pcitoh(d->vr_status));
    784 
    785 		/*
    786 		 * XXX The VIA Rhine chip includes the CRC with every
    787 		 * received frame, and there's no way to turn this
    788 		 * behavior off (at least, I can't find anything in
    789 		 * the manual that explains how to do it) so we have
    790 		 * to trim off the CRC manually.
    791 		 */
    792 		total_len -= ETHER_CRC_LEN;
    793 
    794 #ifdef __NO_STRICT_ALIGNMENT
    795 		/*
    796 		 * If the packet is small enough to fit in a
    797 		 * single header mbuf, allocate one and copy
    798 		 * the data into it.  This greatly reduces
    799 		 * memory consumption when we receive lots
    800 		 * of small packets.
    801 		 *
    802 		 * Otherwise, we add a new buffer to the receive
    803 		 * chain.  If this fails, we drop the packet and
    804 		 * recycle the old buffer.
    805 		 */
    806 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    807 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    808 			if (m == NULL)
    809 				goto dropit;
    810 			memcpy(mtod(m, caddr_t),
    811 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    812 			VR_INIT_RXDESC(sc, i);
    813 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    814 			    ds->ds_dmamap->dm_mapsize,
    815 			    BUS_DMASYNC_PREREAD);
    816 		} else {
    817 			m = ds->ds_mbuf;
    818 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    819  dropit:
    820 				ifp->if_ierrors++;
    821 				VR_INIT_RXDESC(sc, i);
    822 				bus_dmamap_sync(sc->vr_dmat,
    823 				    ds->ds_dmamap, 0,
    824 				    ds->ds_dmamap->dm_mapsize,
    825 				    BUS_DMASYNC_PREREAD);
    826 				continue;
    827 			}
    828 		}
    829 #else
    830 		/*
    831 		 * The Rhine's packet buffers must be 4-byte aligned.
    832 		 * But this means that the data after the Ethernet header
    833 		 * is misaligned.  We must allocate a new buffer and
    834 		 * copy the data, shifted forward 2 bytes.
    835 		 */
    836 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    837 		if (m == NULL) {
    838  dropit:
    839 			ifp->if_ierrors++;
    840 			VR_INIT_RXDESC(sc, i);
    841 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    842 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    843 			continue;
    844 		}
    845 		if (total_len > (MHLEN - 2)) {
    846 			MCLGET(m, M_DONTWAIT);
    847 			if ((m->m_flags & M_EXT) == 0) {
    848 				m_freem(m);
    849 				goto dropit;
    850 			}
    851 		}
    852 		m->m_data += 2;
    853 
    854 		/*
    855 		 * Note that we use clusters for incoming frames, so the
    856 		 * buffer is virtually contiguous.
    857 		 */
    858 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    859 		    total_len);
    860 
    861 		/* Allow the recieve descriptor to continue using its mbuf. */
    862 		VR_INIT_RXDESC(sc, i);
    863 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    864 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    865 #endif /* __NO_STRICT_ALIGNMENT */
    866 
    867 		ifp->if_ipackets++;
    868 		eh = mtod(m, struct ether_header *);
    869 		m->m_pkthdr.rcvif = ifp;
    870 		m->m_pkthdr.len = m->m_len = total_len;
    871 #if NBPFILTER > 0
    872 		/*
    873 		 * Handle BPF listeners. Let the BPF user see the packet, but
    874 		 * don't pass it up to the ether_input() layer unless it's
    875 		 * a broadcast packet, multicast packet, matches our ethernet
    876 		 * address or the interface is in promiscuous mode.
    877 		 */
    878 		if (ifp->if_bpf) {
    879 			bpf_mtap(ifp->if_bpf, m);
    880 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    881 			    (rxstat & (VR_RXSTAT_RX_PHYS | VR_RXSTAT_RX_BROAD |
    882 				       VR_RXSTAT_RX_MULTI)) == 0) {
    883 				m_freem(m);
    884 				continue;
    885 			}
    886 		}
    887 #endif
    888 		/* Pass it on. */
    889 		(*ifp->if_input)(ifp, m);
    890 	}
    891 
    892 	/* Update the receive pointer. */
    893 	sc->vr_rxptr = i;
    894 }
    895 
    896 void
    897 vr_rxeoc(sc)
    898 	struct vr_softc *sc;
    899 {
    900 
    901 	vr_rxeof(sc);
    902 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    903 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    904 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    905 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    906 }
    907 
    908 /*
    909  * A frame was downloaded to the chip. It's safe for us to clean up
    910  * the list buffers.
    911  */
    912 static void
    913 vr_txeof(sc)
    914 	struct vr_softc *sc;
    915 {
    916 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    917 	struct vr_desc *d;
    918 	struct vr_descsoft *ds;
    919 	u_int32_t txstat;
    920 	int i;
    921 
    922 	ifp->if_flags &= ~IFF_OACTIVE;
    923 
    924 	/*
    925 	 * Go through our tx list and free mbufs for those
    926 	 * frames that have been transmitted.
    927 	 */
    928 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    929 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    930 		d = VR_CDTX(sc, i);
    931 		ds = VR_DSTX(sc, i);
    932 
    933 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    934 
    935 		txstat = pcitoh(d->vr_status);
    936 		if (txstat & VR_TXSTAT_OWN)
    937 			break;
    938 
    939 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    940 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    941 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    942 		m_freem(ds->ds_mbuf);
    943 		ds->ds_mbuf = NULL;
    944 
    945 		if (txstat & VR_TXSTAT_ERRSUM) {
    946 			ifp->if_oerrors++;
    947 			if (txstat & VR_TXSTAT_DEFER)
    948 				ifp->if_collisions++;
    949 			if (txstat & VR_TXSTAT_LATECOLL)
    950 				ifp->if_collisions++;
    951 		}
    952 
    953 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    954 		ifp->if_opackets++;
    955 	}
    956 
    957 	/* Update the dirty transmit buffer pointer. */
    958 	sc->vr_txdirty = i;
    959 
    960 	/*
    961 	 * Cancel the watchdog timer if there are no pending
    962 	 * transmissions.
    963 	 */
    964 	if (sc->vr_txpending == 0)
    965 		ifp->if_timer = 0;
    966 }
    967 
    968 static int
    969 vr_intr(arg)
    970 	void *arg;
    971 {
    972 	struct vr_softc *sc;
    973 	struct ifnet *ifp;
    974 	u_int16_t status;
    975 	int handled = 0, dotx = 0;
    976 
    977 	sc = arg;
    978 	ifp = &sc->vr_ec.ec_if;
    979 
    980 	/* Suppress unwanted interrupts. */
    981 	if ((ifp->if_flags & IFF_UP) == 0) {
    982 		vr_stop(sc, 1);
    983 		return (0);
    984 	}
    985 
    986 	/* Disable interrupts. */
    987 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    988 
    989 	for (;;) {
    990 		status = CSR_READ_2(sc, VR_ISR);
    991 		if (status)
    992 			CSR_WRITE_2(sc, VR_ISR, status);
    993 
    994 		if ((status & VR_INTRS) == 0)
    995 			break;
    996 
    997 		handled = 1;
    998 
    999 		if (status & VR_ISR_RX_OK)
   1000 			vr_rxeof(sc);
   1001 
   1002 		if (status &
   1003 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
   1004 		     VR_ISR_RX_DROPPED))
   1005 			vr_rxeoc(sc);
   1006 
   1007 		if (status & VR_ISR_TX_OK) {
   1008 			dotx = 1;
   1009 			vr_txeof(sc);
   1010 		}
   1011 
   1012 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
   1013 			if (status & VR_ISR_TX_UNDERRUN)
   1014 				printf("%s: transmit underrun\n",
   1015 				    sc->vr_dev.dv_xname);
   1016 			if (status & VR_ISR_TX_ABRT)
   1017 				printf("%s: transmit aborted\n",
   1018 				    sc->vr_dev.dv_xname);
   1019 			ifp->if_oerrors++;
   1020 			dotx = 1;
   1021 			vr_txeof(sc);
   1022 			if (sc->vr_txpending) {
   1023 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
   1024 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1025 			}
   1026 		}
   1027 
   1028 		if (status & VR_ISR_BUSERR) {
   1029 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
   1030 			/* vr_init() calls vr_start() */
   1031 			dotx = 0;
   1032 			(void) vr_init(sc);
   1033 		}
   1034 	}
   1035 
   1036 	/* Re-enable interrupts. */
   1037 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1038 
   1039 	if (dotx)
   1040 		vr_start(ifp);
   1041 
   1042 	return (handled);
   1043 }
   1044 
   1045 /*
   1046  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   1047  * to the mbuf data regions directly in the transmit lists. We also save a
   1048  * copy of the pointers since the transmit list fragment pointers are
   1049  * physical addresses.
   1050  */
   1051 static void
   1052 vr_start(ifp)
   1053 	struct ifnet *ifp;
   1054 {
   1055 	struct vr_softc *sc = ifp->if_softc;
   1056 	struct mbuf *m0, *m;
   1057 	struct vr_desc *d;
   1058 	struct vr_descsoft *ds;
   1059 	int error, firsttx, nexttx, opending;
   1060 
   1061 	/*
   1062 	 * Remember the previous txpending and the first transmit
   1063 	 * descriptor we use.
   1064 	 */
   1065 	opending = sc->vr_txpending;
   1066 	firsttx = VR_NEXTTX(sc->vr_txlast);
   1067 
   1068 	/*
   1069 	 * Loop through the send queue, setting up transmit descriptors
   1070 	 * until we drain the queue, or use up all available transmit
   1071 	 * descriptors.
   1072 	 */
   1073 	while (sc->vr_txpending < VR_NTXDESC) {
   1074 		/*
   1075 		 * Grab a packet off the queue.
   1076 		 */
   1077 		IF_DEQUEUE(&ifp->if_snd, m0);
   1078 		if (m0 == NULL)
   1079 			break;
   1080 
   1081 		/*
   1082 		 * Get the next available transmit descriptor.
   1083 		 */
   1084 		nexttx = VR_NEXTTX(sc->vr_txlast);
   1085 		d = VR_CDTX(sc, nexttx);
   1086 		ds = VR_DSTX(sc, nexttx);
   1087 
   1088 		/*
   1089 		 * Load the DMA map.  If this fails, the packet didn't
   1090 		 * fit in one DMA segment, and we need to copy.  Note,
   1091 		 * the packet must also be aligned.
   1092 		 */
   1093 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
   1094 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1095 		     BUS_DMA_NOWAIT) != 0) {
   1096 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1097 			if (m == NULL) {
   1098 				printf("%s: unable to allocate Tx mbuf\n",
   1099 				    sc->vr_dev.dv_xname);
   1100 				IF_PREPEND(&ifp->if_snd, m0);
   1101 				break;
   1102 			}
   1103 			if (m0->m_pkthdr.len > MHLEN) {
   1104 				MCLGET(m, M_DONTWAIT);
   1105 				if ((m->m_flags & M_EXT) == 0) {
   1106 					printf("%s: unable to allocate Tx "
   1107 					    "cluster\n", sc->vr_dev.dv_xname);
   1108 					m_freem(m);
   1109 					IF_PREPEND(&ifp->if_snd, m0);
   1110 					break;
   1111 				}
   1112 			}
   1113 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1114 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1115 			m_freem(m0);
   1116 			m0 = m;
   1117 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1118 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
   1119 			if (error) {
   1120 				printf("%s: unable to load Tx buffer, "
   1121 				    "error = %d\n", sc->vr_dev.dv_xname, error);
   1122 				IF_PREPEND(&ifp->if_snd, m0);
   1123 				break;
   1124 			}
   1125 		}
   1126 
   1127 		/* Sync the DMA map. */
   1128 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1129 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1130 
   1131 		/*
   1132 		 * Store a pointer to the packet so we can free it later.
   1133 		 */
   1134 		ds->ds_mbuf = m0;
   1135 
   1136 #if NBPFILTER > 0
   1137 		/*
   1138 		 * If there's a BPF listener, bounce a copy of this frame
   1139 		 * to him.
   1140 		 */
   1141 		if (ifp->if_bpf)
   1142 			bpf_mtap(ifp->if_bpf, m0);
   1143 #endif
   1144 
   1145 		/*
   1146 		 * Fill in the transmit descriptor.  The Rhine
   1147 		 * doesn't auto-pad, so we have to do this ourselves.
   1148 		 */
   1149 		d->vr_data = htopci(ds->ds_dmamap->dm_segs[0].ds_addr);
   1150 		d->vr_ctl = htopci(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1151 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1152 		d->vr_ctl |=
   1153 		    htopci(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|VR_TXCTL_LASTFRAG);
   1154 
   1155 		/*
   1156 		 * If this is the first descriptor we're enqueuing,
   1157 		 * don't give it to the Rhine yet.  That could cause
   1158 		 * a race condition.  We'll do it below.
   1159 		 */
   1160 		if (nexttx == firsttx)
   1161 			d->vr_status = 0;
   1162 		else
   1163 			d->vr_status = htopci(VR_TXSTAT_OWN);
   1164 
   1165 		VR_CDTXSYNC(sc, nexttx,
   1166 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1167 
   1168 		/* Advance the tx pointer. */
   1169 		sc->vr_txpending++;
   1170 		sc->vr_txlast = nexttx;
   1171 	}
   1172 
   1173 	if (sc->vr_txpending == VR_NTXDESC) {
   1174 		/* No more slots left; notify upper layer. */
   1175 		ifp->if_flags |= IFF_OACTIVE;
   1176 	}
   1177 
   1178 	if (sc->vr_txpending != opending) {
   1179 		/*
   1180 		 * We enqueued packets.  If the transmitter was idle,
   1181 		 * reset the txdirty pointer.
   1182 		 */
   1183 		if (opending == 0)
   1184 			sc->vr_txdirty = firsttx;
   1185 
   1186 		/*
   1187 		 * Cause a transmit interrupt to happen on the
   1188 		 * last packet we enqueued.
   1189 		 */
   1190 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htopci(VR_TXCTL_FINT);
   1191 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1192 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1193 
   1194 		/*
   1195 		 * The entire packet chain is set up.  Give the
   1196 		 * first descriptor to the Rhine now.
   1197 		 */
   1198 		VR_CDTX(sc, firsttx)->vr_status = htopci(VR_TXSTAT_OWN);
   1199 		VR_CDTXSYNC(sc, firsttx,
   1200 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1201 
   1202 		/* Start the transmitter. */
   1203 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1204 
   1205 		/* Set the watchdog timer in case the chip flakes out. */
   1206 		ifp->if_timer = 5;
   1207 	}
   1208 }
   1209 
   1210 /*
   1211  * Initialize the interface.  Must be called at splnet.
   1212  */
   1213 static int
   1214 vr_init(sc)
   1215 	struct vr_softc *sc;
   1216 {
   1217 	struct ifnet *ifp = &sc->vr_ec.ec_if;
   1218 	struct vr_desc *d;
   1219 	struct vr_descsoft *ds;
   1220 	int i, error;
   1221 
   1222 	/* Cancel pending I/O. */
   1223 	vr_stop(sc, 0);
   1224 
   1225 	/* Reset the Rhine to a known state. */
   1226 	vr_reset(sc);
   1227 
   1228 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1229 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1230 
   1231 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1232 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1233 
   1234 	/*
   1235 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1236 	 * to the end of the list so that it will wrap around to the first
   1237 	 * descriptor when the first packet is transmitted.
   1238 	 */
   1239 	for (i = 0; i < VR_NTXDESC; i++) {
   1240 		d = VR_CDTX(sc, i);
   1241 		memset(d, 0, sizeof(struct vr_desc));
   1242 		d->vr_next = htopci(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1243 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1244 	}
   1245 	sc->vr_txpending = 0;
   1246 	sc->vr_txdirty = 0;
   1247 	sc->vr_txlast = VR_NTXDESC - 1;
   1248 
   1249 	/*
   1250 	 * Initialize the receive descriptor ring.
   1251 	 */
   1252 	for (i = 0; i < VR_NRXDESC; i++) {
   1253 		ds = VR_DSRX(sc, i);
   1254 		if (ds->ds_mbuf == NULL) {
   1255 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1256 				printf("%s: unable to allocate or map rx "
   1257 				    "buffer %d, error = %d\n",
   1258 				    sc->vr_dev.dv_xname, i, error);
   1259 				/*
   1260 				 * XXX Should attempt to run with fewer receive
   1261 				 * XXX buffers instead of just failing.
   1262 				 */
   1263 				vr_rxdrain(sc);
   1264 				goto out;
   1265 			}
   1266 		}
   1267 	}
   1268 	sc->vr_rxptr = 0;
   1269 
   1270 	/* If we want promiscuous mode, set the allframes bit. */
   1271 	if (ifp->if_flags & IFF_PROMISC)
   1272 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1273 	else
   1274 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1275 
   1276 	/* Set capture broadcast bit to capture broadcast frames. */
   1277 	if (ifp->if_flags & IFF_BROADCAST)
   1278 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1279 	else
   1280 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1281 
   1282 	/* Program the multicast filter, if necessary. */
   1283 	vr_setmulti(sc);
   1284 
   1285 	/* Give the transmit and recieve rings to the Rhine. */
   1286 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1287 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1288 
   1289 	/* Set current media. */
   1290 	mii_mediachg(&sc->vr_mii);
   1291 
   1292 	/* Enable receiver and transmitter. */
   1293 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1294 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1295 				    VR_CMD_RX_GO);
   1296 
   1297 	/* Enable interrupts. */
   1298 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1299 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1300 
   1301 	ifp->if_flags |= IFF_RUNNING;
   1302 	ifp->if_flags &= ~IFF_OACTIVE;
   1303 
   1304 	/* Start one second timer. */
   1305 	timeout(vr_tick, sc, hz);
   1306 
   1307 	/* Attempt to start output on the interface. */
   1308 	vr_start(ifp);
   1309 
   1310  out:
   1311 	if (error)
   1312 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1313 	return (error);
   1314 }
   1315 
   1316 /*
   1317  * Set media options.
   1318  */
   1319 static int
   1320 vr_ifmedia_upd(ifp)
   1321 	struct ifnet *ifp;
   1322 {
   1323 	struct vr_softc *sc = ifp->if_softc;
   1324 
   1325 	if (ifp->if_flags & IFF_UP)
   1326 		mii_mediachg(&sc->vr_mii);
   1327 	return (0);
   1328 }
   1329 
   1330 /*
   1331  * Report current media status.
   1332  */
   1333 static void
   1334 vr_ifmedia_sts(ifp, ifmr)
   1335 	struct ifnet *ifp;
   1336 	struct ifmediareq *ifmr;
   1337 {
   1338 	struct vr_softc *sc = ifp->if_softc;
   1339 
   1340 	mii_pollstat(&sc->vr_mii);
   1341 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1342 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1343 }
   1344 
   1345 static int
   1346 vr_ioctl(ifp, command, data)
   1347 	struct ifnet *ifp;
   1348 	u_long command;
   1349 	caddr_t data;
   1350 {
   1351 	struct vr_softc *sc = ifp->if_softc;
   1352 	struct ifreq *ifr = (struct ifreq *)data;
   1353 	struct ifaddr *ifa = (struct ifaddr *)data;
   1354 	int s, error = 0;
   1355 
   1356 	s = splnet();
   1357 
   1358 	switch (command) {
   1359 	case SIOCSIFADDR:
   1360 		ifp->if_flags |= IFF_UP;
   1361 
   1362 		switch (ifa->ifa_addr->sa_family) {
   1363 #ifdef INET
   1364 		case AF_INET:
   1365 			if ((error = vr_init(sc)) != 0)
   1366 				break;
   1367 			arp_ifinit(ifp, ifa);
   1368 			break;
   1369 #endif /* INET */
   1370 		default:
   1371 			error = vr_init(sc);
   1372 			break;
   1373 		}
   1374 		break;
   1375 
   1376 	case SIOCGIFADDR:
   1377 		bcopy((caddr_t) sc->vr_enaddr,
   1378 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
   1379 			ETHER_ADDR_LEN);
   1380 		break;
   1381 
   1382 	case SIOCSIFMTU:
   1383 		if (ifr->ifr_mtu > ETHERMTU)
   1384 			error = EINVAL;
   1385 		else
   1386 			ifp->if_mtu = ifr->ifr_mtu;
   1387 		break;
   1388 
   1389 	case SIOCSIFFLAGS:
   1390 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1391 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1392 			/*
   1393 			 * If interface is marked down and it is running, then
   1394 			 * stop it.
   1395 			 */
   1396 			vr_stop(sc, 1);
   1397 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1398 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1399 			/*
   1400 			 * If interface is marked up and it is stopped, then
   1401 			 * start it.
   1402 			 */
   1403 			error = vr_init(sc);
   1404 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1405 			/*
   1406 			 * Reset the interface to pick up changes in any other
   1407 			 * flags that affect the hardware state.
   1408 			 */
   1409 			error = vr_init(sc);
   1410 		}
   1411 		break;
   1412 
   1413 	case SIOCADDMULTI:
   1414 	case SIOCDELMULTI:
   1415 		if (command == SIOCADDMULTI)
   1416 			error = ether_addmulti(ifr, &sc->vr_ec);
   1417 		else
   1418 			error = ether_delmulti(ifr, &sc->vr_ec);
   1419 
   1420 		if (error == ENETRESET) {
   1421 			/*
   1422 			 * Multicast list has changed; set the hardware filter
   1423 			 * accordingly.
   1424 			 */
   1425 			vr_setmulti(sc);
   1426 			error = 0;
   1427 		}
   1428 		break;
   1429 
   1430 	case SIOCGIFMEDIA:
   1431 	case SIOCSIFMEDIA:
   1432 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1433 		break;
   1434 
   1435 	default:
   1436 		error = EINVAL;
   1437 		break;
   1438 	}
   1439 
   1440 	splx(s);
   1441 	return (error);
   1442 }
   1443 
   1444 static void
   1445 vr_watchdog(ifp)
   1446 	struct ifnet *ifp;
   1447 {
   1448 	struct vr_softc *sc = ifp->if_softc;
   1449 
   1450 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1451 	ifp->if_oerrors++;
   1452 
   1453 	(void) vr_init(sc);
   1454 }
   1455 
   1456 /*
   1457  * One second timer, used to tick MII.
   1458  */
   1459 static void
   1460 vr_tick(arg)
   1461 	void *arg;
   1462 {
   1463 	struct vr_softc *sc = arg;
   1464 	int s;
   1465 
   1466 	s = splnet();
   1467 	mii_tick(&sc->vr_mii);
   1468 	splx(s);
   1469 
   1470 	timeout(vr_tick, sc, hz);
   1471 }
   1472 
   1473 /*
   1474  * Drain the receive queue.
   1475  */
   1476 static void
   1477 vr_rxdrain(sc)
   1478 	struct vr_softc *sc;
   1479 {
   1480 	struct vr_descsoft *ds;
   1481 	int i;
   1482 
   1483 	for (i = 0; i < VR_NRXDESC; i++) {
   1484 		ds = VR_DSRX(sc, i);
   1485 		if (ds->ds_mbuf != NULL) {
   1486 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1487 			m_freem(ds->ds_mbuf);
   1488 			ds->ds_mbuf = NULL;
   1489 		}
   1490 	}
   1491 }
   1492 
   1493 /*
   1494  * Stop the adapter and free any mbufs allocated to the
   1495  * transmit lists.
   1496  */
   1497 static void
   1498 vr_stop(sc, drain)
   1499 	struct vr_softc *sc;
   1500 	int drain;
   1501 {
   1502 	struct vr_descsoft *ds;
   1503 	struct ifnet *ifp;
   1504 	int i;
   1505 
   1506 	/* Cancel one second timer. */
   1507 	untimeout(vr_tick, sc);
   1508 
   1509 	ifp = &sc->vr_ec.ec_if;
   1510 	ifp->if_timer = 0;
   1511 
   1512 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1513 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1514 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1515 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1516 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1517 
   1518 	/*
   1519 	 * Release any queued transmit buffers.
   1520 	 */
   1521 	for (i = 0; i < VR_NTXDESC; i++) {
   1522 		ds = VR_DSTX(sc, i);
   1523 		if (ds->ds_mbuf != NULL) {
   1524 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1525 			m_freem(ds->ds_mbuf);
   1526 			ds->ds_mbuf = NULL;
   1527 		}
   1528 	}
   1529 
   1530 	if (drain) {
   1531 		/*
   1532 		 * Release the receive buffers.
   1533 		 */
   1534 		vr_rxdrain(sc);
   1535 	}
   1536 
   1537 	/*
   1538 	 * Mark the interface down and cancel the watchdog timer.
   1539 	 */
   1540 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1541 	ifp->if_timer = 0;
   1542 }
   1543 
   1544 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1545 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1546 static void vr_attach __P((struct device *, struct device *, void *));
   1547 static void vr_shutdown __P((void *));
   1548 
   1549 struct cfattach vr_ca = {
   1550 	sizeof (struct vr_softc), vr_probe, vr_attach
   1551 };
   1552 
   1553 static struct vr_type *
   1554 vr_lookup(pa)
   1555 	struct pci_attach_args *pa;
   1556 {
   1557 	struct vr_type *vrt;
   1558 
   1559 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1560 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1561 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1562 			return (vrt);
   1563 	}
   1564 	return (NULL);
   1565 }
   1566 
   1567 static int
   1568 vr_probe(parent, match, aux)
   1569 	struct device *parent;
   1570 	struct cfdata *match;
   1571 	void *aux;
   1572 {
   1573 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1574 
   1575 	if (vr_lookup(pa) != NULL)
   1576 		return (1);
   1577 
   1578 	return (0);
   1579 }
   1580 
   1581 /*
   1582  * Stop all chip I/O so that the kernel's probe routines don't
   1583  * get confused by errant DMAs when rebooting.
   1584  */
   1585 static void
   1586 vr_shutdown(arg)
   1587 	void *arg;
   1588 {
   1589 	struct vr_softc *sc = (struct vr_softc *)arg;
   1590 
   1591 	vr_stop(sc, 1);
   1592 }
   1593 
   1594 /*
   1595  * Attach the interface. Allocate softc structures, do ifmedia
   1596  * setup and ethernet/BPF attach.
   1597  */
   1598 static void
   1599 vr_attach(parent, self, aux)
   1600 	struct device *parent;
   1601 	struct device *self;
   1602 	void *aux;
   1603 {
   1604 	struct vr_softc *sc = (struct vr_softc *) self;
   1605 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1606 	bus_dma_segment_t seg;
   1607 	struct vr_type *vrt;
   1608 	u_int32_t command;
   1609 	struct ifnet *ifp;
   1610 	u_char eaddr[ETHER_ADDR_LEN];
   1611 	int i, rseg, error;
   1612 
   1613 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1614 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1615 
   1616 	vrt = vr_lookup(pa);
   1617 	if (vrt == NULL) {
   1618 		printf("\n");
   1619 		panic("vr_attach: impossible");
   1620 	}
   1621 
   1622 	printf(": %s Ethernet\n", vrt->vr_name);
   1623 
   1624 	/*
   1625 	 * Handle power management nonsense.
   1626 	 */
   1627 
   1628 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1629 	if (command == 0x01) {
   1630 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1631 		if (command & VR_PSTATE_MASK) {
   1632 			u_int32_t iobase, membase, irq;
   1633 
   1634 			/* Save important PCI config data. */
   1635 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1636 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1637 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1638 
   1639 			/* Reset the power state. */
   1640 			printf("%s: chip is in D%d power mode "
   1641 				"-- setting to D0\n",
   1642 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1643 			command &= 0xFFFFFFFC;
   1644 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1645 
   1646 			/* Restore PCI config data. */
   1647 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1648 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1649 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1650 		}
   1651 	}
   1652 
   1653 	/* Make sure bus mastering is enabled. */
   1654 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1655 	command |= PCI_COMMAND_MASTER_ENABLE;
   1656 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1657 
   1658 	/*
   1659 	 * Map control/status registers.
   1660 	 */
   1661 	{
   1662 		bus_space_tag_t iot, memt;
   1663 		bus_space_handle_t ioh, memh;
   1664 		int ioh_valid, memh_valid;
   1665 		pci_intr_handle_t intrhandle;
   1666 		const char *intrstr;
   1667 
   1668 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1669 			PCI_MAPREG_TYPE_IO, 0,
   1670 			&iot, &ioh, NULL, NULL) == 0);
   1671 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1672 			PCI_MAPREG_TYPE_MEM |
   1673 			PCI_MAPREG_MEM_TYPE_32BIT,
   1674 			0, &memt, &memh, NULL, NULL) == 0);
   1675 #if defined(VR_USEIOSPACE)
   1676 		if (ioh_valid) {
   1677 			sc->vr_bst = iot;
   1678 			sc->vr_bsh = ioh;
   1679 		} else if (memh_valid) {
   1680 			sc->vr_bst = memt;
   1681 			sc->vr_bsh = memh;
   1682 		}
   1683 #else
   1684 		if (memh_valid) {
   1685 			sc->vr_bst = memt;
   1686 			sc->vr_bsh = memh;
   1687 		} else if (ioh_valid) {
   1688 			sc->vr_bst = iot;
   1689 			sc->vr_bsh = ioh;
   1690 		}
   1691 #endif
   1692 		else {
   1693 			printf(": unable to map device registers\n");
   1694 			return;
   1695 		}
   1696 
   1697 		/* Allocate interrupt */
   1698 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1699 				pa->pa_intrline, &intrhandle)) {
   1700 			printf("%s: couldn't map interrupt\n",
   1701 				sc->vr_dev.dv_xname);
   1702 			return;
   1703 		}
   1704 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1705 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1706 						vr_intr, sc);
   1707 		if (sc->vr_ih == NULL) {
   1708 			printf("%s: couldn't establish interrupt",
   1709 				sc->vr_dev.dv_xname);
   1710 			if (intrstr != NULL)
   1711 				printf(" at %s", intrstr);
   1712 			printf("\n");
   1713 		}
   1714 		printf("%s: interrupting at %s\n",
   1715 			sc->vr_dev.dv_xname, intrstr);
   1716 	}
   1717 
   1718 	/* Reset the adapter. */
   1719 	vr_reset(sc);
   1720 
   1721 	/*
   1722 	 * Get station address. The way the Rhine chips work,
   1723 	 * you're not allowed to directly access the EEPROM once
   1724 	 * they've been programmed a special way. Consequently,
   1725 	 * we need to read the node address from the PAR0 and PAR1
   1726 	 * registers.
   1727 	 */
   1728 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1729 	DELAY(200);
   1730 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1731 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1732 
   1733 	/*
   1734 	 * A Rhine chip was detected. Inform the world.
   1735 	 */
   1736 	printf("%s: Ethernet address: %s\n",
   1737 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1738 
   1739 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1740 
   1741 	sc->vr_dmat = pa->pa_dmat;
   1742 
   1743 	/*
   1744 	 * Allocate the control data structures, and create and load
   1745 	 * the DMA map for it.
   1746 	 */
   1747 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1748 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1749 	    0)) != 0) {
   1750 		printf("%s: unable to allocate control data, error = %d\n",
   1751 		    sc->vr_dev.dv_xname, error);
   1752 		goto fail_0;
   1753 	}
   1754 
   1755 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1756 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1757 	    BUS_DMA_COHERENT)) != 0) {
   1758 		printf("%s: unable to map control data, error = %d\n",
   1759 		    sc->vr_dev.dv_xname, error);
   1760 		goto fail_1;
   1761 	}
   1762 
   1763 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1764 	    sizeof(struct vr_control_data), 1,
   1765 	    sizeof(struct vr_control_data), 0, 0,
   1766 	    &sc->vr_cddmamap)) != 0) {
   1767 		printf("%s: unable to create control data DMA map, "
   1768 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1769 		goto fail_2;
   1770 	}
   1771 
   1772 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1773 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1774 	    0)) != 0) {
   1775 		printf("%s: unable to load control data DMA map, error = %d\n",
   1776 		    sc->vr_dev.dv_xname, error);
   1777 		goto fail_3;
   1778 	}
   1779 
   1780 	/*
   1781 	 * Create the transmit buffer DMA maps.
   1782 	 */
   1783 	for (i = 0; i < VR_NTXDESC; i++) {
   1784 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1785 		    1, MCLBYTES, 0, 0,
   1786 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1787 			printf("%s: unable to create tx DMA map %d, "
   1788 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1789 			goto fail_4;
   1790 		}
   1791 	}
   1792 
   1793 	/*
   1794 	 * Create the receive buffer DMA maps.
   1795 	 */
   1796 	for (i = 0; i < VR_NRXDESC; i++) {
   1797 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1798 		    MCLBYTES, 0, 0,
   1799 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1800 			printf("%s: unable to create rx DMA map %d, "
   1801 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1802 			goto fail_5;
   1803 		}
   1804 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1805 	}
   1806 
   1807 	ifp = &sc->vr_ec.ec_if;
   1808 	ifp->if_softc = sc;
   1809 	ifp->if_mtu = ETHERMTU;
   1810 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1811 	ifp->if_ioctl = vr_ioctl;
   1812 	ifp->if_start = vr_start;
   1813 	ifp->if_watchdog = vr_watchdog;
   1814 	ifp->if_baudrate = 10000000;
   1815 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1816 
   1817 	/*
   1818 	 * Initialize MII/media info.
   1819 	 */
   1820 	sc->vr_mii.mii_ifp = ifp;
   1821 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1822 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1823 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1824 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1825 	mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff);
   1826 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1827 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1828 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1829 	} else
   1830 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1831 
   1832 	/*
   1833 	 * Call MI attach routines.
   1834 	 */
   1835 	if_attach(ifp);
   1836 	ether_ifattach(ifp, sc->vr_enaddr);
   1837 
   1838 #if NBPFILTER > 0
   1839 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1840 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1841 #endif
   1842 
   1843 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1844 	if (sc->vr_ats == NULL)
   1845 		printf("%s: warning: couldn't establish shutdown hook\n",
   1846 			sc->vr_dev.dv_xname);
   1847 	return;
   1848 
   1849  fail_5:
   1850 	for (i = 0; i < VR_NRXDESC; i++) {
   1851 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1852 			bus_dmamap_destroy(sc->vr_dmat,
   1853 			    sc->vr_rxsoft[i].ds_dmamap);
   1854 	}
   1855  fail_4:
   1856 	for (i = 0; i < VR_NTXDESC; i++) {
   1857 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1858 			bus_dmamap_destroy(sc->vr_dmat,
   1859 			    sc->vr_txsoft[i].ds_dmamap);
   1860 	}
   1861 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1862  fail_3:
   1863 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1864  fail_2:
   1865 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1866 	    sizeof(struct vr_control_data));
   1867  fail_1:
   1868 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1869  fail_0:
   1870 	return;
   1871 }
   1872