if_vr.c revision 1.26.2.4 1 /* $NetBSD: if_vr.c,v 1.26.2.4 2001/02/11 19:15:57 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct ifnet *));
305 static void vr_stop __P((struct ifnet *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static void vr_setmulti __P((struct vr_softc *));
318 static void vr_reset __P((struct vr_softc *));
319
320 int vr_copy_small = 0;
321
322 #define VR_SETBIT(sc, reg, x) \
323 CSR_WRITE_1(sc, reg, \
324 CSR_READ_1(sc, reg) | x)
325
326 #define VR_CLRBIT(sc, reg, x) \
327 CSR_WRITE_1(sc, reg, \
328 CSR_READ_1(sc, reg) & ~x)
329
330 #define VR_SETBIT16(sc, reg, x) \
331 CSR_WRITE_2(sc, reg, \
332 CSR_READ_2(sc, reg) | x)
333
334 #define VR_CLRBIT16(sc, reg, x) \
335 CSR_WRITE_2(sc, reg, \
336 CSR_READ_2(sc, reg) & ~x)
337
338 #define VR_SETBIT32(sc, reg, x) \
339 CSR_WRITE_4(sc, reg, \
340 CSR_READ_4(sc, reg) | x)
341
342 #define VR_CLRBIT32(sc, reg, x) \
343 CSR_WRITE_4(sc, reg, \
344 CSR_READ_4(sc, reg) & ~x)
345
346 /*
347 * MII bit-bang glue.
348 */
349 u_int32_t vr_mii_bitbang_read __P((struct device *));
350 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
351
352 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 vr_mii_bitbang_read,
354 vr_mii_bitbang_write,
355 {
356 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
357 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
358 VR_MIICMD_CLK, /* MII_BIT_MDC */
359 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
360 0, /* MII_BIT_DIR_PHY_HOST */
361 }
362 };
363
364 u_int32_t
365 vr_mii_bitbang_read(self)
366 struct device *self;
367 {
368 struct vr_softc *sc = (void *) self;
369
370 return (CSR_READ_1(sc, VR_MIICMD));
371 }
372
373 void
374 vr_mii_bitbang_write(self, val)
375 struct device *self;
376 u_int32_t val;
377 {
378 struct vr_softc *sc = (void *) self;
379
380 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
381 }
382
383 /*
384 * Read an PHY register through the MII.
385 */
386 static int
387 vr_mii_readreg(self, phy, reg)
388 struct device *self;
389 int phy, reg;
390 {
391 struct vr_softc *sc = (void *) self;
392
393 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
394 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
395 }
396
397 /*
398 * Write to a PHY register through the MII.
399 */
400 static void
401 vr_mii_writereg(self, phy, reg, val)
402 struct device *self;
403 int phy, reg, val;
404 {
405 struct vr_softc *sc = (void *) self;
406
407 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
408 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
409 }
410
411 static void
412 vr_mii_statchg(self)
413 struct device *self;
414 {
415 struct vr_softc *sc = (struct vr_softc *)self;
416
417 /*
418 * In order to fiddle with the 'full-duplex' bit in the netconfig
419 * register, we first have to put the transmit and/or receive logic
420 * in the idle state.
421 */
422 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
423
424 if (sc->vr_mii.mii_media_active & IFM_FDX)
425 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426 else
427 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
428
429 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
430 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
431 }
432
433 #define vr_calchash(addr) \
434 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
435
436 /*
437 * Program the 64-bit multicast hash filter.
438 */
439 static void
440 vr_setmulti(sc)
441 struct vr_softc *sc;
442 {
443 struct ifnet *ifp;
444 int h = 0;
445 u_int32_t hashes[2] = { 0, 0 };
446 struct ether_multistep step;
447 struct ether_multi *enm;
448 int mcnt = 0;
449 u_int8_t rxfilt;
450
451 ifp = &sc->vr_ec.ec_if;
452
453 rxfilt = CSR_READ_1(sc, VR_RXCFG);
454
455 if (ifp->if_flags & IFF_PROMISC) {
456 allmulti:
457 ifp->if_flags |= IFF_ALLMULTI;
458 rxfilt |= VR_RXCFG_RX_MULTI;
459 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
460 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
461 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
462 return;
463 }
464
465 /* first, zot all the existing hash bits */
466 CSR_WRITE_4(sc, VR_MAR0, 0);
467 CSR_WRITE_4(sc, VR_MAR1, 0);
468
469 /* now program new ones */
470 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
471 while (enm != NULL) {
472 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
473 ETHER_ADDR_LEN) != 0)
474 goto allmulti;
475
476 h = vr_calchash(enm->enm_addrlo);
477
478 if (h < 32)
479 hashes[0] |= (1 << h);
480 else
481 hashes[1] |= (1 << (h - 32));
482 ETHER_NEXT_MULTI(step, enm);
483 mcnt++;
484 }
485
486 ifp->if_flags &= ~IFF_ALLMULTI;
487
488 if (mcnt)
489 rxfilt |= VR_RXCFG_RX_MULTI;
490 else
491 rxfilt &= ~VR_RXCFG_RX_MULTI;
492
493 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
494 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
495 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
496 }
497
498 static void
499 vr_reset(sc)
500 struct vr_softc *sc;
501 {
502 int i;
503
504 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
505
506 for (i = 0; i < VR_TIMEOUT; i++) {
507 DELAY(10);
508 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
509 break;
510 }
511 if (i == VR_TIMEOUT)
512 printf("%s: reset never completed!\n",
513 sc->vr_dev.dv_xname);
514
515 /* Wait a little while for the chip to get its brains in order. */
516 DELAY(1000);
517 }
518
519 /*
520 * Initialize an RX descriptor and attach an MBUF cluster.
521 * Note: the length fields are only 11 bits wide, which means the
522 * largest size we can specify is 2047. This is important because
523 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
524 * overflow the field and make a mess.
525 */
526 static int
527 vr_add_rxbuf(sc, i)
528 struct vr_softc *sc;
529 int i;
530 {
531 struct vr_descsoft *ds = VR_DSRX(sc, i);
532 struct mbuf *m_new;
533 int error;
534
535 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
536 if (m_new == NULL)
537 return (ENOBUFS);
538
539 MCLGET(m_new, M_DONTWAIT);
540 if ((m_new->m_flags & M_EXT) == 0) {
541 m_freem(m_new);
542 return (ENOBUFS);
543 }
544
545 if (ds->ds_mbuf != NULL)
546 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
547
548 ds->ds_mbuf = m_new;
549
550 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
551 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
552 if (error) {
553 printf("%s: unable to load rx DMA map %d, error = %d\n",
554 sc->vr_dev.dv_xname, i, error);
555 panic("vr_add_rxbuf"); /* XXX */
556 }
557
558 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
559 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
560
561 VR_INIT_RXDESC(sc, i);
562
563 return (0);
564 }
565
566 /*
567 * A frame has been uploaded: pass the resulting mbuf chain up to
568 * the higher level protocols.
569 */
570 static void
571 vr_rxeof(sc)
572 struct vr_softc *sc;
573 {
574 struct mbuf *m;
575 struct ifnet *ifp;
576 struct vr_desc *d;
577 struct vr_descsoft *ds;
578 int i, total_len;
579 u_int32_t rxstat;
580
581 ifp = &sc->vr_ec.ec_if;
582
583 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
584 d = VR_CDRX(sc, i);
585 ds = VR_DSRX(sc, i);
586
587 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
588
589 rxstat = le32toh(d->vr_status);
590
591 if (rxstat & VR_RXSTAT_OWN) {
592 /*
593 * We have processed all of the receive buffers.
594 */
595 break;
596 }
597
598 /*
599 * If an error occurs, update stats, clear the
600 * status word and leave the mbuf cluster in place:
601 * it should simply get re-used next time this descriptor
602 * comes up in the ring.
603 */
604 if (rxstat & VR_RXSTAT_RXERR) {
605 const char *errstr;
606
607 ifp->if_ierrors++;
608 switch (rxstat & 0x000000FF) {
609 case VR_RXSTAT_CRCERR:
610 errstr = "crc error";
611 break;
612 case VR_RXSTAT_FRAMEALIGNERR:
613 errstr = "frame alignment error";
614 break;
615 case VR_RXSTAT_FIFOOFLOW:
616 errstr = "FIFO overflow";
617 break;
618 case VR_RXSTAT_GIANT:
619 errstr = "received giant packet";
620 break;
621 case VR_RXSTAT_RUNT:
622 errstr = "received runt packet";
623 break;
624 case VR_RXSTAT_BUSERR:
625 errstr = "system bus error";
626 break;
627 case VR_RXSTAT_BUFFERR:
628 errstr = "rx buffer error";
629 break;
630 default:
631 errstr = "unknown rx error";
632 break;
633 }
634 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
635 errstr);
636
637 VR_INIT_RXDESC(sc, i);
638
639 continue;
640 }
641
642 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
643 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
644
645 /* No errors; receive the packet. */
646 total_len = VR_RXBYTES(le32toh(d->vr_status));
647
648 #ifdef __NO_STRICT_ALIGNMENT
649 /*
650 * If the packet is small enough to fit in a
651 * single header mbuf, allocate one and copy
652 * the data into it. This greatly reduces
653 * memory consumption when we receive lots
654 * of small packets.
655 *
656 * Otherwise, we add a new buffer to the receive
657 * chain. If this fails, we drop the packet and
658 * recycle the old buffer.
659 */
660 if (vr_copy_small != 0 && total_len <= MHLEN) {
661 MGETHDR(m, M_DONTWAIT, MT_DATA);
662 if (m == NULL)
663 goto dropit;
664 memcpy(mtod(m, caddr_t),
665 mtod(ds->ds_mbuf, caddr_t), total_len);
666 VR_INIT_RXDESC(sc, i);
667 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
668 ds->ds_dmamap->dm_mapsize,
669 BUS_DMASYNC_PREREAD);
670 } else {
671 m = ds->ds_mbuf;
672 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
673 dropit:
674 ifp->if_ierrors++;
675 VR_INIT_RXDESC(sc, i);
676 bus_dmamap_sync(sc->vr_dmat,
677 ds->ds_dmamap, 0,
678 ds->ds_dmamap->dm_mapsize,
679 BUS_DMASYNC_PREREAD);
680 continue;
681 }
682 }
683 #else
684 /*
685 * The Rhine's packet buffers must be 4-byte aligned.
686 * But this means that the data after the Ethernet header
687 * is misaligned. We must allocate a new buffer and
688 * copy the data, shifted forward 2 bytes.
689 */
690 MGETHDR(m, M_DONTWAIT, MT_DATA);
691 if (m == NULL) {
692 dropit:
693 ifp->if_ierrors++;
694 VR_INIT_RXDESC(sc, i);
695 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
696 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
697 continue;
698 }
699 if (total_len > (MHLEN - 2)) {
700 MCLGET(m, M_DONTWAIT);
701 if ((m->m_flags & M_EXT) == 0) {
702 m_freem(m);
703 goto dropit;
704 }
705 }
706 m->m_data += 2;
707
708 /*
709 * Note that we use clusters for incoming frames, so the
710 * buffer is virtually contiguous.
711 */
712 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
713 total_len);
714
715 /* Allow the recieve descriptor to continue using its mbuf. */
716 VR_INIT_RXDESC(sc, i);
717 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
718 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
719 #endif /* __NO_STRICT_ALIGNMENT */
720
721 /*
722 * The Rhine chip includes the FCS with every
723 * received packet.
724 */
725 m->m_flags |= M_HASFCS;
726
727 ifp->if_ipackets++;
728 m->m_pkthdr.rcvif = ifp;
729 m->m_pkthdr.len = m->m_len = total_len;
730 #if NBPFILTER > 0
731 /*
732 * Handle BPF listeners. Let the BPF user see the packet, but
733 * don't pass it up to the ether_input() layer unless it's
734 * a broadcast packet, multicast packet, matches our ethernet
735 * address or the interface is in promiscuous mode.
736 */
737 if (ifp->if_bpf)
738 bpf_mtap(ifp->if_bpf, m);
739 #endif
740 /* Pass it on. */
741 (*ifp->if_input)(ifp, m);
742 }
743
744 /* Update the receive pointer. */
745 sc->vr_rxptr = i;
746 }
747
748 void
749 vr_rxeoc(sc)
750 struct vr_softc *sc;
751 {
752
753 vr_rxeof(sc);
754 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
755 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
756 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
757 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
758 }
759
760 /*
761 * A frame was downloaded to the chip. It's safe for us to clean up
762 * the list buffers.
763 */
764 static void
765 vr_txeof(sc)
766 struct vr_softc *sc;
767 {
768 struct ifnet *ifp = &sc->vr_ec.ec_if;
769 struct vr_desc *d;
770 struct vr_descsoft *ds;
771 u_int32_t txstat;
772 int i;
773
774 ifp->if_flags &= ~IFF_OACTIVE;
775
776 /*
777 * Go through our tx list and free mbufs for those
778 * frames that have been transmitted.
779 */
780 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
781 i = VR_NEXTTX(i), sc->vr_txpending--) {
782 d = VR_CDTX(sc, i);
783 ds = VR_DSTX(sc, i);
784
785 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
786
787 txstat = le32toh(d->vr_status);
788 if (txstat & VR_TXSTAT_OWN)
789 break;
790
791 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
792 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
793 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
794 m_freem(ds->ds_mbuf);
795 ds->ds_mbuf = NULL;
796
797 if (txstat & VR_TXSTAT_ERRSUM) {
798 ifp->if_oerrors++;
799 if (txstat & VR_TXSTAT_DEFER)
800 ifp->if_collisions++;
801 if (txstat & VR_TXSTAT_LATECOLL)
802 ifp->if_collisions++;
803 }
804
805 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
806 ifp->if_opackets++;
807 }
808
809 /* Update the dirty transmit buffer pointer. */
810 sc->vr_txdirty = i;
811
812 /*
813 * Cancel the watchdog timer if there are no pending
814 * transmissions.
815 */
816 if (sc->vr_txpending == 0)
817 ifp->if_timer = 0;
818 }
819
820 static int
821 vr_intr(arg)
822 void *arg;
823 {
824 struct vr_softc *sc;
825 struct ifnet *ifp;
826 u_int16_t status;
827 int handled = 0, dotx = 0;
828
829 sc = arg;
830 ifp = &sc->vr_ec.ec_if;
831
832 /* Suppress unwanted interrupts. */
833 if ((ifp->if_flags & IFF_UP) == 0) {
834 vr_stop(ifp, 1);
835 return (0);
836 }
837
838 /* Disable interrupts. */
839 CSR_WRITE_2(sc, VR_IMR, 0x0000);
840
841 for (;;) {
842 status = CSR_READ_2(sc, VR_ISR);
843 if (status)
844 CSR_WRITE_2(sc, VR_ISR, status);
845
846 if ((status & VR_INTRS) == 0)
847 break;
848
849 handled = 1;
850
851 if (status & VR_ISR_RX_OK)
852 vr_rxeof(sc);
853
854 if (status &
855 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
856 VR_ISR_RX_DROPPED))
857 vr_rxeoc(sc);
858
859 if (status & VR_ISR_TX_OK) {
860 dotx = 1;
861 vr_txeof(sc);
862 }
863
864 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
865 if (status & VR_ISR_TX_UNDERRUN)
866 printf("%s: transmit underrun\n",
867 sc->vr_dev.dv_xname);
868 if (status & VR_ISR_TX_ABRT)
869 printf("%s: transmit aborted\n",
870 sc->vr_dev.dv_xname);
871 ifp->if_oerrors++;
872 dotx = 1;
873 vr_txeof(sc);
874 if (sc->vr_txpending) {
875 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
876 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
877 }
878 }
879
880 if (status & VR_ISR_BUSERR) {
881 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
882 /* vr_init() calls vr_start() */
883 dotx = 0;
884 (void) vr_init(ifp);
885 }
886 }
887
888 /* Re-enable interrupts. */
889 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
890
891 if (dotx)
892 vr_start(ifp);
893
894 return (handled);
895 }
896
897 /*
898 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
899 * to the mbuf data regions directly in the transmit lists. We also save a
900 * copy of the pointers since the transmit list fragment pointers are
901 * physical addresses.
902 */
903 static void
904 vr_start(ifp)
905 struct ifnet *ifp;
906 {
907 struct vr_softc *sc = ifp->if_softc;
908 struct mbuf *m0, *m;
909 struct vr_desc *d;
910 struct vr_descsoft *ds;
911 int error, firsttx, nexttx, opending;
912
913 /*
914 * Remember the previous txpending and the first transmit
915 * descriptor we use.
916 */
917 opending = sc->vr_txpending;
918 firsttx = VR_NEXTTX(sc->vr_txlast);
919
920 /*
921 * Loop through the send queue, setting up transmit descriptors
922 * until we drain the queue, or use up all available transmit
923 * descriptors.
924 */
925 while (sc->vr_txpending < VR_NTXDESC) {
926 /*
927 * Grab a packet off the queue.
928 */
929 IFQ_POLL(&ifp->if_snd, m0);
930 if (m0 == NULL)
931 break;
932 m = NULL;
933
934 /*
935 * Get the next available transmit descriptor.
936 */
937 nexttx = VR_NEXTTX(sc->vr_txlast);
938 d = VR_CDTX(sc, nexttx);
939 ds = VR_DSTX(sc, nexttx);
940
941 /*
942 * Load the DMA map. If this fails, the packet didn't
943 * fit in one DMA segment, and we need to copy. Note,
944 * the packet must also be aligned.
945 */
946 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
947 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
948 BUS_DMA_NOWAIT) != 0) {
949 MGETHDR(m, M_DONTWAIT, MT_DATA);
950 if (m == NULL) {
951 printf("%s: unable to allocate Tx mbuf\n",
952 sc->vr_dev.dv_xname);
953 break;
954 }
955 if (m0->m_pkthdr.len > MHLEN) {
956 MCLGET(m, M_DONTWAIT);
957 if ((m->m_flags & M_EXT) == 0) {
958 printf("%s: unable to allocate Tx "
959 "cluster\n", sc->vr_dev.dv_xname);
960 m_freem(m);
961 break;
962 }
963 }
964 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
965 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
966 error = bus_dmamap_load_mbuf(sc->vr_dmat,
967 ds->ds_dmamap, m, BUS_DMA_NOWAIT);
968 if (error) {
969 printf("%s: unable to load Tx buffer, "
970 "error = %d\n", sc->vr_dev.dv_xname, error);
971 break;
972 }
973 }
974
975 IFQ_DEQUEUE(&ifp->if_snd, m0);
976 if (m != NULL) {
977 m_freem(m0);
978 m0 = m;
979 }
980
981 /* Sync the DMA map. */
982 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
983 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
984
985 /*
986 * Store a pointer to the packet so we can free it later.
987 */
988 ds->ds_mbuf = m0;
989
990 #if NBPFILTER > 0
991 /*
992 * If there's a BPF listener, bounce a copy of this frame
993 * to him.
994 */
995 if (ifp->if_bpf)
996 bpf_mtap(ifp->if_bpf, m0);
997 #endif
998
999 /*
1000 * Fill in the transmit descriptor. The Rhine
1001 * doesn't auto-pad, so we have to do this ourselves.
1002 */
1003 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1004 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1005 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1006 d->vr_ctl |=
1007 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1008 VR_TXCTL_LASTFRAG);
1009
1010 /*
1011 * If this is the first descriptor we're enqueuing,
1012 * don't give it to the Rhine yet. That could cause
1013 * a race condition. We'll do it below.
1014 */
1015 if (nexttx == firsttx)
1016 d->vr_status = 0;
1017 else
1018 d->vr_status = htole32(VR_TXSTAT_OWN);
1019
1020 VR_CDTXSYNC(sc, nexttx,
1021 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1022
1023 /* Advance the tx pointer. */
1024 sc->vr_txpending++;
1025 sc->vr_txlast = nexttx;
1026 }
1027
1028 if (sc->vr_txpending == VR_NTXDESC) {
1029 /* No more slots left; notify upper layer. */
1030 ifp->if_flags |= IFF_OACTIVE;
1031 }
1032
1033 if (sc->vr_txpending != opending) {
1034 /*
1035 * We enqueued packets. If the transmitter was idle,
1036 * reset the txdirty pointer.
1037 */
1038 if (opending == 0)
1039 sc->vr_txdirty = firsttx;
1040
1041 /*
1042 * Cause a transmit interrupt to happen on the
1043 * last packet we enqueued.
1044 */
1045 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1046 VR_CDTXSYNC(sc, sc->vr_txlast,
1047 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1048
1049 /*
1050 * The entire packet chain is set up. Give the
1051 * first descriptor to the Rhine now.
1052 */
1053 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1054 VR_CDTXSYNC(sc, firsttx,
1055 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056
1057 /* Start the transmitter. */
1058 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1059
1060 /* Set the watchdog timer in case the chip flakes out. */
1061 ifp->if_timer = 5;
1062 }
1063 }
1064
1065 /*
1066 * Initialize the interface. Must be called at splnet.
1067 */
1068 static int
1069 vr_init(ifp)
1070 struct ifnet *ifp;
1071 {
1072 struct vr_softc *sc = ifp->if_softc;
1073 struct vr_desc *d;
1074 struct vr_descsoft *ds;
1075 int i, error = 0;
1076
1077 /* Cancel pending I/O. */
1078 vr_stop(ifp, 0);
1079
1080 /* Reset the Rhine to a known state. */
1081 vr_reset(sc);
1082
1083 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1084 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1085
1086 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1087 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1088
1089 /*
1090 * Initialize the transmit desciptor ring. txlast is initialized
1091 * to the end of the list so that it will wrap around to the first
1092 * descriptor when the first packet is transmitted.
1093 */
1094 for (i = 0; i < VR_NTXDESC; i++) {
1095 d = VR_CDTX(sc, i);
1096 memset(d, 0, sizeof(struct vr_desc));
1097 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1098 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1099 }
1100 sc->vr_txpending = 0;
1101 sc->vr_txdirty = 0;
1102 sc->vr_txlast = VR_NTXDESC - 1;
1103
1104 /*
1105 * Initialize the receive descriptor ring.
1106 */
1107 for (i = 0; i < VR_NRXDESC; i++) {
1108 ds = VR_DSRX(sc, i);
1109 if (ds->ds_mbuf == NULL) {
1110 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1111 printf("%s: unable to allocate or map rx "
1112 "buffer %d, error = %d\n",
1113 sc->vr_dev.dv_xname, i, error);
1114 /*
1115 * XXX Should attempt to run with fewer receive
1116 * XXX buffers instead of just failing.
1117 */
1118 vr_rxdrain(sc);
1119 goto out;
1120 }
1121 }
1122 }
1123 sc->vr_rxptr = 0;
1124
1125 /* If we want promiscuous mode, set the allframes bit. */
1126 if (ifp->if_flags & IFF_PROMISC)
1127 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1128 else
1129 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1130
1131 /* Set capture broadcast bit to capture broadcast frames. */
1132 if (ifp->if_flags & IFF_BROADCAST)
1133 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1134 else
1135 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1136
1137 /* Program the multicast filter, if necessary. */
1138 vr_setmulti(sc);
1139
1140 /* Give the transmit and recieve rings to the Rhine. */
1141 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1142 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1143
1144 /* Set current media. */
1145 mii_mediachg(&sc->vr_mii);
1146
1147 /* Enable receiver and transmitter. */
1148 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1149 VR_CMD_TX_ON|VR_CMD_RX_ON|
1150 VR_CMD_RX_GO);
1151
1152 /* Enable interrupts. */
1153 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1154 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1155
1156 ifp->if_flags |= IFF_RUNNING;
1157 ifp->if_flags &= ~IFF_OACTIVE;
1158
1159 /* Start one second timer. */
1160 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1161
1162 /* Attempt to start output on the interface. */
1163 vr_start(ifp);
1164
1165 out:
1166 if (error)
1167 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1168 return (error);
1169 }
1170
1171 /*
1172 * Set media options.
1173 */
1174 static int
1175 vr_ifmedia_upd(ifp)
1176 struct ifnet *ifp;
1177 {
1178 struct vr_softc *sc = ifp->if_softc;
1179
1180 if (ifp->if_flags & IFF_UP)
1181 mii_mediachg(&sc->vr_mii);
1182 return (0);
1183 }
1184
1185 /*
1186 * Report current media status.
1187 */
1188 static void
1189 vr_ifmedia_sts(ifp, ifmr)
1190 struct ifnet *ifp;
1191 struct ifmediareq *ifmr;
1192 {
1193 struct vr_softc *sc = ifp->if_softc;
1194
1195 mii_pollstat(&sc->vr_mii);
1196 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1197 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1198 }
1199
1200 static int
1201 vr_ioctl(ifp, command, data)
1202 struct ifnet *ifp;
1203 u_long command;
1204 caddr_t data;
1205 {
1206 struct vr_softc *sc = ifp->if_softc;
1207 struct ifreq *ifr = (struct ifreq *)data;
1208 int s, error = 0;
1209
1210 s = splnet();
1211
1212 switch (command) {
1213 case SIOCGIFMEDIA:
1214 case SIOCSIFMEDIA:
1215 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1216 break;
1217
1218 default:
1219 error = ether_ioctl(ifp, command, data);
1220 if (error == ENETRESET) {
1221 /*
1222 * Multicast list has changed; set the hardware filter
1223 * accordingly.
1224 */
1225 vr_setmulti(sc);
1226 error = 0;
1227 }
1228 break;
1229 }
1230
1231 splx(s);
1232 return (error);
1233 }
1234
1235 static void
1236 vr_watchdog(ifp)
1237 struct ifnet *ifp;
1238 {
1239 struct vr_softc *sc = ifp->if_softc;
1240
1241 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1242 ifp->if_oerrors++;
1243
1244 (void) vr_init(ifp);
1245 }
1246
1247 /*
1248 * One second timer, used to tick MII.
1249 */
1250 static void
1251 vr_tick(arg)
1252 void *arg;
1253 {
1254 struct vr_softc *sc = arg;
1255 int s;
1256
1257 s = splnet();
1258 mii_tick(&sc->vr_mii);
1259 splx(s);
1260
1261 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1262 }
1263
1264 /*
1265 * Drain the receive queue.
1266 */
1267 static void
1268 vr_rxdrain(sc)
1269 struct vr_softc *sc;
1270 {
1271 struct vr_descsoft *ds;
1272 int i;
1273
1274 for (i = 0; i < VR_NRXDESC; i++) {
1275 ds = VR_DSRX(sc, i);
1276 if (ds->ds_mbuf != NULL) {
1277 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1278 m_freem(ds->ds_mbuf);
1279 ds->ds_mbuf = NULL;
1280 }
1281 }
1282 }
1283
1284 /*
1285 * Stop the adapter and free any mbufs allocated to the
1286 * transmit lists.
1287 */
1288 static void
1289 vr_stop(ifp, disable)
1290 struct ifnet *ifp;
1291 int disable;
1292 {
1293 struct vr_softc *sc = ifp->if_softc;
1294 struct vr_descsoft *ds;
1295 int i;
1296
1297 /* Cancel one second timer. */
1298 callout_stop(&sc->vr_tick_ch);
1299
1300 /* Down the MII. */
1301 mii_down(&sc->vr_mii);
1302
1303 ifp = &sc->vr_ec.ec_if;
1304 ifp->if_timer = 0;
1305
1306 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1307 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1308 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1309 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1310 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1311
1312 /*
1313 * Release any queued transmit buffers.
1314 */
1315 for (i = 0; i < VR_NTXDESC; i++) {
1316 ds = VR_DSTX(sc, i);
1317 if (ds->ds_mbuf != NULL) {
1318 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1319 m_freem(ds->ds_mbuf);
1320 ds->ds_mbuf = NULL;
1321 }
1322 }
1323
1324 if (disable)
1325 vr_rxdrain(sc);
1326
1327 /*
1328 * Mark the interface down and cancel the watchdog timer.
1329 */
1330 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1331 ifp->if_timer = 0;
1332 }
1333
1334 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1335 static int vr_probe __P((struct device *, struct cfdata *, void *));
1336 static void vr_attach __P((struct device *, struct device *, void *));
1337 static void vr_shutdown __P((void *));
1338
1339 struct cfattach vr_ca = {
1340 sizeof (struct vr_softc), vr_probe, vr_attach
1341 };
1342
1343 static struct vr_type *
1344 vr_lookup(pa)
1345 struct pci_attach_args *pa;
1346 {
1347 struct vr_type *vrt;
1348
1349 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1350 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1351 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1352 return (vrt);
1353 }
1354 return (NULL);
1355 }
1356
1357 static int
1358 vr_probe(parent, match, aux)
1359 struct device *parent;
1360 struct cfdata *match;
1361 void *aux;
1362 {
1363 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1364
1365 if (vr_lookup(pa) != NULL)
1366 return (1);
1367
1368 return (0);
1369 }
1370
1371 /*
1372 * Stop all chip I/O so that the kernel's probe routines don't
1373 * get confused by errant DMAs when rebooting.
1374 */
1375 static void
1376 vr_shutdown(arg)
1377 void *arg;
1378 {
1379 struct vr_softc *sc = (struct vr_softc *)arg;
1380
1381 vr_stop(&sc->vr_ec.ec_if, 1);
1382 }
1383
1384 /*
1385 * Attach the interface. Allocate softc structures, do ifmedia
1386 * setup and ethernet/BPF attach.
1387 */
1388 static void
1389 vr_attach(parent, self, aux)
1390 struct device *parent;
1391 struct device *self;
1392 void *aux;
1393 {
1394 struct vr_softc *sc = (struct vr_softc *) self;
1395 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1396 bus_dma_segment_t seg;
1397 struct vr_type *vrt;
1398 u_int32_t command;
1399 struct ifnet *ifp;
1400 u_char eaddr[ETHER_ADDR_LEN];
1401 int i, rseg, error;
1402
1403 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1404 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1405
1406 callout_init(&sc->vr_tick_ch);
1407
1408 vrt = vr_lookup(pa);
1409 if (vrt == NULL) {
1410 printf("\n");
1411 panic("vr_attach: impossible");
1412 }
1413
1414 printf(": %s Ethernet\n", vrt->vr_name);
1415
1416 /*
1417 * Handle power management nonsense.
1418 */
1419
1420 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1421 if (command == 0x01) {
1422 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1423 if (command & VR_PSTATE_MASK) {
1424 u_int32_t iobase, membase, irq;
1425
1426 /* Save important PCI config data. */
1427 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1428 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1429 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1430
1431 /* Reset the power state. */
1432 printf("%s: chip is in D%d power mode "
1433 "-- setting to D0\n",
1434 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1435 command &= 0xFFFFFFFC;
1436 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1437
1438 /* Restore PCI config data. */
1439 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1440 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1441 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1442 }
1443 }
1444
1445 /* Make sure bus mastering is enabled. */
1446 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1447 command |= PCI_COMMAND_MASTER_ENABLE;
1448 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1449
1450 /*
1451 * Map control/status registers.
1452 */
1453 {
1454 bus_space_tag_t iot, memt;
1455 bus_space_handle_t ioh, memh;
1456 int ioh_valid, memh_valid;
1457 pci_intr_handle_t intrhandle;
1458 const char *intrstr;
1459
1460 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1461 PCI_MAPREG_TYPE_IO, 0,
1462 &iot, &ioh, NULL, NULL) == 0);
1463 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1464 PCI_MAPREG_TYPE_MEM |
1465 PCI_MAPREG_MEM_TYPE_32BIT,
1466 0, &memt, &memh, NULL, NULL) == 0);
1467 #if defined(VR_USEIOSPACE)
1468 if (ioh_valid) {
1469 sc->vr_bst = iot;
1470 sc->vr_bsh = ioh;
1471 } else if (memh_valid) {
1472 sc->vr_bst = memt;
1473 sc->vr_bsh = memh;
1474 }
1475 #else
1476 if (memh_valid) {
1477 sc->vr_bst = memt;
1478 sc->vr_bsh = memh;
1479 } else if (ioh_valid) {
1480 sc->vr_bst = iot;
1481 sc->vr_bsh = ioh;
1482 }
1483 #endif
1484 else {
1485 printf(": unable to map device registers\n");
1486 return;
1487 }
1488
1489 /* Allocate interrupt */
1490 if (pci_intr_map(pa, &intrhandle)) {
1491 printf("%s: couldn't map interrupt\n",
1492 sc->vr_dev.dv_xname);
1493 return;
1494 }
1495 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1496 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1497 vr_intr, sc);
1498 if (sc->vr_ih == NULL) {
1499 printf("%s: couldn't establish interrupt",
1500 sc->vr_dev.dv_xname);
1501 if (intrstr != NULL)
1502 printf(" at %s", intrstr);
1503 printf("\n");
1504 }
1505 printf("%s: interrupting at %s\n",
1506 sc->vr_dev.dv_xname, intrstr);
1507 }
1508
1509 /* Reset the adapter. */
1510 vr_reset(sc);
1511
1512 /*
1513 * Get station address. The way the Rhine chips work,
1514 * you're not allowed to directly access the EEPROM once
1515 * they've been programmed a special way. Consequently,
1516 * we need to read the node address from the PAR0 and PAR1
1517 * registers.
1518 */
1519 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1520 DELAY(200);
1521 for (i = 0; i < ETHER_ADDR_LEN; i++)
1522 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1523
1524 /*
1525 * A Rhine chip was detected. Inform the world.
1526 */
1527 printf("%s: Ethernet address: %s\n",
1528 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1529
1530 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1531
1532 sc->vr_dmat = pa->pa_dmat;
1533
1534 /*
1535 * Allocate the control data structures, and create and load
1536 * the DMA map for it.
1537 */
1538 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1539 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1540 0)) != 0) {
1541 printf("%s: unable to allocate control data, error = %d\n",
1542 sc->vr_dev.dv_xname, error);
1543 goto fail_0;
1544 }
1545
1546 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1547 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1548 BUS_DMA_COHERENT)) != 0) {
1549 printf("%s: unable to map control data, error = %d\n",
1550 sc->vr_dev.dv_xname, error);
1551 goto fail_1;
1552 }
1553
1554 if ((error = bus_dmamap_create(sc->vr_dmat,
1555 sizeof(struct vr_control_data), 1,
1556 sizeof(struct vr_control_data), 0, 0,
1557 &sc->vr_cddmamap)) != 0) {
1558 printf("%s: unable to create control data DMA map, "
1559 "error = %d\n", sc->vr_dev.dv_xname, error);
1560 goto fail_2;
1561 }
1562
1563 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1564 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1565 0)) != 0) {
1566 printf("%s: unable to load control data DMA map, error = %d\n",
1567 sc->vr_dev.dv_xname, error);
1568 goto fail_3;
1569 }
1570
1571 /*
1572 * Create the transmit buffer DMA maps.
1573 */
1574 for (i = 0; i < VR_NTXDESC; i++) {
1575 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1576 1, MCLBYTES, 0, 0,
1577 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1578 printf("%s: unable to create tx DMA map %d, "
1579 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1580 goto fail_4;
1581 }
1582 }
1583
1584 /*
1585 * Create the receive buffer DMA maps.
1586 */
1587 for (i = 0; i < VR_NRXDESC; i++) {
1588 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1589 MCLBYTES, 0, 0,
1590 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1591 printf("%s: unable to create rx DMA map %d, "
1592 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1593 goto fail_5;
1594 }
1595 VR_DSRX(sc, i)->ds_mbuf = NULL;
1596 }
1597
1598 ifp = &sc->vr_ec.ec_if;
1599 ifp->if_softc = sc;
1600 ifp->if_mtu = ETHERMTU;
1601 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1602 ifp->if_ioctl = vr_ioctl;
1603 ifp->if_start = vr_start;
1604 ifp->if_watchdog = vr_watchdog;
1605 ifp->if_init = vr_init;
1606 ifp->if_stop = vr_stop;
1607 IFQ_SET_READY(&ifp->if_snd);
1608
1609 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1610
1611 /*
1612 * Initialize MII/media info.
1613 */
1614 sc->vr_mii.mii_ifp = ifp;
1615 sc->vr_mii.mii_readreg = vr_mii_readreg;
1616 sc->vr_mii.mii_writereg = vr_mii_writereg;
1617 sc->vr_mii.mii_statchg = vr_mii_statchg;
1618 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1619 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1620 MII_OFFSET_ANY, 0);
1621 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1622 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1623 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1624 } else
1625 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1626
1627 /*
1628 * Call MI attach routines.
1629 */
1630 if_attach(ifp);
1631 ether_ifattach(ifp, sc->vr_enaddr);
1632
1633 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1634 if (sc->vr_ats == NULL)
1635 printf("%s: warning: couldn't establish shutdown hook\n",
1636 sc->vr_dev.dv_xname);
1637 return;
1638
1639 fail_5:
1640 for (i = 0; i < VR_NRXDESC; i++) {
1641 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1642 bus_dmamap_destroy(sc->vr_dmat,
1643 sc->vr_rxsoft[i].ds_dmamap);
1644 }
1645 fail_4:
1646 for (i = 0; i < VR_NTXDESC; i++) {
1647 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1648 bus_dmamap_destroy(sc->vr_dmat,
1649 sc->vr_txsoft[i].ds_dmamap);
1650 }
1651 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1652 fail_3:
1653 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1654 fail_2:
1655 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1656 sizeof(struct vr_control_data));
1657 fail_1:
1658 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1659 fail_0:
1660 return;
1661 }
1662