Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.26.2.4
      1 /*	$NetBSD: if_vr.c,v 1.26.2.4 2001/02/11 19:15:57 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/sockio.h>
    112 #include <sys/mbuf.h>
    113 #include <sys/malloc.h>
    114 #include <sys/kernel.h>
    115 #include <sys/socket.h>
    116 #include <sys/device.h>
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #if defined(INET)
    127 #include <netinet/in.h>
    128 #include <netinet/if_inarp.h>
    129 #endif
    130 
    131 #include "bpfilter.h"
    132 #if NBPFILTER > 0
    133 #include <net/bpf.h>
    134 #endif
    135 
    136 #include <machine/bus.h>
    137 #include <machine/intr.h>
    138 #include <machine/endian.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 #include <dev/mii/mii_bitbang.h>
    143 
    144 #include <dev/pci/pcireg.h>
    145 #include <dev/pci/pcivar.h>
    146 #include <dev/pci/pcidevs.h>
    147 
    148 #include <dev/pci/if_vrreg.h>
    149 
    150 #define	VR_USEIOSPACE
    151 
    152 /*
    153  * Various supported device vendors/types and their names.
    154  */
    155 static struct vr_type {
    156 	pci_vendor_id_t		vr_vid;
    157 	pci_product_id_t	vr_did;
    158 	const char		*vr_name;
    159 } vr_devs[] = {
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    161 		"VIA VT3043 (Rhine) 10/100" },
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    163 		"VIA VT6102 (Rhine II) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    165 		"VIA VT86C100A (Rhine-II) 10/100" },
    166 	{ 0, 0, NULL }
    167 };
    168 
    169 /*
    170  * Transmit descriptor list size.
    171  */
    172 #define	VR_NTXDESC		64
    173 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    174 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    175 
    176 /*
    177  * Receive descriptor list size.
    178  */
    179 #define	VR_NRXDESC		64
    180 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    181 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    182 
    183 /*
    184  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    185  * them in a single clump that maps to a single DMA segment to make several
    186  * things easier.
    187  *
    188  * Note that since we always copy outgoing packets to aligned transmit
    189  * buffers, we can reduce the transmit descriptors to one per packet.
    190  */
    191 struct vr_control_data {
    192 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    193 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    194 };
    195 
    196 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    197 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    198 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    199 
    200 /*
    201  * Software state of transmit and receive descriptors.
    202  */
    203 struct vr_descsoft {
    204 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    205 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    206 };
    207 
    208 struct vr_softc {
    209 	struct device		vr_dev;		/* generic device glue */
    210 	void			*vr_ih;		/* interrupt cookie */
    211 	void			*vr_ats;	/* shutdown hook */
    212 	bus_space_tag_t		vr_bst;		/* bus space tag */
    213 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    214 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    215 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    216 	struct ethercom		vr_ec;		/* Ethernet common info */
    217 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    218 	struct mii_data		vr_mii;		/* MII/media info */
    219 
    220 	struct callout		vr_tick_ch;	/* tick callout */
    221 
    222 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    223 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    224 
    225 	/*
    226 	 * Software state for transmit and receive descriptors.
    227 	 */
    228 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    229 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    230 
    231 	/*
    232 	 * Control data structures.
    233 	 */
    234 	struct vr_control_data	*vr_control_data;
    235 
    236 	int	vr_txpending;		/* number of TX requests pending */
    237 	int	vr_txdirty;		/* first dirty TX descriptor */
    238 	int	vr_txlast;		/* last used TX descriptor */
    239 
    240 	int	vr_rxptr;		/* next ready RX descriptor */
    241 };
    242 
    243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    245 
    246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    248 
    249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    251 
    252 #define	VR_CDTXSYNC(sc, x, ops)						\
    253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    255 
    256 #define	VR_CDRXSYNC(sc, x, ops)						\
    257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    259 
    260 /*
    261  * Note we rely on MCLBYTES being a power of two below.
    262  */
    263 #define	VR_INIT_RXDESC(sc, i)						\
    264 do {									\
    265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    267 									\
    268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    269 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    270 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    271 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    272 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    273 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    275 } while (0)
    276 
    277 /*
    278  * register space access macros
    279  */
    280 #define	CSR_WRITE_4(sc, reg, val)					\
    281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_2(sc, reg, val)					\
    283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    284 #define	CSR_WRITE_1(sc, reg, val)					\
    285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    286 
    287 #define	CSR_READ_4(sc, reg)						\
    288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_2(sc, reg)						\
    290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    291 #define	CSR_READ_1(sc, reg)						\
    292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    293 
    294 #define	VR_TIMEOUT		1000
    295 
    296 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    297 
    298 static void vr_rxeof		__P((struct vr_softc *));
    299 static void vr_rxeoc		__P((struct vr_softc *));
    300 static void vr_txeof		__P((struct vr_softc *));
    301 static int vr_intr		__P((void *));
    302 static void vr_start		__P((struct ifnet *));
    303 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    304 static int vr_init		__P((struct ifnet *));
    305 static void vr_stop		__P((struct ifnet *, int));
    306 static void vr_rxdrain		__P((struct vr_softc *));
    307 static void vr_watchdog		__P((struct ifnet *));
    308 static void vr_tick		__P((void *));
    309 
    310 static int vr_ifmedia_upd	__P((struct ifnet *));
    311 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    312 
    313 static int vr_mii_readreg	__P((struct device *, int, int));
    314 static void vr_mii_writereg	__P((struct device *, int, int, int));
    315 static void vr_mii_statchg	__P((struct device *));
    316 
    317 static void vr_setmulti		__P((struct vr_softc *));
    318 static void vr_reset		__P((struct vr_softc *));
    319 
    320 int	vr_copy_small = 0;
    321 
    322 #define	VR_SETBIT(sc, reg, x)				\
    323 	CSR_WRITE_1(sc, reg,				\
    324 		CSR_READ_1(sc, reg) | x)
    325 
    326 #define	VR_CLRBIT(sc, reg, x)				\
    327 	CSR_WRITE_1(sc, reg,				\
    328 		CSR_READ_1(sc, reg) & ~x)
    329 
    330 #define	VR_SETBIT16(sc, reg, x)				\
    331 	CSR_WRITE_2(sc, reg,				\
    332 		CSR_READ_2(sc, reg) | x)
    333 
    334 #define	VR_CLRBIT16(sc, reg, x)				\
    335 	CSR_WRITE_2(sc, reg,				\
    336 		CSR_READ_2(sc, reg) & ~x)
    337 
    338 #define	VR_SETBIT32(sc, reg, x)				\
    339 	CSR_WRITE_4(sc, reg,				\
    340 		CSR_READ_4(sc, reg) | x)
    341 
    342 #define	VR_CLRBIT32(sc, reg, x)				\
    343 	CSR_WRITE_4(sc, reg,				\
    344 		CSR_READ_4(sc, reg) & ~x)
    345 
    346 /*
    347  * MII bit-bang glue.
    348  */
    349 u_int32_t vr_mii_bitbang_read __P((struct device *));
    350 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    351 
    352 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    353 	vr_mii_bitbang_read,
    354 	vr_mii_bitbang_write,
    355 	{
    356 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    357 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    358 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    359 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    360 		0,			/* MII_BIT_DIR_PHY_HOST */
    361 	}
    362 };
    363 
    364 u_int32_t
    365 vr_mii_bitbang_read(self)
    366 	struct device *self;
    367 {
    368 	struct vr_softc *sc = (void *) self;
    369 
    370 	return (CSR_READ_1(sc, VR_MIICMD));
    371 }
    372 
    373 void
    374 vr_mii_bitbang_write(self, val)
    375 	struct device *self;
    376 	u_int32_t val;
    377 {
    378 	struct vr_softc *sc = (void *) self;
    379 
    380 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    381 }
    382 
    383 /*
    384  * Read an PHY register through the MII.
    385  */
    386 static int
    387 vr_mii_readreg(self, phy, reg)
    388 	struct device *self;
    389 	int phy, reg;
    390 {
    391 	struct vr_softc *sc = (void *) self;
    392 
    393 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    394 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    395 }
    396 
    397 /*
    398  * Write to a PHY register through the MII.
    399  */
    400 static void
    401 vr_mii_writereg(self, phy, reg, val)
    402 	struct device *self;
    403 	int phy, reg, val;
    404 {
    405 	struct vr_softc *sc = (void *) self;
    406 
    407 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    408 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    409 }
    410 
    411 static void
    412 vr_mii_statchg(self)
    413 	struct device *self;
    414 {
    415 	struct vr_softc *sc = (struct vr_softc *)self;
    416 
    417 	/*
    418 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    419 	 * register, we first have to put the transmit and/or receive logic
    420 	 * in the idle state.
    421 	 */
    422 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    423 
    424 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    425 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    426 	else
    427 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    428 
    429 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    430 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    431 }
    432 
    433 #define	vr_calchash(addr) \
    434 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    435 
    436 /*
    437  * Program the 64-bit multicast hash filter.
    438  */
    439 static void
    440 vr_setmulti(sc)
    441 	struct vr_softc *sc;
    442 {
    443 	struct ifnet *ifp;
    444 	int h = 0;
    445 	u_int32_t hashes[2] = { 0, 0 };
    446 	struct ether_multistep step;
    447 	struct ether_multi *enm;
    448 	int mcnt = 0;
    449 	u_int8_t rxfilt;
    450 
    451 	ifp = &sc->vr_ec.ec_if;
    452 
    453 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    454 
    455 	if (ifp->if_flags & IFF_PROMISC) {
    456 allmulti:
    457 		ifp->if_flags |= IFF_ALLMULTI;
    458 		rxfilt |= VR_RXCFG_RX_MULTI;
    459 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    460 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    461 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    462 		return;
    463 	}
    464 
    465 	/* first, zot all the existing hash bits */
    466 	CSR_WRITE_4(sc, VR_MAR0, 0);
    467 	CSR_WRITE_4(sc, VR_MAR1, 0);
    468 
    469 	/* now program new ones */
    470 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    471 	while (enm != NULL) {
    472 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    473 		    ETHER_ADDR_LEN) != 0)
    474 			goto allmulti;
    475 
    476 		h = vr_calchash(enm->enm_addrlo);
    477 
    478 		if (h < 32)
    479 			hashes[0] |= (1 << h);
    480 		else
    481 			hashes[1] |= (1 << (h - 32));
    482 		ETHER_NEXT_MULTI(step, enm);
    483 		mcnt++;
    484 	}
    485 
    486 	ifp->if_flags &= ~IFF_ALLMULTI;
    487 
    488 	if (mcnt)
    489 		rxfilt |= VR_RXCFG_RX_MULTI;
    490 	else
    491 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    492 
    493 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    494 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    495 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    496 }
    497 
    498 static void
    499 vr_reset(sc)
    500 	struct vr_softc *sc;
    501 {
    502 	int i;
    503 
    504 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    505 
    506 	for (i = 0; i < VR_TIMEOUT; i++) {
    507 		DELAY(10);
    508 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    509 			break;
    510 	}
    511 	if (i == VR_TIMEOUT)
    512 		printf("%s: reset never completed!\n",
    513 			sc->vr_dev.dv_xname);
    514 
    515 	/* Wait a little while for the chip to get its brains in order. */
    516 	DELAY(1000);
    517 }
    518 
    519 /*
    520  * Initialize an RX descriptor and attach an MBUF cluster.
    521  * Note: the length fields are only 11 bits wide, which means the
    522  * largest size we can specify is 2047. This is important because
    523  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    524  * overflow the field and make a mess.
    525  */
    526 static int
    527 vr_add_rxbuf(sc, i)
    528 	struct vr_softc *sc;
    529 	int i;
    530 {
    531 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    532 	struct mbuf *m_new;
    533 	int error;
    534 
    535 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    536 	if (m_new == NULL)
    537 		return (ENOBUFS);
    538 
    539 	MCLGET(m_new, M_DONTWAIT);
    540 	if ((m_new->m_flags & M_EXT) == 0) {
    541 		m_freem(m_new);
    542 		return (ENOBUFS);
    543 	}
    544 
    545 	if (ds->ds_mbuf != NULL)
    546 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    547 
    548 	ds->ds_mbuf = m_new;
    549 
    550 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    551 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    552 	if (error) {
    553 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    554 		    sc->vr_dev.dv_xname, i, error);
    555 		panic("vr_add_rxbuf");		/* XXX */
    556 	}
    557 
    558 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    559 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    560 
    561 	VR_INIT_RXDESC(sc, i);
    562 
    563 	return (0);
    564 }
    565 
    566 /*
    567  * A frame has been uploaded: pass the resulting mbuf chain up to
    568  * the higher level protocols.
    569  */
    570 static void
    571 vr_rxeof(sc)
    572 	struct vr_softc *sc;
    573 {
    574 	struct mbuf *m;
    575 	struct ifnet *ifp;
    576 	struct vr_desc *d;
    577 	struct vr_descsoft *ds;
    578 	int i, total_len;
    579 	u_int32_t rxstat;
    580 
    581 	ifp = &sc->vr_ec.ec_if;
    582 
    583 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    584 		d = VR_CDRX(sc, i);
    585 		ds = VR_DSRX(sc, i);
    586 
    587 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    588 
    589 		rxstat = le32toh(d->vr_status);
    590 
    591 		if (rxstat & VR_RXSTAT_OWN) {
    592 			/*
    593 			 * We have processed all of the receive buffers.
    594 			 */
    595 			break;
    596 		}
    597 
    598 		/*
    599 		 * If an error occurs, update stats, clear the
    600 		 * status word and leave the mbuf cluster in place:
    601 		 * it should simply get re-used next time this descriptor
    602 		 * comes up in the ring.
    603 		 */
    604 		if (rxstat & VR_RXSTAT_RXERR) {
    605 			const char *errstr;
    606 
    607 			ifp->if_ierrors++;
    608 			switch (rxstat & 0x000000FF) {
    609 			case VR_RXSTAT_CRCERR:
    610 				errstr = "crc error";
    611 				break;
    612 			case VR_RXSTAT_FRAMEALIGNERR:
    613 				errstr = "frame alignment error";
    614 				break;
    615 			case VR_RXSTAT_FIFOOFLOW:
    616 				errstr = "FIFO overflow";
    617 				break;
    618 			case VR_RXSTAT_GIANT:
    619 				errstr = "received giant packet";
    620 				break;
    621 			case VR_RXSTAT_RUNT:
    622 				errstr = "received runt packet";
    623 				break;
    624 			case VR_RXSTAT_BUSERR:
    625 				errstr = "system bus error";
    626 				break;
    627 			case VR_RXSTAT_BUFFERR:
    628 				errstr = "rx buffer error";
    629 				break;
    630 			default:
    631 				errstr = "unknown rx error";
    632 				break;
    633 			}
    634 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    635 			    errstr);
    636 
    637 			VR_INIT_RXDESC(sc, i);
    638 
    639 			continue;
    640 		}
    641 
    642 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    643 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    644 
    645 		/* No errors; receive the packet. */
    646 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    647 
    648 #ifdef __NO_STRICT_ALIGNMENT
    649 		/*
    650 		 * If the packet is small enough to fit in a
    651 		 * single header mbuf, allocate one and copy
    652 		 * the data into it.  This greatly reduces
    653 		 * memory consumption when we receive lots
    654 		 * of small packets.
    655 		 *
    656 		 * Otherwise, we add a new buffer to the receive
    657 		 * chain.  If this fails, we drop the packet and
    658 		 * recycle the old buffer.
    659 		 */
    660 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    661 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    662 			if (m == NULL)
    663 				goto dropit;
    664 			memcpy(mtod(m, caddr_t),
    665 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    666 			VR_INIT_RXDESC(sc, i);
    667 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    668 			    ds->ds_dmamap->dm_mapsize,
    669 			    BUS_DMASYNC_PREREAD);
    670 		} else {
    671 			m = ds->ds_mbuf;
    672 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    673  dropit:
    674 				ifp->if_ierrors++;
    675 				VR_INIT_RXDESC(sc, i);
    676 				bus_dmamap_sync(sc->vr_dmat,
    677 				    ds->ds_dmamap, 0,
    678 				    ds->ds_dmamap->dm_mapsize,
    679 				    BUS_DMASYNC_PREREAD);
    680 				continue;
    681 			}
    682 		}
    683 #else
    684 		/*
    685 		 * The Rhine's packet buffers must be 4-byte aligned.
    686 		 * But this means that the data after the Ethernet header
    687 		 * is misaligned.  We must allocate a new buffer and
    688 		 * copy the data, shifted forward 2 bytes.
    689 		 */
    690 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    691 		if (m == NULL) {
    692  dropit:
    693 			ifp->if_ierrors++;
    694 			VR_INIT_RXDESC(sc, i);
    695 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    696 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    697 			continue;
    698 		}
    699 		if (total_len > (MHLEN - 2)) {
    700 			MCLGET(m, M_DONTWAIT);
    701 			if ((m->m_flags & M_EXT) == 0) {
    702 				m_freem(m);
    703 				goto dropit;
    704 			}
    705 		}
    706 		m->m_data += 2;
    707 
    708 		/*
    709 		 * Note that we use clusters for incoming frames, so the
    710 		 * buffer is virtually contiguous.
    711 		 */
    712 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    713 		    total_len);
    714 
    715 		/* Allow the recieve descriptor to continue using its mbuf. */
    716 		VR_INIT_RXDESC(sc, i);
    717 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    718 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    719 #endif /* __NO_STRICT_ALIGNMENT */
    720 
    721 		/*
    722 		 * The Rhine chip includes the FCS with every
    723 		 * received packet.
    724 		 */
    725 		m->m_flags |= M_HASFCS;
    726 
    727 		ifp->if_ipackets++;
    728 		m->m_pkthdr.rcvif = ifp;
    729 		m->m_pkthdr.len = m->m_len = total_len;
    730 #if NBPFILTER > 0
    731 		/*
    732 		 * Handle BPF listeners. Let the BPF user see the packet, but
    733 		 * don't pass it up to the ether_input() layer unless it's
    734 		 * a broadcast packet, multicast packet, matches our ethernet
    735 		 * address or the interface is in promiscuous mode.
    736 		 */
    737 		if (ifp->if_bpf)
    738 			bpf_mtap(ifp->if_bpf, m);
    739 #endif
    740 		/* Pass it on. */
    741 		(*ifp->if_input)(ifp, m);
    742 	}
    743 
    744 	/* Update the receive pointer. */
    745 	sc->vr_rxptr = i;
    746 }
    747 
    748 void
    749 vr_rxeoc(sc)
    750 	struct vr_softc *sc;
    751 {
    752 
    753 	vr_rxeof(sc);
    754 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    755 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    756 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    757 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    758 }
    759 
    760 /*
    761  * A frame was downloaded to the chip. It's safe for us to clean up
    762  * the list buffers.
    763  */
    764 static void
    765 vr_txeof(sc)
    766 	struct vr_softc *sc;
    767 {
    768 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    769 	struct vr_desc *d;
    770 	struct vr_descsoft *ds;
    771 	u_int32_t txstat;
    772 	int i;
    773 
    774 	ifp->if_flags &= ~IFF_OACTIVE;
    775 
    776 	/*
    777 	 * Go through our tx list and free mbufs for those
    778 	 * frames that have been transmitted.
    779 	 */
    780 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    781 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    782 		d = VR_CDTX(sc, i);
    783 		ds = VR_DSTX(sc, i);
    784 
    785 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    786 
    787 		txstat = le32toh(d->vr_status);
    788 		if (txstat & VR_TXSTAT_OWN)
    789 			break;
    790 
    791 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    792 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    793 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    794 		m_freem(ds->ds_mbuf);
    795 		ds->ds_mbuf = NULL;
    796 
    797 		if (txstat & VR_TXSTAT_ERRSUM) {
    798 			ifp->if_oerrors++;
    799 			if (txstat & VR_TXSTAT_DEFER)
    800 				ifp->if_collisions++;
    801 			if (txstat & VR_TXSTAT_LATECOLL)
    802 				ifp->if_collisions++;
    803 		}
    804 
    805 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    806 		ifp->if_opackets++;
    807 	}
    808 
    809 	/* Update the dirty transmit buffer pointer. */
    810 	sc->vr_txdirty = i;
    811 
    812 	/*
    813 	 * Cancel the watchdog timer if there are no pending
    814 	 * transmissions.
    815 	 */
    816 	if (sc->vr_txpending == 0)
    817 		ifp->if_timer = 0;
    818 }
    819 
    820 static int
    821 vr_intr(arg)
    822 	void *arg;
    823 {
    824 	struct vr_softc *sc;
    825 	struct ifnet *ifp;
    826 	u_int16_t status;
    827 	int handled = 0, dotx = 0;
    828 
    829 	sc = arg;
    830 	ifp = &sc->vr_ec.ec_if;
    831 
    832 	/* Suppress unwanted interrupts. */
    833 	if ((ifp->if_flags & IFF_UP) == 0) {
    834 		vr_stop(ifp, 1);
    835 		return (0);
    836 	}
    837 
    838 	/* Disable interrupts. */
    839 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    840 
    841 	for (;;) {
    842 		status = CSR_READ_2(sc, VR_ISR);
    843 		if (status)
    844 			CSR_WRITE_2(sc, VR_ISR, status);
    845 
    846 		if ((status & VR_INTRS) == 0)
    847 			break;
    848 
    849 		handled = 1;
    850 
    851 		if (status & VR_ISR_RX_OK)
    852 			vr_rxeof(sc);
    853 
    854 		if (status &
    855 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    856 		     VR_ISR_RX_DROPPED))
    857 			vr_rxeoc(sc);
    858 
    859 		if (status & VR_ISR_TX_OK) {
    860 			dotx = 1;
    861 			vr_txeof(sc);
    862 		}
    863 
    864 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    865 			if (status & VR_ISR_TX_UNDERRUN)
    866 				printf("%s: transmit underrun\n",
    867 				    sc->vr_dev.dv_xname);
    868 			if (status & VR_ISR_TX_ABRT)
    869 				printf("%s: transmit aborted\n",
    870 				    sc->vr_dev.dv_xname);
    871 			ifp->if_oerrors++;
    872 			dotx = 1;
    873 			vr_txeof(sc);
    874 			if (sc->vr_txpending) {
    875 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    876 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    877 			}
    878 		}
    879 
    880 		if (status & VR_ISR_BUSERR) {
    881 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    882 			/* vr_init() calls vr_start() */
    883 			dotx = 0;
    884 			(void) vr_init(ifp);
    885 		}
    886 	}
    887 
    888 	/* Re-enable interrupts. */
    889 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    890 
    891 	if (dotx)
    892 		vr_start(ifp);
    893 
    894 	return (handled);
    895 }
    896 
    897 /*
    898  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    899  * to the mbuf data regions directly in the transmit lists. We also save a
    900  * copy of the pointers since the transmit list fragment pointers are
    901  * physical addresses.
    902  */
    903 static void
    904 vr_start(ifp)
    905 	struct ifnet *ifp;
    906 {
    907 	struct vr_softc *sc = ifp->if_softc;
    908 	struct mbuf *m0, *m;
    909 	struct vr_desc *d;
    910 	struct vr_descsoft *ds;
    911 	int error, firsttx, nexttx, opending;
    912 
    913 	/*
    914 	 * Remember the previous txpending and the first transmit
    915 	 * descriptor we use.
    916 	 */
    917 	opending = sc->vr_txpending;
    918 	firsttx = VR_NEXTTX(sc->vr_txlast);
    919 
    920 	/*
    921 	 * Loop through the send queue, setting up transmit descriptors
    922 	 * until we drain the queue, or use up all available transmit
    923 	 * descriptors.
    924 	 */
    925 	while (sc->vr_txpending < VR_NTXDESC) {
    926 		/*
    927 		 * Grab a packet off the queue.
    928 		 */
    929 		IFQ_POLL(&ifp->if_snd, m0);
    930 		if (m0 == NULL)
    931 			break;
    932 		m = NULL;
    933 
    934 		/*
    935 		 * Get the next available transmit descriptor.
    936 		 */
    937 		nexttx = VR_NEXTTX(sc->vr_txlast);
    938 		d = VR_CDTX(sc, nexttx);
    939 		ds = VR_DSTX(sc, nexttx);
    940 
    941 		/*
    942 		 * Load the DMA map.  If this fails, the packet didn't
    943 		 * fit in one DMA segment, and we need to copy.  Note,
    944 		 * the packet must also be aligned.
    945 		 */
    946 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    947 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    948 		     BUS_DMA_NOWAIT) != 0) {
    949 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    950 			if (m == NULL) {
    951 				printf("%s: unable to allocate Tx mbuf\n",
    952 				    sc->vr_dev.dv_xname);
    953 				break;
    954 			}
    955 			if (m0->m_pkthdr.len > MHLEN) {
    956 				MCLGET(m, M_DONTWAIT);
    957 				if ((m->m_flags & M_EXT) == 0) {
    958 					printf("%s: unable to allocate Tx "
    959 					    "cluster\n", sc->vr_dev.dv_xname);
    960 					m_freem(m);
    961 					break;
    962 				}
    963 			}
    964 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    965 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    966 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    967 			    ds->ds_dmamap, m, BUS_DMA_NOWAIT);
    968 			if (error) {
    969 				printf("%s: unable to load Tx buffer, "
    970 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    971 				break;
    972 			}
    973 		}
    974 
    975 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    976 		if (m != NULL) {
    977 			m_freem(m0);
    978 			m0 = m;
    979 		}
    980 
    981 		/* Sync the DMA map. */
    982 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    983 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    984 
    985 		/*
    986 		 * Store a pointer to the packet so we can free it later.
    987 		 */
    988 		ds->ds_mbuf = m0;
    989 
    990 #if NBPFILTER > 0
    991 		/*
    992 		 * If there's a BPF listener, bounce a copy of this frame
    993 		 * to him.
    994 		 */
    995 		if (ifp->if_bpf)
    996 			bpf_mtap(ifp->if_bpf, m0);
    997 #endif
    998 
    999 		/*
   1000 		 * Fill in the transmit descriptor.  The Rhine
   1001 		 * doesn't auto-pad, so we have to do this ourselves.
   1002 		 */
   1003 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1004 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1005 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1006 		d->vr_ctl |=
   1007 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1008 		    VR_TXCTL_LASTFRAG);
   1009 
   1010 		/*
   1011 		 * If this is the first descriptor we're enqueuing,
   1012 		 * don't give it to the Rhine yet.  That could cause
   1013 		 * a race condition.  We'll do it below.
   1014 		 */
   1015 		if (nexttx == firsttx)
   1016 			d->vr_status = 0;
   1017 		else
   1018 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1019 
   1020 		VR_CDTXSYNC(sc, nexttx,
   1021 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1022 
   1023 		/* Advance the tx pointer. */
   1024 		sc->vr_txpending++;
   1025 		sc->vr_txlast = nexttx;
   1026 	}
   1027 
   1028 	if (sc->vr_txpending == VR_NTXDESC) {
   1029 		/* No more slots left; notify upper layer. */
   1030 		ifp->if_flags |= IFF_OACTIVE;
   1031 	}
   1032 
   1033 	if (sc->vr_txpending != opending) {
   1034 		/*
   1035 		 * We enqueued packets.  If the transmitter was idle,
   1036 		 * reset the txdirty pointer.
   1037 		 */
   1038 		if (opending == 0)
   1039 			sc->vr_txdirty = firsttx;
   1040 
   1041 		/*
   1042 		 * Cause a transmit interrupt to happen on the
   1043 		 * last packet we enqueued.
   1044 		 */
   1045 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1046 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1047 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1048 
   1049 		/*
   1050 		 * The entire packet chain is set up.  Give the
   1051 		 * first descriptor to the Rhine now.
   1052 		 */
   1053 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1054 		VR_CDTXSYNC(sc, firsttx,
   1055 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1056 
   1057 		/* Start the transmitter. */
   1058 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1059 
   1060 		/* Set the watchdog timer in case the chip flakes out. */
   1061 		ifp->if_timer = 5;
   1062 	}
   1063 }
   1064 
   1065 /*
   1066  * Initialize the interface.  Must be called at splnet.
   1067  */
   1068 static int
   1069 vr_init(ifp)
   1070 	struct ifnet *ifp;
   1071 {
   1072 	struct vr_softc *sc = ifp->if_softc;
   1073 	struct vr_desc *d;
   1074 	struct vr_descsoft *ds;
   1075 	int i, error = 0;
   1076 
   1077 	/* Cancel pending I/O. */
   1078 	vr_stop(ifp, 0);
   1079 
   1080 	/* Reset the Rhine to a known state. */
   1081 	vr_reset(sc);
   1082 
   1083 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1084 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1085 
   1086 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1087 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1088 
   1089 	/*
   1090 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1091 	 * to the end of the list so that it will wrap around to the first
   1092 	 * descriptor when the first packet is transmitted.
   1093 	 */
   1094 	for (i = 0; i < VR_NTXDESC; i++) {
   1095 		d = VR_CDTX(sc, i);
   1096 		memset(d, 0, sizeof(struct vr_desc));
   1097 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1098 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1099 	}
   1100 	sc->vr_txpending = 0;
   1101 	sc->vr_txdirty = 0;
   1102 	sc->vr_txlast = VR_NTXDESC - 1;
   1103 
   1104 	/*
   1105 	 * Initialize the receive descriptor ring.
   1106 	 */
   1107 	for (i = 0; i < VR_NRXDESC; i++) {
   1108 		ds = VR_DSRX(sc, i);
   1109 		if (ds->ds_mbuf == NULL) {
   1110 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1111 				printf("%s: unable to allocate or map rx "
   1112 				    "buffer %d, error = %d\n",
   1113 				    sc->vr_dev.dv_xname, i, error);
   1114 				/*
   1115 				 * XXX Should attempt to run with fewer receive
   1116 				 * XXX buffers instead of just failing.
   1117 				 */
   1118 				vr_rxdrain(sc);
   1119 				goto out;
   1120 			}
   1121 		}
   1122 	}
   1123 	sc->vr_rxptr = 0;
   1124 
   1125 	/* If we want promiscuous mode, set the allframes bit. */
   1126 	if (ifp->if_flags & IFF_PROMISC)
   1127 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1128 	else
   1129 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1130 
   1131 	/* Set capture broadcast bit to capture broadcast frames. */
   1132 	if (ifp->if_flags & IFF_BROADCAST)
   1133 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1134 	else
   1135 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1136 
   1137 	/* Program the multicast filter, if necessary. */
   1138 	vr_setmulti(sc);
   1139 
   1140 	/* Give the transmit and recieve rings to the Rhine. */
   1141 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1142 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1143 
   1144 	/* Set current media. */
   1145 	mii_mediachg(&sc->vr_mii);
   1146 
   1147 	/* Enable receiver and transmitter. */
   1148 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1149 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1150 				    VR_CMD_RX_GO);
   1151 
   1152 	/* Enable interrupts. */
   1153 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1154 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1155 
   1156 	ifp->if_flags |= IFF_RUNNING;
   1157 	ifp->if_flags &= ~IFF_OACTIVE;
   1158 
   1159 	/* Start one second timer. */
   1160 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1161 
   1162 	/* Attempt to start output on the interface. */
   1163 	vr_start(ifp);
   1164 
   1165  out:
   1166 	if (error)
   1167 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1168 	return (error);
   1169 }
   1170 
   1171 /*
   1172  * Set media options.
   1173  */
   1174 static int
   1175 vr_ifmedia_upd(ifp)
   1176 	struct ifnet *ifp;
   1177 {
   1178 	struct vr_softc *sc = ifp->if_softc;
   1179 
   1180 	if (ifp->if_flags & IFF_UP)
   1181 		mii_mediachg(&sc->vr_mii);
   1182 	return (0);
   1183 }
   1184 
   1185 /*
   1186  * Report current media status.
   1187  */
   1188 static void
   1189 vr_ifmedia_sts(ifp, ifmr)
   1190 	struct ifnet *ifp;
   1191 	struct ifmediareq *ifmr;
   1192 {
   1193 	struct vr_softc *sc = ifp->if_softc;
   1194 
   1195 	mii_pollstat(&sc->vr_mii);
   1196 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1197 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1198 }
   1199 
   1200 static int
   1201 vr_ioctl(ifp, command, data)
   1202 	struct ifnet *ifp;
   1203 	u_long command;
   1204 	caddr_t data;
   1205 {
   1206 	struct vr_softc *sc = ifp->if_softc;
   1207 	struct ifreq *ifr = (struct ifreq *)data;
   1208 	int s, error = 0;
   1209 
   1210 	s = splnet();
   1211 
   1212 	switch (command) {
   1213 	case SIOCGIFMEDIA:
   1214 	case SIOCSIFMEDIA:
   1215 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1216 		break;
   1217 
   1218 	default:
   1219 		error = ether_ioctl(ifp, command, data);
   1220 		if (error == ENETRESET) {
   1221 			/*
   1222 			 * Multicast list has changed; set the hardware filter
   1223 			 * accordingly.
   1224 			 */
   1225 			vr_setmulti(sc);
   1226 			error = 0;
   1227 		}
   1228 		break;
   1229 	}
   1230 
   1231 	splx(s);
   1232 	return (error);
   1233 }
   1234 
   1235 static void
   1236 vr_watchdog(ifp)
   1237 	struct ifnet *ifp;
   1238 {
   1239 	struct vr_softc *sc = ifp->if_softc;
   1240 
   1241 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1242 	ifp->if_oerrors++;
   1243 
   1244 	(void) vr_init(ifp);
   1245 }
   1246 
   1247 /*
   1248  * One second timer, used to tick MII.
   1249  */
   1250 static void
   1251 vr_tick(arg)
   1252 	void *arg;
   1253 {
   1254 	struct vr_softc *sc = arg;
   1255 	int s;
   1256 
   1257 	s = splnet();
   1258 	mii_tick(&sc->vr_mii);
   1259 	splx(s);
   1260 
   1261 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1262 }
   1263 
   1264 /*
   1265  * Drain the receive queue.
   1266  */
   1267 static void
   1268 vr_rxdrain(sc)
   1269 	struct vr_softc *sc;
   1270 {
   1271 	struct vr_descsoft *ds;
   1272 	int i;
   1273 
   1274 	for (i = 0; i < VR_NRXDESC; i++) {
   1275 		ds = VR_DSRX(sc, i);
   1276 		if (ds->ds_mbuf != NULL) {
   1277 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1278 			m_freem(ds->ds_mbuf);
   1279 			ds->ds_mbuf = NULL;
   1280 		}
   1281 	}
   1282 }
   1283 
   1284 /*
   1285  * Stop the adapter and free any mbufs allocated to the
   1286  * transmit lists.
   1287  */
   1288 static void
   1289 vr_stop(ifp, disable)
   1290 	struct ifnet *ifp;
   1291 	int disable;
   1292 {
   1293 	struct vr_softc *sc = ifp->if_softc;
   1294 	struct vr_descsoft *ds;
   1295 	int i;
   1296 
   1297 	/* Cancel one second timer. */
   1298 	callout_stop(&sc->vr_tick_ch);
   1299 
   1300 	/* Down the MII. */
   1301 	mii_down(&sc->vr_mii);
   1302 
   1303 	ifp = &sc->vr_ec.ec_if;
   1304 	ifp->if_timer = 0;
   1305 
   1306 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1307 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1308 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1309 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1310 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1311 
   1312 	/*
   1313 	 * Release any queued transmit buffers.
   1314 	 */
   1315 	for (i = 0; i < VR_NTXDESC; i++) {
   1316 		ds = VR_DSTX(sc, i);
   1317 		if (ds->ds_mbuf != NULL) {
   1318 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1319 			m_freem(ds->ds_mbuf);
   1320 			ds->ds_mbuf = NULL;
   1321 		}
   1322 	}
   1323 
   1324 	if (disable)
   1325 		vr_rxdrain(sc);
   1326 
   1327 	/*
   1328 	 * Mark the interface down and cancel the watchdog timer.
   1329 	 */
   1330 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1331 	ifp->if_timer = 0;
   1332 }
   1333 
   1334 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1335 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1336 static void vr_attach __P((struct device *, struct device *, void *));
   1337 static void vr_shutdown __P((void *));
   1338 
   1339 struct cfattach vr_ca = {
   1340 	sizeof (struct vr_softc), vr_probe, vr_attach
   1341 };
   1342 
   1343 static struct vr_type *
   1344 vr_lookup(pa)
   1345 	struct pci_attach_args *pa;
   1346 {
   1347 	struct vr_type *vrt;
   1348 
   1349 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1350 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1351 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1352 			return (vrt);
   1353 	}
   1354 	return (NULL);
   1355 }
   1356 
   1357 static int
   1358 vr_probe(parent, match, aux)
   1359 	struct device *parent;
   1360 	struct cfdata *match;
   1361 	void *aux;
   1362 {
   1363 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1364 
   1365 	if (vr_lookup(pa) != NULL)
   1366 		return (1);
   1367 
   1368 	return (0);
   1369 }
   1370 
   1371 /*
   1372  * Stop all chip I/O so that the kernel's probe routines don't
   1373  * get confused by errant DMAs when rebooting.
   1374  */
   1375 static void
   1376 vr_shutdown(arg)
   1377 	void *arg;
   1378 {
   1379 	struct vr_softc *sc = (struct vr_softc *)arg;
   1380 
   1381 	vr_stop(&sc->vr_ec.ec_if, 1);
   1382 }
   1383 
   1384 /*
   1385  * Attach the interface. Allocate softc structures, do ifmedia
   1386  * setup and ethernet/BPF attach.
   1387  */
   1388 static void
   1389 vr_attach(parent, self, aux)
   1390 	struct device *parent;
   1391 	struct device *self;
   1392 	void *aux;
   1393 {
   1394 	struct vr_softc *sc = (struct vr_softc *) self;
   1395 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1396 	bus_dma_segment_t seg;
   1397 	struct vr_type *vrt;
   1398 	u_int32_t command;
   1399 	struct ifnet *ifp;
   1400 	u_char eaddr[ETHER_ADDR_LEN];
   1401 	int i, rseg, error;
   1402 
   1403 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1404 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1405 
   1406 	callout_init(&sc->vr_tick_ch);
   1407 
   1408 	vrt = vr_lookup(pa);
   1409 	if (vrt == NULL) {
   1410 		printf("\n");
   1411 		panic("vr_attach: impossible");
   1412 	}
   1413 
   1414 	printf(": %s Ethernet\n", vrt->vr_name);
   1415 
   1416 	/*
   1417 	 * Handle power management nonsense.
   1418 	 */
   1419 
   1420 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1421 	if (command == 0x01) {
   1422 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1423 		if (command & VR_PSTATE_MASK) {
   1424 			u_int32_t iobase, membase, irq;
   1425 
   1426 			/* Save important PCI config data. */
   1427 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1428 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1429 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1430 
   1431 			/* Reset the power state. */
   1432 			printf("%s: chip is in D%d power mode "
   1433 				"-- setting to D0\n",
   1434 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1435 			command &= 0xFFFFFFFC;
   1436 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1437 
   1438 			/* Restore PCI config data. */
   1439 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1440 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1441 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1442 		}
   1443 	}
   1444 
   1445 	/* Make sure bus mastering is enabled. */
   1446 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1447 	command |= PCI_COMMAND_MASTER_ENABLE;
   1448 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1449 
   1450 	/*
   1451 	 * Map control/status registers.
   1452 	 */
   1453 	{
   1454 		bus_space_tag_t iot, memt;
   1455 		bus_space_handle_t ioh, memh;
   1456 		int ioh_valid, memh_valid;
   1457 		pci_intr_handle_t intrhandle;
   1458 		const char *intrstr;
   1459 
   1460 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1461 			PCI_MAPREG_TYPE_IO, 0,
   1462 			&iot, &ioh, NULL, NULL) == 0);
   1463 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1464 			PCI_MAPREG_TYPE_MEM |
   1465 			PCI_MAPREG_MEM_TYPE_32BIT,
   1466 			0, &memt, &memh, NULL, NULL) == 0);
   1467 #if defined(VR_USEIOSPACE)
   1468 		if (ioh_valid) {
   1469 			sc->vr_bst = iot;
   1470 			sc->vr_bsh = ioh;
   1471 		} else if (memh_valid) {
   1472 			sc->vr_bst = memt;
   1473 			sc->vr_bsh = memh;
   1474 		}
   1475 #else
   1476 		if (memh_valid) {
   1477 			sc->vr_bst = memt;
   1478 			sc->vr_bsh = memh;
   1479 		} else if (ioh_valid) {
   1480 			sc->vr_bst = iot;
   1481 			sc->vr_bsh = ioh;
   1482 		}
   1483 #endif
   1484 		else {
   1485 			printf(": unable to map device registers\n");
   1486 			return;
   1487 		}
   1488 
   1489 		/* Allocate interrupt */
   1490 		if (pci_intr_map(pa, &intrhandle)) {
   1491 			printf("%s: couldn't map interrupt\n",
   1492 				sc->vr_dev.dv_xname);
   1493 			return;
   1494 		}
   1495 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1496 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1497 						vr_intr, sc);
   1498 		if (sc->vr_ih == NULL) {
   1499 			printf("%s: couldn't establish interrupt",
   1500 				sc->vr_dev.dv_xname);
   1501 			if (intrstr != NULL)
   1502 				printf(" at %s", intrstr);
   1503 			printf("\n");
   1504 		}
   1505 		printf("%s: interrupting at %s\n",
   1506 			sc->vr_dev.dv_xname, intrstr);
   1507 	}
   1508 
   1509 	/* Reset the adapter. */
   1510 	vr_reset(sc);
   1511 
   1512 	/*
   1513 	 * Get station address. The way the Rhine chips work,
   1514 	 * you're not allowed to directly access the EEPROM once
   1515 	 * they've been programmed a special way. Consequently,
   1516 	 * we need to read the node address from the PAR0 and PAR1
   1517 	 * registers.
   1518 	 */
   1519 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1520 	DELAY(200);
   1521 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1522 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1523 
   1524 	/*
   1525 	 * A Rhine chip was detected. Inform the world.
   1526 	 */
   1527 	printf("%s: Ethernet address: %s\n",
   1528 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1529 
   1530 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1531 
   1532 	sc->vr_dmat = pa->pa_dmat;
   1533 
   1534 	/*
   1535 	 * Allocate the control data structures, and create and load
   1536 	 * the DMA map for it.
   1537 	 */
   1538 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1539 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1540 	    0)) != 0) {
   1541 		printf("%s: unable to allocate control data, error = %d\n",
   1542 		    sc->vr_dev.dv_xname, error);
   1543 		goto fail_0;
   1544 	}
   1545 
   1546 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1547 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1548 	    BUS_DMA_COHERENT)) != 0) {
   1549 		printf("%s: unable to map control data, error = %d\n",
   1550 		    sc->vr_dev.dv_xname, error);
   1551 		goto fail_1;
   1552 	}
   1553 
   1554 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1555 	    sizeof(struct vr_control_data), 1,
   1556 	    sizeof(struct vr_control_data), 0, 0,
   1557 	    &sc->vr_cddmamap)) != 0) {
   1558 		printf("%s: unable to create control data DMA map, "
   1559 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1560 		goto fail_2;
   1561 	}
   1562 
   1563 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1564 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1565 	    0)) != 0) {
   1566 		printf("%s: unable to load control data DMA map, error = %d\n",
   1567 		    sc->vr_dev.dv_xname, error);
   1568 		goto fail_3;
   1569 	}
   1570 
   1571 	/*
   1572 	 * Create the transmit buffer DMA maps.
   1573 	 */
   1574 	for (i = 0; i < VR_NTXDESC; i++) {
   1575 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1576 		    1, MCLBYTES, 0, 0,
   1577 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1578 			printf("%s: unable to create tx DMA map %d, "
   1579 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1580 			goto fail_4;
   1581 		}
   1582 	}
   1583 
   1584 	/*
   1585 	 * Create the receive buffer DMA maps.
   1586 	 */
   1587 	for (i = 0; i < VR_NRXDESC; i++) {
   1588 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1589 		    MCLBYTES, 0, 0,
   1590 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1591 			printf("%s: unable to create rx DMA map %d, "
   1592 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1593 			goto fail_5;
   1594 		}
   1595 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1596 	}
   1597 
   1598 	ifp = &sc->vr_ec.ec_if;
   1599 	ifp->if_softc = sc;
   1600 	ifp->if_mtu = ETHERMTU;
   1601 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1602 	ifp->if_ioctl = vr_ioctl;
   1603 	ifp->if_start = vr_start;
   1604 	ifp->if_watchdog = vr_watchdog;
   1605 	ifp->if_init = vr_init;
   1606 	ifp->if_stop = vr_stop;
   1607 	IFQ_SET_READY(&ifp->if_snd);
   1608 
   1609 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1610 
   1611 	/*
   1612 	 * Initialize MII/media info.
   1613 	 */
   1614 	sc->vr_mii.mii_ifp = ifp;
   1615 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1616 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1617 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1618 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1619 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1620 	    MII_OFFSET_ANY, 0);
   1621 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1622 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1623 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1624 	} else
   1625 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1626 
   1627 	/*
   1628 	 * Call MI attach routines.
   1629 	 */
   1630 	if_attach(ifp);
   1631 	ether_ifattach(ifp, sc->vr_enaddr);
   1632 
   1633 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1634 	if (sc->vr_ats == NULL)
   1635 		printf("%s: warning: couldn't establish shutdown hook\n",
   1636 			sc->vr_dev.dv_xname);
   1637 	return;
   1638 
   1639  fail_5:
   1640 	for (i = 0; i < VR_NRXDESC; i++) {
   1641 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1642 			bus_dmamap_destroy(sc->vr_dmat,
   1643 			    sc->vr_rxsoft[i].ds_dmamap);
   1644 	}
   1645  fail_4:
   1646 	for (i = 0; i < VR_NTXDESC; i++) {
   1647 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1648 			bus_dmamap_destroy(sc->vr_dmat,
   1649 			    sc->vr_txsoft[i].ds_dmamap);
   1650 	}
   1651 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1652  fail_3:
   1653 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1654  fail_2:
   1655 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1656 	    sizeof(struct vr_control_data));
   1657  fail_1:
   1658 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1659  fail_0:
   1660 	return;
   1661 }
   1662