Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.30
      1 /*	$NetBSD: if_vr.c,v 1.30 1999/12/12 02:56:49 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/sockio.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/malloc.h>
    113 #include <sys/kernel.h>
    114 #include <sys/socket.h>
    115 #include <sys/device.h>
    116 
    117 #include <vm/vm.h>		/* for PAGE_SIZE */
    118 
    119 #include <net/if.h>
    120 #include <net/if_arp.h>
    121 #include <net/if_dl.h>
    122 #include <net/if_media.h>
    123 #include <net/if_ether.h>
    124 
    125 #if defined(INET)
    126 #include <netinet/in.h>
    127 #include <netinet/if_inarp.h>
    128 #endif
    129 
    130 #include "bpfilter.h"
    131 #if NBPFILTER > 0
    132 #include <net/bpf.h>
    133 #endif
    134 
    135 #include <machine/bus.h>
    136 #include <machine/intr.h>
    137 #include <machine/endian.h>
    138 
    139 #include <dev/mii/mii.h>
    140 #include <dev/mii/miivar.h>
    141 #include <dev/mii/mii_bitbang.h>
    142 
    143 #include <dev/pci/pcireg.h>
    144 #include <dev/pci/pcivar.h>
    145 #include <dev/pci/pcidevs.h>
    146 
    147 #include <dev/pci/if_vrreg.h>
    148 
    149 #define	VR_USEIOSPACE
    150 
    151 /*
    152  * Various supported device vendors/types and their names.
    153  */
    154 static struct vr_type {
    155 	pci_vendor_id_t		vr_vid;
    156 	pci_product_id_t	vr_did;
    157 	const char		*vr_name;
    158 } vr_devs[] = {
    159 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    160 		"VIA VT3043 (Rhine) 10/100" },
    161 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    162 		"VIA VT86C100A (Rhine-II) 10/100" },
    163 	{ 0, 0, NULL }
    164 };
    165 
    166 /*
    167  * Transmit descriptor list size.
    168  */
    169 #define	VR_NTXDESC		64
    170 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    171 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    172 
    173 /*
    174  * Receive descriptor list size.
    175  */
    176 #define	VR_NRXDESC		64
    177 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    178 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    179 
    180 /*
    181  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    182  * them in a single clump that maps to a single DMA segment to make several
    183  * things easier.
    184  *
    185  * Note that since we always copy outgoing packets to aligned transmit
    186  * buffers, we can reduce the transmit descriptors to one per packet.
    187  */
    188 struct vr_control_data {
    189 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    190 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    191 };
    192 
    193 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    194 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    195 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    196 
    197 /*
    198  * Software state of transmit and receive descriptors.
    199  */
    200 struct vr_descsoft {
    201 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    202 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    203 };
    204 
    205 struct vr_softc {
    206 	struct device		vr_dev;		/* generic device glue */
    207 	void			*vr_ih;		/* interrupt cookie */
    208 	void			*vr_ats;	/* shutdown hook */
    209 	bus_space_tag_t		vr_bst;		/* bus space tag */
    210 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    211 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    212 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    213 	struct ethercom		vr_ec;		/* Ethernet common info */
    214 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    215 	struct mii_data		vr_mii;		/* MII/media info */
    216 
    217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    219 
    220 	/*
    221 	 * Software state for transmit and receive descriptors.
    222 	 */
    223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    225 
    226 	/*
    227 	 * Control data structures.
    228 	 */
    229 	struct vr_control_data	*vr_control_data;
    230 
    231 	int	vr_txpending;		/* number of TX requests pending */
    232 	int	vr_txdirty;		/* first dirty TX descriptor */
    233 	int	vr_txlast;		/* last used TX descriptor */
    234 
    235 	int	vr_rxptr;		/* next ready RX descriptor */
    236 };
    237 
    238 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    239 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    240 
    241 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    242 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    243 
    244 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    245 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    246 
    247 #define	VR_CDTXSYNC(sc, x, ops)						\
    248 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    249 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    250 
    251 #define	VR_CDRXSYNC(sc, x, ops)						\
    252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    253 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    254 
    255 /*
    256  * Note we rely on MCLBYTES being a power of two below.
    257  */
    258 #define	VR_INIT_RXDESC(sc, i)						\
    259 do {									\
    260 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    261 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    262 									\
    263 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    264 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    265 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    266 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    267 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    268 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    269 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    270 } while (0)
    271 
    272 /*
    273  * register space access macros
    274  */
    275 #define	CSR_WRITE_4(sc, reg, val)					\
    276 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    277 #define	CSR_WRITE_2(sc, reg, val)					\
    278 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    279 #define	CSR_WRITE_1(sc, reg, val)					\
    280 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    281 
    282 #define	CSR_READ_4(sc, reg)						\
    283 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    284 #define	CSR_READ_2(sc, reg)						\
    285 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    286 #define	CSR_READ_1(sc, reg)						\
    287 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    288 
    289 #define	VR_TIMEOUT		1000
    290 
    291 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    292 
    293 static void vr_rxeof		__P((struct vr_softc *));
    294 static void vr_rxeoc		__P((struct vr_softc *));
    295 static void vr_txeof		__P((struct vr_softc *));
    296 static int vr_intr		__P((void *));
    297 static void vr_start		__P((struct ifnet *));
    298 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    299 static int vr_init		__P((struct vr_softc *));
    300 static void vr_stop		__P((struct vr_softc *, int));
    301 static void vr_rxdrain		__P((struct vr_softc *));
    302 static void vr_watchdog		__P((struct ifnet *));
    303 static void vr_tick		__P((void *));
    304 
    305 static int vr_ifmedia_upd	__P((struct ifnet *));
    306 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    307 
    308 static int vr_mii_readreg	__P((struct device *, int, int));
    309 static void vr_mii_writereg	__P((struct device *, int, int, int));
    310 static void vr_mii_statchg	__P((struct device *));
    311 
    312 static u_int8_t vr_calchash	__P((u_int8_t *));
    313 static void vr_setmulti		__P((struct vr_softc *));
    314 static void vr_reset		__P((struct vr_softc *));
    315 
    316 int	vr_copy_small = 0;
    317 
    318 #define	VR_SETBIT(sc, reg, x)				\
    319 	CSR_WRITE_1(sc, reg,				\
    320 		CSR_READ_1(sc, reg) | x)
    321 
    322 #define	VR_CLRBIT(sc, reg, x)				\
    323 	CSR_WRITE_1(sc, reg,				\
    324 		CSR_READ_1(sc, reg) & ~x)
    325 
    326 #define	VR_SETBIT16(sc, reg, x)				\
    327 	CSR_WRITE_2(sc, reg,				\
    328 		CSR_READ_2(sc, reg) | x)
    329 
    330 #define	VR_CLRBIT16(sc, reg, x)				\
    331 	CSR_WRITE_2(sc, reg,				\
    332 		CSR_READ_2(sc, reg) & ~x)
    333 
    334 #define	VR_SETBIT32(sc, reg, x)				\
    335 	CSR_WRITE_4(sc, reg,				\
    336 		CSR_READ_4(sc, reg) | x)
    337 
    338 #define	VR_CLRBIT32(sc, reg, x)				\
    339 	CSR_WRITE_4(sc, reg,				\
    340 		CSR_READ_4(sc, reg) & ~x)
    341 
    342 /*
    343  * MII bit-bang glue.
    344  */
    345 u_int32_t vr_mii_bitbang_read __P((struct device *));
    346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    347 
    348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    349 	vr_mii_bitbang_read,
    350 	vr_mii_bitbang_write,
    351 	{
    352 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    353 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    354 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    355 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    356 		0,			/* MII_BIT_DIR_PHY_HOST */
    357 	}
    358 };
    359 
    360 u_int32_t
    361 vr_mii_bitbang_read(self)
    362 	struct device *self;
    363 {
    364 	struct vr_softc *sc = (void *) self;
    365 
    366 	return (CSR_READ_1(sc, VR_MIICMD));
    367 }
    368 
    369 void
    370 vr_mii_bitbang_write(self, val)
    371 	struct device *self;
    372 	u_int32_t val;
    373 {
    374 	struct vr_softc *sc = (void *) self;
    375 
    376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    377 }
    378 
    379 /*
    380  * Read an PHY register through the MII.
    381  */
    382 static int
    383 vr_mii_readreg(self, phy, reg)
    384 	struct device *self;
    385 	int phy, reg;
    386 {
    387 	struct vr_softc *sc = (void *) self;
    388 
    389 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    390 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    391 }
    392 
    393 /*
    394  * Write to a PHY register through the MII.
    395  */
    396 static void
    397 vr_mii_writereg(self, phy, reg, val)
    398 	struct device *self;
    399 	int phy, reg, val;
    400 {
    401 	struct vr_softc *sc = (void *) self;
    402 
    403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    405 }
    406 
    407 static void
    408 vr_mii_statchg(self)
    409 	struct device *self;
    410 {
    411 	struct vr_softc *sc = (struct vr_softc *)self;
    412 
    413 	/*
    414 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    415 	 * register, we first have to put the transmit and/or receive logic
    416 	 * in the idle state.
    417 	 */
    418 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    419 
    420 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    421 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    422 	else
    423 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    424 
    425 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    427 
    428 	/* XXX Update ifp->if_baudrate */
    429 }
    430 
    431 /*
    432  * Calculate CRC of a multicast group address, return the lower 6 bits.
    433  */
    434 static u_int8_t
    435 vr_calchash(addr)
    436 	u_int8_t *addr;
    437 {
    438 	u_int32_t crc, carry;
    439 	int i, j;
    440 	u_int8_t c;
    441 
    442 	/* Compute CRC for the address value. */
    443 	crc = 0xFFFFFFFF; /* initial value */
    444 
    445 	for (i = 0; i < 6; i++) {
    446 		c = *(addr + i);
    447 		for (j = 0; j < 8; j++) {
    448 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    449 			crc <<= 1;
    450 			c >>= 1;
    451 			if (carry)
    452 				crc = (crc ^ 0x04c11db6) | carry;
    453 		}
    454 	}
    455 
    456 	/* return the filter bit position */
    457 	return ((crc >> 26) & 0x0000003F);
    458 }
    459 
    460 /*
    461  * Program the 64-bit multicast hash filter.
    462  */
    463 static void
    464 vr_setmulti(sc)
    465 	struct vr_softc *sc;
    466 {
    467 	struct ifnet *ifp;
    468 	int h = 0;
    469 	u_int32_t hashes[2] = { 0, 0 };
    470 	struct ether_multistep step;
    471 	struct ether_multi *enm;
    472 	int mcnt = 0;
    473 	u_int8_t rxfilt;
    474 
    475 	ifp = &sc->vr_ec.ec_if;
    476 
    477 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    478 
    479 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    480 		rxfilt |= VR_RXCFG_RX_MULTI;
    481 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    482 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    483 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    484 		return;
    485 	}
    486 
    487 	/* first, zot all the existing hash bits */
    488 	CSR_WRITE_4(sc, VR_MAR0, 0);
    489 	CSR_WRITE_4(sc, VR_MAR1, 0);
    490 
    491 	/* now program new ones */
    492 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    493 	while (enm != NULL) {
    494 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    495 			continue;
    496 
    497 		h = vr_calchash(enm->enm_addrlo);
    498 
    499 		if (h < 32)
    500 			hashes[0] |= (1 << h);
    501 		else
    502 			hashes[1] |= (1 << (h - 32));
    503 		ETHER_NEXT_MULTI(step, enm);
    504 		mcnt++;
    505 	}
    506 
    507 	if (mcnt)
    508 		rxfilt |= VR_RXCFG_RX_MULTI;
    509 	else
    510 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    511 
    512 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    513 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    514 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    515 }
    516 
    517 static void
    518 vr_reset(sc)
    519 	struct vr_softc *sc;
    520 {
    521 	int i;
    522 
    523 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    524 
    525 	for (i = 0; i < VR_TIMEOUT; i++) {
    526 		DELAY(10);
    527 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    528 			break;
    529 	}
    530 	if (i == VR_TIMEOUT)
    531 		printf("%s: reset never completed!\n",
    532 			sc->vr_dev.dv_xname);
    533 
    534 	/* Wait a little while for the chip to get its brains in order. */
    535 	DELAY(1000);
    536 }
    537 
    538 /*
    539  * Initialize an RX descriptor and attach an MBUF cluster.
    540  * Note: the length fields are only 11 bits wide, which means the
    541  * largest size we can specify is 2047. This is important because
    542  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    543  * overflow the field and make a mess.
    544  */
    545 static int
    546 vr_add_rxbuf(sc, i)
    547 	struct vr_softc *sc;
    548 	int i;
    549 {
    550 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    551 	struct mbuf *m_new;
    552 	int error;
    553 
    554 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    555 	if (m_new == NULL)
    556 		return (ENOBUFS);
    557 
    558 	MCLGET(m_new, M_DONTWAIT);
    559 	if ((m_new->m_flags & M_EXT) == 0) {
    560 		m_freem(m_new);
    561 		return (ENOBUFS);
    562 	}
    563 
    564 	if (ds->ds_mbuf != NULL)
    565 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    566 
    567 	ds->ds_mbuf = m_new;
    568 
    569 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    570 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    571 	if (error) {
    572 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    573 		    sc->vr_dev.dv_xname, i, error);
    574 		panic("vr_add_rxbuf");		/* XXX */
    575 	}
    576 
    577 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    578 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    579 
    580 	VR_INIT_RXDESC(sc, i);
    581 
    582 	return (0);
    583 }
    584 
    585 /*
    586  * A frame has been uploaded: pass the resulting mbuf chain up to
    587  * the higher level protocols.
    588  */
    589 static void
    590 vr_rxeof(sc)
    591 	struct vr_softc *sc;
    592 {
    593 	struct ether_header *eh;
    594 	struct mbuf *m;
    595 	struct ifnet *ifp;
    596 	struct vr_desc *d;
    597 	struct vr_descsoft *ds;
    598 	int i, total_len;
    599 	u_int32_t rxstat;
    600 
    601 	ifp = &sc->vr_ec.ec_if;
    602 
    603 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    604 		d = VR_CDRX(sc, i);
    605 		ds = VR_DSRX(sc, i);
    606 
    607 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    608 
    609 		rxstat = le32toh(d->vr_status);
    610 
    611 		if (rxstat & VR_RXSTAT_OWN) {
    612 			/*
    613 			 * We have processed all of the receive buffers.
    614 			 */
    615 			break;
    616 		}
    617 
    618 		/*
    619 		 * If an error occurs, update stats, clear the
    620 		 * status word and leave the mbuf cluster in place:
    621 		 * it should simply get re-used next time this descriptor
    622 		 * comes up in the ring.
    623 		 */
    624 		if (rxstat & VR_RXSTAT_RXERR) {
    625 			const char *errstr;
    626 
    627 			ifp->if_ierrors++;
    628 			switch (rxstat & 0x000000FF) {
    629 			case VR_RXSTAT_CRCERR:
    630 				errstr = "crc error";
    631 				break;
    632 			case VR_RXSTAT_FRAMEALIGNERR:
    633 				errstr = "frame alignment error";
    634 				break;
    635 			case VR_RXSTAT_FIFOOFLOW:
    636 				errstr = "FIFO overflow";
    637 				break;
    638 			case VR_RXSTAT_GIANT:
    639 				errstr = "received giant packet";
    640 				break;
    641 			case VR_RXSTAT_RUNT:
    642 				errstr = "received runt packet";
    643 				break;
    644 			case VR_RXSTAT_BUSERR:
    645 				errstr = "system bus error";
    646 				break;
    647 			case VR_RXSTAT_BUFFERR:
    648 				errstr = "rx buffer error";
    649 				break;
    650 			default:
    651 				errstr = "unknown rx error";
    652 				break;
    653 			}
    654 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    655 			    errstr);
    656 
    657 			VR_INIT_RXDESC(sc, i);
    658 
    659 			continue;
    660 		}
    661 
    662 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    663 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    664 
    665 		/* No errors; receive the packet. */
    666 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    667 
    668 		/*
    669 		 * XXX The VIA Rhine chip includes the CRC with every
    670 		 * received frame, and there's no way to turn this
    671 		 * behavior off (at least, I can't find anything in
    672 		 * the manual that explains how to do it) so we have
    673 		 * to trim off the CRC manually.
    674 		 */
    675 		total_len -= ETHER_CRC_LEN;
    676 
    677 #ifdef __NO_STRICT_ALIGNMENT
    678 		/*
    679 		 * If the packet is small enough to fit in a
    680 		 * single header mbuf, allocate one and copy
    681 		 * the data into it.  This greatly reduces
    682 		 * memory consumption when we receive lots
    683 		 * of small packets.
    684 		 *
    685 		 * Otherwise, we add a new buffer to the receive
    686 		 * chain.  If this fails, we drop the packet and
    687 		 * recycle the old buffer.
    688 		 */
    689 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    690 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    691 			if (m == NULL)
    692 				goto dropit;
    693 			memcpy(mtod(m, caddr_t),
    694 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    695 			VR_INIT_RXDESC(sc, i);
    696 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    697 			    ds->ds_dmamap->dm_mapsize,
    698 			    BUS_DMASYNC_PREREAD);
    699 		} else {
    700 			m = ds->ds_mbuf;
    701 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    702  dropit:
    703 				ifp->if_ierrors++;
    704 				VR_INIT_RXDESC(sc, i);
    705 				bus_dmamap_sync(sc->vr_dmat,
    706 				    ds->ds_dmamap, 0,
    707 				    ds->ds_dmamap->dm_mapsize,
    708 				    BUS_DMASYNC_PREREAD);
    709 				continue;
    710 			}
    711 		}
    712 #else
    713 		/*
    714 		 * The Rhine's packet buffers must be 4-byte aligned.
    715 		 * But this means that the data after the Ethernet header
    716 		 * is misaligned.  We must allocate a new buffer and
    717 		 * copy the data, shifted forward 2 bytes.
    718 		 */
    719 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    720 		if (m == NULL) {
    721  dropit:
    722 			ifp->if_ierrors++;
    723 			VR_INIT_RXDESC(sc, i);
    724 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    725 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    726 			continue;
    727 		}
    728 		if (total_len > (MHLEN - 2)) {
    729 			MCLGET(m, M_DONTWAIT);
    730 			if ((m->m_flags & M_EXT) == 0) {
    731 				m_freem(m);
    732 				goto dropit;
    733 			}
    734 		}
    735 		m->m_data += 2;
    736 
    737 		/*
    738 		 * Note that we use clusters for incoming frames, so the
    739 		 * buffer is virtually contiguous.
    740 		 */
    741 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    742 		    total_len);
    743 
    744 		/* Allow the recieve descriptor to continue using its mbuf. */
    745 		VR_INIT_RXDESC(sc, i);
    746 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    747 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    748 #endif /* __NO_STRICT_ALIGNMENT */
    749 
    750 		ifp->if_ipackets++;
    751 		eh = mtod(m, struct ether_header *);
    752 		m->m_pkthdr.rcvif = ifp;
    753 		m->m_pkthdr.len = m->m_len = total_len;
    754 #if NBPFILTER > 0
    755 		/*
    756 		 * Handle BPF listeners. Let the BPF user see the packet, but
    757 		 * don't pass it up to the ether_input() layer unless it's
    758 		 * a broadcast packet, multicast packet, matches our ethernet
    759 		 * address or the interface is in promiscuous mode.
    760 		 */
    761 		if (ifp->if_bpf) {
    762 			bpf_mtap(ifp->if_bpf, m);
    763 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    764 			    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
    765 			    memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
    766 				   ETHER_ADDR_LEN) != 0) {
    767 				m_freem(m);
    768 				continue;
    769 			}
    770 		}
    771 #endif
    772 		/* Pass it on. */
    773 		(*ifp->if_input)(ifp, m);
    774 	}
    775 
    776 	/* Update the receive pointer. */
    777 	sc->vr_rxptr = i;
    778 }
    779 
    780 void
    781 vr_rxeoc(sc)
    782 	struct vr_softc *sc;
    783 {
    784 
    785 	vr_rxeof(sc);
    786 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    787 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    788 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    789 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    790 }
    791 
    792 /*
    793  * A frame was downloaded to the chip. It's safe for us to clean up
    794  * the list buffers.
    795  */
    796 static void
    797 vr_txeof(sc)
    798 	struct vr_softc *sc;
    799 {
    800 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    801 	struct vr_desc *d;
    802 	struct vr_descsoft *ds;
    803 	u_int32_t txstat;
    804 	int i;
    805 
    806 	ifp->if_flags &= ~IFF_OACTIVE;
    807 
    808 	/*
    809 	 * Go through our tx list and free mbufs for those
    810 	 * frames that have been transmitted.
    811 	 */
    812 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    813 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    814 		d = VR_CDTX(sc, i);
    815 		ds = VR_DSTX(sc, i);
    816 
    817 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    818 
    819 		txstat = le32toh(d->vr_status);
    820 		if (txstat & VR_TXSTAT_OWN)
    821 			break;
    822 
    823 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    824 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    825 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    826 		m_freem(ds->ds_mbuf);
    827 		ds->ds_mbuf = NULL;
    828 
    829 		if (txstat & VR_TXSTAT_ERRSUM) {
    830 			ifp->if_oerrors++;
    831 			if (txstat & VR_TXSTAT_DEFER)
    832 				ifp->if_collisions++;
    833 			if (txstat & VR_TXSTAT_LATECOLL)
    834 				ifp->if_collisions++;
    835 		}
    836 
    837 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    838 		ifp->if_opackets++;
    839 	}
    840 
    841 	/* Update the dirty transmit buffer pointer. */
    842 	sc->vr_txdirty = i;
    843 
    844 	/*
    845 	 * Cancel the watchdog timer if there are no pending
    846 	 * transmissions.
    847 	 */
    848 	if (sc->vr_txpending == 0)
    849 		ifp->if_timer = 0;
    850 }
    851 
    852 static int
    853 vr_intr(arg)
    854 	void *arg;
    855 {
    856 	struct vr_softc *sc;
    857 	struct ifnet *ifp;
    858 	u_int16_t status;
    859 	int handled = 0, dotx = 0;
    860 
    861 	sc = arg;
    862 	ifp = &sc->vr_ec.ec_if;
    863 
    864 	/* Suppress unwanted interrupts. */
    865 	if ((ifp->if_flags & IFF_UP) == 0) {
    866 		vr_stop(sc, 1);
    867 		return (0);
    868 	}
    869 
    870 	/* Disable interrupts. */
    871 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    872 
    873 	for (;;) {
    874 		status = CSR_READ_2(sc, VR_ISR);
    875 		if (status)
    876 			CSR_WRITE_2(sc, VR_ISR, status);
    877 
    878 		if ((status & VR_INTRS) == 0)
    879 			break;
    880 
    881 		handled = 1;
    882 
    883 		if (status & VR_ISR_RX_OK)
    884 			vr_rxeof(sc);
    885 
    886 		if (status &
    887 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    888 		     VR_ISR_RX_DROPPED))
    889 			vr_rxeoc(sc);
    890 
    891 		if (status & VR_ISR_TX_OK) {
    892 			dotx = 1;
    893 			vr_txeof(sc);
    894 		}
    895 
    896 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    897 			if (status & VR_ISR_TX_UNDERRUN)
    898 				printf("%s: transmit underrun\n",
    899 				    sc->vr_dev.dv_xname);
    900 			if (status & VR_ISR_TX_ABRT)
    901 				printf("%s: transmit aborted\n",
    902 				    sc->vr_dev.dv_xname);
    903 			ifp->if_oerrors++;
    904 			dotx = 1;
    905 			vr_txeof(sc);
    906 			if (sc->vr_txpending) {
    907 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    908 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    909 			}
    910 		}
    911 
    912 		if (status & VR_ISR_BUSERR) {
    913 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    914 			/* vr_init() calls vr_start() */
    915 			dotx = 0;
    916 			(void) vr_init(sc);
    917 		}
    918 	}
    919 
    920 	/* Re-enable interrupts. */
    921 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    922 
    923 	if (dotx)
    924 		vr_start(ifp);
    925 
    926 	return (handled);
    927 }
    928 
    929 /*
    930  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    931  * to the mbuf data regions directly in the transmit lists. We also save a
    932  * copy of the pointers since the transmit list fragment pointers are
    933  * physical addresses.
    934  */
    935 static void
    936 vr_start(ifp)
    937 	struct ifnet *ifp;
    938 {
    939 	struct vr_softc *sc = ifp->if_softc;
    940 	struct mbuf *m0, *m;
    941 	struct vr_desc *d;
    942 	struct vr_descsoft *ds;
    943 	int error, firsttx, nexttx, opending;
    944 
    945 	/*
    946 	 * Remember the previous txpending and the first transmit
    947 	 * descriptor we use.
    948 	 */
    949 	opending = sc->vr_txpending;
    950 	firsttx = VR_NEXTTX(sc->vr_txlast);
    951 
    952 	/*
    953 	 * Loop through the send queue, setting up transmit descriptors
    954 	 * until we drain the queue, or use up all available transmit
    955 	 * descriptors.
    956 	 */
    957 	while (sc->vr_txpending < VR_NTXDESC) {
    958 		/*
    959 		 * Grab a packet off the queue.
    960 		 */
    961 		IF_DEQUEUE(&ifp->if_snd, m0);
    962 		if (m0 == NULL)
    963 			break;
    964 
    965 		/*
    966 		 * Get the next available transmit descriptor.
    967 		 */
    968 		nexttx = VR_NEXTTX(sc->vr_txlast);
    969 		d = VR_CDTX(sc, nexttx);
    970 		ds = VR_DSTX(sc, nexttx);
    971 
    972 		/*
    973 		 * Load the DMA map.  If this fails, the packet didn't
    974 		 * fit in one DMA segment, and we need to copy.  Note,
    975 		 * the packet must also be aligned.
    976 		 */
    977 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    978 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    979 		     BUS_DMA_NOWAIT) != 0) {
    980 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    981 			if (m == NULL) {
    982 				printf("%s: unable to allocate Tx mbuf\n",
    983 				    sc->vr_dev.dv_xname);
    984 				IF_PREPEND(&ifp->if_snd, m0);
    985 				break;
    986 			}
    987 			if (m0->m_pkthdr.len > MHLEN) {
    988 				MCLGET(m, M_DONTWAIT);
    989 				if ((m->m_flags & M_EXT) == 0) {
    990 					printf("%s: unable to allocate Tx "
    991 					    "cluster\n", sc->vr_dev.dv_xname);
    992 					m_freem(m);
    993 					IF_PREPEND(&ifp->if_snd, m0);
    994 					break;
    995 				}
    996 			}
    997 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    998 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    999 			m_freem(m0);
   1000 			m0 = m;
   1001 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1002 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
   1003 			if (error) {
   1004 				printf("%s: unable to load Tx buffer, "
   1005 				    "error = %d\n", sc->vr_dev.dv_xname, error);
   1006 				IF_PREPEND(&ifp->if_snd, m0);
   1007 				break;
   1008 			}
   1009 		}
   1010 
   1011 		/* Sync the DMA map. */
   1012 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1013 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1014 
   1015 		/*
   1016 		 * Store a pointer to the packet so we can free it later.
   1017 		 */
   1018 		ds->ds_mbuf = m0;
   1019 
   1020 #if NBPFILTER > 0
   1021 		/*
   1022 		 * If there's a BPF listener, bounce a copy of this frame
   1023 		 * to him.
   1024 		 */
   1025 		if (ifp->if_bpf)
   1026 			bpf_mtap(ifp->if_bpf, m0);
   1027 #endif
   1028 
   1029 		/*
   1030 		 * Fill in the transmit descriptor.  The Rhine
   1031 		 * doesn't auto-pad, so we have to do this ourselves.
   1032 		 */
   1033 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1034 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1035 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1036 		d->vr_ctl |=
   1037 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1038 		    VR_TXCTL_LASTFRAG);
   1039 
   1040 		/*
   1041 		 * If this is the first descriptor we're enqueuing,
   1042 		 * don't give it to the Rhine yet.  That could cause
   1043 		 * a race condition.  We'll do it below.
   1044 		 */
   1045 		if (nexttx == firsttx)
   1046 			d->vr_status = 0;
   1047 		else
   1048 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1049 
   1050 		VR_CDTXSYNC(sc, nexttx,
   1051 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1052 
   1053 		/* Advance the tx pointer. */
   1054 		sc->vr_txpending++;
   1055 		sc->vr_txlast = nexttx;
   1056 	}
   1057 
   1058 	if (sc->vr_txpending == VR_NTXDESC) {
   1059 		/* No more slots left; notify upper layer. */
   1060 		ifp->if_flags |= IFF_OACTIVE;
   1061 	}
   1062 
   1063 	if (sc->vr_txpending != opending) {
   1064 		/*
   1065 		 * We enqueued packets.  If the transmitter was idle,
   1066 		 * reset the txdirty pointer.
   1067 		 */
   1068 		if (opending == 0)
   1069 			sc->vr_txdirty = firsttx;
   1070 
   1071 		/*
   1072 		 * Cause a transmit interrupt to happen on the
   1073 		 * last packet we enqueued.
   1074 		 */
   1075 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1076 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1077 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1078 
   1079 		/*
   1080 		 * The entire packet chain is set up.  Give the
   1081 		 * first descriptor to the Rhine now.
   1082 		 */
   1083 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1084 		VR_CDTXSYNC(sc, firsttx,
   1085 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1086 
   1087 		/* Start the transmitter. */
   1088 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1089 
   1090 		/* Set the watchdog timer in case the chip flakes out. */
   1091 		ifp->if_timer = 5;
   1092 	}
   1093 }
   1094 
   1095 /*
   1096  * Initialize the interface.  Must be called at splnet.
   1097  */
   1098 static int
   1099 vr_init(sc)
   1100 	struct vr_softc *sc;
   1101 {
   1102 	struct ifnet *ifp = &sc->vr_ec.ec_if;
   1103 	struct vr_desc *d;
   1104 	struct vr_descsoft *ds;
   1105 	int i, error = 0;
   1106 
   1107 	/* Cancel pending I/O. */
   1108 	vr_stop(sc, 0);
   1109 
   1110 	/* Reset the Rhine to a known state. */
   1111 	vr_reset(sc);
   1112 
   1113 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1114 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1115 
   1116 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1117 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1118 
   1119 	/*
   1120 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1121 	 * to the end of the list so that it will wrap around to the first
   1122 	 * descriptor when the first packet is transmitted.
   1123 	 */
   1124 	for (i = 0; i < VR_NTXDESC; i++) {
   1125 		d = VR_CDTX(sc, i);
   1126 		memset(d, 0, sizeof(struct vr_desc));
   1127 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1128 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1129 	}
   1130 	sc->vr_txpending = 0;
   1131 	sc->vr_txdirty = 0;
   1132 	sc->vr_txlast = VR_NTXDESC - 1;
   1133 
   1134 	/*
   1135 	 * Initialize the receive descriptor ring.
   1136 	 */
   1137 	for (i = 0; i < VR_NRXDESC; i++) {
   1138 		ds = VR_DSRX(sc, i);
   1139 		if (ds->ds_mbuf == NULL) {
   1140 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1141 				printf("%s: unable to allocate or map rx "
   1142 				    "buffer %d, error = %d\n",
   1143 				    sc->vr_dev.dv_xname, i, error);
   1144 				/*
   1145 				 * XXX Should attempt to run with fewer receive
   1146 				 * XXX buffers instead of just failing.
   1147 				 */
   1148 				vr_rxdrain(sc);
   1149 				goto out;
   1150 			}
   1151 		}
   1152 	}
   1153 	sc->vr_rxptr = 0;
   1154 
   1155 	/* If we want promiscuous mode, set the allframes bit. */
   1156 	if (ifp->if_flags & IFF_PROMISC)
   1157 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1158 	else
   1159 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1160 
   1161 	/* Set capture broadcast bit to capture broadcast frames. */
   1162 	if (ifp->if_flags & IFF_BROADCAST)
   1163 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1164 	else
   1165 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1166 
   1167 	/* Program the multicast filter, if necessary. */
   1168 	vr_setmulti(sc);
   1169 
   1170 	/* Give the transmit and recieve rings to the Rhine. */
   1171 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1172 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1173 
   1174 	/* Set current media. */
   1175 	mii_mediachg(&sc->vr_mii);
   1176 
   1177 	/* Enable receiver and transmitter. */
   1178 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1179 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1180 				    VR_CMD_RX_GO);
   1181 
   1182 	/* Enable interrupts. */
   1183 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1184 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1185 
   1186 	ifp->if_flags |= IFF_RUNNING;
   1187 	ifp->if_flags &= ~IFF_OACTIVE;
   1188 
   1189 	/* Start one second timer. */
   1190 	timeout(vr_tick, sc, hz);
   1191 
   1192 	/* Attempt to start output on the interface. */
   1193 	vr_start(ifp);
   1194 
   1195  out:
   1196 	if (error)
   1197 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1198 	return (error);
   1199 }
   1200 
   1201 /*
   1202  * Set media options.
   1203  */
   1204 static int
   1205 vr_ifmedia_upd(ifp)
   1206 	struct ifnet *ifp;
   1207 {
   1208 	struct vr_softc *sc = ifp->if_softc;
   1209 
   1210 	if (ifp->if_flags & IFF_UP)
   1211 		mii_mediachg(&sc->vr_mii);
   1212 	return (0);
   1213 }
   1214 
   1215 /*
   1216  * Report current media status.
   1217  */
   1218 static void
   1219 vr_ifmedia_sts(ifp, ifmr)
   1220 	struct ifnet *ifp;
   1221 	struct ifmediareq *ifmr;
   1222 {
   1223 	struct vr_softc *sc = ifp->if_softc;
   1224 
   1225 	mii_pollstat(&sc->vr_mii);
   1226 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1227 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1228 }
   1229 
   1230 static int
   1231 vr_ioctl(ifp, command, data)
   1232 	struct ifnet *ifp;
   1233 	u_long command;
   1234 	caddr_t data;
   1235 {
   1236 	struct vr_softc *sc = ifp->if_softc;
   1237 	struct ifreq *ifr = (struct ifreq *)data;
   1238 	struct ifaddr *ifa = (struct ifaddr *)data;
   1239 	int s, error = 0;
   1240 
   1241 	s = splnet();
   1242 
   1243 	switch (command) {
   1244 	case SIOCSIFADDR:
   1245 		ifp->if_flags |= IFF_UP;
   1246 
   1247 		switch (ifa->ifa_addr->sa_family) {
   1248 #ifdef INET
   1249 		case AF_INET:
   1250 			if ((error = vr_init(sc)) != 0)
   1251 				break;
   1252 			arp_ifinit(ifp, ifa);
   1253 			break;
   1254 #endif /* INET */
   1255 		default:
   1256 			error = vr_init(sc);
   1257 			break;
   1258 		}
   1259 		break;
   1260 
   1261 	case SIOCGIFADDR:
   1262 		bcopy((caddr_t) sc->vr_enaddr,
   1263 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
   1264 			ETHER_ADDR_LEN);
   1265 		break;
   1266 
   1267 	case SIOCSIFMTU:
   1268 		if (ifr->ifr_mtu > ETHERMTU)
   1269 			error = EINVAL;
   1270 		else
   1271 			ifp->if_mtu = ifr->ifr_mtu;
   1272 		break;
   1273 
   1274 	case SIOCSIFFLAGS:
   1275 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1276 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1277 			/*
   1278 			 * If interface is marked down and it is running, then
   1279 			 * stop it.
   1280 			 */
   1281 			vr_stop(sc, 1);
   1282 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1283 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1284 			/*
   1285 			 * If interface is marked up and it is stopped, then
   1286 			 * start it.
   1287 			 */
   1288 			error = vr_init(sc);
   1289 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1290 			/*
   1291 			 * Reset the interface to pick up changes in any other
   1292 			 * flags that affect the hardware state.
   1293 			 */
   1294 			error = vr_init(sc);
   1295 		}
   1296 		break;
   1297 
   1298 	case SIOCADDMULTI:
   1299 	case SIOCDELMULTI:
   1300 		if (command == SIOCADDMULTI)
   1301 			error = ether_addmulti(ifr, &sc->vr_ec);
   1302 		else
   1303 			error = ether_delmulti(ifr, &sc->vr_ec);
   1304 
   1305 		if (error == ENETRESET) {
   1306 			/*
   1307 			 * Multicast list has changed; set the hardware filter
   1308 			 * accordingly.
   1309 			 */
   1310 			vr_setmulti(sc);
   1311 			error = 0;
   1312 		}
   1313 		break;
   1314 
   1315 	case SIOCGIFMEDIA:
   1316 	case SIOCSIFMEDIA:
   1317 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1318 		break;
   1319 
   1320 	default:
   1321 		error = EINVAL;
   1322 		break;
   1323 	}
   1324 
   1325 	splx(s);
   1326 	return (error);
   1327 }
   1328 
   1329 static void
   1330 vr_watchdog(ifp)
   1331 	struct ifnet *ifp;
   1332 {
   1333 	struct vr_softc *sc = ifp->if_softc;
   1334 
   1335 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1336 	ifp->if_oerrors++;
   1337 
   1338 	(void) vr_init(sc);
   1339 }
   1340 
   1341 /*
   1342  * One second timer, used to tick MII.
   1343  */
   1344 static void
   1345 vr_tick(arg)
   1346 	void *arg;
   1347 {
   1348 	struct vr_softc *sc = arg;
   1349 	int s;
   1350 
   1351 	s = splnet();
   1352 	mii_tick(&sc->vr_mii);
   1353 	splx(s);
   1354 
   1355 	timeout(vr_tick, sc, hz);
   1356 }
   1357 
   1358 /*
   1359  * Drain the receive queue.
   1360  */
   1361 static void
   1362 vr_rxdrain(sc)
   1363 	struct vr_softc *sc;
   1364 {
   1365 	struct vr_descsoft *ds;
   1366 	int i;
   1367 
   1368 	for (i = 0; i < VR_NRXDESC; i++) {
   1369 		ds = VR_DSRX(sc, i);
   1370 		if (ds->ds_mbuf != NULL) {
   1371 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1372 			m_freem(ds->ds_mbuf);
   1373 			ds->ds_mbuf = NULL;
   1374 		}
   1375 	}
   1376 }
   1377 
   1378 /*
   1379  * Stop the adapter and free any mbufs allocated to the
   1380  * transmit lists.
   1381  */
   1382 static void
   1383 vr_stop(sc, drain)
   1384 	struct vr_softc *sc;
   1385 	int drain;
   1386 {
   1387 	struct vr_descsoft *ds;
   1388 	struct ifnet *ifp;
   1389 	int i;
   1390 
   1391 	/* Cancel one second timer. */
   1392 	untimeout(vr_tick, sc);
   1393 
   1394 	/* Down the MII. */
   1395 	mii_down(&sc->vr_mii);
   1396 
   1397 	ifp = &sc->vr_ec.ec_if;
   1398 	ifp->if_timer = 0;
   1399 
   1400 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1401 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1402 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1403 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1404 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1405 
   1406 	/*
   1407 	 * Release any queued transmit buffers.
   1408 	 */
   1409 	for (i = 0; i < VR_NTXDESC; i++) {
   1410 		ds = VR_DSTX(sc, i);
   1411 		if (ds->ds_mbuf != NULL) {
   1412 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1413 			m_freem(ds->ds_mbuf);
   1414 			ds->ds_mbuf = NULL;
   1415 		}
   1416 	}
   1417 
   1418 	if (drain) {
   1419 		/*
   1420 		 * Release the receive buffers.
   1421 		 */
   1422 		vr_rxdrain(sc);
   1423 	}
   1424 
   1425 	/*
   1426 	 * Mark the interface down and cancel the watchdog timer.
   1427 	 */
   1428 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1429 	ifp->if_timer = 0;
   1430 }
   1431 
   1432 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1433 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1434 static void vr_attach __P((struct device *, struct device *, void *));
   1435 static void vr_shutdown __P((void *));
   1436 
   1437 struct cfattach vr_ca = {
   1438 	sizeof (struct vr_softc), vr_probe, vr_attach
   1439 };
   1440 
   1441 static struct vr_type *
   1442 vr_lookup(pa)
   1443 	struct pci_attach_args *pa;
   1444 {
   1445 	struct vr_type *vrt;
   1446 
   1447 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1448 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1449 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1450 			return (vrt);
   1451 	}
   1452 	return (NULL);
   1453 }
   1454 
   1455 static int
   1456 vr_probe(parent, match, aux)
   1457 	struct device *parent;
   1458 	struct cfdata *match;
   1459 	void *aux;
   1460 {
   1461 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1462 
   1463 	if (vr_lookup(pa) != NULL)
   1464 		return (1);
   1465 
   1466 	return (0);
   1467 }
   1468 
   1469 /*
   1470  * Stop all chip I/O so that the kernel's probe routines don't
   1471  * get confused by errant DMAs when rebooting.
   1472  */
   1473 static void
   1474 vr_shutdown(arg)
   1475 	void *arg;
   1476 {
   1477 	struct vr_softc *sc = (struct vr_softc *)arg;
   1478 
   1479 	vr_stop(sc, 1);
   1480 }
   1481 
   1482 /*
   1483  * Attach the interface. Allocate softc structures, do ifmedia
   1484  * setup and ethernet/BPF attach.
   1485  */
   1486 static void
   1487 vr_attach(parent, self, aux)
   1488 	struct device *parent;
   1489 	struct device *self;
   1490 	void *aux;
   1491 {
   1492 	struct vr_softc *sc = (struct vr_softc *) self;
   1493 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1494 	bus_dma_segment_t seg;
   1495 	struct vr_type *vrt;
   1496 	u_int32_t command;
   1497 	struct ifnet *ifp;
   1498 	u_char eaddr[ETHER_ADDR_LEN];
   1499 	int i, rseg, error;
   1500 
   1501 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1502 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1503 
   1504 	vrt = vr_lookup(pa);
   1505 	if (vrt == NULL) {
   1506 		printf("\n");
   1507 		panic("vr_attach: impossible");
   1508 	}
   1509 
   1510 	printf(": %s Ethernet\n", vrt->vr_name);
   1511 
   1512 	/*
   1513 	 * Handle power management nonsense.
   1514 	 */
   1515 
   1516 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1517 	if (command == 0x01) {
   1518 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1519 		if (command & VR_PSTATE_MASK) {
   1520 			u_int32_t iobase, membase, irq;
   1521 
   1522 			/* Save important PCI config data. */
   1523 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1524 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1525 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1526 
   1527 			/* Reset the power state. */
   1528 			printf("%s: chip is in D%d power mode "
   1529 				"-- setting to D0\n",
   1530 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1531 			command &= 0xFFFFFFFC;
   1532 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1533 
   1534 			/* Restore PCI config data. */
   1535 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1536 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1537 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1538 		}
   1539 	}
   1540 
   1541 	/* Make sure bus mastering is enabled. */
   1542 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1543 	command |= PCI_COMMAND_MASTER_ENABLE;
   1544 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1545 
   1546 	/*
   1547 	 * Map control/status registers.
   1548 	 */
   1549 	{
   1550 		bus_space_tag_t iot, memt;
   1551 		bus_space_handle_t ioh, memh;
   1552 		int ioh_valid, memh_valid;
   1553 		pci_intr_handle_t intrhandle;
   1554 		const char *intrstr;
   1555 
   1556 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1557 			PCI_MAPREG_TYPE_IO, 0,
   1558 			&iot, &ioh, NULL, NULL) == 0);
   1559 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1560 			PCI_MAPREG_TYPE_MEM |
   1561 			PCI_MAPREG_MEM_TYPE_32BIT,
   1562 			0, &memt, &memh, NULL, NULL) == 0);
   1563 #if defined(VR_USEIOSPACE)
   1564 		if (ioh_valid) {
   1565 			sc->vr_bst = iot;
   1566 			sc->vr_bsh = ioh;
   1567 		} else if (memh_valid) {
   1568 			sc->vr_bst = memt;
   1569 			sc->vr_bsh = memh;
   1570 		}
   1571 #else
   1572 		if (memh_valid) {
   1573 			sc->vr_bst = memt;
   1574 			sc->vr_bsh = memh;
   1575 		} else if (ioh_valid) {
   1576 			sc->vr_bst = iot;
   1577 			sc->vr_bsh = ioh;
   1578 		}
   1579 #endif
   1580 		else {
   1581 			printf(": unable to map device registers\n");
   1582 			return;
   1583 		}
   1584 
   1585 		/* Allocate interrupt */
   1586 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1587 				pa->pa_intrline, &intrhandle)) {
   1588 			printf("%s: couldn't map interrupt\n",
   1589 				sc->vr_dev.dv_xname);
   1590 			return;
   1591 		}
   1592 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1593 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1594 						vr_intr, sc);
   1595 		if (sc->vr_ih == NULL) {
   1596 			printf("%s: couldn't establish interrupt",
   1597 				sc->vr_dev.dv_xname);
   1598 			if (intrstr != NULL)
   1599 				printf(" at %s", intrstr);
   1600 			printf("\n");
   1601 		}
   1602 		printf("%s: interrupting at %s\n",
   1603 			sc->vr_dev.dv_xname, intrstr);
   1604 	}
   1605 
   1606 	/* Reset the adapter. */
   1607 	vr_reset(sc);
   1608 
   1609 	/*
   1610 	 * Get station address. The way the Rhine chips work,
   1611 	 * you're not allowed to directly access the EEPROM once
   1612 	 * they've been programmed a special way. Consequently,
   1613 	 * we need to read the node address from the PAR0 and PAR1
   1614 	 * registers.
   1615 	 */
   1616 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1617 	DELAY(200);
   1618 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1619 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1620 
   1621 	/*
   1622 	 * A Rhine chip was detected. Inform the world.
   1623 	 */
   1624 	printf("%s: Ethernet address: %s\n",
   1625 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1626 
   1627 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1628 
   1629 	sc->vr_dmat = pa->pa_dmat;
   1630 
   1631 	/*
   1632 	 * Allocate the control data structures, and create and load
   1633 	 * the DMA map for it.
   1634 	 */
   1635 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1636 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1637 	    0)) != 0) {
   1638 		printf("%s: unable to allocate control data, error = %d\n",
   1639 		    sc->vr_dev.dv_xname, error);
   1640 		goto fail_0;
   1641 	}
   1642 
   1643 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1644 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1645 	    BUS_DMA_COHERENT)) != 0) {
   1646 		printf("%s: unable to map control data, error = %d\n",
   1647 		    sc->vr_dev.dv_xname, error);
   1648 		goto fail_1;
   1649 	}
   1650 
   1651 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1652 	    sizeof(struct vr_control_data), 1,
   1653 	    sizeof(struct vr_control_data), 0, 0,
   1654 	    &sc->vr_cddmamap)) != 0) {
   1655 		printf("%s: unable to create control data DMA map, "
   1656 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1657 		goto fail_2;
   1658 	}
   1659 
   1660 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1661 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1662 	    0)) != 0) {
   1663 		printf("%s: unable to load control data DMA map, error = %d\n",
   1664 		    sc->vr_dev.dv_xname, error);
   1665 		goto fail_3;
   1666 	}
   1667 
   1668 	/*
   1669 	 * Create the transmit buffer DMA maps.
   1670 	 */
   1671 	for (i = 0; i < VR_NTXDESC; i++) {
   1672 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1673 		    1, MCLBYTES, 0, 0,
   1674 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1675 			printf("%s: unable to create tx DMA map %d, "
   1676 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1677 			goto fail_4;
   1678 		}
   1679 	}
   1680 
   1681 	/*
   1682 	 * Create the receive buffer DMA maps.
   1683 	 */
   1684 	for (i = 0; i < VR_NRXDESC; i++) {
   1685 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1686 		    MCLBYTES, 0, 0,
   1687 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1688 			printf("%s: unable to create rx DMA map %d, "
   1689 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1690 			goto fail_5;
   1691 		}
   1692 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1693 	}
   1694 
   1695 	ifp = &sc->vr_ec.ec_if;
   1696 	ifp->if_softc = sc;
   1697 	ifp->if_mtu = ETHERMTU;
   1698 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1699 	ifp->if_ioctl = vr_ioctl;
   1700 	ifp->if_start = vr_start;
   1701 	ifp->if_watchdog = vr_watchdog;
   1702 	ifp->if_baudrate = 10000000;
   1703 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1704 
   1705 	/*
   1706 	 * Initialize MII/media info.
   1707 	 */
   1708 	sc->vr_mii.mii_ifp = ifp;
   1709 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1710 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1711 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1712 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1713 	mii_phy_probe(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1714 	    MII_OFFSET_ANY);
   1715 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1716 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1717 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1718 	} else
   1719 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1720 
   1721 	/*
   1722 	 * Call MI attach routines.
   1723 	 */
   1724 	if_attach(ifp);
   1725 	ether_ifattach(ifp, sc->vr_enaddr);
   1726 
   1727 #if NBPFILTER > 0
   1728 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1729 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1730 #endif
   1731 
   1732 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1733 	if (sc->vr_ats == NULL)
   1734 		printf("%s: warning: couldn't establish shutdown hook\n",
   1735 			sc->vr_dev.dv_xname);
   1736 	return;
   1737 
   1738  fail_5:
   1739 	for (i = 0; i < VR_NRXDESC; i++) {
   1740 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1741 			bus_dmamap_destroy(sc->vr_dmat,
   1742 			    sc->vr_rxsoft[i].ds_dmamap);
   1743 	}
   1744  fail_4:
   1745 	for (i = 0; i < VR_NTXDESC; i++) {
   1746 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1747 			bus_dmamap_destroy(sc->vr_dmat,
   1748 			    sc->vr_txsoft[i].ds_dmamap);
   1749 	}
   1750 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1751  fail_3:
   1752 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1753  fail_2:
   1754 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1755 	    sizeof(struct vr_control_data));
   1756  fail_1:
   1757 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1758  fail_0:
   1759 	return;
   1760 }
   1761