Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.33
      1 /*	$NetBSD: if_vr.c,v 1.33 2000/03/06 21:02:02 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/sockio.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/malloc.h>
    113 #include <sys/kernel.h>
    114 #include <sys/socket.h>
    115 #include <sys/device.h>
    116 
    117 #include <vm/vm.h>		/* for PAGE_SIZE */
    118 
    119 #include <net/if.h>
    120 #include <net/if_arp.h>
    121 #include <net/if_dl.h>
    122 #include <net/if_media.h>
    123 #include <net/if_ether.h>
    124 
    125 #if defined(INET)
    126 #include <netinet/in.h>
    127 #include <netinet/if_inarp.h>
    128 #endif
    129 
    130 #include "bpfilter.h"
    131 #if NBPFILTER > 0
    132 #include <net/bpf.h>
    133 #endif
    134 
    135 #include <machine/bus.h>
    136 #include <machine/intr.h>
    137 #include <machine/endian.h>
    138 
    139 #include <dev/mii/mii.h>
    140 #include <dev/mii/miivar.h>
    141 #include <dev/mii/mii_bitbang.h>
    142 
    143 #include <dev/pci/pcireg.h>
    144 #include <dev/pci/pcivar.h>
    145 #include <dev/pci/pcidevs.h>
    146 
    147 #include <dev/pci/if_vrreg.h>
    148 
    149 #define	VR_USEIOSPACE
    150 
    151 /*
    152  * Various supported device vendors/types and their names.
    153  */
    154 static struct vr_type {
    155 	pci_vendor_id_t		vr_vid;
    156 	pci_product_id_t	vr_did;
    157 	const char		*vr_name;
    158 } vr_devs[] = {
    159 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    160 		"VIA VT3043 (Rhine) 10/100" },
    161 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    162 		"VIA VT86C100A (Rhine-II) 10/100" },
    163 	{ 0, 0, NULL }
    164 };
    165 
    166 /*
    167  * Transmit descriptor list size.
    168  */
    169 #define	VR_NTXDESC		64
    170 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    171 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    172 
    173 /*
    174  * Receive descriptor list size.
    175  */
    176 #define	VR_NRXDESC		64
    177 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    178 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    179 
    180 /*
    181  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    182  * them in a single clump that maps to a single DMA segment to make several
    183  * things easier.
    184  *
    185  * Note that since we always copy outgoing packets to aligned transmit
    186  * buffers, we can reduce the transmit descriptors to one per packet.
    187  */
    188 struct vr_control_data {
    189 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    190 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    191 };
    192 
    193 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    194 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    195 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    196 
    197 /*
    198  * Software state of transmit and receive descriptors.
    199  */
    200 struct vr_descsoft {
    201 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    202 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    203 };
    204 
    205 struct vr_softc {
    206 	struct device		vr_dev;		/* generic device glue */
    207 	void			*vr_ih;		/* interrupt cookie */
    208 	void			*vr_ats;	/* shutdown hook */
    209 	bus_space_tag_t		vr_bst;		/* bus space tag */
    210 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    211 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    212 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    213 	struct ethercom		vr_ec;		/* Ethernet common info */
    214 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    215 	struct mii_data		vr_mii;		/* MII/media info */
    216 
    217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    219 
    220 	/*
    221 	 * Software state for transmit and receive descriptors.
    222 	 */
    223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    225 
    226 	/*
    227 	 * Control data structures.
    228 	 */
    229 	struct vr_control_data	*vr_control_data;
    230 
    231 	int	vr_txpending;		/* number of TX requests pending */
    232 	int	vr_txdirty;		/* first dirty TX descriptor */
    233 	int	vr_txlast;		/* last used TX descriptor */
    234 
    235 	int	vr_rxptr;		/* next ready RX descriptor */
    236 };
    237 
    238 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    239 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    240 
    241 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    242 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    243 
    244 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    245 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    246 
    247 #define	VR_CDTXSYNC(sc, x, ops)						\
    248 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    249 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    250 
    251 #define	VR_CDRXSYNC(sc, x, ops)						\
    252 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    253 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    254 
    255 /*
    256  * Note we rely on MCLBYTES being a power of two below.
    257  */
    258 #define	VR_INIT_RXDESC(sc, i)						\
    259 do {									\
    260 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    261 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    262 									\
    263 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    264 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    265 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    266 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    267 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    268 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    269 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    270 } while (0)
    271 
    272 /*
    273  * register space access macros
    274  */
    275 #define	CSR_WRITE_4(sc, reg, val)					\
    276 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    277 #define	CSR_WRITE_2(sc, reg, val)					\
    278 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    279 #define	CSR_WRITE_1(sc, reg, val)					\
    280 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    281 
    282 #define	CSR_READ_4(sc, reg)						\
    283 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    284 #define	CSR_READ_2(sc, reg)						\
    285 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    286 #define	CSR_READ_1(sc, reg)						\
    287 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    288 
    289 #define	VR_TIMEOUT		1000
    290 
    291 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    292 
    293 static void vr_rxeof		__P((struct vr_softc *));
    294 static void vr_rxeoc		__P((struct vr_softc *));
    295 static void vr_txeof		__P((struct vr_softc *));
    296 static int vr_intr		__P((void *));
    297 static void vr_start		__P((struct ifnet *));
    298 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    299 static int vr_init		__P((struct vr_softc *));
    300 static void vr_stop		__P((struct vr_softc *, int));
    301 static void vr_rxdrain		__P((struct vr_softc *));
    302 static void vr_watchdog		__P((struct ifnet *));
    303 static void vr_tick		__P((void *));
    304 
    305 static int vr_ifmedia_upd	__P((struct ifnet *));
    306 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    307 
    308 static int vr_mii_readreg	__P((struct device *, int, int));
    309 static void vr_mii_writereg	__P((struct device *, int, int, int));
    310 static void vr_mii_statchg	__P((struct device *));
    311 
    312 static u_int8_t vr_calchash	__P((u_int8_t *));
    313 static void vr_setmulti		__P((struct vr_softc *));
    314 static void vr_reset		__P((struct vr_softc *));
    315 
    316 int	vr_copy_small = 0;
    317 
    318 #define	VR_SETBIT(sc, reg, x)				\
    319 	CSR_WRITE_1(sc, reg,				\
    320 		CSR_READ_1(sc, reg) | x)
    321 
    322 #define	VR_CLRBIT(sc, reg, x)				\
    323 	CSR_WRITE_1(sc, reg,				\
    324 		CSR_READ_1(sc, reg) & ~x)
    325 
    326 #define	VR_SETBIT16(sc, reg, x)				\
    327 	CSR_WRITE_2(sc, reg,				\
    328 		CSR_READ_2(sc, reg) | x)
    329 
    330 #define	VR_CLRBIT16(sc, reg, x)				\
    331 	CSR_WRITE_2(sc, reg,				\
    332 		CSR_READ_2(sc, reg) & ~x)
    333 
    334 #define	VR_SETBIT32(sc, reg, x)				\
    335 	CSR_WRITE_4(sc, reg,				\
    336 		CSR_READ_4(sc, reg) | x)
    337 
    338 #define	VR_CLRBIT32(sc, reg, x)				\
    339 	CSR_WRITE_4(sc, reg,				\
    340 		CSR_READ_4(sc, reg) & ~x)
    341 
    342 /*
    343  * MII bit-bang glue.
    344  */
    345 u_int32_t vr_mii_bitbang_read __P((struct device *));
    346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    347 
    348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    349 	vr_mii_bitbang_read,
    350 	vr_mii_bitbang_write,
    351 	{
    352 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    353 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    354 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    355 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    356 		0,			/* MII_BIT_DIR_PHY_HOST */
    357 	}
    358 };
    359 
    360 u_int32_t
    361 vr_mii_bitbang_read(self)
    362 	struct device *self;
    363 {
    364 	struct vr_softc *sc = (void *) self;
    365 
    366 	return (CSR_READ_1(sc, VR_MIICMD));
    367 }
    368 
    369 void
    370 vr_mii_bitbang_write(self, val)
    371 	struct device *self;
    372 	u_int32_t val;
    373 {
    374 	struct vr_softc *sc = (void *) self;
    375 
    376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    377 }
    378 
    379 /*
    380  * Read an PHY register through the MII.
    381  */
    382 static int
    383 vr_mii_readreg(self, phy, reg)
    384 	struct device *self;
    385 	int phy, reg;
    386 {
    387 	struct vr_softc *sc = (void *) self;
    388 
    389 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    390 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    391 }
    392 
    393 /*
    394  * Write to a PHY register through the MII.
    395  */
    396 static void
    397 vr_mii_writereg(self, phy, reg, val)
    398 	struct device *self;
    399 	int phy, reg, val;
    400 {
    401 	struct vr_softc *sc = (void *) self;
    402 
    403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    405 }
    406 
    407 static void
    408 vr_mii_statchg(self)
    409 	struct device *self;
    410 {
    411 	struct vr_softc *sc = (struct vr_softc *)self;
    412 
    413 	/*
    414 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    415 	 * register, we first have to put the transmit and/or receive logic
    416 	 * in the idle state.
    417 	 */
    418 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    419 
    420 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    421 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    422 	else
    423 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    424 
    425 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    427 }
    428 
    429 /*
    430  * Calculate CRC of a multicast group address, return the lower 6 bits.
    431  */
    432 static u_int8_t
    433 vr_calchash(addr)
    434 	u_int8_t *addr;
    435 {
    436 	u_int32_t crc, carry;
    437 	int i, j;
    438 	u_int8_t c;
    439 
    440 	/* Compute CRC for the address value. */
    441 	crc = 0xFFFFFFFF; /* initial value */
    442 
    443 	for (i = 0; i < 6; i++) {
    444 		c = *(addr + i);
    445 		for (j = 0; j < 8; j++) {
    446 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    447 			crc <<= 1;
    448 			c >>= 1;
    449 			if (carry)
    450 				crc = (crc ^ 0x04c11db6) | carry;
    451 		}
    452 	}
    453 
    454 	/* return the filter bit position */
    455 	return ((crc >> 26) & 0x0000003F);
    456 }
    457 
    458 /*
    459  * Program the 64-bit multicast hash filter.
    460  */
    461 static void
    462 vr_setmulti(sc)
    463 	struct vr_softc *sc;
    464 {
    465 	struct ifnet *ifp;
    466 	int h = 0;
    467 	u_int32_t hashes[2] = { 0, 0 };
    468 	struct ether_multistep step;
    469 	struct ether_multi *enm;
    470 	int mcnt = 0;
    471 	u_int8_t rxfilt;
    472 
    473 	ifp = &sc->vr_ec.ec_if;
    474 
    475 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    476 
    477 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    478 		rxfilt |= VR_RXCFG_RX_MULTI;
    479 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    480 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    481 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    482 		return;
    483 	}
    484 
    485 	/* first, zot all the existing hash bits */
    486 	CSR_WRITE_4(sc, VR_MAR0, 0);
    487 	CSR_WRITE_4(sc, VR_MAR1, 0);
    488 
    489 	/* now program new ones */
    490 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    491 	while (enm != NULL) {
    492 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    493 			continue;
    494 
    495 		h = vr_calchash(enm->enm_addrlo);
    496 
    497 		if (h < 32)
    498 			hashes[0] |= (1 << h);
    499 		else
    500 			hashes[1] |= (1 << (h - 32));
    501 		ETHER_NEXT_MULTI(step, enm);
    502 		mcnt++;
    503 	}
    504 
    505 	if (mcnt)
    506 		rxfilt |= VR_RXCFG_RX_MULTI;
    507 	else
    508 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    509 
    510 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    511 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    512 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    513 }
    514 
    515 static void
    516 vr_reset(sc)
    517 	struct vr_softc *sc;
    518 {
    519 	int i;
    520 
    521 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    522 
    523 	for (i = 0; i < VR_TIMEOUT; i++) {
    524 		DELAY(10);
    525 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    526 			break;
    527 	}
    528 	if (i == VR_TIMEOUT)
    529 		printf("%s: reset never completed!\n",
    530 			sc->vr_dev.dv_xname);
    531 
    532 	/* Wait a little while for the chip to get its brains in order. */
    533 	DELAY(1000);
    534 }
    535 
    536 /*
    537  * Initialize an RX descriptor and attach an MBUF cluster.
    538  * Note: the length fields are only 11 bits wide, which means the
    539  * largest size we can specify is 2047. This is important because
    540  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    541  * overflow the field and make a mess.
    542  */
    543 static int
    544 vr_add_rxbuf(sc, i)
    545 	struct vr_softc *sc;
    546 	int i;
    547 {
    548 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    549 	struct mbuf *m_new;
    550 	int error;
    551 
    552 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    553 	if (m_new == NULL)
    554 		return (ENOBUFS);
    555 
    556 	MCLGET(m_new, M_DONTWAIT);
    557 	if ((m_new->m_flags & M_EXT) == 0) {
    558 		m_freem(m_new);
    559 		return (ENOBUFS);
    560 	}
    561 
    562 	if (ds->ds_mbuf != NULL)
    563 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    564 
    565 	ds->ds_mbuf = m_new;
    566 
    567 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    568 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    569 	if (error) {
    570 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    571 		    sc->vr_dev.dv_xname, i, error);
    572 		panic("vr_add_rxbuf");		/* XXX */
    573 	}
    574 
    575 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    576 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    577 
    578 	VR_INIT_RXDESC(sc, i);
    579 
    580 	return (0);
    581 }
    582 
    583 /*
    584  * A frame has been uploaded: pass the resulting mbuf chain up to
    585  * the higher level protocols.
    586  */
    587 static void
    588 vr_rxeof(sc)
    589 	struct vr_softc *sc;
    590 {
    591 	struct ether_header *eh;
    592 	struct mbuf *m;
    593 	struct ifnet *ifp;
    594 	struct vr_desc *d;
    595 	struct vr_descsoft *ds;
    596 	int i, total_len;
    597 	u_int32_t rxstat;
    598 
    599 	ifp = &sc->vr_ec.ec_if;
    600 
    601 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    602 		d = VR_CDRX(sc, i);
    603 		ds = VR_DSRX(sc, i);
    604 
    605 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    606 
    607 		rxstat = le32toh(d->vr_status);
    608 
    609 		if (rxstat & VR_RXSTAT_OWN) {
    610 			/*
    611 			 * We have processed all of the receive buffers.
    612 			 */
    613 			break;
    614 		}
    615 
    616 		/*
    617 		 * If an error occurs, update stats, clear the
    618 		 * status word and leave the mbuf cluster in place:
    619 		 * it should simply get re-used next time this descriptor
    620 		 * comes up in the ring.
    621 		 */
    622 		if (rxstat & VR_RXSTAT_RXERR) {
    623 			const char *errstr;
    624 
    625 			ifp->if_ierrors++;
    626 			switch (rxstat & 0x000000FF) {
    627 			case VR_RXSTAT_CRCERR:
    628 				errstr = "crc error";
    629 				break;
    630 			case VR_RXSTAT_FRAMEALIGNERR:
    631 				errstr = "frame alignment error";
    632 				break;
    633 			case VR_RXSTAT_FIFOOFLOW:
    634 				errstr = "FIFO overflow";
    635 				break;
    636 			case VR_RXSTAT_GIANT:
    637 				errstr = "received giant packet";
    638 				break;
    639 			case VR_RXSTAT_RUNT:
    640 				errstr = "received runt packet";
    641 				break;
    642 			case VR_RXSTAT_BUSERR:
    643 				errstr = "system bus error";
    644 				break;
    645 			case VR_RXSTAT_BUFFERR:
    646 				errstr = "rx buffer error";
    647 				break;
    648 			default:
    649 				errstr = "unknown rx error";
    650 				break;
    651 			}
    652 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    653 			    errstr);
    654 
    655 			VR_INIT_RXDESC(sc, i);
    656 
    657 			continue;
    658 		}
    659 
    660 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    661 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    662 
    663 		/* No errors; receive the packet. */
    664 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    665 
    666 		/*
    667 		 * XXX The VIA Rhine chip includes the CRC with every
    668 		 * received frame, and there's no way to turn this
    669 		 * behavior off (at least, I can't find anything in
    670 		 * the manual that explains how to do it) so we have
    671 		 * to trim off the CRC manually.
    672 		 */
    673 		total_len -= ETHER_CRC_LEN;
    674 
    675 #ifdef __NO_STRICT_ALIGNMENT
    676 		/*
    677 		 * If the packet is small enough to fit in a
    678 		 * single header mbuf, allocate one and copy
    679 		 * the data into it.  This greatly reduces
    680 		 * memory consumption when we receive lots
    681 		 * of small packets.
    682 		 *
    683 		 * Otherwise, we add a new buffer to the receive
    684 		 * chain.  If this fails, we drop the packet and
    685 		 * recycle the old buffer.
    686 		 */
    687 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    688 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    689 			if (m == NULL)
    690 				goto dropit;
    691 			memcpy(mtod(m, caddr_t),
    692 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    693 			VR_INIT_RXDESC(sc, i);
    694 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    695 			    ds->ds_dmamap->dm_mapsize,
    696 			    BUS_DMASYNC_PREREAD);
    697 		} else {
    698 			m = ds->ds_mbuf;
    699 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    700  dropit:
    701 				ifp->if_ierrors++;
    702 				VR_INIT_RXDESC(sc, i);
    703 				bus_dmamap_sync(sc->vr_dmat,
    704 				    ds->ds_dmamap, 0,
    705 				    ds->ds_dmamap->dm_mapsize,
    706 				    BUS_DMASYNC_PREREAD);
    707 				continue;
    708 			}
    709 		}
    710 #else
    711 		/*
    712 		 * The Rhine's packet buffers must be 4-byte aligned.
    713 		 * But this means that the data after the Ethernet header
    714 		 * is misaligned.  We must allocate a new buffer and
    715 		 * copy the data, shifted forward 2 bytes.
    716 		 */
    717 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    718 		if (m == NULL) {
    719  dropit:
    720 			ifp->if_ierrors++;
    721 			VR_INIT_RXDESC(sc, i);
    722 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    723 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    724 			continue;
    725 		}
    726 		if (total_len > (MHLEN - 2)) {
    727 			MCLGET(m, M_DONTWAIT);
    728 			if ((m->m_flags & M_EXT) == 0) {
    729 				m_freem(m);
    730 				goto dropit;
    731 			}
    732 		}
    733 		m->m_data += 2;
    734 
    735 		/*
    736 		 * Note that we use clusters for incoming frames, so the
    737 		 * buffer is virtually contiguous.
    738 		 */
    739 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    740 		    total_len);
    741 
    742 		/* Allow the recieve descriptor to continue using its mbuf. */
    743 		VR_INIT_RXDESC(sc, i);
    744 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    745 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    746 #endif /* __NO_STRICT_ALIGNMENT */
    747 
    748 		ifp->if_ipackets++;
    749 		eh = mtod(m, struct ether_header *);
    750 		m->m_pkthdr.rcvif = ifp;
    751 		m->m_pkthdr.len = m->m_len = total_len;
    752 #if NBPFILTER > 0
    753 		/*
    754 		 * Handle BPF listeners. Let the BPF user see the packet, but
    755 		 * don't pass it up to the ether_input() layer unless it's
    756 		 * a broadcast packet, multicast packet, matches our ethernet
    757 		 * address or the interface is in promiscuous mode.
    758 		 */
    759 		if (ifp->if_bpf) {
    760 			bpf_mtap(ifp->if_bpf, m);
    761 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    762 			    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
    763 			    memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
    764 				   ETHER_ADDR_LEN) != 0) {
    765 				m_freem(m);
    766 				continue;
    767 			}
    768 		}
    769 #endif
    770 		/* Pass it on. */
    771 		(*ifp->if_input)(ifp, m);
    772 	}
    773 
    774 	/* Update the receive pointer. */
    775 	sc->vr_rxptr = i;
    776 }
    777 
    778 void
    779 vr_rxeoc(sc)
    780 	struct vr_softc *sc;
    781 {
    782 
    783 	vr_rxeof(sc);
    784 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    785 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    786 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    787 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    788 }
    789 
    790 /*
    791  * A frame was downloaded to the chip. It's safe for us to clean up
    792  * the list buffers.
    793  */
    794 static void
    795 vr_txeof(sc)
    796 	struct vr_softc *sc;
    797 {
    798 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    799 	struct vr_desc *d;
    800 	struct vr_descsoft *ds;
    801 	u_int32_t txstat;
    802 	int i;
    803 
    804 	ifp->if_flags &= ~IFF_OACTIVE;
    805 
    806 	/*
    807 	 * Go through our tx list and free mbufs for those
    808 	 * frames that have been transmitted.
    809 	 */
    810 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    811 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    812 		d = VR_CDTX(sc, i);
    813 		ds = VR_DSTX(sc, i);
    814 
    815 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    816 
    817 		txstat = le32toh(d->vr_status);
    818 		if (txstat & VR_TXSTAT_OWN)
    819 			break;
    820 
    821 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    822 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    823 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    824 		m_freem(ds->ds_mbuf);
    825 		ds->ds_mbuf = NULL;
    826 
    827 		if (txstat & VR_TXSTAT_ERRSUM) {
    828 			ifp->if_oerrors++;
    829 			if (txstat & VR_TXSTAT_DEFER)
    830 				ifp->if_collisions++;
    831 			if (txstat & VR_TXSTAT_LATECOLL)
    832 				ifp->if_collisions++;
    833 		}
    834 
    835 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    836 		ifp->if_opackets++;
    837 	}
    838 
    839 	/* Update the dirty transmit buffer pointer. */
    840 	sc->vr_txdirty = i;
    841 
    842 	/*
    843 	 * Cancel the watchdog timer if there are no pending
    844 	 * transmissions.
    845 	 */
    846 	if (sc->vr_txpending == 0)
    847 		ifp->if_timer = 0;
    848 }
    849 
    850 static int
    851 vr_intr(arg)
    852 	void *arg;
    853 {
    854 	struct vr_softc *sc;
    855 	struct ifnet *ifp;
    856 	u_int16_t status;
    857 	int handled = 0, dotx = 0;
    858 
    859 	sc = arg;
    860 	ifp = &sc->vr_ec.ec_if;
    861 
    862 	/* Suppress unwanted interrupts. */
    863 	if ((ifp->if_flags & IFF_UP) == 0) {
    864 		vr_stop(sc, 1);
    865 		return (0);
    866 	}
    867 
    868 	/* Disable interrupts. */
    869 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    870 
    871 	for (;;) {
    872 		status = CSR_READ_2(sc, VR_ISR);
    873 		if (status)
    874 			CSR_WRITE_2(sc, VR_ISR, status);
    875 
    876 		if ((status & VR_INTRS) == 0)
    877 			break;
    878 
    879 		handled = 1;
    880 
    881 		if (status & VR_ISR_RX_OK)
    882 			vr_rxeof(sc);
    883 
    884 		if (status &
    885 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    886 		     VR_ISR_RX_DROPPED))
    887 			vr_rxeoc(sc);
    888 
    889 		if (status & VR_ISR_TX_OK) {
    890 			dotx = 1;
    891 			vr_txeof(sc);
    892 		}
    893 
    894 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    895 			if (status & VR_ISR_TX_UNDERRUN)
    896 				printf("%s: transmit underrun\n",
    897 				    sc->vr_dev.dv_xname);
    898 			if (status & VR_ISR_TX_ABRT)
    899 				printf("%s: transmit aborted\n",
    900 				    sc->vr_dev.dv_xname);
    901 			ifp->if_oerrors++;
    902 			dotx = 1;
    903 			vr_txeof(sc);
    904 			if (sc->vr_txpending) {
    905 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    906 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    907 			}
    908 		}
    909 
    910 		if (status & VR_ISR_BUSERR) {
    911 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    912 			/* vr_init() calls vr_start() */
    913 			dotx = 0;
    914 			(void) vr_init(sc);
    915 		}
    916 	}
    917 
    918 	/* Re-enable interrupts. */
    919 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    920 
    921 	if (dotx)
    922 		vr_start(ifp);
    923 
    924 	return (handled);
    925 }
    926 
    927 /*
    928  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    929  * to the mbuf data regions directly in the transmit lists. We also save a
    930  * copy of the pointers since the transmit list fragment pointers are
    931  * physical addresses.
    932  */
    933 static void
    934 vr_start(ifp)
    935 	struct ifnet *ifp;
    936 {
    937 	struct vr_softc *sc = ifp->if_softc;
    938 	struct mbuf *m0, *m;
    939 	struct vr_desc *d;
    940 	struct vr_descsoft *ds;
    941 	int error, firsttx, nexttx, opending;
    942 
    943 	/*
    944 	 * Remember the previous txpending and the first transmit
    945 	 * descriptor we use.
    946 	 */
    947 	opending = sc->vr_txpending;
    948 	firsttx = VR_NEXTTX(sc->vr_txlast);
    949 
    950 	/*
    951 	 * Loop through the send queue, setting up transmit descriptors
    952 	 * until we drain the queue, or use up all available transmit
    953 	 * descriptors.
    954 	 */
    955 	while (sc->vr_txpending < VR_NTXDESC) {
    956 		/*
    957 		 * Grab a packet off the queue.
    958 		 */
    959 		IF_DEQUEUE(&ifp->if_snd, m0);
    960 		if (m0 == NULL)
    961 			break;
    962 
    963 		/*
    964 		 * Get the next available transmit descriptor.
    965 		 */
    966 		nexttx = VR_NEXTTX(sc->vr_txlast);
    967 		d = VR_CDTX(sc, nexttx);
    968 		ds = VR_DSTX(sc, nexttx);
    969 
    970 		/*
    971 		 * Load the DMA map.  If this fails, the packet didn't
    972 		 * fit in one DMA segment, and we need to copy.  Note,
    973 		 * the packet must also be aligned.
    974 		 */
    975 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    976 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    977 		     BUS_DMA_NOWAIT) != 0) {
    978 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    979 			if (m == NULL) {
    980 				printf("%s: unable to allocate Tx mbuf\n",
    981 				    sc->vr_dev.dv_xname);
    982 				IF_PREPEND(&ifp->if_snd, m0);
    983 				break;
    984 			}
    985 			if (m0->m_pkthdr.len > MHLEN) {
    986 				MCLGET(m, M_DONTWAIT);
    987 				if ((m->m_flags & M_EXT) == 0) {
    988 					printf("%s: unable to allocate Tx "
    989 					    "cluster\n", sc->vr_dev.dv_xname);
    990 					m_freem(m);
    991 					IF_PREPEND(&ifp->if_snd, m0);
    992 					break;
    993 				}
    994 			}
    995 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    996 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    997 			m_freem(m0);
    998 			m0 = m;
    999 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1000 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
   1001 			if (error) {
   1002 				printf("%s: unable to load Tx buffer, "
   1003 				    "error = %d\n", sc->vr_dev.dv_xname, error);
   1004 				IF_PREPEND(&ifp->if_snd, m0);
   1005 				break;
   1006 			}
   1007 		}
   1008 
   1009 		/* Sync the DMA map. */
   1010 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1011 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1012 
   1013 		/*
   1014 		 * Store a pointer to the packet so we can free it later.
   1015 		 */
   1016 		ds->ds_mbuf = m0;
   1017 
   1018 #if NBPFILTER > 0
   1019 		/*
   1020 		 * If there's a BPF listener, bounce a copy of this frame
   1021 		 * to him.
   1022 		 */
   1023 		if (ifp->if_bpf)
   1024 			bpf_mtap(ifp->if_bpf, m0);
   1025 #endif
   1026 
   1027 		/*
   1028 		 * Fill in the transmit descriptor.  The Rhine
   1029 		 * doesn't auto-pad, so we have to do this ourselves.
   1030 		 */
   1031 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1032 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1033 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1034 		d->vr_ctl |=
   1035 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1036 		    VR_TXCTL_LASTFRAG);
   1037 
   1038 		/*
   1039 		 * If this is the first descriptor we're enqueuing,
   1040 		 * don't give it to the Rhine yet.  That could cause
   1041 		 * a race condition.  We'll do it below.
   1042 		 */
   1043 		if (nexttx == firsttx)
   1044 			d->vr_status = 0;
   1045 		else
   1046 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1047 
   1048 		VR_CDTXSYNC(sc, nexttx,
   1049 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1050 
   1051 		/* Advance the tx pointer. */
   1052 		sc->vr_txpending++;
   1053 		sc->vr_txlast = nexttx;
   1054 	}
   1055 
   1056 	if (sc->vr_txpending == VR_NTXDESC) {
   1057 		/* No more slots left; notify upper layer. */
   1058 		ifp->if_flags |= IFF_OACTIVE;
   1059 	}
   1060 
   1061 	if (sc->vr_txpending != opending) {
   1062 		/*
   1063 		 * We enqueued packets.  If the transmitter was idle,
   1064 		 * reset the txdirty pointer.
   1065 		 */
   1066 		if (opending == 0)
   1067 			sc->vr_txdirty = firsttx;
   1068 
   1069 		/*
   1070 		 * Cause a transmit interrupt to happen on the
   1071 		 * last packet we enqueued.
   1072 		 */
   1073 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1074 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1075 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1076 
   1077 		/*
   1078 		 * The entire packet chain is set up.  Give the
   1079 		 * first descriptor to the Rhine now.
   1080 		 */
   1081 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1082 		VR_CDTXSYNC(sc, firsttx,
   1083 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1084 
   1085 		/* Start the transmitter. */
   1086 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1087 
   1088 		/* Set the watchdog timer in case the chip flakes out. */
   1089 		ifp->if_timer = 5;
   1090 	}
   1091 }
   1092 
   1093 /*
   1094  * Initialize the interface.  Must be called at splnet.
   1095  */
   1096 static int
   1097 vr_init(sc)
   1098 	struct vr_softc *sc;
   1099 {
   1100 	struct ifnet *ifp = &sc->vr_ec.ec_if;
   1101 	struct vr_desc *d;
   1102 	struct vr_descsoft *ds;
   1103 	int i, error = 0;
   1104 
   1105 	/* Cancel pending I/O. */
   1106 	vr_stop(sc, 0);
   1107 
   1108 	/* Reset the Rhine to a known state. */
   1109 	vr_reset(sc);
   1110 
   1111 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1112 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1113 
   1114 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1115 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1116 
   1117 	/*
   1118 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1119 	 * to the end of the list so that it will wrap around to the first
   1120 	 * descriptor when the first packet is transmitted.
   1121 	 */
   1122 	for (i = 0; i < VR_NTXDESC; i++) {
   1123 		d = VR_CDTX(sc, i);
   1124 		memset(d, 0, sizeof(struct vr_desc));
   1125 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1126 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1127 	}
   1128 	sc->vr_txpending = 0;
   1129 	sc->vr_txdirty = 0;
   1130 	sc->vr_txlast = VR_NTXDESC - 1;
   1131 
   1132 	/*
   1133 	 * Initialize the receive descriptor ring.
   1134 	 */
   1135 	for (i = 0; i < VR_NRXDESC; i++) {
   1136 		ds = VR_DSRX(sc, i);
   1137 		if (ds->ds_mbuf == NULL) {
   1138 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1139 				printf("%s: unable to allocate or map rx "
   1140 				    "buffer %d, error = %d\n",
   1141 				    sc->vr_dev.dv_xname, i, error);
   1142 				/*
   1143 				 * XXX Should attempt to run with fewer receive
   1144 				 * XXX buffers instead of just failing.
   1145 				 */
   1146 				vr_rxdrain(sc);
   1147 				goto out;
   1148 			}
   1149 		}
   1150 	}
   1151 	sc->vr_rxptr = 0;
   1152 
   1153 	/* If we want promiscuous mode, set the allframes bit. */
   1154 	if (ifp->if_flags & IFF_PROMISC)
   1155 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1156 	else
   1157 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1158 
   1159 	/* Set capture broadcast bit to capture broadcast frames. */
   1160 	if (ifp->if_flags & IFF_BROADCAST)
   1161 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1162 	else
   1163 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1164 
   1165 	/* Program the multicast filter, if necessary. */
   1166 	vr_setmulti(sc);
   1167 
   1168 	/* Give the transmit and recieve rings to the Rhine. */
   1169 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1170 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1171 
   1172 	/* Set current media. */
   1173 	mii_mediachg(&sc->vr_mii);
   1174 
   1175 	/* Enable receiver and transmitter. */
   1176 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1177 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1178 				    VR_CMD_RX_GO);
   1179 
   1180 	/* Enable interrupts. */
   1181 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1182 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1183 
   1184 	ifp->if_flags |= IFF_RUNNING;
   1185 	ifp->if_flags &= ~IFF_OACTIVE;
   1186 
   1187 	/* Start one second timer. */
   1188 	timeout(vr_tick, sc, hz);
   1189 
   1190 	/* Attempt to start output on the interface. */
   1191 	vr_start(ifp);
   1192 
   1193  out:
   1194 	if (error)
   1195 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1196 	return (error);
   1197 }
   1198 
   1199 /*
   1200  * Set media options.
   1201  */
   1202 static int
   1203 vr_ifmedia_upd(ifp)
   1204 	struct ifnet *ifp;
   1205 {
   1206 	struct vr_softc *sc = ifp->if_softc;
   1207 
   1208 	if (ifp->if_flags & IFF_UP)
   1209 		mii_mediachg(&sc->vr_mii);
   1210 	return (0);
   1211 }
   1212 
   1213 /*
   1214  * Report current media status.
   1215  */
   1216 static void
   1217 vr_ifmedia_sts(ifp, ifmr)
   1218 	struct ifnet *ifp;
   1219 	struct ifmediareq *ifmr;
   1220 {
   1221 	struct vr_softc *sc = ifp->if_softc;
   1222 
   1223 	mii_pollstat(&sc->vr_mii);
   1224 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1225 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1226 }
   1227 
   1228 static int
   1229 vr_ioctl(ifp, command, data)
   1230 	struct ifnet *ifp;
   1231 	u_long command;
   1232 	caddr_t data;
   1233 {
   1234 	struct vr_softc *sc = ifp->if_softc;
   1235 	struct ifreq *ifr = (struct ifreq *)data;
   1236 	struct ifaddr *ifa = (struct ifaddr *)data;
   1237 	int s, error = 0;
   1238 
   1239 	s = splnet();
   1240 
   1241 	switch (command) {
   1242 	case SIOCSIFADDR:
   1243 		ifp->if_flags |= IFF_UP;
   1244 
   1245 		switch (ifa->ifa_addr->sa_family) {
   1246 #ifdef INET
   1247 		case AF_INET:
   1248 			if ((error = vr_init(sc)) != 0)
   1249 				break;
   1250 			arp_ifinit(ifp, ifa);
   1251 			break;
   1252 #endif /* INET */
   1253 		default:
   1254 			error = vr_init(sc);
   1255 			break;
   1256 		}
   1257 		break;
   1258 
   1259 	case SIOCGIFADDR:
   1260 		bcopy((caddr_t) sc->vr_enaddr,
   1261 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
   1262 			ETHER_ADDR_LEN);
   1263 		break;
   1264 
   1265 	case SIOCSIFMTU:
   1266 		if (ifr->ifr_mtu > ETHERMTU)
   1267 			error = EINVAL;
   1268 		else
   1269 			ifp->if_mtu = ifr->ifr_mtu;
   1270 		break;
   1271 
   1272 	case SIOCSIFFLAGS:
   1273 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1274 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1275 			/*
   1276 			 * If interface is marked down and it is running, then
   1277 			 * stop it.
   1278 			 */
   1279 			vr_stop(sc, 1);
   1280 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1281 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1282 			/*
   1283 			 * If interface is marked up and it is stopped, then
   1284 			 * start it.
   1285 			 */
   1286 			error = vr_init(sc);
   1287 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1288 			/*
   1289 			 * Reset the interface to pick up changes in any other
   1290 			 * flags that affect the hardware state.
   1291 			 */
   1292 			error = vr_init(sc);
   1293 		}
   1294 		break;
   1295 
   1296 	case SIOCADDMULTI:
   1297 	case SIOCDELMULTI:
   1298 		if (command == SIOCADDMULTI)
   1299 			error = ether_addmulti(ifr, &sc->vr_ec);
   1300 		else
   1301 			error = ether_delmulti(ifr, &sc->vr_ec);
   1302 
   1303 		if (error == ENETRESET) {
   1304 			/*
   1305 			 * Multicast list has changed; set the hardware filter
   1306 			 * accordingly.
   1307 			 */
   1308 			vr_setmulti(sc);
   1309 			error = 0;
   1310 		}
   1311 		break;
   1312 
   1313 	case SIOCGIFMEDIA:
   1314 	case SIOCSIFMEDIA:
   1315 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1316 		break;
   1317 
   1318 	default:
   1319 		error = EINVAL;
   1320 		break;
   1321 	}
   1322 
   1323 	splx(s);
   1324 	return (error);
   1325 }
   1326 
   1327 static void
   1328 vr_watchdog(ifp)
   1329 	struct ifnet *ifp;
   1330 {
   1331 	struct vr_softc *sc = ifp->if_softc;
   1332 
   1333 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1334 	ifp->if_oerrors++;
   1335 
   1336 	(void) vr_init(sc);
   1337 }
   1338 
   1339 /*
   1340  * One second timer, used to tick MII.
   1341  */
   1342 static void
   1343 vr_tick(arg)
   1344 	void *arg;
   1345 {
   1346 	struct vr_softc *sc = arg;
   1347 	int s;
   1348 
   1349 	s = splnet();
   1350 	mii_tick(&sc->vr_mii);
   1351 	splx(s);
   1352 
   1353 	timeout(vr_tick, sc, hz);
   1354 }
   1355 
   1356 /*
   1357  * Drain the receive queue.
   1358  */
   1359 static void
   1360 vr_rxdrain(sc)
   1361 	struct vr_softc *sc;
   1362 {
   1363 	struct vr_descsoft *ds;
   1364 	int i;
   1365 
   1366 	for (i = 0; i < VR_NRXDESC; i++) {
   1367 		ds = VR_DSRX(sc, i);
   1368 		if (ds->ds_mbuf != NULL) {
   1369 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1370 			m_freem(ds->ds_mbuf);
   1371 			ds->ds_mbuf = NULL;
   1372 		}
   1373 	}
   1374 }
   1375 
   1376 /*
   1377  * Stop the adapter and free any mbufs allocated to the
   1378  * transmit lists.
   1379  */
   1380 static void
   1381 vr_stop(sc, drain)
   1382 	struct vr_softc *sc;
   1383 	int drain;
   1384 {
   1385 	struct vr_descsoft *ds;
   1386 	struct ifnet *ifp;
   1387 	int i;
   1388 
   1389 	/* Cancel one second timer. */
   1390 	untimeout(vr_tick, sc);
   1391 
   1392 	/* Down the MII. */
   1393 	mii_down(&sc->vr_mii);
   1394 
   1395 	ifp = &sc->vr_ec.ec_if;
   1396 	ifp->if_timer = 0;
   1397 
   1398 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1399 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1400 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1401 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1402 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1403 
   1404 	/*
   1405 	 * Release any queued transmit buffers.
   1406 	 */
   1407 	for (i = 0; i < VR_NTXDESC; i++) {
   1408 		ds = VR_DSTX(sc, i);
   1409 		if (ds->ds_mbuf != NULL) {
   1410 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1411 			m_freem(ds->ds_mbuf);
   1412 			ds->ds_mbuf = NULL;
   1413 		}
   1414 	}
   1415 
   1416 	if (drain) {
   1417 		/*
   1418 		 * Release the receive buffers.
   1419 		 */
   1420 		vr_rxdrain(sc);
   1421 	}
   1422 
   1423 	/*
   1424 	 * Mark the interface down and cancel the watchdog timer.
   1425 	 */
   1426 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1427 	ifp->if_timer = 0;
   1428 }
   1429 
   1430 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1431 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1432 static void vr_attach __P((struct device *, struct device *, void *));
   1433 static void vr_shutdown __P((void *));
   1434 
   1435 struct cfattach vr_ca = {
   1436 	sizeof (struct vr_softc), vr_probe, vr_attach
   1437 };
   1438 
   1439 static struct vr_type *
   1440 vr_lookup(pa)
   1441 	struct pci_attach_args *pa;
   1442 {
   1443 	struct vr_type *vrt;
   1444 
   1445 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1446 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1447 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1448 			return (vrt);
   1449 	}
   1450 	return (NULL);
   1451 }
   1452 
   1453 static int
   1454 vr_probe(parent, match, aux)
   1455 	struct device *parent;
   1456 	struct cfdata *match;
   1457 	void *aux;
   1458 {
   1459 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1460 
   1461 	if (vr_lookup(pa) != NULL)
   1462 		return (1);
   1463 
   1464 	return (0);
   1465 }
   1466 
   1467 /*
   1468  * Stop all chip I/O so that the kernel's probe routines don't
   1469  * get confused by errant DMAs when rebooting.
   1470  */
   1471 static void
   1472 vr_shutdown(arg)
   1473 	void *arg;
   1474 {
   1475 	struct vr_softc *sc = (struct vr_softc *)arg;
   1476 
   1477 	vr_stop(sc, 1);
   1478 }
   1479 
   1480 /*
   1481  * Attach the interface. Allocate softc structures, do ifmedia
   1482  * setup and ethernet/BPF attach.
   1483  */
   1484 static void
   1485 vr_attach(parent, self, aux)
   1486 	struct device *parent;
   1487 	struct device *self;
   1488 	void *aux;
   1489 {
   1490 	struct vr_softc *sc = (struct vr_softc *) self;
   1491 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1492 	bus_dma_segment_t seg;
   1493 	struct vr_type *vrt;
   1494 	u_int32_t command;
   1495 	struct ifnet *ifp;
   1496 	u_char eaddr[ETHER_ADDR_LEN];
   1497 	int i, rseg, error;
   1498 
   1499 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1500 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1501 
   1502 	vrt = vr_lookup(pa);
   1503 	if (vrt == NULL) {
   1504 		printf("\n");
   1505 		panic("vr_attach: impossible");
   1506 	}
   1507 
   1508 	printf(": %s Ethernet\n", vrt->vr_name);
   1509 
   1510 	/*
   1511 	 * Handle power management nonsense.
   1512 	 */
   1513 
   1514 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1515 	if (command == 0x01) {
   1516 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1517 		if (command & VR_PSTATE_MASK) {
   1518 			u_int32_t iobase, membase, irq;
   1519 
   1520 			/* Save important PCI config data. */
   1521 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1522 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1523 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1524 
   1525 			/* Reset the power state. */
   1526 			printf("%s: chip is in D%d power mode "
   1527 				"-- setting to D0\n",
   1528 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1529 			command &= 0xFFFFFFFC;
   1530 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1531 
   1532 			/* Restore PCI config data. */
   1533 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1534 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1535 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1536 		}
   1537 	}
   1538 
   1539 	/* Make sure bus mastering is enabled. */
   1540 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1541 	command |= PCI_COMMAND_MASTER_ENABLE;
   1542 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1543 
   1544 	/*
   1545 	 * Map control/status registers.
   1546 	 */
   1547 	{
   1548 		bus_space_tag_t iot, memt;
   1549 		bus_space_handle_t ioh, memh;
   1550 		int ioh_valid, memh_valid;
   1551 		pci_intr_handle_t intrhandle;
   1552 		const char *intrstr;
   1553 
   1554 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1555 			PCI_MAPREG_TYPE_IO, 0,
   1556 			&iot, &ioh, NULL, NULL) == 0);
   1557 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1558 			PCI_MAPREG_TYPE_MEM |
   1559 			PCI_MAPREG_MEM_TYPE_32BIT,
   1560 			0, &memt, &memh, NULL, NULL) == 0);
   1561 #if defined(VR_USEIOSPACE)
   1562 		if (ioh_valid) {
   1563 			sc->vr_bst = iot;
   1564 			sc->vr_bsh = ioh;
   1565 		} else if (memh_valid) {
   1566 			sc->vr_bst = memt;
   1567 			sc->vr_bsh = memh;
   1568 		}
   1569 #else
   1570 		if (memh_valid) {
   1571 			sc->vr_bst = memt;
   1572 			sc->vr_bsh = memh;
   1573 		} else if (ioh_valid) {
   1574 			sc->vr_bst = iot;
   1575 			sc->vr_bsh = ioh;
   1576 		}
   1577 #endif
   1578 		else {
   1579 			printf(": unable to map device registers\n");
   1580 			return;
   1581 		}
   1582 
   1583 		/* Allocate interrupt */
   1584 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1585 				pa->pa_intrline, &intrhandle)) {
   1586 			printf("%s: couldn't map interrupt\n",
   1587 				sc->vr_dev.dv_xname);
   1588 			return;
   1589 		}
   1590 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1591 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1592 						vr_intr, sc);
   1593 		if (sc->vr_ih == NULL) {
   1594 			printf("%s: couldn't establish interrupt",
   1595 				sc->vr_dev.dv_xname);
   1596 			if (intrstr != NULL)
   1597 				printf(" at %s", intrstr);
   1598 			printf("\n");
   1599 		}
   1600 		printf("%s: interrupting at %s\n",
   1601 			sc->vr_dev.dv_xname, intrstr);
   1602 	}
   1603 
   1604 	/* Reset the adapter. */
   1605 	vr_reset(sc);
   1606 
   1607 	/*
   1608 	 * Get station address. The way the Rhine chips work,
   1609 	 * you're not allowed to directly access the EEPROM once
   1610 	 * they've been programmed a special way. Consequently,
   1611 	 * we need to read the node address from the PAR0 and PAR1
   1612 	 * registers.
   1613 	 */
   1614 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1615 	DELAY(200);
   1616 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1617 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1618 
   1619 	/*
   1620 	 * A Rhine chip was detected. Inform the world.
   1621 	 */
   1622 	printf("%s: Ethernet address: %s\n",
   1623 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1624 
   1625 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1626 
   1627 	sc->vr_dmat = pa->pa_dmat;
   1628 
   1629 	/*
   1630 	 * Allocate the control data structures, and create and load
   1631 	 * the DMA map for it.
   1632 	 */
   1633 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1634 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1635 	    0)) != 0) {
   1636 		printf("%s: unable to allocate control data, error = %d\n",
   1637 		    sc->vr_dev.dv_xname, error);
   1638 		goto fail_0;
   1639 	}
   1640 
   1641 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1642 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1643 	    BUS_DMA_COHERENT)) != 0) {
   1644 		printf("%s: unable to map control data, error = %d\n",
   1645 		    sc->vr_dev.dv_xname, error);
   1646 		goto fail_1;
   1647 	}
   1648 
   1649 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1650 	    sizeof(struct vr_control_data), 1,
   1651 	    sizeof(struct vr_control_data), 0, 0,
   1652 	    &sc->vr_cddmamap)) != 0) {
   1653 		printf("%s: unable to create control data DMA map, "
   1654 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1655 		goto fail_2;
   1656 	}
   1657 
   1658 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1659 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1660 	    0)) != 0) {
   1661 		printf("%s: unable to load control data DMA map, error = %d\n",
   1662 		    sc->vr_dev.dv_xname, error);
   1663 		goto fail_3;
   1664 	}
   1665 
   1666 	/*
   1667 	 * Create the transmit buffer DMA maps.
   1668 	 */
   1669 	for (i = 0; i < VR_NTXDESC; i++) {
   1670 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1671 		    1, MCLBYTES, 0, 0,
   1672 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1673 			printf("%s: unable to create tx DMA map %d, "
   1674 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1675 			goto fail_4;
   1676 		}
   1677 	}
   1678 
   1679 	/*
   1680 	 * Create the receive buffer DMA maps.
   1681 	 */
   1682 	for (i = 0; i < VR_NRXDESC; i++) {
   1683 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1684 		    MCLBYTES, 0, 0,
   1685 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1686 			printf("%s: unable to create rx DMA map %d, "
   1687 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1688 			goto fail_5;
   1689 		}
   1690 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1691 	}
   1692 
   1693 	ifp = &sc->vr_ec.ec_if;
   1694 	ifp->if_softc = sc;
   1695 	ifp->if_mtu = ETHERMTU;
   1696 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1697 	ifp->if_ioctl = vr_ioctl;
   1698 	ifp->if_start = vr_start;
   1699 	ifp->if_watchdog = vr_watchdog;
   1700 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1701 
   1702 	/*
   1703 	 * Initialize MII/media info.
   1704 	 */
   1705 	sc->vr_mii.mii_ifp = ifp;
   1706 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1707 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1708 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1709 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1710 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1711 	    MII_OFFSET_ANY, 0);
   1712 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1713 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1714 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1715 	} else
   1716 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1717 
   1718 	/*
   1719 	 * Call MI attach routines.
   1720 	 */
   1721 	if_attach(ifp);
   1722 	ether_ifattach(ifp, sc->vr_enaddr);
   1723 
   1724 #if NBPFILTER > 0
   1725 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1726 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1727 #endif
   1728 
   1729 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1730 	if (sc->vr_ats == NULL)
   1731 		printf("%s: warning: couldn't establish shutdown hook\n",
   1732 			sc->vr_dev.dv_xname);
   1733 	return;
   1734 
   1735  fail_5:
   1736 	for (i = 0; i < VR_NRXDESC; i++) {
   1737 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1738 			bus_dmamap_destroy(sc->vr_dmat,
   1739 			    sc->vr_rxsoft[i].ds_dmamap);
   1740 	}
   1741  fail_4:
   1742 	for (i = 0; i < VR_NTXDESC; i++) {
   1743 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1744 			bus_dmamap_destroy(sc->vr_dmat,
   1745 			    sc->vr_txsoft[i].ds_dmamap);
   1746 	}
   1747 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1748  fail_3:
   1749 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1750  fail_2:
   1751 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1752 	    sizeof(struct vr_control_data));
   1753  fail_1:
   1754 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1755  fail_0:
   1756 	return;
   1757 }
   1758