if_vr.c revision 1.34.4.2 1 /* $NetBSD: if_vr.c,v 1.34.4.2 2001/03/13 20:44:29 he Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <vm/vm.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct vr_softc *));
305 static void vr_stop __P((struct vr_softc *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static u_int8_t vr_calchash __P((u_int8_t *));
318 static void vr_setmulti __P((struct vr_softc *));
319 static void vr_reset __P((struct vr_softc *));
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | x)
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~x)
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | x)
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~x)
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | x)
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~x)
346
347 /*
348 * MII bit-bang glue.
349 */
350 u_int32_t vr_mii_bitbang_read __P((struct device *));
351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
352
353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 u_int32_t
366 vr_mii_bitbang_read(self)
367 struct device *self;
368 {
369 struct vr_softc *sc = (void *) self;
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 void
375 vr_mii_bitbang_write(self, val)
376 struct device *self;
377 u_int32_t val;
378 {
379 struct vr_softc *sc = (void *) self;
380
381 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
382 }
383
384 /*
385 * Read an PHY register through the MII.
386 */
387 static int
388 vr_mii_readreg(self, phy, reg)
389 struct device *self;
390 int phy, reg;
391 {
392 struct vr_softc *sc = (void *) self;
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
396 }
397
398 /*
399 * Write to a PHY register through the MII.
400 */
401 static void
402 vr_mii_writereg(self, phy, reg, val)
403 struct device *self;
404 int phy, reg, val;
405 {
406 struct vr_softc *sc = (void *) self;
407
408 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
409 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
410 }
411
412 static void
413 vr_mii_statchg(self)
414 struct device *self;
415 {
416 struct vr_softc *sc = (struct vr_softc *)self;
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 /*
435 * Calculate CRC of a multicast group address, return the lower 6 bits.
436 */
437 static u_int8_t
438 vr_calchash(addr)
439 u_int8_t *addr;
440 {
441 u_int32_t crc, carry;
442 int i, j;
443 u_int8_t c;
444
445 /* Compute CRC for the address value. */
446 crc = 0xFFFFFFFF; /* initial value */
447
448 for (i = 0; i < 6; i++) {
449 c = *(addr + i);
450 for (j = 0; j < 8; j++) {
451 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
452 crc <<= 1;
453 c >>= 1;
454 if (carry)
455 crc = (crc ^ 0x04c11db6) | carry;
456 }
457 }
458
459 /* return the filter bit position */
460 return ((crc >> 26) & 0x0000003F);
461 }
462
463 /*
464 * Program the 64-bit multicast hash filter.
465 */
466 static void
467 vr_setmulti(sc)
468 struct vr_softc *sc;
469 {
470 struct ifnet *ifp;
471 int h = 0;
472 u_int32_t hashes[2] = { 0, 0 };
473 struct ether_multistep step;
474 struct ether_multi *enm;
475 int mcnt = 0;
476 u_int8_t rxfilt;
477
478 ifp = &sc->vr_ec.ec_if;
479
480 rxfilt = CSR_READ_1(sc, VR_RXCFG);
481
482 if (ifp->if_flags & IFF_PROMISC) {
483 allmulti:
484 ifp->if_flags |= IFF_ALLMULTI;
485 rxfilt |= VR_RXCFG_RX_MULTI;
486 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
488 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
489 return;
490 }
491
492 /* first, zot all the existing hash bits */
493 CSR_WRITE_4(sc, VR_MAR0, 0);
494 CSR_WRITE_4(sc, VR_MAR1, 0);
495
496 /* now program new ones */
497 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
498 while (enm != NULL) {
499 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
500 ETHER_ADDR_LEN) != 0)
501 goto allmulti;
502
503 h = vr_calchash(enm->enm_addrlo);
504
505 if (h < 32)
506 hashes[0] |= (1 << h);
507 else
508 hashes[1] |= (1 << (h - 32));
509 ETHER_NEXT_MULTI(step, enm);
510 mcnt++;
511 }
512
513 ifp->if_flags &= ~IFF_ALLMULTI;
514
515 if (mcnt)
516 rxfilt |= VR_RXCFG_RX_MULTI;
517 else
518 rxfilt &= ~VR_RXCFG_RX_MULTI;
519
520 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
521 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
522 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
523 }
524
525 static void
526 vr_reset(sc)
527 struct vr_softc *sc;
528 {
529 int i;
530
531 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
532
533 for (i = 0; i < VR_TIMEOUT; i++) {
534 DELAY(10);
535 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
536 break;
537 }
538 if (i == VR_TIMEOUT)
539 printf("%s: reset never completed!\n",
540 sc->vr_dev.dv_xname);
541
542 /* Wait a little while for the chip to get its brains in order. */
543 DELAY(1000);
544 }
545
546 /*
547 * Initialize an RX descriptor and attach an MBUF cluster.
548 * Note: the length fields are only 11 bits wide, which means the
549 * largest size we can specify is 2047. This is important because
550 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
551 * overflow the field and make a mess.
552 */
553 static int
554 vr_add_rxbuf(sc, i)
555 struct vr_softc *sc;
556 int i;
557 {
558 struct vr_descsoft *ds = VR_DSRX(sc, i);
559 struct mbuf *m_new;
560 int error;
561
562 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
563 if (m_new == NULL)
564 return (ENOBUFS);
565
566 MCLGET(m_new, M_DONTWAIT);
567 if ((m_new->m_flags & M_EXT) == 0) {
568 m_freem(m_new);
569 return (ENOBUFS);
570 }
571
572 if (ds->ds_mbuf != NULL)
573 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
574
575 ds->ds_mbuf = m_new;
576
577 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
578 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
579 if (error) {
580 printf("%s: unable to load rx DMA map %d, error = %d\n",
581 sc->vr_dev.dv_xname, i, error);
582 panic("vr_add_rxbuf"); /* XXX */
583 }
584
585 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
586 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
587
588 VR_INIT_RXDESC(sc, i);
589
590 return (0);
591 }
592
593 /*
594 * A frame has been uploaded: pass the resulting mbuf chain up to
595 * the higher level protocols.
596 */
597 static void
598 vr_rxeof(sc)
599 struct vr_softc *sc;
600 {
601 struct ether_header *eh;
602 struct mbuf *m;
603 struct ifnet *ifp;
604 struct vr_desc *d;
605 struct vr_descsoft *ds;
606 int i, total_len;
607 u_int32_t rxstat;
608
609 ifp = &sc->vr_ec.ec_if;
610
611 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
612 d = VR_CDRX(sc, i);
613 ds = VR_DSRX(sc, i);
614
615 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
616
617 rxstat = le32toh(d->vr_status);
618
619 if (rxstat & VR_RXSTAT_OWN) {
620 /*
621 * We have processed all of the receive buffers.
622 */
623 break;
624 }
625
626 /*
627 * If an error occurs, update stats, clear the
628 * status word and leave the mbuf cluster in place:
629 * it should simply get re-used next time this descriptor
630 * comes up in the ring.
631 */
632 if (rxstat & VR_RXSTAT_RXERR) {
633 const char *errstr;
634
635 ifp->if_ierrors++;
636 switch (rxstat & 0x000000FF) {
637 case VR_RXSTAT_CRCERR:
638 errstr = "crc error";
639 break;
640 case VR_RXSTAT_FRAMEALIGNERR:
641 errstr = "frame alignment error";
642 break;
643 case VR_RXSTAT_FIFOOFLOW:
644 errstr = "FIFO overflow";
645 break;
646 case VR_RXSTAT_GIANT:
647 errstr = "received giant packet";
648 break;
649 case VR_RXSTAT_RUNT:
650 errstr = "received runt packet";
651 break;
652 case VR_RXSTAT_BUSERR:
653 errstr = "system bus error";
654 break;
655 case VR_RXSTAT_BUFFERR:
656 errstr = "rx buffer error";
657 break;
658 default:
659 errstr = "unknown rx error";
660 break;
661 }
662 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
663 errstr);
664
665 VR_INIT_RXDESC(sc, i);
666
667 continue;
668 }
669
670 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
671 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
672
673 /* No errors; receive the packet. */
674 total_len = VR_RXBYTES(le32toh(d->vr_status));
675
676 /*
677 * XXX The VIA Rhine chip includes the CRC with every
678 * received frame, and there's no way to turn this
679 * behavior off (at least, I can't find anything in
680 * the manual that explains how to do it) so we have
681 * to trim off the CRC manually.
682 */
683 total_len -= ETHER_CRC_LEN;
684
685 #ifdef __NO_STRICT_ALIGNMENT
686 /*
687 * If the packet is small enough to fit in a
688 * single header mbuf, allocate one and copy
689 * the data into it. This greatly reduces
690 * memory consumption when we receive lots
691 * of small packets.
692 *
693 * Otherwise, we add a new buffer to the receive
694 * chain. If this fails, we drop the packet and
695 * recycle the old buffer.
696 */
697 if (vr_copy_small != 0 && total_len <= MHLEN) {
698 MGETHDR(m, M_DONTWAIT, MT_DATA);
699 if (m == NULL)
700 goto dropit;
701 memcpy(mtod(m, caddr_t),
702 mtod(ds->ds_mbuf, caddr_t), total_len);
703 VR_INIT_RXDESC(sc, i);
704 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize,
706 BUS_DMASYNC_PREREAD);
707 } else {
708 m = ds->ds_mbuf;
709 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
710 dropit:
711 ifp->if_ierrors++;
712 VR_INIT_RXDESC(sc, i);
713 bus_dmamap_sync(sc->vr_dmat,
714 ds->ds_dmamap, 0,
715 ds->ds_dmamap->dm_mapsize,
716 BUS_DMASYNC_PREREAD);
717 continue;
718 }
719 }
720 #else
721 /*
722 * The Rhine's packet buffers must be 4-byte aligned.
723 * But this means that the data after the Ethernet header
724 * is misaligned. We must allocate a new buffer and
725 * copy the data, shifted forward 2 bytes.
726 */
727 MGETHDR(m, M_DONTWAIT, MT_DATA);
728 if (m == NULL) {
729 dropit:
730 ifp->if_ierrors++;
731 VR_INIT_RXDESC(sc, i);
732 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
733 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
734 continue;
735 }
736 if (total_len > (MHLEN - 2)) {
737 MCLGET(m, M_DONTWAIT);
738 if ((m->m_flags & M_EXT) == 0) {
739 m_freem(m);
740 goto dropit;
741 }
742 }
743 m->m_data += 2;
744
745 /*
746 * Note that we use clusters for incoming frames, so the
747 * buffer is virtually contiguous.
748 */
749 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
750 total_len);
751
752 /* Allow the recieve descriptor to continue using its mbuf. */
753 VR_INIT_RXDESC(sc, i);
754 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
755 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
756 #endif /* __NO_STRICT_ALIGNMENT */
757
758 ifp->if_ipackets++;
759 eh = mtod(m, struct ether_header *);
760 m->m_pkthdr.rcvif = ifp;
761 m->m_pkthdr.len = m->m_len = total_len;
762 #if NBPFILTER > 0
763 /*
764 * Handle BPF listeners. Let the BPF user see the packet, but
765 * don't pass it up to the ether_input() layer unless it's
766 * a broadcast packet, multicast packet, matches our ethernet
767 * address or the interface is in promiscuous mode.
768 */
769 if (ifp->if_bpf) {
770 bpf_mtap(ifp->if_bpf, m);
771 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
772 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
773 memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
774 ETHER_ADDR_LEN) != 0) {
775 m_freem(m);
776 continue;
777 }
778 }
779 #endif
780 /* Pass it on. */
781 (*ifp->if_input)(ifp, m);
782 }
783
784 /* Update the receive pointer. */
785 sc->vr_rxptr = i;
786 }
787
788 void
789 vr_rxeoc(sc)
790 struct vr_softc *sc;
791 {
792
793 vr_rxeof(sc);
794 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
795 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
796 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
797 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
798 }
799
800 /*
801 * A frame was downloaded to the chip. It's safe for us to clean up
802 * the list buffers.
803 */
804 static void
805 vr_txeof(sc)
806 struct vr_softc *sc;
807 {
808 struct ifnet *ifp = &sc->vr_ec.ec_if;
809 struct vr_desc *d;
810 struct vr_descsoft *ds;
811 u_int32_t txstat;
812 int i;
813
814 ifp->if_flags &= ~IFF_OACTIVE;
815
816 /*
817 * Go through our tx list and free mbufs for those
818 * frames that have been transmitted.
819 */
820 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
821 i = VR_NEXTTX(i), sc->vr_txpending--) {
822 d = VR_CDTX(sc, i);
823 ds = VR_DSTX(sc, i);
824
825 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
826
827 txstat = le32toh(d->vr_status);
828 if (txstat & VR_TXSTAT_OWN)
829 break;
830
831 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
832 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
833 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
834 m_freem(ds->ds_mbuf);
835 ds->ds_mbuf = NULL;
836
837 if (txstat & VR_TXSTAT_ERRSUM) {
838 ifp->if_oerrors++;
839 if (txstat & VR_TXSTAT_DEFER)
840 ifp->if_collisions++;
841 if (txstat & VR_TXSTAT_LATECOLL)
842 ifp->if_collisions++;
843 }
844
845 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
846 ifp->if_opackets++;
847 }
848
849 /* Update the dirty transmit buffer pointer. */
850 sc->vr_txdirty = i;
851
852 /*
853 * Cancel the watchdog timer if there are no pending
854 * transmissions.
855 */
856 if (sc->vr_txpending == 0)
857 ifp->if_timer = 0;
858 }
859
860 static int
861 vr_intr(arg)
862 void *arg;
863 {
864 struct vr_softc *sc;
865 struct ifnet *ifp;
866 u_int16_t status;
867 int handled = 0, dotx = 0;
868
869 sc = arg;
870 ifp = &sc->vr_ec.ec_if;
871
872 /* Suppress unwanted interrupts. */
873 if ((ifp->if_flags & IFF_UP) == 0) {
874 vr_stop(sc, 1);
875 return (0);
876 }
877
878 /* Disable interrupts. */
879 CSR_WRITE_2(sc, VR_IMR, 0x0000);
880
881 for (;;) {
882 status = CSR_READ_2(sc, VR_ISR);
883 if (status)
884 CSR_WRITE_2(sc, VR_ISR, status);
885
886 if ((status & VR_INTRS) == 0)
887 break;
888
889 handled = 1;
890
891 if (status & VR_ISR_RX_OK)
892 vr_rxeof(sc);
893
894 if (status &
895 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
896 VR_ISR_RX_DROPPED))
897 vr_rxeoc(sc);
898
899 if (status & VR_ISR_TX_OK) {
900 dotx = 1;
901 vr_txeof(sc);
902 }
903
904 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
905 if (status & VR_ISR_TX_UNDERRUN)
906 printf("%s: transmit underrun\n",
907 sc->vr_dev.dv_xname);
908 if (status & VR_ISR_TX_ABRT)
909 printf("%s: transmit aborted\n",
910 sc->vr_dev.dv_xname);
911 ifp->if_oerrors++;
912 dotx = 1;
913 vr_txeof(sc);
914 if (sc->vr_txpending) {
915 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
916 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
917 }
918 }
919
920 if (status & VR_ISR_BUSERR) {
921 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
922 /* vr_init() calls vr_start() */
923 dotx = 0;
924 (void) vr_init(sc);
925 }
926 }
927
928 /* Re-enable interrupts. */
929 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
930
931 if (dotx)
932 vr_start(ifp);
933
934 return (handled);
935 }
936
937 /*
938 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
939 * to the mbuf data regions directly in the transmit lists. We also save a
940 * copy of the pointers since the transmit list fragment pointers are
941 * physical addresses.
942 */
943 static void
944 vr_start(ifp)
945 struct ifnet *ifp;
946 {
947 struct vr_softc *sc = ifp->if_softc;
948 struct mbuf *m0, *m;
949 struct vr_desc *d;
950 struct vr_descsoft *ds;
951 int error, firsttx, nexttx, opending;
952
953 /*
954 * Remember the previous txpending and the first transmit
955 * descriptor we use.
956 */
957 opending = sc->vr_txpending;
958 firsttx = VR_NEXTTX(sc->vr_txlast);
959
960 /*
961 * Loop through the send queue, setting up transmit descriptors
962 * until we drain the queue, or use up all available transmit
963 * descriptors.
964 */
965 while (sc->vr_txpending < VR_NTXDESC) {
966 /*
967 * Grab a packet off the queue.
968 */
969 IF_DEQUEUE(&ifp->if_snd, m0);
970 if (m0 == NULL)
971 break;
972
973 /*
974 * Get the next available transmit descriptor.
975 */
976 nexttx = VR_NEXTTX(sc->vr_txlast);
977 d = VR_CDTX(sc, nexttx);
978 ds = VR_DSTX(sc, nexttx);
979
980 /*
981 * Load the DMA map. If this fails, the packet didn't
982 * fit in one DMA segment, and we need to copy. Note,
983 * the packet must also be aligned.
984 */
985 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
986 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
987 BUS_DMA_NOWAIT) != 0) {
988 MGETHDR(m, M_DONTWAIT, MT_DATA);
989 if (m == NULL) {
990 printf("%s: unable to allocate Tx mbuf\n",
991 sc->vr_dev.dv_xname);
992 IF_PREPEND(&ifp->if_snd, m0);
993 break;
994 }
995 if (m0->m_pkthdr.len > MHLEN) {
996 MCLGET(m, M_DONTWAIT);
997 if ((m->m_flags & M_EXT) == 0) {
998 printf("%s: unable to allocate Tx "
999 "cluster\n", sc->vr_dev.dv_xname);
1000 m_freem(m);
1001 IF_PREPEND(&ifp->if_snd, m0);
1002 break;
1003 }
1004 }
1005 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1006 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1007 m_freem(m0);
1008 m0 = m;
1009 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1010 ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1011 if (error) {
1012 printf("%s: unable to load Tx buffer, "
1013 "error = %d\n", sc->vr_dev.dv_xname, error);
1014 IF_PREPEND(&ifp->if_snd, m0);
1015 break;
1016 }
1017 }
1018
1019 /* Sync the DMA map. */
1020 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1021 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1022
1023 /*
1024 * Store a pointer to the packet so we can free it later.
1025 */
1026 ds->ds_mbuf = m0;
1027
1028 #if NBPFILTER > 0
1029 /*
1030 * If there's a BPF listener, bounce a copy of this frame
1031 * to him.
1032 */
1033 if (ifp->if_bpf)
1034 bpf_mtap(ifp->if_bpf, m0);
1035 #endif
1036
1037 /*
1038 * Fill in the transmit descriptor. The Rhine
1039 * doesn't auto-pad, so we have to do this ourselves.
1040 */
1041 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1042 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1043 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1044 d->vr_ctl |=
1045 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1046 VR_TXCTL_LASTFRAG);
1047
1048 /*
1049 * If this is the first descriptor we're enqueuing,
1050 * don't give it to the Rhine yet. That could cause
1051 * a race condition. We'll do it below.
1052 */
1053 if (nexttx == firsttx)
1054 d->vr_status = 0;
1055 else
1056 d->vr_status = htole32(VR_TXSTAT_OWN);
1057
1058 VR_CDTXSYNC(sc, nexttx,
1059 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060
1061 /* Advance the tx pointer. */
1062 sc->vr_txpending++;
1063 sc->vr_txlast = nexttx;
1064 }
1065
1066 if (sc->vr_txpending == VR_NTXDESC) {
1067 /* No more slots left; notify upper layer. */
1068 ifp->if_flags |= IFF_OACTIVE;
1069 }
1070
1071 if (sc->vr_txpending != opending) {
1072 /*
1073 * We enqueued packets. If the transmitter was idle,
1074 * reset the txdirty pointer.
1075 */
1076 if (opending == 0)
1077 sc->vr_txdirty = firsttx;
1078
1079 /*
1080 * Cause a transmit interrupt to happen on the
1081 * last packet we enqueued.
1082 */
1083 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1084 VR_CDTXSYNC(sc, sc->vr_txlast,
1085 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1086
1087 /*
1088 * The entire packet chain is set up. Give the
1089 * first descriptor to the Rhine now.
1090 */
1091 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1092 VR_CDTXSYNC(sc, firsttx,
1093 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094
1095 /* Start the transmitter. */
1096 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1097
1098 /* Set the watchdog timer in case the chip flakes out. */
1099 ifp->if_timer = 5;
1100 }
1101 }
1102
1103 /*
1104 * Initialize the interface. Must be called at splnet.
1105 */
1106 static int
1107 vr_init(sc)
1108 struct vr_softc *sc;
1109 {
1110 struct ifnet *ifp = &sc->vr_ec.ec_if;
1111 struct vr_desc *d;
1112 struct vr_descsoft *ds;
1113 int i, error = 0;
1114
1115 /* Cancel pending I/O. */
1116 vr_stop(sc, 0);
1117
1118 /* Reset the Rhine to a known state. */
1119 vr_reset(sc);
1120
1121 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1122 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1123
1124 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1125 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1126
1127 /*
1128 * Initialize the transmit desciptor ring. txlast is initialized
1129 * to the end of the list so that it will wrap around to the first
1130 * descriptor when the first packet is transmitted.
1131 */
1132 for (i = 0; i < VR_NTXDESC; i++) {
1133 d = VR_CDTX(sc, i);
1134 memset(d, 0, sizeof(struct vr_desc));
1135 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1136 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1137 }
1138 sc->vr_txpending = 0;
1139 sc->vr_txdirty = 0;
1140 sc->vr_txlast = VR_NTXDESC - 1;
1141
1142 /*
1143 * Initialize the receive descriptor ring.
1144 */
1145 for (i = 0; i < VR_NRXDESC; i++) {
1146 ds = VR_DSRX(sc, i);
1147 if (ds->ds_mbuf == NULL) {
1148 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1149 printf("%s: unable to allocate or map rx "
1150 "buffer %d, error = %d\n",
1151 sc->vr_dev.dv_xname, i, error);
1152 /*
1153 * XXX Should attempt to run with fewer receive
1154 * XXX buffers instead of just failing.
1155 */
1156 vr_rxdrain(sc);
1157 goto out;
1158 }
1159 }
1160 }
1161 sc->vr_rxptr = 0;
1162
1163 /* If we want promiscuous mode, set the allframes bit. */
1164 if (ifp->if_flags & IFF_PROMISC)
1165 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1166 else
1167 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1168
1169 /* Set capture broadcast bit to capture broadcast frames. */
1170 if (ifp->if_flags & IFF_BROADCAST)
1171 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1172 else
1173 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1174
1175 /* Program the multicast filter, if necessary. */
1176 vr_setmulti(sc);
1177
1178 /* Give the transmit and recieve rings to the Rhine. */
1179 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1180 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1181
1182 /* Set current media. */
1183 mii_mediachg(&sc->vr_mii);
1184
1185 /* Enable receiver and transmitter. */
1186 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1187 VR_CMD_TX_ON|VR_CMD_RX_ON|
1188 VR_CMD_RX_GO);
1189
1190 /* Enable interrupts. */
1191 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1192 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1193
1194 ifp->if_flags |= IFF_RUNNING;
1195 ifp->if_flags &= ~IFF_OACTIVE;
1196
1197 /* Start one second timer. */
1198 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1199
1200 /* Attempt to start output on the interface. */
1201 vr_start(ifp);
1202
1203 out:
1204 if (error)
1205 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1206 return (error);
1207 }
1208
1209 /*
1210 * Set media options.
1211 */
1212 static int
1213 vr_ifmedia_upd(ifp)
1214 struct ifnet *ifp;
1215 {
1216 struct vr_softc *sc = ifp->if_softc;
1217
1218 if (ifp->if_flags & IFF_UP)
1219 mii_mediachg(&sc->vr_mii);
1220 return (0);
1221 }
1222
1223 /*
1224 * Report current media status.
1225 */
1226 static void
1227 vr_ifmedia_sts(ifp, ifmr)
1228 struct ifnet *ifp;
1229 struct ifmediareq *ifmr;
1230 {
1231 struct vr_softc *sc = ifp->if_softc;
1232
1233 mii_pollstat(&sc->vr_mii);
1234 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1235 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1236 }
1237
1238 static int
1239 vr_ioctl(ifp, command, data)
1240 struct ifnet *ifp;
1241 u_long command;
1242 caddr_t data;
1243 {
1244 struct vr_softc *sc = ifp->if_softc;
1245 struct ifreq *ifr = (struct ifreq *)data;
1246 struct ifaddr *ifa = (struct ifaddr *)data;
1247 int s, error = 0;
1248
1249 s = splnet();
1250
1251 switch (command) {
1252 case SIOCSIFADDR:
1253 ifp->if_flags |= IFF_UP;
1254
1255 switch (ifa->ifa_addr->sa_family) {
1256 #ifdef INET
1257 case AF_INET:
1258 if ((error = vr_init(sc)) != 0)
1259 break;
1260 arp_ifinit(ifp, ifa);
1261 break;
1262 #endif /* INET */
1263 default:
1264 error = vr_init(sc);
1265 break;
1266 }
1267 break;
1268
1269 case SIOCGIFADDR:
1270 bcopy((caddr_t) sc->vr_enaddr,
1271 (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1272 ETHER_ADDR_LEN);
1273 break;
1274
1275 case SIOCSIFMTU:
1276 if (ifr->ifr_mtu > ETHERMTU)
1277 error = EINVAL;
1278 else
1279 ifp->if_mtu = ifr->ifr_mtu;
1280 break;
1281
1282 case SIOCSIFFLAGS:
1283 if ((ifp->if_flags & IFF_UP) == 0 &&
1284 (ifp->if_flags & IFF_RUNNING) != 0) {
1285 /*
1286 * If interface is marked down and it is running, then
1287 * stop it.
1288 */
1289 vr_stop(sc, 1);
1290 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1291 (ifp->if_flags & IFF_RUNNING) == 0) {
1292 /*
1293 * If interface is marked up and it is stopped, then
1294 * start it.
1295 */
1296 error = vr_init(sc);
1297 } else if ((ifp->if_flags & IFF_UP) != 0) {
1298 /*
1299 * Reset the interface to pick up changes in any other
1300 * flags that affect the hardware state.
1301 */
1302 error = vr_init(sc);
1303 }
1304 break;
1305
1306 case SIOCADDMULTI:
1307 case SIOCDELMULTI:
1308 if (command == SIOCADDMULTI)
1309 error = ether_addmulti(ifr, &sc->vr_ec);
1310 else
1311 error = ether_delmulti(ifr, &sc->vr_ec);
1312
1313 if (error == ENETRESET) {
1314 /*
1315 * Multicast list has changed; set the hardware filter
1316 * accordingly.
1317 */
1318 vr_setmulti(sc);
1319 error = 0;
1320 }
1321 break;
1322
1323 case SIOCGIFMEDIA:
1324 case SIOCSIFMEDIA:
1325 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1326 break;
1327
1328 default:
1329 error = EINVAL;
1330 break;
1331 }
1332
1333 splx(s);
1334 return (error);
1335 }
1336
1337 static void
1338 vr_watchdog(ifp)
1339 struct ifnet *ifp;
1340 {
1341 struct vr_softc *sc = ifp->if_softc;
1342
1343 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1344 ifp->if_oerrors++;
1345
1346 (void) vr_init(sc);
1347 }
1348
1349 /*
1350 * One second timer, used to tick MII.
1351 */
1352 static void
1353 vr_tick(arg)
1354 void *arg;
1355 {
1356 struct vr_softc *sc = arg;
1357 int s;
1358
1359 s = splnet();
1360 mii_tick(&sc->vr_mii);
1361 splx(s);
1362
1363 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1364 }
1365
1366 /*
1367 * Drain the receive queue.
1368 */
1369 static void
1370 vr_rxdrain(sc)
1371 struct vr_softc *sc;
1372 {
1373 struct vr_descsoft *ds;
1374 int i;
1375
1376 for (i = 0; i < VR_NRXDESC; i++) {
1377 ds = VR_DSRX(sc, i);
1378 if (ds->ds_mbuf != NULL) {
1379 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1380 m_freem(ds->ds_mbuf);
1381 ds->ds_mbuf = NULL;
1382 }
1383 }
1384 }
1385
1386 /*
1387 * Stop the adapter and free any mbufs allocated to the
1388 * transmit lists.
1389 */
1390 static void
1391 vr_stop(sc, drain)
1392 struct vr_softc *sc;
1393 int drain;
1394 {
1395 struct vr_descsoft *ds;
1396 struct ifnet *ifp;
1397 int i;
1398
1399 /* Cancel one second timer. */
1400 callout_stop(&sc->vr_tick_ch);
1401
1402 /* Down the MII. */
1403 mii_down(&sc->vr_mii);
1404
1405 ifp = &sc->vr_ec.ec_if;
1406 ifp->if_timer = 0;
1407
1408 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1409 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1410 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1411 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1412 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1413
1414 /*
1415 * Release any queued transmit buffers.
1416 */
1417 for (i = 0; i < VR_NTXDESC; i++) {
1418 ds = VR_DSTX(sc, i);
1419 if (ds->ds_mbuf != NULL) {
1420 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1421 m_freem(ds->ds_mbuf);
1422 ds->ds_mbuf = NULL;
1423 }
1424 }
1425
1426 if (drain) {
1427 /*
1428 * Release the receive buffers.
1429 */
1430 vr_rxdrain(sc);
1431 }
1432
1433 /*
1434 * Mark the interface down and cancel the watchdog timer.
1435 */
1436 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1437 ifp->if_timer = 0;
1438 }
1439
1440 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1441 static int vr_probe __P((struct device *, struct cfdata *, void *));
1442 static void vr_attach __P((struct device *, struct device *, void *));
1443 static void vr_shutdown __P((void *));
1444
1445 struct cfattach vr_ca = {
1446 sizeof (struct vr_softc), vr_probe, vr_attach
1447 };
1448
1449 static struct vr_type *
1450 vr_lookup(pa)
1451 struct pci_attach_args *pa;
1452 {
1453 struct vr_type *vrt;
1454
1455 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1456 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1457 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1458 return (vrt);
1459 }
1460 return (NULL);
1461 }
1462
1463 static int
1464 vr_probe(parent, match, aux)
1465 struct device *parent;
1466 struct cfdata *match;
1467 void *aux;
1468 {
1469 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1470
1471 if (vr_lookup(pa) != NULL)
1472 return (1);
1473
1474 return (0);
1475 }
1476
1477 /*
1478 * Stop all chip I/O so that the kernel's probe routines don't
1479 * get confused by errant DMAs when rebooting.
1480 */
1481 static void
1482 vr_shutdown(arg)
1483 void *arg;
1484 {
1485 struct vr_softc *sc = (struct vr_softc *)arg;
1486
1487 vr_stop(sc, 1);
1488 }
1489
1490 /*
1491 * Attach the interface. Allocate softc structures, do ifmedia
1492 * setup and ethernet/BPF attach.
1493 */
1494 static void
1495 vr_attach(parent, self, aux)
1496 struct device *parent;
1497 struct device *self;
1498 void *aux;
1499 {
1500 struct vr_softc *sc = (struct vr_softc *) self;
1501 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1502 bus_dma_segment_t seg;
1503 struct vr_type *vrt;
1504 u_int32_t command;
1505 struct ifnet *ifp;
1506 u_char eaddr[ETHER_ADDR_LEN];
1507 int i, rseg, error;
1508
1509 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1510 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1511
1512 callout_init(&sc->vr_tick_ch);
1513
1514 vrt = vr_lookup(pa);
1515 if (vrt == NULL) {
1516 printf("\n");
1517 panic("vr_attach: impossible");
1518 }
1519
1520 printf(": %s Ethernet\n", vrt->vr_name);
1521
1522 /*
1523 * Handle power management nonsense.
1524 */
1525
1526 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1527 if (command == 0x01) {
1528 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1529 if (command & VR_PSTATE_MASK) {
1530 u_int32_t iobase, membase, irq;
1531
1532 /* Save important PCI config data. */
1533 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1534 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1535 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1536
1537 /* Reset the power state. */
1538 printf("%s: chip is in D%d power mode "
1539 "-- setting to D0\n",
1540 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1541 command &= 0xFFFFFFFC;
1542 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1543
1544 /* Restore PCI config data. */
1545 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1546 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1547 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1548 }
1549 }
1550
1551 /* Make sure bus mastering is enabled. */
1552 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1553 command |= PCI_COMMAND_MASTER_ENABLE;
1554 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1555
1556 /*
1557 * Map control/status registers.
1558 */
1559 {
1560 bus_space_tag_t iot, memt;
1561 bus_space_handle_t ioh, memh;
1562 int ioh_valid, memh_valid;
1563 pci_intr_handle_t intrhandle;
1564 const char *intrstr;
1565
1566 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1567 PCI_MAPREG_TYPE_IO, 0,
1568 &iot, &ioh, NULL, NULL) == 0);
1569 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1570 PCI_MAPREG_TYPE_MEM |
1571 PCI_MAPREG_MEM_TYPE_32BIT,
1572 0, &memt, &memh, NULL, NULL) == 0);
1573 #if defined(VR_USEIOSPACE)
1574 if (ioh_valid) {
1575 sc->vr_bst = iot;
1576 sc->vr_bsh = ioh;
1577 } else if (memh_valid) {
1578 sc->vr_bst = memt;
1579 sc->vr_bsh = memh;
1580 }
1581 #else
1582 if (memh_valid) {
1583 sc->vr_bst = memt;
1584 sc->vr_bsh = memh;
1585 } else if (ioh_valid) {
1586 sc->vr_bst = iot;
1587 sc->vr_bsh = ioh;
1588 }
1589 #endif
1590 else {
1591 printf(": unable to map device registers\n");
1592 return;
1593 }
1594
1595 /* Allocate interrupt */
1596 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1597 pa->pa_intrline, &intrhandle)) {
1598 printf("%s: couldn't map interrupt\n",
1599 sc->vr_dev.dv_xname);
1600 return;
1601 }
1602 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1603 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1604 vr_intr, sc);
1605 if (sc->vr_ih == NULL) {
1606 printf("%s: couldn't establish interrupt",
1607 sc->vr_dev.dv_xname);
1608 if (intrstr != NULL)
1609 printf(" at %s", intrstr);
1610 printf("\n");
1611 }
1612 printf("%s: interrupting at %s\n",
1613 sc->vr_dev.dv_xname, intrstr);
1614 }
1615
1616 /* Reset the adapter. */
1617 vr_reset(sc);
1618
1619 /*
1620 * Get station address. The way the Rhine chips work,
1621 * you're not allowed to directly access the EEPROM once
1622 * they've been programmed a special way. Consequently,
1623 * we need to read the node address from the PAR0 and PAR1
1624 * registers.
1625 */
1626 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1627 DELAY(200);
1628 for (i = 0; i < ETHER_ADDR_LEN; i++)
1629 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1630
1631 /*
1632 * A Rhine chip was detected. Inform the world.
1633 */
1634 printf("%s: Ethernet address: %s\n",
1635 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1636
1637 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1638
1639 sc->vr_dmat = pa->pa_dmat;
1640
1641 /*
1642 * Allocate the control data structures, and create and load
1643 * the DMA map for it.
1644 */
1645 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1646 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1647 0)) != 0) {
1648 printf("%s: unable to allocate control data, error = %d\n",
1649 sc->vr_dev.dv_xname, error);
1650 goto fail_0;
1651 }
1652
1653 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1654 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1655 BUS_DMA_COHERENT)) != 0) {
1656 printf("%s: unable to map control data, error = %d\n",
1657 sc->vr_dev.dv_xname, error);
1658 goto fail_1;
1659 }
1660
1661 if ((error = bus_dmamap_create(sc->vr_dmat,
1662 sizeof(struct vr_control_data), 1,
1663 sizeof(struct vr_control_data), 0, 0,
1664 &sc->vr_cddmamap)) != 0) {
1665 printf("%s: unable to create control data DMA map, "
1666 "error = %d\n", sc->vr_dev.dv_xname, error);
1667 goto fail_2;
1668 }
1669
1670 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1671 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1672 0)) != 0) {
1673 printf("%s: unable to load control data DMA map, error = %d\n",
1674 sc->vr_dev.dv_xname, error);
1675 goto fail_3;
1676 }
1677
1678 /*
1679 * Create the transmit buffer DMA maps.
1680 */
1681 for (i = 0; i < VR_NTXDESC; i++) {
1682 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1683 1, MCLBYTES, 0, 0,
1684 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1685 printf("%s: unable to create tx DMA map %d, "
1686 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1687 goto fail_4;
1688 }
1689 }
1690
1691 /*
1692 * Create the receive buffer DMA maps.
1693 */
1694 for (i = 0; i < VR_NRXDESC; i++) {
1695 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1696 MCLBYTES, 0, 0,
1697 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1698 printf("%s: unable to create rx DMA map %d, "
1699 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1700 goto fail_5;
1701 }
1702 VR_DSRX(sc, i)->ds_mbuf = NULL;
1703 }
1704
1705 ifp = &sc->vr_ec.ec_if;
1706 ifp->if_softc = sc;
1707 ifp->if_mtu = ETHERMTU;
1708 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1709 ifp->if_ioctl = vr_ioctl;
1710 ifp->if_start = vr_start;
1711 ifp->if_watchdog = vr_watchdog;
1712 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1713
1714 /*
1715 * Initialize MII/media info.
1716 */
1717 sc->vr_mii.mii_ifp = ifp;
1718 sc->vr_mii.mii_readreg = vr_mii_readreg;
1719 sc->vr_mii.mii_writereg = vr_mii_writereg;
1720 sc->vr_mii.mii_statchg = vr_mii_statchg;
1721 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1722 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1723 MII_OFFSET_ANY, 0);
1724 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1725 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1726 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1727 } else
1728 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1729
1730 /*
1731 * Call MI attach routines.
1732 */
1733 if_attach(ifp);
1734 ether_ifattach(ifp, sc->vr_enaddr);
1735
1736 #if NBPFILTER > 0
1737 bpfattach(&sc->vr_ec.ec_if.if_bpf,
1738 ifp, DLT_EN10MB, sizeof (struct ether_header));
1739 #endif
1740
1741 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1742 if (sc->vr_ats == NULL)
1743 printf("%s: warning: couldn't establish shutdown hook\n",
1744 sc->vr_dev.dv_xname);
1745 return;
1746
1747 fail_5:
1748 for (i = 0; i < VR_NRXDESC; i++) {
1749 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1750 bus_dmamap_destroy(sc->vr_dmat,
1751 sc->vr_rxsoft[i].ds_dmamap);
1752 }
1753 fail_4:
1754 for (i = 0; i < VR_NTXDESC; i++) {
1755 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1756 bus_dmamap_destroy(sc->vr_dmat,
1757 sc->vr_txsoft[i].ds_dmamap);
1758 }
1759 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1760 fail_3:
1761 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1762 fail_2:
1763 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1764 sizeof(struct vr_control_data));
1765 fail_1:
1766 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1767 fail_0:
1768 return;
1769 }
1770