if_vr.c revision 1.35 1 /* $NetBSD: if_vr.c,v 1.35 2000/06/28 16:08:46 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
163 "VIA VT86C100A (Rhine-II) 10/100" },
164 { 0, 0, NULL }
165 };
166
167 /*
168 * Transmit descriptor list size.
169 */
170 #define VR_NTXDESC 64
171 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
172 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
173
174 /*
175 * Receive descriptor list size.
176 */
177 #define VR_NRXDESC 64
178 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
179 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
180
181 /*
182 * Control data structres that are DMA'd to the Rhine chip. We allocate
183 * them in a single clump that maps to a single DMA segment to make several
184 * things easier.
185 *
186 * Note that since we always copy outgoing packets to aligned transmit
187 * buffers, we can reduce the transmit descriptors to one per packet.
188 */
189 struct vr_control_data {
190 struct vr_desc vr_txdescs[VR_NTXDESC];
191 struct vr_desc vr_rxdescs[VR_NRXDESC];
192 };
193
194 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
195 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
196 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
197
198 /*
199 * Software state of transmit and receive descriptors.
200 */
201 struct vr_descsoft {
202 struct mbuf *ds_mbuf; /* head of mbuf chain */
203 bus_dmamap_t ds_dmamap; /* our DMA map */
204 };
205
206 struct vr_softc {
207 struct device vr_dev; /* generic device glue */
208 void *vr_ih; /* interrupt cookie */
209 void *vr_ats; /* shutdown hook */
210 bus_space_tag_t vr_bst; /* bus space tag */
211 bus_space_handle_t vr_bsh; /* bus space handle */
212 bus_dma_tag_t vr_dmat; /* bus DMA tag */
213 pci_chipset_tag_t vr_pc; /* PCI chipset info */
214 struct ethercom vr_ec; /* Ethernet common info */
215 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
216 struct mii_data vr_mii; /* MII/media info */
217
218 struct callout vr_tick_ch; /* tick callout */
219
220 bus_dmamap_t vr_cddmamap; /* control data DMA map */
221 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct vr_descsoft vr_txsoft[VR_NTXDESC];
227 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct vr_control_data *vr_control_data;
233
234 int vr_txpending; /* number of TX requests pending */
235 int vr_txdirty; /* first dirty TX descriptor */
236 int vr_txlast; /* last used TX descriptor */
237
238 int vr_rxptr; /* next ready RX descriptor */
239 };
240
241 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
242 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
243
244 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
245 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
246
247 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
248 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
249
250 #define VR_CDTXSYNC(sc, x, ops) \
251 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
252 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
253
254 #define VR_CDRXSYNC(sc, x, ops) \
255 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
257
258 /*
259 * Note we rely on MCLBYTES being a power of two below.
260 */
261 #define VR_INIT_RXDESC(sc, i) \
262 do { \
263 struct vr_desc *__d = VR_CDRX((sc), (i)); \
264 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
265 \
266 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
267 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
268 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
269 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
270 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
271 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
272 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (0)
274
275 /*
276 * register space access macros
277 */
278 #define CSR_WRITE_4(sc, reg, val) \
279 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define CSR_WRITE_2(sc, reg, val) \
281 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_1(sc, reg, val) \
283 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
284
285 #define CSR_READ_4(sc, reg) \
286 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
287 #define CSR_READ_2(sc, reg) \
288 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_1(sc, reg) \
290 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
291
292 #define VR_TIMEOUT 1000
293
294 static int vr_add_rxbuf __P((struct vr_softc *, int));
295
296 static void vr_rxeof __P((struct vr_softc *));
297 static void vr_rxeoc __P((struct vr_softc *));
298 static void vr_txeof __P((struct vr_softc *));
299 static int vr_intr __P((void *));
300 static void vr_start __P((struct ifnet *));
301 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
302 static int vr_init __P((struct vr_softc *));
303 static void vr_stop __P((struct vr_softc *, int));
304 static void vr_rxdrain __P((struct vr_softc *));
305 static void vr_watchdog __P((struct ifnet *));
306 static void vr_tick __P((void *));
307
308 static int vr_ifmedia_upd __P((struct ifnet *));
309 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
310
311 static int vr_mii_readreg __P((struct device *, int, int));
312 static void vr_mii_writereg __P((struct device *, int, int, int));
313 static void vr_mii_statchg __P((struct device *));
314
315 static u_int8_t vr_calchash __P((u_int8_t *));
316 static void vr_setmulti __P((struct vr_softc *));
317 static void vr_reset __P((struct vr_softc *));
318
319 int vr_copy_small = 0;
320
321 #define VR_SETBIT(sc, reg, x) \
322 CSR_WRITE_1(sc, reg, \
323 CSR_READ_1(sc, reg) | x)
324
325 #define VR_CLRBIT(sc, reg, x) \
326 CSR_WRITE_1(sc, reg, \
327 CSR_READ_1(sc, reg) & ~x)
328
329 #define VR_SETBIT16(sc, reg, x) \
330 CSR_WRITE_2(sc, reg, \
331 CSR_READ_2(sc, reg) | x)
332
333 #define VR_CLRBIT16(sc, reg, x) \
334 CSR_WRITE_2(sc, reg, \
335 CSR_READ_2(sc, reg) & ~x)
336
337 #define VR_SETBIT32(sc, reg, x) \
338 CSR_WRITE_4(sc, reg, \
339 CSR_READ_4(sc, reg) | x)
340
341 #define VR_CLRBIT32(sc, reg, x) \
342 CSR_WRITE_4(sc, reg, \
343 CSR_READ_4(sc, reg) & ~x)
344
345 /*
346 * MII bit-bang glue.
347 */
348 u_int32_t vr_mii_bitbang_read __P((struct device *));
349 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
350
351 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
352 vr_mii_bitbang_read,
353 vr_mii_bitbang_write,
354 {
355 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
356 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
357 VR_MIICMD_CLK, /* MII_BIT_MDC */
358 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
359 0, /* MII_BIT_DIR_PHY_HOST */
360 }
361 };
362
363 u_int32_t
364 vr_mii_bitbang_read(self)
365 struct device *self;
366 {
367 struct vr_softc *sc = (void *) self;
368
369 return (CSR_READ_1(sc, VR_MIICMD));
370 }
371
372 void
373 vr_mii_bitbang_write(self, val)
374 struct device *self;
375 u_int32_t val;
376 {
377 struct vr_softc *sc = (void *) self;
378
379 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
380 }
381
382 /*
383 * Read an PHY register through the MII.
384 */
385 static int
386 vr_mii_readreg(self, phy, reg)
387 struct device *self;
388 int phy, reg;
389 {
390 struct vr_softc *sc = (void *) self;
391
392 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
393 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
394 }
395
396 /*
397 * Write to a PHY register through the MII.
398 */
399 static void
400 vr_mii_writereg(self, phy, reg, val)
401 struct device *self;
402 int phy, reg, val;
403 {
404 struct vr_softc *sc = (void *) self;
405
406 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
407 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
408 }
409
410 static void
411 vr_mii_statchg(self)
412 struct device *self;
413 {
414 struct vr_softc *sc = (struct vr_softc *)self;
415
416 /*
417 * In order to fiddle with the 'full-duplex' bit in the netconfig
418 * register, we first have to put the transmit and/or receive logic
419 * in the idle state.
420 */
421 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
422
423 if (sc->vr_mii.mii_media_active & IFM_FDX)
424 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
425 else
426 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427
428 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
429 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
430 }
431
432 /*
433 * Calculate CRC of a multicast group address, return the lower 6 bits.
434 */
435 static u_int8_t
436 vr_calchash(addr)
437 u_int8_t *addr;
438 {
439 u_int32_t crc, carry;
440 int i, j;
441 u_int8_t c;
442
443 /* Compute CRC for the address value. */
444 crc = 0xFFFFFFFF; /* initial value */
445
446 for (i = 0; i < 6; i++) {
447 c = *(addr + i);
448 for (j = 0; j < 8; j++) {
449 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
450 crc <<= 1;
451 c >>= 1;
452 if (carry)
453 crc = (crc ^ 0x04c11db6) | carry;
454 }
455 }
456
457 /* return the filter bit position */
458 return ((crc >> 26) & 0x0000003F);
459 }
460
461 /*
462 * Program the 64-bit multicast hash filter.
463 */
464 static void
465 vr_setmulti(sc)
466 struct vr_softc *sc;
467 {
468 struct ifnet *ifp;
469 int h = 0;
470 u_int32_t hashes[2] = { 0, 0 };
471 struct ether_multistep step;
472 struct ether_multi *enm;
473 int mcnt = 0;
474 u_int8_t rxfilt;
475
476 ifp = &sc->vr_ec.ec_if;
477
478 rxfilt = CSR_READ_1(sc, VR_RXCFG);
479
480 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
481 rxfilt |= VR_RXCFG_RX_MULTI;
482 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
483 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
484 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
485 return;
486 }
487
488 /* first, zot all the existing hash bits */
489 CSR_WRITE_4(sc, VR_MAR0, 0);
490 CSR_WRITE_4(sc, VR_MAR1, 0);
491
492 /* now program new ones */
493 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
494 while (enm != NULL) {
495 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
496 continue;
497
498 h = vr_calchash(enm->enm_addrlo);
499
500 if (h < 32)
501 hashes[0] |= (1 << h);
502 else
503 hashes[1] |= (1 << (h - 32));
504 ETHER_NEXT_MULTI(step, enm);
505 mcnt++;
506 }
507
508 if (mcnt)
509 rxfilt |= VR_RXCFG_RX_MULTI;
510 else
511 rxfilt &= ~VR_RXCFG_RX_MULTI;
512
513 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
514 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
515 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
516 }
517
518 static void
519 vr_reset(sc)
520 struct vr_softc *sc;
521 {
522 int i;
523
524 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
525
526 for (i = 0; i < VR_TIMEOUT; i++) {
527 DELAY(10);
528 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
529 break;
530 }
531 if (i == VR_TIMEOUT)
532 printf("%s: reset never completed!\n",
533 sc->vr_dev.dv_xname);
534
535 /* Wait a little while for the chip to get its brains in order. */
536 DELAY(1000);
537 }
538
539 /*
540 * Initialize an RX descriptor and attach an MBUF cluster.
541 * Note: the length fields are only 11 bits wide, which means the
542 * largest size we can specify is 2047. This is important because
543 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
544 * overflow the field and make a mess.
545 */
546 static int
547 vr_add_rxbuf(sc, i)
548 struct vr_softc *sc;
549 int i;
550 {
551 struct vr_descsoft *ds = VR_DSRX(sc, i);
552 struct mbuf *m_new;
553 int error;
554
555 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
556 if (m_new == NULL)
557 return (ENOBUFS);
558
559 MCLGET(m_new, M_DONTWAIT);
560 if ((m_new->m_flags & M_EXT) == 0) {
561 m_freem(m_new);
562 return (ENOBUFS);
563 }
564
565 if (ds->ds_mbuf != NULL)
566 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
567
568 ds->ds_mbuf = m_new;
569
570 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
571 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
572 if (error) {
573 printf("%s: unable to load rx DMA map %d, error = %d\n",
574 sc->vr_dev.dv_xname, i, error);
575 panic("vr_add_rxbuf"); /* XXX */
576 }
577
578 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
579 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
580
581 VR_INIT_RXDESC(sc, i);
582
583 return (0);
584 }
585
586 /*
587 * A frame has been uploaded: pass the resulting mbuf chain up to
588 * the higher level protocols.
589 */
590 static void
591 vr_rxeof(sc)
592 struct vr_softc *sc;
593 {
594 struct ether_header *eh;
595 struct mbuf *m;
596 struct ifnet *ifp;
597 struct vr_desc *d;
598 struct vr_descsoft *ds;
599 int i, total_len;
600 u_int32_t rxstat;
601
602 ifp = &sc->vr_ec.ec_if;
603
604 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
605 d = VR_CDRX(sc, i);
606 ds = VR_DSRX(sc, i);
607
608 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
609
610 rxstat = le32toh(d->vr_status);
611
612 if (rxstat & VR_RXSTAT_OWN) {
613 /*
614 * We have processed all of the receive buffers.
615 */
616 break;
617 }
618
619 /*
620 * If an error occurs, update stats, clear the
621 * status word and leave the mbuf cluster in place:
622 * it should simply get re-used next time this descriptor
623 * comes up in the ring.
624 */
625 if (rxstat & VR_RXSTAT_RXERR) {
626 const char *errstr;
627
628 ifp->if_ierrors++;
629 switch (rxstat & 0x000000FF) {
630 case VR_RXSTAT_CRCERR:
631 errstr = "crc error";
632 break;
633 case VR_RXSTAT_FRAMEALIGNERR:
634 errstr = "frame alignment error";
635 break;
636 case VR_RXSTAT_FIFOOFLOW:
637 errstr = "FIFO overflow";
638 break;
639 case VR_RXSTAT_GIANT:
640 errstr = "received giant packet";
641 break;
642 case VR_RXSTAT_RUNT:
643 errstr = "received runt packet";
644 break;
645 case VR_RXSTAT_BUSERR:
646 errstr = "system bus error";
647 break;
648 case VR_RXSTAT_BUFFERR:
649 errstr = "rx buffer error";
650 break;
651 default:
652 errstr = "unknown rx error";
653 break;
654 }
655 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
656 errstr);
657
658 VR_INIT_RXDESC(sc, i);
659
660 continue;
661 }
662
663 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
664 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
665
666 /* No errors; receive the packet. */
667 total_len = VR_RXBYTES(le32toh(d->vr_status));
668
669 /*
670 * XXX The VIA Rhine chip includes the CRC with every
671 * received frame, and there's no way to turn this
672 * behavior off (at least, I can't find anything in
673 * the manual that explains how to do it) so we have
674 * to trim off the CRC manually.
675 */
676 total_len -= ETHER_CRC_LEN;
677
678 #ifdef __NO_STRICT_ALIGNMENT
679 /*
680 * If the packet is small enough to fit in a
681 * single header mbuf, allocate one and copy
682 * the data into it. This greatly reduces
683 * memory consumption when we receive lots
684 * of small packets.
685 *
686 * Otherwise, we add a new buffer to the receive
687 * chain. If this fails, we drop the packet and
688 * recycle the old buffer.
689 */
690 if (vr_copy_small != 0 && total_len <= MHLEN) {
691 MGETHDR(m, M_DONTWAIT, MT_DATA);
692 if (m == NULL)
693 goto dropit;
694 memcpy(mtod(m, caddr_t),
695 mtod(ds->ds_mbuf, caddr_t), total_len);
696 VR_INIT_RXDESC(sc, i);
697 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
698 ds->ds_dmamap->dm_mapsize,
699 BUS_DMASYNC_PREREAD);
700 } else {
701 m = ds->ds_mbuf;
702 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
703 dropit:
704 ifp->if_ierrors++;
705 VR_INIT_RXDESC(sc, i);
706 bus_dmamap_sync(sc->vr_dmat,
707 ds->ds_dmamap, 0,
708 ds->ds_dmamap->dm_mapsize,
709 BUS_DMASYNC_PREREAD);
710 continue;
711 }
712 }
713 #else
714 /*
715 * The Rhine's packet buffers must be 4-byte aligned.
716 * But this means that the data after the Ethernet header
717 * is misaligned. We must allocate a new buffer and
718 * copy the data, shifted forward 2 bytes.
719 */
720 MGETHDR(m, M_DONTWAIT, MT_DATA);
721 if (m == NULL) {
722 dropit:
723 ifp->if_ierrors++;
724 VR_INIT_RXDESC(sc, i);
725 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
726 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
727 continue;
728 }
729 if (total_len > (MHLEN - 2)) {
730 MCLGET(m, M_DONTWAIT);
731 if ((m->m_flags & M_EXT) == 0) {
732 m_freem(m);
733 goto dropit;
734 }
735 }
736 m->m_data += 2;
737
738 /*
739 * Note that we use clusters for incoming frames, so the
740 * buffer is virtually contiguous.
741 */
742 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
743 total_len);
744
745 /* Allow the recieve descriptor to continue using its mbuf. */
746 VR_INIT_RXDESC(sc, i);
747 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
748 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
749 #endif /* __NO_STRICT_ALIGNMENT */
750
751 ifp->if_ipackets++;
752 eh = mtod(m, struct ether_header *);
753 m->m_pkthdr.rcvif = ifp;
754 m->m_pkthdr.len = m->m_len = total_len;
755 #if NBPFILTER > 0
756 /*
757 * Handle BPF listeners. Let the BPF user see the packet, but
758 * don't pass it up to the ether_input() layer unless it's
759 * a broadcast packet, multicast packet, matches our ethernet
760 * address or the interface is in promiscuous mode.
761 */
762 if (ifp->if_bpf) {
763 bpf_mtap(ifp->if_bpf, m);
764 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
765 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
766 memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
767 ETHER_ADDR_LEN) != 0) {
768 m_freem(m);
769 continue;
770 }
771 }
772 #endif
773 /* Pass it on. */
774 (*ifp->if_input)(ifp, m);
775 }
776
777 /* Update the receive pointer. */
778 sc->vr_rxptr = i;
779 }
780
781 void
782 vr_rxeoc(sc)
783 struct vr_softc *sc;
784 {
785
786 vr_rxeof(sc);
787 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
788 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
789 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
790 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
791 }
792
793 /*
794 * A frame was downloaded to the chip. It's safe for us to clean up
795 * the list buffers.
796 */
797 static void
798 vr_txeof(sc)
799 struct vr_softc *sc;
800 {
801 struct ifnet *ifp = &sc->vr_ec.ec_if;
802 struct vr_desc *d;
803 struct vr_descsoft *ds;
804 u_int32_t txstat;
805 int i;
806
807 ifp->if_flags &= ~IFF_OACTIVE;
808
809 /*
810 * Go through our tx list and free mbufs for those
811 * frames that have been transmitted.
812 */
813 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
814 i = VR_NEXTTX(i), sc->vr_txpending--) {
815 d = VR_CDTX(sc, i);
816 ds = VR_DSTX(sc, i);
817
818 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
819
820 txstat = le32toh(d->vr_status);
821 if (txstat & VR_TXSTAT_OWN)
822 break;
823
824 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
825 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
826 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
827 m_freem(ds->ds_mbuf);
828 ds->ds_mbuf = NULL;
829
830 if (txstat & VR_TXSTAT_ERRSUM) {
831 ifp->if_oerrors++;
832 if (txstat & VR_TXSTAT_DEFER)
833 ifp->if_collisions++;
834 if (txstat & VR_TXSTAT_LATECOLL)
835 ifp->if_collisions++;
836 }
837
838 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
839 ifp->if_opackets++;
840 }
841
842 /* Update the dirty transmit buffer pointer. */
843 sc->vr_txdirty = i;
844
845 /*
846 * Cancel the watchdog timer if there are no pending
847 * transmissions.
848 */
849 if (sc->vr_txpending == 0)
850 ifp->if_timer = 0;
851 }
852
853 static int
854 vr_intr(arg)
855 void *arg;
856 {
857 struct vr_softc *sc;
858 struct ifnet *ifp;
859 u_int16_t status;
860 int handled = 0, dotx = 0;
861
862 sc = arg;
863 ifp = &sc->vr_ec.ec_if;
864
865 /* Suppress unwanted interrupts. */
866 if ((ifp->if_flags & IFF_UP) == 0) {
867 vr_stop(sc, 1);
868 return (0);
869 }
870
871 /* Disable interrupts. */
872 CSR_WRITE_2(sc, VR_IMR, 0x0000);
873
874 for (;;) {
875 status = CSR_READ_2(sc, VR_ISR);
876 if (status)
877 CSR_WRITE_2(sc, VR_ISR, status);
878
879 if ((status & VR_INTRS) == 0)
880 break;
881
882 handled = 1;
883
884 if (status & VR_ISR_RX_OK)
885 vr_rxeof(sc);
886
887 if (status &
888 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
889 VR_ISR_RX_DROPPED))
890 vr_rxeoc(sc);
891
892 if (status & VR_ISR_TX_OK) {
893 dotx = 1;
894 vr_txeof(sc);
895 }
896
897 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
898 if (status & VR_ISR_TX_UNDERRUN)
899 printf("%s: transmit underrun\n",
900 sc->vr_dev.dv_xname);
901 if (status & VR_ISR_TX_ABRT)
902 printf("%s: transmit aborted\n",
903 sc->vr_dev.dv_xname);
904 ifp->if_oerrors++;
905 dotx = 1;
906 vr_txeof(sc);
907 if (sc->vr_txpending) {
908 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
909 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
910 }
911 }
912
913 if (status & VR_ISR_BUSERR) {
914 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
915 /* vr_init() calls vr_start() */
916 dotx = 0;
917 (void) vr_init(sc);
918 }
919 }
920
921 /* Re-enable interrupts. */
922 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
923
924 if (dotx)
925 vr_start(ifp);
926
927 return (handled);
928 }
929
930 /*
931 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
932 * to the mbuf data regions directly in the transmit lists. We also save a
933 * copy of the pointers since the transmit list fragment pointers are
934 * physical addresses.
935 */
936 static void
937 vr_start(ifp)
938 struct ifnet *ifp;
939 {
940 struct vr_softc *sc = ifp->if_softc;
941 struct mbuf *m0, *m;
942 struct vr_desc *d;
943 struct vr_descsoft *ds;
944 int error, firsttx, nexttx, opending;
945
946 /*
947 * Remember the previous txpending and the first transmit
948 * descriptor we use.
949 */
950 opending = sc->vr_txpending;
951 firsttx = VR_NEXTTX(sc->vr_txlast);
952
953 /*
954 * Loop through the send queue, setting up transmit descriptors
955 * until we drain the queue, or use up all available transmit
956 * descriptors.
957 */
958 while (sc->vr_txpending < VR_NTXDESC) {
959 /*
960 * Grab a packet off the queue.
961 */
962 IF_DEQUEUE(&ifp->if_snd, m0);
963 if (m0 == NULL)
964 break;
965
966 /*
967 * Get the next available transmit descriptor.
968 */
969 nexttx = VR_NEXTTX(sc->vr_txlast);
970 d = VR_CDTX(sc, nexttx);
971 ds = VR_DSTX(sc, nexttx);
972
973 /*
974 * Load the DMA map. If this fails, the packet didn't
975 * fit in one DMA segment, and we need to copy. Note,
976 * the packet must also be aligned.
977 */
978 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
979 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
980 BUS_DMA_NOWAIT) != 0) {
981 MGETHDR(m, M_DONTWAIT, MT_DATA);
982 if (m == NULL) {
983 printf("%s: unable to allocate Tx mbuf\n",
984 sc->vr_dev.dv_xname);
985 IF_PREPEND(&ifp->if_snd, m0);
986 break;
987 }
988 if (m0->m_pkthdr.len > MHLEN) {
989 MCLGET(m, M_DONTWAIT);
990 if ((m->m_flags & M_EXT) == 0) {
991 printf("%s: unable to allocate Tx "
992 "cluster\n", sc->vr_dev.dv_xname);
993 m_freem(m);
994 IF_PREPEND(&ifp->if_snd, m0);
995 break;
996 }
997 }
998 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
999 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1000 m_freem(m0);
1001 m0 = m;
1002 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1003 ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
1004 if (error) {
1005 printf("%s: unable to load Tx buffer, "
1006 "error = %d\n", sc->vr_dev.dv_xname, error);
1007 IF_PREPEND(&ifp->if_snd, m0);
1008 break;
1009 }
1010 }
1011
1012 /* Sync the DMA map. */
1013 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1014 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1015
1016 /*
1017 * Store a pointer to the packet so we can free it later.
1018 */
1019 ds->ds_mbuf = m0;
1020
1021 #if NBPFILTER > 0
1022 /*
1023 * If there's a BPF listener, bounce a copy of this frame
1024 * to him.
1025 */
1026 if (ifp->if_bpf)
1027 bpf_mtap(ifp->if_bpf, m0);
1028 #endif
1029
1030 /*
1031 * Fill in the transmit descriptor. The Rhine
1032 * doesn't auto-pad, so we have to do this ourselves.
1033 */
1034 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1035 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1036 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1037 d->vr_ctl |=
1038 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1039 VR_TXCTL_LASTFRAG);
1040
1041 /*
1042 * If this is the first descriptor we're enqueuing,
1043 * don't give it to the Rhine yet. That could cause
1044 * a race condition. We'll do it below.
1045 */
1046 if (nexttx == firsttx)
1047 d->vr_status = 0;
1048 else
1049 d->vr_status = htole32(VR_TXSTAT_OWN);
1050
1051 VR_CDTXSYNC(sc, nexttx,
1052 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1053
1054 /* Advance the tx pointer. */
1055 sc->vr_txpending++;
1056 sc->vr_txlast = nexttx;
1057 }
1058
1059 if (sc->vr_txpending == VR_NTXDESC) {
1060 /* No more slots left; notify upper layer. */
1061 ifp->if_flags |= IFF_OACTIVE;
1062 }
1063
1064 if (sc->vr_txpending != opending) {
1065 /*
1066 * We enqueued packets. If the transmitter was idle,
1067 * reset the txdirty pointer.
1068 */
1069 if (opending == 0)
1070 sc->vr_txdirty = firsttx;
1071
1072 /*
1073 * Cause a transmit interrupt to happen on the
1074 * last packet we enqueued.
1075 */
1076 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1077 VR_CDTXSYNC(sc, sc->vr_txlast,
1078 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079
1080 /*
1081 * The entire packet chain is set up. Give the
1082 * first descriptor to the Rhine now.
1083 */
1084 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1085 VR_CDTXSYNC(sc, firsttx,
1086 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1087
1088 /* Start the transmitter. */
1089 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1090
1091 /* Set the watchdog timer in case the chip flakes out. */
1092 ifp->if_timer = 5;
1093 }
1094 }
1095
1096 /*
1097 * Initialize the interface. Must be called at splnet.
1098 */
1099 static int
1100 vr_init(sc)
1101 struct vr_softc *sc;
1102 {
1103 struct ifnet *ifp = &sc->vr_ec.ec_if;
1104 struct vr_desc *d;
1105 struct vr_descsoft *ds;
1106 int i, error = 0;
1107
1108 /* Cancel pending I/O. */
1109 vr_stop(sc, 0);
1110
1111 /* Reset the Rhine to a known state. */
1112 vr_reset(sc);
1113
1114 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1115 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1116
1117 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1118 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1119
1120 /*
1121 * Initialize the transmit desciptor ring. txlast is initialized
1122 * to the end of the list so that it will wrap around to the first
1123 * descriptor when the first packet is transmitted.
1124 */
1125 for (i = 0; i < VR_NTXDESC; i++) {
1126 d = VR_CDTX(sc, i);
1127 memset(d, 0, sizeof(struct vr_desc));
1128 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1129 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 }
1131 sc->vr_txpending = 0;
1132 sc->vr_txdirty = 0;
1133 sc->vr_txlast = VR_NTXDESC - 1;
1134
1135 /*
1136 * Initialize the receive descriptor ring.
1137 */
1138 for (i = 0; i < VR_NRXDESC; i++) {
1139 ds = VR_DSRX(sc, i);
1140 if (ds->ds_mbuf == NULL) {
1141 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1142 printf("%s: unable to allocate or map rx "
1143 "buffer %d, error = %d\n",
1144 sc->vr_dev.dv_xname, i, error);
1145 /*
1146 * XXX Should attempt to run with fewer receive
1147 * XXX buffers instead of just failing.
1148 */
1149 vr_rxdrain(sc);
1150 goto out;
1151 }
1152 }
1153 }
1154 sc->vr_rxptr = 0;
1155
1156 /* If we want promiscuous mode, set the allframes bit. */
1157 if (ifp->if_flags & IFF_PROMISC)
1158 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1159 else
1160 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1161
1162 /* Set capture broadcast bit to capture broadcast frames. */
1163 if (ifp->if_flags & IFF_BROADCAST)
1164 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1165 else
1166 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1167
1168 /* Program the multicast filter, if necessary. */
1169 vr_setmulti(sc);
1170
1171 /* Give the transmit and recieve rings to the Rhine. */
1172 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1173 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1174
1175 /* Set current media. */
1176 mii_mediachg(&sc->vr_mii);
1177
1178 /* Enable receiver and transmitter. */
1179 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1180 VR_CMD_TX_ON|VR_CMD_RX_ON|
1181 VR_CMD_RX_GO);
1182
1183 /* Enable interrupts. */
1184 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1185 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1186
1187 ifp->if_flags |= IFF_RUNNING;
1188 ifp->if_flags &= ~IFF_OACTIVE;
1189
1190 /* Start one second timer. */
1191 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1192
1193 /* Attempt to start output on the interface. */
1194 vr_start(ifp);
1195
1196 out:
1197 if (error)
1198 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1199 return (error);
1200 }
1201
1202 /*
1203 * Set media options.
1204 */
1205 static int
1206 vr_ifmedia_upd(ifp)
1207 struct ifnet *ifp;
1208 {
1209 struct vr_softc *sc = ifp->if_softc;
1210
1211 if (ifp->if_flags & IFF_UP)
1212 mii_mediachg(&sc->vr_mii);
1213 return (0);
1214 }
1215
1216 /*
1217 * Report current media status.
1218 */
1219 static void
1220 vr_ifmedia_sts(ifp, ifmr)
1221 struct ifnet *ifp;
1222 struct ifmediareq *ifmr;
1223 {
1224 struct vr_softc *sc = ifp->if_softc;
1225
1226 mii_pollstat(&sc->vr_mii);
1227 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1228 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1229 }
1230
1231 static int
1232 vr_ioctl(ifp, command, data)
1233 struct ifnet *ifp;
1234 u_long command;
1235 caddr_t data;
1236 {
1237 struct vr_softc *sc = ifp->if_softc;
1238 struct ifreq *ifr = (struct ifreq *)data;
1239 struct ifaddr *ifa = (struct ifaddr *)data;
1240 int s, error = 0;
1241
1242 s = splnet();
1243
1244 switch (command) {
1245 case SIOCSIFADDR:
1246 ifp->if_flags |= IFF_UP;
1247
1248 switch (ifa->ifa_addr->sa_family) {
1249 #ifdef INET
1250 case AF_INET:
1251 if ((error = vr_init(sc)) != 0)
1252 break;
1253 arp_ifinit(ifp, ifa);
1254 break;
1255 #endif /* INET */
1256 default:
1257 error = vr_init(sc);
1258 break;
1259 }
1260 break;
1261
1262 case SIOCGIFADDR:
1263 bcopy((caddr_t) sc->vr_enaddr,
1264 (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1265 ETHER_ADDR_LEN);
1266 break;
1267
1268 case SIOCSIFMTU:
1269 if (ifr->ifr_mtu > ETHERMTU)
1270 error = EINVAL;
1271 else
1272 ifp->if_mtu = ifr->ifr_mtu;
1273 break;
1274
1275 case SIOCSIFFLAGS:
1276 if ((ifp->if_flags & IFF_UP) == 0 &&
1277 (ifp->if_flags & IFF_RUNNING) != 0) {
1278 /*
1279 * If interface is marked down and it is running, then
1280 * stop it.
1281 */
1282 vr_stop(sc, 1);
1283 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1284 (ifp->if_flags & IFF_RUNNING) == 0) {
1285 /*
1286 * If interface is marked up and it is stopped, then
1287 * start it.
1288 */
1289 error = vr_init(sc);
1290 } else if ((ifp->if_flags & IFF_UP) != 0) {
1291 /*
1292 * Reset the interface to pick up changes in any other
1293 * flags that affect the hardware state.
1294 */
1295 error = vr_init(sc);
1296 }
1297 break;
1298
1299 case SIOCADDMULTI:
1300 case SIOCDELMULTI:
1301 if (command == SIOCADDMULTI)
1302 error = ether_addmulti(ifr, &sc->vr_ec);
1303 else
1304 error = ether_delmulti(ifr, &sc->vr_ec);
1305
1306 if (error == ENETRESET) {
1307 /*
1308 * Multicast list has changed; set the hardware filter
1309 * accordingly.
1310 */
1311 vr_setmulti(sc);
1312 error = 0;
1313 }
1314 break;
1315
1316 case SIOCGIFMEDIA:
1317 case SIOCSIFMEDIA:
1318 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1319 break;
1320
1321 default:
1322 error = EINVAL;
1323 break;
1324 }
1325
1326 splx(s);
1327 return (error);
1328 }
1329
1330 static void
1331 vr_watchdog(ifp)
1332 struct ifnet *ifp;
1333 {
1334 struct vr_softc *sc = ifp->if_softc;
1335
1336 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1337 ifp->if_oerrors++;
1338
1339 (void) vr_init(sc);
1340 }
1341
1342 /*
1343 * One second timer, used to tick MII.
1344 */
1345 static void
1346 vr_tick(arg)
1347 void *arg;
1348 {
1349 struct vr_softc *sc = arg;
1350 int s;
1351
1352 s = splnet();
1353 mii_tick(&sc->vr_mii);
1354 splx(s);
1355
1356 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1357 }
1358
1359 /*
1360 * Drain the receive queue.
1361 */
1362 static void
1363 vr_rxdrain(sc)
1364 struct vr_softc *sc;
1365 {
1366 struct vr_descsoft *ds;
1367 int i;
1368
1369 for (i = 0; i < VR_NRXDESC; i++) {
1370 ds = VR_DSRX(sc, i);
1371 if (ds->ds_mbuf != NULL) {
1372 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1373 m_freem(ds->ds_mbuf);
1374 ds->ds_mbuf = NULL;
1375 }
1376 }
1377 }
1378
1379 /*
1380 * Stop the adapter and free any mbufs allocated to the
1381 * transmit lists.
1382 */
1383 static void
1384 vr_stop(sc, drain)
1385 struct vr_softc *sc;
1386 int drain;
1387 {
1388 struct vr_descsoft *ds;
1389 struct ifnet *ifp;
1390 int i;
1391
1392 /* Cancel one second timer. */
1393 callout_stop(&sc->vr_tick_ch);
1394
1395 /* Down the MII. */
1396 mii_down(&sc->vr_mii);
1397
1398 ifp = &sc->vr_ec.ec_if;
1399 ifp->if_timer = 0;
1400
1401 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1402 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1403 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1404 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1405 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1406
1407 /*
1408 * Release any queued transmit buffers.
1409 */
1410 for (i = 0; i < VR_NTXDESC; i++) {
1411 ds = VR_DSTX(sc, i);
1412 if (ds->ds_mbuf != NULL) {
1413 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1414 m_freem(ds->ds_mbuf);
1415 ds->ds_mbuf = NULL;
1416 }
1417 }
1418
1419 if (drain) {
1420 /*
1421 * Release the receive buffers.
1422 */
1423 vr_rxdrain(sc);
1424 }
1425
1426 /*
1427 * Mark the interface down and cancel the watchdog timer.
1428 */
1429 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1430 ifp->if_timer = 0;
1431 }
1432
1433 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1434 static int vr_probe __P((struct device *, struct cfdata *, void *));
1435 static void vr_attach __P((struct device *, struct device *, void *));
1436 static void vr_shutdown __P((void *));
1437
1438 struct cfattach vr_ca = {
1439 sizeof (struct vr_softc), vr_probe, vr_attach
1440 };
1441
1442 static struct vr_type *
1443 vr_lookup(pa)
1444 struct pci_attach_args *pa;
1445 {
1446 struct vr_type *vrt;
1447
1448 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1449 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1450 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1451 return (vrt);
1452 }
1453 return (NULL);
1454 }
1455
1456 static int
1457 vr_probe(parent, match, aux)
1458 struct device *parent;
1459 struct cfdata *match;
1460 void *aux;
1461 {
1462 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1463
1464 if (vr_lookup(pa) != NULL)
1465 return (1);
1466
1467 return (0);
1468 }
1469
1470 /*
1471 * Stop all chip I/O so that the kernel's probe routines don't
1472 * get confused by errant DMAs when rebooting.
1473 */
1474 static void
1475 vr_shutdown(arg)
1476 void *arg;
1477 {
1478 struct vr_softc *sc = (struct vr_softc *)arg;
1479
1480 vr_stop(sc, 1);
1481 }
1482
1483 /*
1484 * Attach the interface. Allocate softc structures, do ifmedia
1485 * setup and ethernet/BPF attach.
1486 */
1487 static void
1488 vr_attach(parent, self, aux)
1489 struct device *parent;
1490 struct device *self;
1491 void *aux;
1492 {
1493 struct vr_softc *sc = (struct vr_softc *) self;
1494 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1495 bus_dma_segment_t seg;
1496 struct vr_type *vrt;
1497 u_int32_t command;
1498 struct ifnet *ifp;
1499 u_char eaddr[ETHER_ADDR_LEN];
1500 int i, rseg, error;
1501
1502 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1503 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1504
1505 callout_init(&sc->vr_tick_ch);
1506
1507 vrt = vr_lookup(pa);
1508 if (vrt == NULL) {
1509 printf("\n");
1510 panic("vr_attach: impossible");
1511 }
1512
1513 printf(": %s Ethernet\n", vrt->vr_name);
1514
1515 /*
1516 * Handle power management nonsense.
1517 */
1518
1519 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1520 if (command == 0x01) {
1521 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1522 if (command & VR_PSTATE_MASK) {
1523 u_int32_t iobase, membase, irq;
1524
1525 /* Save important PCI config data. */
1526 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1527 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1528 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1529
1530 /* Reset the power state. */
1531 printf("%s: chip is in D%d power mode "
1532 "-- setting to D0\n",
1533 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1534 command &= 0xFFFFFFFC;
1535 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1536
1537 /* Restore PCI config data. */
1538 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1539 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1540 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1541 }
1542 }
1543
1544 /* Make sure bus mastering is enabled. */
1545 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1546 command |= PCI_COMMAND_MASTER_ENABLE;
1547 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1548
1549 /*
1550 * Map control/status registers.
1551 */
1552 {
1553 bus_space_tag_t iot, memt;
1554 bus_space_handle_t ioh, memh;
1555 int ioh_valid, memh_valid;
1556 pci_intr_handle_t intrhandle;
1557 const char *intrstr;
1558
1559 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1560 PCI_MAPREG_TYPE_IO, 0,
1561 &iot, &ioh, NULL, NULL) == 0);
1562 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1563 PCI_MAPREG_TYPE_MEM |
1564 PCI_MAPREG_MEM_TYPE_32BIT,
1565 0, &memt, &memh, NULL, NULL) == 0);
1566 #if defined(VR_USEIOSPACE)
1567 if (ioh_valid) {
1568 sc->vr_bst = iot;
1569 sc->vr_bsh = ioh;
1570 } else if (memh_valid) {
1571 sc->vr_bst = memt;
1572 sc->vr_bsh = memh;
1573 }
1574 #else
1575 if (memh_valid) {
1576 sc->vr_bst = memt;
1577 sc->vr_bsh = memh;
1578 } else if (ioh_valid) {
1579 sc->vr_bst = iot;
1580 sc->vr_bsh = ioh;
1581 }
1582 #endif
1583 else {
1584 printf(": unable to map device registers\n");
1585 return;
1586 }
1587
1588 /* Allocate interrupt */
1589 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1590 pa->pa_intrline, &intrhandle)) {
1591 printf("%s: couldn't map interrupt\n",
1592 sc->vr_dev.dv_xname);
1593 return;
1594 }
1595 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1596 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1597 vr_intr, sc);
1598 if (sc->vr_ih == NULL) {
1599 printf("%s: couldn't establish interrupt",
1600 sc->vr_dev.dv_xname);
1601 if (intrstr != NULL)
1602 printf(" at %s", intrstr);
1603 printf("\n");
1604 }
1605 printf("%s: interrupting at %s\n",
1606 sc->vr_dev.dv_xname, intrstr);
1607 }
1608
1609 /* Reset the adapter. */
1610 vr_reset(sc);
1611
1612 /*
1613 * Get station address. The way the Rhine chips work,
1614 * you're not allowed to directly access the EEPROM once
1615 * they've been programmed a special way. Consequently,
1616 * we need to read the node address from the PAR0 and PAR1
1617 * registers.
1618 */
1619 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1620 DELAY(200);
1621 for (i = 0; i < ETHER_ADDR_LEN; i++)
1622 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1623
1624 /*
1625 * A Rhine chip was detected. Inform the world.
1626 */
1627 printf("%s: Ethernet address: %s\n",
1628 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1629
1630 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1631
1632 sc->vr_dmat = pa->pa_dmat;
1633
1634 /*
1635 * Allocate the control data structures, and create and load
1636 * the DMA map for it.
1637 */
1638 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1639 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1640 0)) != 0) {
1641 printf("%s: unable to allocate control data, error = %d\n",
1642 sc->vr_dev.dv_xname, error);
1643 goto fail_0;
1644 }
1645
1646 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1647 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1648 BUS_DMA_COHERENT)) != 0) {
1649 printf("%s: unable to map control data, error = %d\n",
1650 sc->vr_dev.dv_xname, error);
1651 goto fail_1;
1652 }
1653
1654 if ((error = bus_dmamap_create(sc->vr_dmat,
1655 sizeof(struct vr_control_data), 1,
1656 sizeof(struct vr_control_data), 0, 0,
1657 &sc->vr_cddmamap)) != 0) {
1658 printf("%s: unable to create control data DMA map, "
1659 "error = %d\n", sc->vr_dev.dv_xname, error);
1660 goto fail_2;
1661 }
1662
1663 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1664 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1665 0)) != 0) {
1666 printf("%s: unable to load control data DMA map, error = %d\n",
1667 sc->vr_dev.dv_xname, error);
1668 goto fail_3;
1669 }
1670
1671 /*
1672 * Create the transmit buffer DMA maps.
1673 */
1674 for (i = 0; i < VR_NTXDESC; i++) {
1675 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1676 1, MCLBYTES, 0, 0,
1677 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1678 printf("%s: unable to create tx DMA map %d, "
1679 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1680 goto fail_4;
1681 }
1682 }
1683
1684 /*
1685 * Create the receive buffer DMA maps.
1686 */
1687 for (i = 0; i < VR_NRXDESC; i++) {
1688 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1689 MCLBYTES, 0, 0,
1690 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1691 printf("%s: unable to create rx DMA map %d, "
1692 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1693 goto fail_5;
1694 }
1695 VR_DSRX(sc, i)->ds_mbuf = NULL;
1696 }
1697
1698 ifp = &sc->vr_ec.ec_if;
1699 ifp->if_softc = sc;
1700 ifp->if_mtu = ETHERMTU;
1701 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1702 ifp->if_ioctl = vr_ioctl;
1703 ifp->if_start = vr_start;
1704 ifp->if_watchdog = vr_watchdog;
1705 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1706
1707 /*
1708 * Initialize MII/media info.
1709 */
1710 sc->vr_mii.mii_ifp = ifp;
1711 sc->vr_mii.mii_readreg = vr_mii_readreg;
1712 sc->vr_mii.mii_writereg = vr_mii_writereg;
1713 sc->vr_mii.mii_statchg = vr_mii_statchg;
1714 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1715 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1716 MII_OFFSET_ANY, 0);
1717 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1718 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1719 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1720 } else
1721 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1722
1723 /*
1724 * Call MI attach routines.
1725 */
1726 if_attach(ifp);
1727 ether_ifattach(ifp, sc->vr_enaddr);
1728
1729 #if NBPFILTER > 0
1730 bpfattach(&sc->vr_ec.ec_if.if_bpf,
1731 ifp, DLT_EN10MB, sizeof (struct ether_header));
1732 #endif
1733
1734 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1735 if (sc->vr_ats == NULL)
1736 printf("%s: warning: couldn't establish shutdown hook\n",
1737 sc->vr_dev.dv_xname);
1738 return;
1739
1740 fail_5:
1741 for (i = 0; i < VR_NRXDESC; i++) {
1742 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1743 bus_dmamap_destroy(sc->vr_dmat,
1744 sc->vr_rxsoft[i].ds_dmamap);
1745 }
1746 fail_4:
1747 for (i = 0; i < VR_NTXDESC; i++) {
1748 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1749 bus_dmamap_destroy(sc->vr_dmat,
1750 sc->vr_txsoft[i].ds_dmamap);
1751 }
1752 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1753 fail_3:
1754 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1755 fail_2:
1756 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1757 sizeof(struct vr_control_data));
1758 fail_1:
1759 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1760 fail_0:
1761 return;
1762 }
1763