Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.35
      1 /*	$NetBSD: if_vr.c,v 1.35 2000/06/28 16:08:46 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/sockio.h>
    112 #include <sys/mbuf.h>
    113 #include <sys/malloc.h>
    114 #include <sys/kernel.h>
    115 #include <sys/socket.h>
    116 #include <sys/device.h>
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #if defined(INET)
    127 #include <netinet/in.h>
    128 #include <netinet/if_inarp.h>
    129 #endif
    130 
    131 #include "bpfilter.h"
    132 #if NBPFILTER > 0
    133 #include <net/bpf.h>
    134 #endif
    135 
    136 #include <machine/bus.h>
    137 #include <machine/intr.h>
    138 #include <machine/endian.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 #include <dev/mii/mii_bitbang.h>
    143 
    144 #include <dev/pci/pcireg.h>
    145 #include <dev/pci/pcivar.h>
    146 #include <dev/pci/pcidevs.h>
    147 
    148 #include <dev/pci/if_vrreg.h>
    149 
    150 #define	VR_USEIOSPACE
    151 
    152 /*
    153  * Various supported device vendors/types and their names.
    154  */
    155 static struct vr_type {
    156 	pci_vendor_id_t		vr_vid;
    157 	pci_product_id_t	vr_did;
    158 	const char		*vr_name;
    159 } vr_devs[] = {
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    161 		"VIA VT3043 (Rhine) 10/100" },
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    163 		"VIA VT86C100A (Rhine-II) 10/100" },
    164 	{ 0, 0, NULL }
    165 };
    166 
    167 /*
    168  * Transmit descriptor list size.
    169  */
    170 #define	VR_NTXDESC		64
    171 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    172 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    173 
    174 /*
    175  * Receive descriptor list size.
    176  */
    177 #define	VR_NRXDESC		64
    178 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    179 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    180 
    181 /*
    182  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    183  * them in a single clump that maps to a single DMA segment to make several
    184  * things easier.
    185  *
    186  * Note that since we always copy outgoing packets to aligned transmit
    187  * buffers, we can reduce the transmit descriptors to one per packet.
    188  */
    189 struct vr_control_data {
    190 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    191 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    192 };
    193 
    194 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    195 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    196 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    197 
    198 /*
    199  * Software state of transmit and receive descriptors.
    200  */
    201 struct vr_descsoft {
    202 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    203 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    204 };
    205 
    206 struct vr_softc {
    207 	struct device		vr_dev;		/* generic device glue */
    208 	void			*vr_ih;		/* interrupt cookie */
    209 	void			*vr_ats;	/* shutdown hook */
    210 	bus_space_tag_t		vr_bst;		/* bus space tag */
    211 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    212 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    213 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    214 	struct ethercom		vr_ec;		/* Ethernet common info */
    215 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    216 	struct mii_data		vr_mii;		/* MII/media info */
    217 
    218 	struct callout		vr_tick_ch;	/* tick callout */
    219 
    220 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    221 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    222 
    223 	/*
    224 	 * Software state for transmit and receive descriptors.
    225 	 */
    226 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    227 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    228 
    229 	/*
    230 	 * Control data structures.
    231 	 */
    232 	struct vr_control_data	*vr_control_data;
    233 
    234 	int	vr_txpending;		/* number of TX requests pending */
    235 	int	vr_txdirty;		/* first dirty TX descriptor */
    236 	int	vr_txlast;		/* last used TX descriptor */
    237 
    238 	int	vr_rxptr;		/* next ready RX descriptor */
    239 };
    240 
    241 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    242 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    243 
    244 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    245 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    246 
    247 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    248 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    249 
    250 #define	VR_CDTXSYNC(sc, x, ops)						\
    251 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    252 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    253 
    254 #define	VR_CDRXSYNC(sc, x, ops)						\
    255 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    256 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    257 
    258 /*
    259  * Note we rely on MCLBYTES being a power of two below.
    260  */
    261 #define	VR_INIT_RXDESC(sc, i)						\
    262 do {									\
    263 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    264 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    265 									\
    266 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    267 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    268 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    269 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    270 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    271 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    272 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    273 } while (0)
    274 
    275 /*
    276  * register space access macros
    277  */
    278 #define	CSR_WRITE_4(sc, reg, val)					\
    279 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    280 #define	CSR_WRITE_2(sc, reg, val)					\
    281 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_1(sc, reg, val)					\
    283 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    284 
    285 #define	CSR_READ_4(sc, reg)						\
    286 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    287 #define	CSR_READ_2(sc, reg)						\
    288 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_1(sc, reg)						\
    290 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    291 
    292 #define	VR_TIMEOUT		1000
    293 
    294 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    295 
    296 static void vr_rxeof		__P((struct vr_softc *));
    297 static void vr_rxeoc		__P((struct vr_softc *));
    298 static void vr_txeof		__P((struct vr_softc *));
    299 static int vr_intr		__P((void *));
    300 static void vr_start		__P((struct ifnet *));
    301 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    302 static int vr_init		__P((struct vr_softc *));
    303 static void vr_stop		__P((struct vr_softc *, int));
    304 static void vr_rxdrain		__P((struct vr_softc *));
    305 static void vr_watchdog		__P((struct ifnet *));
    306 static void vr_tick		__P((void *));
    307 
    308 static int vr_ifmedia_upd	__P((struct ifnet *));
    309 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    310 
    311 static int vr_mii_readreg	__P((struct device *, int, int));
    312 static void vr_mii_writereg	__P((struct device *, int, int, int));
    313 static void vr_mii_statchg	__P((struct device *));
    314 
    315 static u_int8_t vr_calchash	__P((u_int8_t *));
    316 static void vr_setmulti		__P((struct vr_softc *));
    317 static void vr_reset		__P((struct vr_softc *));
    318 
    319 int	vr_copy_small = 0;
    320 
    321 #define	VR_SETBIT(sc, reg, x)				\
    322 	CSR_WRITE_1(sc, reg,				\
    323 		CSR_READ_1(sc, reg) | x)
    324 
    325 #define	VR_CLRBIT(sc, reg, x)				\
    326 	CSR_WRITE_1(sc, reg,				\
    327 		CSR_READ_1(sc, reg) & ~x)
    328 
    329 #define	VR_SETBIT16(sc, reg, x)				\
    330 	CSR_WRITE_2(sc, reg,				\
    331 		CSR_READ_2(sc, reg) | x)
    332 
    333 #define	VR_CLRBIT16(sc, reg, x)				\
    334 	CSR_WRITE_2(sc, reg,				\
    335 		CSR_READ_2(sc, reg) & ~x)
    336 
    337 #define	VR_SETBIT32(sc, reg, x)				\
    338 	CSR_WRITE_4(sc, reg,				\
    339 		CSR_READ_4(sc, reg) | x)
    340 
    341 #define	VR_CLRBIT32(sc, reg, x)				\
    342 	CSR_WRITE_4(sc, reg,				\
    343 		CSR_READ_4(sc, reg) & ~x)
    344 
    345 /*
    346  * MII bit-bang glue.
    347  */
    348 u_int32_t vr_mii_bitbang_read __P((struct device *));
    349 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    350 
    351 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    352 	vr_mii_bitbang_read,
    353 	vr_mii_bitbang_write,
    354 	{
    355 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    356 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    357 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    358 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    359 		0,			/* MII_BIT_DIR_PHY_HOST */
    360 	}
    361 };
    362 
    363 u_int32_t
    364 vr_mii_bitbang_read(self)
    365 	struct device *self;
    366 {
    367 	struct vr_softc *sc = (void *) self;
    368 
    369 	return (CSR_READ_1(sc, VR_MIICMD));
    370 }
    371 
    372 void
    373 vr_mii_bitbang_write(self, val)
    374 	struct device *self;
    375 	u_int32_t val;
    376 {
    377 	struct vr_softc *sc = (void *) self;
    378 
    379 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    380 }
    381 
    382 /*
    383  * Read an PHY register through the MII.
    384  */
    385 static int
    386 vr_mii_readreg(self, phy, reg)
    387 	struct device *self;
    388 	int phy, reg;
    389 {
    390 	struct vr_softc *sc = (void *) self;
    391 
    392 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    393 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    394 }
    395 
    396 /*
    397  * Write to a PHY register through the MII.
    398  */
    399 static void
    400 vr_mii_writereg(self, phy, reg, val)
    401 	struct device *self;
    402 	int phy, reg, val;
    403 {
    404 	struct vr_softc *sc = (void *) self;
    405 
    406 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    407 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    408 }
    409 
    410 static void
    411 vr_mii_statchg(self)
    412 	struct device *self;
    413 {
    414 	struct vr_softc *sc = (struct vr_softc *)self;
    415 
    416 	/*
    417 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    418 	 * register, we first have to put the transmit and/or receive logic
    419 	 * in the idle state.
    420 	 */
    421 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    422 
    423 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    424 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    425 	else
    426 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    427 
    428 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    429 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    430 }
    431 
    432 /*
    433  * Calculate CRC of a multicast group address, return the lower 6 bits.
    434  */
    435 static u_int8_t
    436 vr_calchash(addr)
    437 	u_int8_t *addr;
    438 {
    439 	u_int32_t crc, carry;
    440 	int i, j;
    441 	u_int8_t c;
    442 
    443 	/* Compute CRC for the address value. */
    444 	crc = 0xFFFFFFFF; /* initial value */
    445 
    446 	for (i = 0; i < 6; i++) {
    447 		c = *(addr + i);
    448 		for (j = 0; j < 8; j++) {
    449 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    450 			crc <<= 1;
    451 			c >>= 1;
    452 			if (carry)
    453 				crc = (crc ^ 0x04c11db6) | carry;
    454 		}
    455 	}
    456 
    457 	/* return the filter bit position */
    458 	return ((crc >> 26) & 0x0000003F);
    459 }
    460 
    461 /*
    462  * Program the 64-bit multicast hash filter.
    463  */
    464 static void
    465 vr_setmulti(sc)
    466 	struct vr_softc *sc;
    467 {
    468 	struct ifnet *ifp;
    469 	int h = 0;
    470 	u_int32_t hashes[2] = { 0, 0 };
    471 	struct ether_multistep step;
    472 	struct ether_multi *enm;
    473 	int mcnt = 0;
    474 	u_int8_t rxfilt;
    475 
    476 	ifp = &sc->vr_ec.ec_if;
    477 
    478 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    479 
    480 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    481 		rxfilt |= VR_RXCFG_RX_MULTI;
    482 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    483 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    484 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    485 		return;
    486 	}
    487 
    488 	/* first, zot all the existing hash bits */
    489 	CSR_WRITE_4(sc, VR_MAR0, 0);
    490 	CSR_WRITE_4(sc, VR_MAR1, 0);
    491 
    492 	/* now program new ones */
    493 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    494 	while (enm != NULL) {
    495 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    496 			continue;
    497 
    498 		h = vr_calchash(enm->enm_addrlo);
    499 
    500 		if (h < 32)
    501 			hashes[0] |= (1 << h);
    502 		else
    503 			hashes[1] |= (1 << (h - 32));
    504 		ETHER_NEXT_MULTI(step, enm);
    505 		mcnt++;
    506 	}
    507 
    508 	if (mcnt)
    509 		rxfilt |= VR_RXCFG_RX_MULTI;
    510 	else
    511 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    512 
    513 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    514 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    515 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    516 }
    517 
    518 static void
    519 vr_reset(sc)
    520 	struct vr_softc *sc;
    521 {
    522 	int i;
    523 
    524 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    525 
    526 	for (i = 0; i < VR_TIMEOUT; i++) {
    527 		DELAY(10);
    528 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    529 			break;
    530 	}
    531 	if (i == VR_TIMEOUT)
    532 		printf("%s: reset never completed!\n",
    533 			sc->vr_dev.dv_xname);
    534 
    535 	/* Wait a little while for the chip to get its brains in order. */
    536 	DELAY(1000);
    537 }
    538 
    539 /*
    540  * Initialize an RX descriptor and attach an MBUF cluster.
    541  * Note: the length fields are only 11 bits wide, which means the
    542  * largest size we can specify is 2047. This is important because
    543  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    544  * overflow the field and make a mess.
    545  */
    546 static int
    547 vr_add_rxbuf(sc, i)
    548 	struct vr_softc *sc;
    549 	int i;
    550 {
    551 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    552 	struct mbuf *m_new;
    553 	int error;
    554 
    555 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    556 	if (m_new == NULL)
    557 		return (ENOBUFS);
    558 
    559 	MCLGET(m_new, M_DONTWAIT);
    560 	if ((m_new->m_flags & M_EXT) == 0) {
    561 		m_freem(m_new);
    562 		return (ENOBUFS);
    563 	}
    564 
    565 	if (ds->ds_mbuf != NULL)
    566 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    567 
    568 	ds->ds_mbuf = m_new;
    569 
    570 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    571 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    572 	if (error) {
    573 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    574 		    sc->vr_dev.dv_xname, i, error);
    575 		panic("vr_add_rxbuf");		/* XXX */
    576 	}
    577 
    578 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    579 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    580 
    581 	VR_INIT_RXDESC(sc, i);
    582 
    583 	return (0);
    584 }
    585 
    586 /*
    587  * A frame has been uploaded: pass the resulting mbuf chain up to
    588  * the higher level protocols.
    589  */
    590 static void
    591 vr_rxeof(sc)
    592 	struct vr_softc *sc;
    593 {
    594 	struct ether_header *eh;
    595 	struct mbuf *m;
    596 	struct ifnet *ifp;
    597 	struct vr_desc *d;
    598 	struct vr_descsoft *ds;
    599 	int i, total_len;
    600 	u_int32_t rxstat;
    601 
    602 	ifp = &sc->vr_ec.ec_if;
    603 
    604 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    605 		d = VR_CDRX(sc, i);
    606 		ds = VR_DSRX(sc, i);
    607 
    608 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    609 
    610 		rxstat = le32toh(d->vr_status);
    611 
    612 		if (rxstat & VR_RXSTAT_OWN) {
    613 			/*
    614 			 * We have processed all of the receive buffers.
    615 			 */
    616 			break;
    617 		}
    618 
    619 		/*
    620 		 * If an error occurs, update stats, clear the
    621 		 * status word and leave the mbuf cluster in place:
    622 		 * it should simply get re-used next time this descriptor
    623 		 * comes up in the ring.
    624 		 */
    625 		if (rxstat & VR_RXSTAT_RXERR) {
    626 			const char *errstr;
    627 
    628 			ifp->if_ierrors++;
    629 			switch (rxstat & 0x000000FF) {
    630 			case VR_RXSTAT_CRCERR:
    631 				errstr = "crc error";
    632 				break;
    633 			case VR_RXSTAT_FRAMEALIGNERR:
    634 				errstr = "frame alignment error";
    635 				break;
    636 			case VR_RXSTAT_FIFOOFLOW:
    637 				errstr = "FIFO overflow";
    638 				break;
    639 			case VR_RXSTAT_GIANT:
    640 				errstr = "received giant packet";
    641 				break;
    642 			case VR_RXSTAT_RUNT:
    643 				errstr = "received runt packet";
    644 				break;
    645 			case VR_RXSTAT_BUSERR:
    646 				errstr = "system bus error";
    647 				break;
    648 			case VR_RXSTAT_BUFFERR:
    649 				errstr = "rx buffer error";
    650 				break;
    651 			default:
    652 				errstr = "unknown rx error";
    653 				break;
    654 			}
    655 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    656 			    errstr);
    657 
    658 			VR_INIT_RXDESC(sc, i);
    659 
    660 			continue;
    661 		}
    662 
    663 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    664 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    665 
    666 		/* No errors; receive the packet. */
    667 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    668 
    669 		/*
    670 		 * XXX The VIA Rhine chip includes the CRC with every
    671 		 * received frame, and there's no way to turn this
    672 		 * behavior off (at least, I can't find anything in
    673 		 * the manual that explains how to do it) so we have
    674 		 * to trim off the CRC manually.
    675 		 */
    676 		total_len -= ETHER_CRC_LEN;
    677 
    678 #ifdef __NO_STRICT_ALIGNMENT
    679 		/*
    680 		 * If the packet is small enough to fit in a
    681 		 * single header mbuf, allocate one and copy
    682 		 * the data into it.  This greatly reduces
    683 		 * memory consumption when we receive lots
    684 		 * of small packets.
    685 		 *
    686 		 * Otherwise, we add a new buffer to the receive
    687 		 * chain.  If this fails, we drop the packet and
    688 		 * recycle the old buffer.
    689 		 */
    690 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    691 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    692 			if (m == NULL)
    693 				goto dropit;
    694 			memcpy(mtod(m, caddr_t),
    695 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    696 			VR_INIT_RXDESC(sc, i);
    697 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    698 			    ds->ds_dmamap->dm_mapsize,
    699 			    BUS_DMASYNC_PREREAD);
    700 		} else {
    701 			m = ds->ds_mbuf;
    702 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    703  dropit:
    704 				ifp->if_ierrors++;
    705 				VR_INIT_RXDESC(sc, i);
    706 				bus_dmamap_sync(sc->vr_dmat,
    707 				    ds->ds_dmamap, 0,
    708 				    ds->ds_dmamap->dm_mapsize,
    709 				    BUS_DMASYNC_PREREAD);
    710 				continue;
    711 			}
    712 		}
    713 #else
    714 		/*
    715 		 * The Rhine's packet buffers must be 4-byte aligned.
    716 		 * But this means that the data after the Ethernet header
    717 		 * is misaligned.  We must allocate a new buffer and
    718 		 * copy the data, shifted forward 2 bytes.
    719 		 */
    720 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    721 		if (m == NULL) {
    722  dropit:
    723 			ifp->if_ierrors++;
    724 			VR_INIT_RXDESC(sc, i);
    725 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    726 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    727 			continue;
    728 		}
    729 		if (total_len > (MHLEN - 2)) {
    730 			MCLGET(m, M_DONTWAIT);
    731 			if ((m->m_flags & M_EXT) == 0) {
    732 				m_freem(m);
    733 				goto dropit;
    734 			}
    735 		}
    736 		m->m_data += 2;
    737 
    738 		/*
    739 		 * Note that we use clusters for incoming frames, so the
    740 		 * buffer is virtually contiguous.
    741 		 */
    742 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    743 		    total_len);
    744 
    745 		/* Allow the recieve descriptor to continue using its mbuf. */
    746 		VR_INIT_RXDESC(sc, i);
    747 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    748 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    749 #endif /* __NO_STRICT_ALIGNMENT */
    750 
    751 		ifp->if_ipackets++;
    752 		eh = mtod(m, struct ether_header *);
    753 		m->m_pkthdr.rcvif = ifp;
    754 		m->m_pkthdr.len = m->m_len = total_len;
    755 #if NBPFILTER > 0
    756 		/*
    757 		 * Handle BPF listeners. Let the BPF user see the packet, but
    758 		 * don't pass it up to the ether_input() layer unless it's
    759 		 * a broadcast packet, multicast packet, matches our ethernet
    760 		 * address or the interface is in promiscuous mode.
    761 		 */
    762 		if (ifp->if_bpf) {
    763 			bpf_mtap(ifp->if_bpf, m);
    764 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    765 			    ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
    766 			    memcmp(eh->ether_dhost, LLADDR(ifp->if_sadl),
    767 				   ETHER_ADDR_LEN) != 0) {
    768 				m_freem(m);
    769 				continue;
    770 			}
    771 		}
    772 #endif
    773 		/* Pass it on. */
    774 		(*ifp->if_input)(ifp, m);
    775 	}
    776 
    777 	/* Update the receive pointer. */
    778 	sc->vr_rxptr = i;
    779 }
    780 
    781 void
    782 vr_rxeoc(sc)
    783 	struct vr_softc *sc;
    784 {
    785 
    786 	vr_rxeof(sc);
    787 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    788 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    789 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    790 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    791 }
    792 
    793 /*
    794  * A frame was downloaded to the chip. It's safe for us to clean up
    795  * the list buffers.
    796  */
    797 static void
    798 vr_txeof(sc)
    799 	struct vr_softc *sc;
    800 {
    801 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    802 	struct vr_desc *d;
    803 	struct vr_descsoft *ds;
    804 	u_int32_t txstat;
    805 	int i;
    806 
    807 	ifp->if_flags &= ~IFF_OACTIVE;
    808 
    809 	/*
    810 	 * Go through our tx list and free mbufs for those
    811 	 * frames that have been transmitted.
    812 	 */
    813 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    814 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    815 		d = VR_CDTX(sc, i);
    816 		ds = VR_DSTX(sc, i);
    817 
    818 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    819 
    820 		txstat = le32toh(d->vr_status);
    821 		if (txstat & VR_TXSTAT_OWN)
    822 			break;
    823 
    824 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    825 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    826 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    827 		m_freem(ds->ds_mbuf);
    828 		ds->ds_mbuf = NULL;
    829 
    830 		if (txstat & VR_TXSTAT_ERRSUM) {
    831 			ifp->if_oerrors++;
    832 			if (txstat & VR_TXSTAT_DEFER)
    833 				ifp->if_collisions++;
    834 			if (txstat & VR_TXSTAT_LATECOLL)
    835 				ifp->if_collisions++;
    836 		}
    837 
    838 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    839 		ifp->if_opackets++;
    840 	}
    841 
    842 	/* Update the dirty transmit buffer pointer. */
    843 	sc->vr_txdirty = i;
    844 
    845 	/*
    846 	 * Cancel the watchdog timer if there are no pending
    847 	 * transmissions.
    848 	 */
    849 	if (sc->vr_txpending == 0)
    850 		ifp->if_timer = 0;
    851 }
    852 
    853 static int
    854 vr_intr(arg)
    855 	void *arg;
    856 {
    857 	struct vr_softc *sc;
    858 	struct ifnet *ifp;
    859 	u_int16_t status;
    860 	int handled = 0, dotx = 0;
    861 
    862 	sc = arg;
    863 	ifp = &sc->vr_ec.ec_if;
    864 
    865 	/* Suppress unwanted interrupts. */
    866 	if ((ifp->if_flags & IFF_UP) == 0) {
    867 		vr_stop(sc, 1);
    868 		return (0);
    869 	}
    870 
    871 	/* Disable interrupts. */
    872 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    873 
    874 	for (;;) {
    875 		status = CSR_READ_2(sc, VR_ISR);
    876 		if (status)
    877 			CSR_WRITE_2(sc, VR_ISR, status);
    878 
    879 		if ((status & VR_INTRS) == 0)
    880 			break;
    881 
    882 		handled = 1;
    883 
    884 		if (status & VR_ISR_RX_OK)
    885 			vr_rxeof(sc);
    886 
    887 		if (status &
    888 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    889 		     VR_ISR_RX_DROPPED))
    890 			vr_rxeoc(sc);
    891 
    892 		if (status & VR_ISR_TX_OK) {
    893 			dotx = 1;
    894 			vr_txeof(sc);
    895 		}
    896 
    897 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    898 			if (status & VR_ISR_TX_UNDERRUN)
    899 				printf("%s: transmit underrun\n",
    900 				    sc->vr_dev.dv_xname);
    901 			if (status & VR_ISR_TX_ABRT)
    902 				printf("%s: transmit aborted\n",
    903 				    sc->vr_dev.dv_xname);
    904 			ifp->if_oerrors++;
    905 			dotx = 1;
    906 			vr_txeof(sc);
    907 			if (sc->vr_txpending) {
    908 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    909 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    910 			}
    911 		}
    912 
    913 		if (status & VR_ISR_BUSERR) {
    914 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    915 			/* vr_init() calls vr_start() */
    916 			dotx = 0;
    917 			(void) vr_init(sc);
    918 		}
    919 	}
    920 
    921 	/* Re-enable interrupts. */
    922 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    923 
    924 	if (dotx)
    925 		vr_start(ifp);
    926 
    927 	return (handled);
    928 }
    929 
    930 /*
    931  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    932  * to the mbuf data regions directly in the transmit lists. We also save a
    933  * copy of the pointers since the transmit list fragment pointers are
    934  * physical addresses.
    935  */
    936 static void
    937 vr_start(ifp)
    938 	struct ifnet *ifp;
    939 {
    940 	struct vr_softc *sc = ifp->if_softc;
    941 	struct mbuf *m0, *m;
    942 	struct vr_desc *d;
    943 	struct vr_descsoft *ds;
    944 	int error, firsttx, nexttx, opending;
    945 
    946 	/*
    947 	 * Remember the previous txpending and the first transmit
    948 	 * descriptor we use.
    949 	 */
    950 	opending = sc->vr_txpending;
    951 	firsttx = VR_NEXTTX(sc->vr_txlast);
    952 
    953 	/*
    954 	 * Loop through the send queue, setting up transmit descriptors
    955 	 * until we drain the queue, or use up all available transmit
    956 	 * descriptors.
    957 	 */
    958 	while (sc->vr_txpending < VR_NTXDESC) {
    959 		/*
    960 		 * Grab a packet off the queue.
    961 		 */
    962 		IF_DEQUEUE(&ifp->if_snd, m0);
    963 		if (m0 == NULL)
    964 			break;
    965 
    966 		/*
    967 		 * Get the next available transmit descriptor.
    968 		 */
    969 		nexttx = VR_NEXTTX(sc->vr_txlast);
    970 		d = VR_CDTX(sc, nexttx);
    971 		ds = VR_DSTX(sc, nexttx);
    972 
    973 		/*
    974 		 * Load the DMA map.  If this fails, the packet didn't
    975 		 * fit in one DMA segment, and we need to copy.  Note,
    976 		 * the packet must also be aligned.
    977 		 */
    978 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    979 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    980 		     BUS_DMA_NOWAIT) != 0) {
    981 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    982 			if (m == NULL) {
    983 				printf("%s: unable to allocate Tx mbuf\n",
    984 				    sc->vr_dev.dv_xname);
    985 				IF_PREPEND(&ifp->if_snd, m0);
    986 				break;
    987 			}
    988 			if (m0->m_pkthdr.len > MHLEN) {
    989 				MCLGET(m, M_DONTWAIT);
    990 				if ((m->m_flags & M_EXT) == 0) {
    991 					printf("%s: unable to allocate Tx "
    992 					    "cluster\n", sc->vr_dev.dv_xname);
    993 					m_freem(m);
    994 					IF_PREPEND(&ifp->if_snd, m0);
    995 					break;
    996 				}
    997 			}
    998 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    999 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1000 			m_freem(m0);
   1001 			m0 = m;
   1002 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1003 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
   1004 			if (error) {
   1005 				printf("%s: unable to load Tx buffer, "
   1006 				    "error = %d\n", sc->vr_dev.dv_xname, error);
   1007 				IF_PREPEND(&ifp->if_snd, m0);
   1008 				break;
   1009 			}
   1010 		}
   1011 
   1012 		/* Sync the DMA map. */
   1013 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1014 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1015 
   1016 		/*
   1017 		 * Store a pointer to the packet so we can free it later.
   1018 		 */
   1019 		ds->ds_mbuf = m0;
   1020 
   1021 #if NBPFILTER > 0
   1022 		/*
   1023 		 * If there's a BPF listener, bounce a copy of this frame
   1024 		 * to him.
   1025 		 */
   1026 		if (ifp->if_bpf)
   1027 			bpf_mtap(ifp->if_bpf, m0);
   1028 #endif
   1029 
   1030 		/*
   1031 		 * Fill in the transmit descriptor.  The Rhine
   1032 		 * doesn't auto-pad, so we have to do this ourselves.
   1033 		 */
   1034 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1035 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1036 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1037 		d->vr_ctl |=
   1038 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1039 		    VR_TXCTL_LASTFRAG);
   1040 
   1041 		/*
   1042 		 * If this is the first descriptor we're enqueuing,
   1043 		 * don't give it to the Rhine yet.  That could cause
   1044 		 * a race condition.  We'll do it below.
   1045 		 */
   1046 		if (nexttx == firsttx)
   1047 			d->vr_status = 0;
   1048 		else
   1049 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1050 
   1051 		VR_CDTXSYNC(sc, nexttx,
   1052 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1053 
   1054 		/* Advance the tx pointer. */
   1055 		sc->vr_txpending++;
   1056 		sc->vr_txlast = nexttx;
   1057 	}
   1058 
   1059 	if (sc->vr_txpending == VR_NTXDESC) {
   1060 		/* No more slots left; notify upper layer. */
   1061 		ifp->if_flags |= IFF_OACTIVE;
   1062 	}
   1063 
   1064 	if (sc->vr_txpending != opending) {
   1065 		/*
   1066 		 * We enqueued packets.  If the transmitter was idle,
   1067 		 * reset the txdirty pointer.
   1068 		 */
   1069 		if (opending == 0)
   1070 			sc->vr_txdirty = firsttx;
   1071 
   1072 		/*
   1073 		 * Cause a transmit interrupt to happen on the
   1074 		 * last packet we enqueued.
   1075 		 */
   1076 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1077 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1079 
   1080 		/*
   1081 		 * The entire packet chain is set up.  Give the
   1082 		 * first descriptor to the Rhine now.
   1083 		 */
   1084 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1085 		VR_CDTXSYNC(sc, firsttx,
   1086 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1087 
   1088 		/* Start the transmitter. */
   1089 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1090 
   1091 		/* Set the watchdog timer in case the chip flakes out. */
   1092 		ifp->if_timer = 5;
   1093 	}
   1094 }
   1095 
   1096 /*
   1097  * Initialize the interface.  Must be called at splnet.
   1098  */
   1099 static int
   1100 vr_init(sc)
   1101 	struct vr_softc *sc;
   1102 {
   1103 	struct ifnet *ifp = &sc->vr_ec.ec_if;
   1104 	struct vr_desc *d;
   1105 	struct vr_descsoft *ds;
   1106 	int i, error = 0;
   1107 
   1108 	/* Cancel pending I/O. */
   1109 	vr_stop(sc, 0);
   1110 
   1111 	/* Reset the Rhine to a known state. */
   1112 	vr_reset(sc);
   1113 
   1114 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1115 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1116 
   1117 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1118 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1119 
   1120 	/*
   1121 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1122 	 * to the end of the list so that it will wrap around to the first
   1123 	 * descriptor when the first packet is transmitted.
   1124 	 */
   1125 	for (i = 0; i < VR_NTXDESC; i++) {
   1126 		d = VR_CDTX(sc, i);
   1127 		memset(d, 0, sizeof(struct vr_desc));
   1128 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1129 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1130 	}
   1131 	sc->vr_txpending = 0;
   1132 	sc->vr_txdirty = 0;
   1133 	sc->vr_txlast = VR_NTXDESC - 1;
   1134 
   1135 	/*
   1136 	 * Initialize the receive descriptor ring.
   1137 	 */
   1138 	for (i = 0; i < VR_NRXDESC; i++) {
   1139 		ds = VR_DSRX(sc, i);
   1140 		if (ds->ds_mbuf == NULL) {
   1141 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1142 				printf("%s: unable to allocate or map rx "
   1143 				    "buffer %d, error = %d\n",
   1144 				    sc->vr_dev.dv_xname, i, error);
   1145 				/*
   1146 				 * XXX Should attempt to run with fewer receive
   1147 				 * XXX buffers instead of just failing.
   1148 				 */
   1149 				vr_rxdrain(sc);
   1150 				goto out;
   1151 			}
   1152 		}
   1153 	}
   1154 	sc->vr_rxptr = 0;
   1155 
   1156 	/* If we want promiscuous mode, set the allframes bit. */
   1157 	if (ifp->if_flags & IFF_PROMISC)
   1158 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1159 	else
   1160 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1161 
   1162 	/* Set capture broadcast bit to capture broadcast frames. */
   1163 	if (ifp->if_flags & IFF_BROADCAST)
   1164 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1165 	else
   1166 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1167 
   1168 	/* Program the multicast filter, if necessary. */
   1169 	vr_setmulti(sc);
   1170 
   1171 	/* Give the transmit and recieve rings to the Rhine. */
   1172 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1173 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1174 
   1175 	/* Set current media. */
   1176 	mii_mediachg(&sc->vr_mii);
   1177 
   1178 	/* Enable receiver and transmitter. */
   1179 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1180 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1181 				    VR_CMD_RX_GO);
   1182 
   1183 	/* Enable interrupts. */
   1184 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1185 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1186 
   1187 	ifp->if_flags |= IFF_RUNNING;
   1188 	ifp->if_flags &= ~IFF_OACTIVE;
   1189 
   1190 	/* Start one second timer. */
   1191 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1192 
   1193 	/* Attempt to start output on the interface. */
   1194 	vr_start(ifp);
   1195 
   1196  out:
   1197 	if (error)
   1198 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1199 	return (error);
   1200 }
   1201 
   1202 /*
   1203  * Set media options.
   1204  */
   1205 static int
   1206 vr_ifmedia_upd(ifp)
   1207 	struct ifnet *ifp;
   1208 {
   1209 	struct vr_softc *sc = ifp->if_softc;
   1210 
   1211 	if (ifp->if_flags & IFF_UP)
   1212 		mii_mediachg(&sc->vr_mii);
   1213 	return (0);
   1214 }
   1215 
   1216 /*
   1217  * Report current media status.
   1218  */
   1219 static void
   1220 vr_ifmedia_sts(ifp, ifmr)
   1221 	struct ifnet *ifp;
   1222 	struct ifmediareq *ifmr;
   1223 {
   1224 	struct vr_softc *sc = ifp->if_softc;
   1225 
   1226 	mii_pollstat(&sc->vr_mii);
   1227 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1228 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1229 }
   1230 
   1231 static int
   1232 vr_ioctl(ifp, command, data)
   1233 	struct ifnet *ifp;
   1234 	u_long command;
   1235 	caddr_t data;
   1236 {
   1237 	struct vr_softc *sc = ifp->if_softc;
   1238 	struct ifreq *ifr = (struct ifreq *)data;
   1239 	struct ifaddr *ifa = (struct ifaddr *)data;
   1240 	int s, error = 0;
   1241 
   1242 	s = splnet();
   1243 
   1244 	switch (command) {
   1245 	case SIOCSIFADDR:
   1246 		ifp->if_flags |= IFF_UP;
   1247 
   1248 		switch (ifa->ifa_addr->sa_family) {
   1249 #ifdef INET
   1250 		case AF_INET:
   1251 			if ((error = vr_init(sc)) != 0)
   1252 				break;
   1253 			arp_ifinit(ifp, ifa);
   1254 			break;
   1255 #endif /* INET */
   1256 		default:
   1257 			error = vr_init(sc);
   1258 			break;
   1259 		}
   1260 		break;
   1261 
   1262 	case SIOCGIFADDR:
   1263 		bcopy((caddr_t) sc->vr_enaddr,
   1264 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
   1265 			ETHER_ADDR_LEN);
   1266 		break;
   1267 
   1268 	case SIOCSIFMTU:
   1269 		if (ifr->ifr_mtu > ETHERMTU)
   1270 			error = EINVAL;
   1271 		else
   1272 			ifp->if_mtu = ifr->ifr_mtu;
   1273 		break;
   1274 
   1275 	case SIOCSIFFLAGS:
   1276 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1277 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1278 			/*
   1279 			 * If interface is marked down and it is running, then
   1280 			 * stop it.
   1281 			 */
   1282 			vr_stop(sc, 1);
   1283 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1284 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1285 			/*
   1286 			 * If interface is marked up and it is stopped, then
   1287 			 * start it.
   1288 			 */
   1289 			error = vr_init(sc);
   1290 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1291 			/*
   1292 			 * Reset the interface to pick up changes in any other
   1293 			 * flags that affect the hardware state.
   1294 			 */
   1295 			error = vr_init(sc);
   1296 		}
   1297 		break;
   1298 
   1299 	case SIOCADDMULTI:
   1300 	case SIOCDELMULTI:
   1301 		if (command == SIOCADDMULTI)
   1302 			error = ether_addmulti(ifr, &sc->vr_ec);
   1303 		else
   1304 			error = ether_delmulti(ifr, &sc->vr_ec);
   1305 
   1306 		if (error == ENETRESET) {
   1307 			/*
   1308 			 * Multicast list has changed; set the hardware filter
   1309 			 * accordingly.
   1310 			 */
   1311 			vr_setmulti(sc);
   1312 			error = 0;
   1313 		}
   1314 		break;
   1315 
   1316 	case SIOCGIFMEDIA:
   1317 	case SIOCSIFMEDIA:
   1318 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1319 		break;
   1320 
   1321 	default:
   1322 		error = EINVAL;
   1323 		break;
   1324 	}
   1325 
   1326 	splx(s);
   1327 	return (error);
   1328 }
   1329 
   1330 static void
   1331 vr_watchdog(ifp)
   1332 	struct ifnet *ifp;
   1333 {
   1334 	struct vr_softc *sc = ifp->if_softc;
   1335 
   1336 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1337 	ifp->if_oerrors++;
   1338 
   1339 	(void) vr_init(sc);
   1340 }
   1341 
   1342 /*
   1343  * One second timer, used to tick MII.
   1344  */
   1345 static void
   1346 vr_tick(arg)
   1347 	void *arg;
   1348 {
   1349 	struct vr_softc *sc = arg;
   1350 	int s;
   1351 
   1352 	s = splnet();
   1353 	mii_tick(&sc->vr_mii);
   1354 	splx(s);
   1355 
   1356 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1357 }
   1358 
   1359 /*
   1360  * Drain the receive queue.
   1361  */
   1362 static void
   1363 vr_rxdrain(sc)
   1364 	struct vr_softc *sc;
   1365 {
   1366 	struct vr_descsoft *ds;
   1367 	int i;
   1368 
   1369 	for (i = 0; i < VR_NRXDESC; i++) {
   1370 		ds = VR_DSRX(sc, i);
   1371 		if (ds->ds_mbuf != NULL) {
   1372 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1373 			m_freem(ds->ds_mbuf);
   1374 			ds->ds_mbuf = NULL;
   1375 		}
   1376 	}
   1377 }
   1378 
   1379 /*
   1380  * Stop the adapter and free any mbufs allocated to the
   1381  * transmit lists.
   1382  */
   1383 static void
   1384 vr_stop(sc, drain)
   1385 	struct vr_softc *sc;
   1386 	int drain;
   1387 {
   1388 	struct vr_descsoft *ds;
   1389 	struct ifnet *ifp;
   1390 	int i;
   1391 
   1392 	/* Cancel one second timer. */
   1393 	callout_stop(&sc->vr_tick_ch);
   1394 
   1395 	/* Down the MII. */
   1396 	mii_down(&sc->vr_mii);
   1397 
   1398 	ifp = &sc->vr_ec.ec_if;
   1399 	ifp->if_timer = 0;
   1400 
   1401 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1402 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1403 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1404 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1405 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1406 
   1407 	/*
   1408 	 * Release any queued transmit buffers.
   1409 	 */
   1410 	for (i = 0; i < VR_NTXDESC; i++) {
   1411 		ds = VR_DSTX(sc, i);
   1412 		if (ds->ds_mbuf != NULL) {
   1413 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1414 			m_freem(ds->ds_mbuf);
   1415 			ds->ds_mbuf = NULL;
   1416 		}
   1417 	}
   1418 
   1419 	if (drain) {
   1420 		/*
   1421 		 * Release the receive buffers.
   1422 		 */
   1423 		vr_rxdrain(sc);
   1424 	}
   1425 
   1426 	/*
   1427 	 * Mark the interface down and cancel the watchdog timer.
   1428 	 */
   1429 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1430 	ifp->if_timer = 0;
   1431 }
   1432 
   1433 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1434 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1435 static void vr_attach __P((struct device *, struct device *, void *));
   1436 static void vr_shutdown __P((void *));
   1437 
   1438 struct cfattach vr_ca = {
   1439 	sizeof (struct vr_softc), vr_probe, vr_attach
   1440 };
   1441 
   1442 static struct vr_type *
   1443 vr_lookup(pa)
   1444 	struct pci_attach_args *pa;
   1445 {
   1446 	struct vr_type *vrt;
   1447 
   1448 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1449 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1450 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1451 			return (vrt);
   1452 	}
   1453 	return (NULL);
   1454 }
   1455 
   1456 static int
   1457 vr_probe(parent, match, aux)
   1458 	struct device *parent;
   1459 	struct cfdata *match;
   1460 	void *aux;
   1461 {
   1462 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1463 
   1464 	if (vr_lookup(pa) != NULL)
   1465 		return (1);
   1466 
   1467 	return (0);
   1468 }
   1469 
   1470 /*
   1471  * Stop all chip I/O so that the kernel's probe routines don't
   1472  * get confused by errant DMAs when rebooting.
   1473  */
   1474 static void
   1475 vr_shutdown(arg)
   1476 	void *arg;
   1477 {
   1478 	struct vr_softc *sc = (struct vr_softc *)arg;
   1479 
   1480 	vr_stop(sc, 1);
   1481 }
   1482 
   1483 /*
   1484  * Attach the interface. Allocate softc structures, do ifmedia
   1485  * setup and ethernet/BPF attach.
   1486  */
   1487 static void
   1488 vr_attach(parent, self, aux)
   1489 	struct device *parent;
   1490 	struct device *self;
   1491 	void *aux;
   1492 {
   1493 	struct vr_softc *sc = (struct vr_softc *) self;
   1494 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1495 	bus_dma_segment_t seg;
   1496 	struct vr_type *vrt;
   1497 	u_int32_t command;
   1498 	struct ifnet *ifp;
   1499 	u_char eaddr[ETHER_ADDR_LEN];
   1500 	int i, rseg, error;
   1501 
   1502 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1503 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1504 
   1505 	callout_init(&sc->vr_tick_ch);
   1506 
   1507 	vrt = vr_lookup(pa);
   1508 	if (vrt == NULL) {
   1509 		printf("\n");
   1510 		panic("vr_attach: impossible");
   1511 	}
   1512 
   1513 	printf(": %s Ethernet\n", vrt->vr_name);
   1514 
   1515 	/*
   1516 	 * Handle power management nonsense.
   1517 	 */
   1518 
   1519 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1520 	if (command == 0x01) {
   1521 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1522 		if (command & VR_PSTATE_MASK) {
   1523 			u_int32_t iobase, membase, irq;
   1524 
   1525 			/* Save important PCI config data. */
   1526 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1527 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1528 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1529 
   1530 			/* Reset the power state. */
   1531 			printf("%s: chip is in D%d power mode "
   1532 				"-- setting to D0\n",
   1533 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1534 			command &= 0xFFFFFFFC;
   1535 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1536 
   1537 			/* Restore PCI config data. */
   1538 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1539 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1540 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1541 		}
   1542 	}
   1543 
   1544 	/* Make sure bus mastering is enabled. */
   1545 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1546 	command |= PCI_COMMAND_MASTER_ENABLE;
   1547 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1548 
   1549 	/*
   1550 	 * Map control/status registers.
   1551 	 */
   1552 	{
   1553 		bus_space_tag_t iot, memt;
   1554 		bus_space_handle_t ioh, memh;
   1555 		int ioh_valid, memh_valid;
   1556 		pci_intr_handle_t intrhandle;
   1557 		const char *intrstr;
   1558 
   1559 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1560 			PCI_MAPREG_TYPE_IO, 0,
   1561 			&iot, &ioh, NULL, NULL) == 0);
   1562 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1563 			PCI_MAPREG_TYPE_MEM |
   1564 			PCI_MAPREG_MEM_TYPE_32BIT,
   1565 			0, &memt, &memh, NULL, NULL) == 0);
   1566 #if defined(VR_USEIOSPACE)
   1567 		if (ioh_valid) {
   1568 			sc->vr_bst = iot;
   1569 			sc->vr_bsh = ioh;
   1570 		} else if (memh_valid) {
   1571 			sc->vr_bst = memt;
   1572 			sc->vr_bsh = memh;
   1573 		}
   1574 #else
   1575 		if (memh_valid) {
   1576 			sc->vr_bst = memt;
   1577 			sc->vr_bsh = memh;
   1578 		} else if (ioh_valid) {
   1579 			sc->vr_bst = iot;
   1580 			sc->vr_bsh = ioh;
   1581 		}
   1582 #endif
   1583 		else {
   1584 			printf(": unable to map device registers\n");
   1585 			return;
   1586 		}
   1587 
   1588 		/* Allocate interrupt */
   1589 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1590 				pa->pa_intrline, &intrhandle)) {
   1591 			printf("%s: couldn't map interrupt\n",
   1592 				sc->vr_dev.dv_xname);
   1593 			return;
   1594 		}
   1595 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1596 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1597 						vr_intr, sc);
   1598 		if (sc->vr_ih == NULL) {
   1599 			printf("%s: couldn't establish interrupt",
   1600 				sc->vr_dev.dv_xname);
   1601 			if (intrstr != NULL)
   1602 				printf(" at %s", intrstr);
   1603 			printf("\n");
   1604 		}
   1605 		printf("%s: interrupting at %s\n",
   1606 			sc->vr_dev.dv_xname, intrstr);
   1607 	}
   1608 
   1609 	/* Reset the adapter. */
   1610 	vr_reset(sc);
   1611 
   1612 	/*
   1613 	 * Get station address. The way the Rhine chips work,
   1614 	 * you're not allowed to directly access the EEPROM once
   1615 	 * they've been programmed a special way. Consequently,
   1616 	 * we need to read the node address from the PAR0 and PAR1
   1617 	 * registers.
   1618 	 */
   1619 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1620 	DELAY(200);
   1621 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1622 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1623 
   1624 	/*
   1625 	 * A Rhine chip was detected. Inform the world.
   1626 	 */
   1627 	printf("%s: Ethernet address: %s\n",
   1628 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1629 
   1630 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1631 
   1632 	sc->vr_dmat = pa->pa_dmat;
   1633 
   1634 	/*
   1635 	 * Allocate the control data structures, and create and load
   1636 	 * the DMA map for it.
   1637 	 */
   1638 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1639 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1640 	    0)) != 0) {
   1641 		printf("%s: unable to allocate control data, error = %d\n",
   1642 		    sc->vr_dev.dv_xname, error);
   1643 		goto fail_0;
   1644 	}
   1645 
   1646 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1647 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1648 	    BUS_DMA_COHERENT)) != 0) {
   1649 		printf("%s: unable to map control data, error = %d\n",
   1650 		    sc->vr_dev.dv_xname, error);
   1651 		goto fail_1;
   1652 	}
   1653 
   1654 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1655 	    sizeof(struct vr_control_data), 1,
   1656 	    sizeof(struct vr_control_data), 0, 0,
   1657 	    &sc->vr_cddmamap)) != 0) {
   1658 		printf("%s: unable to create control data DMA map, "
   1659 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1660 		goto fail_2;
   1661 	}
   1662 
   1663 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1664 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1665 	    0)) != 0) {
   1666 		printf("%s: unable to load control data DMA map, error = %d\n",
   1667 		    sc->vr_dev.dv_xname, error);
   1668 		goto fail_3;
   1669 	}
   1670 
   1671 	/*
   1672 	 * Create the transmit buffer DMA maps.
   1673 	 */
   1674 	for (i = 0; i < VR_NTXDESC; i++) {
   1675 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1676 		    1, MCLBYTES, 0, 0,
   1677 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1678 			printf("%s: unable to create tx DMA map %d, "
   1679 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1680 			goto fail_4;
   1681 		}
   1682 	}
   1683 
   1684 	/*
   1685 	 * Create the receive buffer DMA maps.
   1686 	 */
   1687 	for (i = 0; i < VR_NRXDESC; i++) {
   1688 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1689 		    MCLBYTES, 0, 0,
   1690 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1691 			printf("%s: unable to create rx DMA map %d, "
   1692 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1693 			goto fail_5;
   1694 		}
   1695 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1696 	}
   1697 
   1698 	ifp = &sc->vr_ec.ec_if;
   1699 	ifp->if_softc = sc;
   1700 	ifp->if_mtu = ETHERMTU;
   1701 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1702 	ifp->if_ioctl = vr_ioctl;
   1703 	ifp->if_start = vr_start;
   1704 	ifp->if_watchdog = vr_watchdog;
   1705 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1706 
   1707 	/*
   1708 	 * Initialize MII/media info.
   1709 	 */
   1710 	sc->vr_mii.mii_ifp = ifp;
   1711 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1712 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1713 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1714 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1715 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1716 	    MII_OFFSET_ANY, 0);
   1717 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1718 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1719 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1720 	} else
   1721 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1722 
   1723 	/*
   1724 	 * Call MI attach routines.
   1725 	 */
   1726 	if_attach(ifp);
   1727 	ether_ifattach(ifp, sc->vr_enaddr);
   1728 
   1729 #if NBPFILTER > 0
   1730 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1731 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1732 #endif
   1733 
   1734 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1735 	if (sc->vr_ats == NULL)
   1736 		printf("%s: warning: couldn't establish shutdown hook\n",
   1737 			sc->vr_dev.dv_xname);
   1738 	return;
   1739 
   1740  fail_5:
   1741 	for (i = 0; i < VR_NRXDESC; i++) {
   1742 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1743 			bus_dmamap_destroy(sc->vr_dmat,
   1744 			    sc->vr_rxsoft[i].ds_dmamap);
   1745 	}
   1746  fail_4:
   1747 	for (i = 0; i < VR_NTXDESC; i++) {
   1748 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1749 			bus_dmamap_destroy(sc->vr_dmat,
   1750 			    sc->vr_txsoft[i].ds_dmamap);
   1751 	}
   1752 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1753  fail_3:
   1754 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1755  fail_2:
   1756 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1757 	    sizeof(struct vr_control_data));
   1758  fail_1:
   1759 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1760  fail_0:
   1761 	return;
   1762 }
   1763