if_vr.c revision 1.38 1 /* $NetBSD: if_vr.c,v 1.38 2000/10/01 23:32:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct vr_softc *));
305 static void vr_stop __P((struct vr_softc *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static u_int8_t vr_calchash __P((u_int8_t *));
318 static void vr_setmulti __P((struct vr_softc *));
319 static void vr_reset __P((struct vr_softc *));
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | x)
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~x)
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | x)
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~x)
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | x)
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~x)
346
347 /*
348 * MII bit-bang glue.
349 */
350 u_int32_t vr_mii_bitbang_read __P((struct device *));
351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
352
353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 u_int32_t
366 vr_mii_bitbang_read(self)
367 struct device *self;
368 {
369 struct vr_softc *sc = (void *) self;
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 void
375 vr_mii_bitbang_write(self, val)
376 struct device *self;
377 u_int32_t val;
378 {
379 struct vr_softc *sc = (void *) self;
380
381 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
382 }
383
384 /*
385 * Read an PHY register through the MII.
386 */
387 static int
388 vr_mii_readreg(self, phy, reg)
389 struct device *self;
390 int phy, reg;
391 {
392 struct vr_softc *sc = (void *) self;
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
396 }
397
398 /*
399 * Write to a PHY register through the MII.
400 */
401 static void
402 vr_mii_writereg(self, phy, reg, val)
403 struct device *self;
404 int phy, reg, val;
405 {
406 struct vr_softc *sc = (void *) self;
407
408 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
409 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
410 }
411
412 static void
413 vr_mii_statchg(self)
414 struct device *self;
415 {
416 struct vr_softc *sc = (struct vr_softc *)self;
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 /*
435 * Calculate CRC of a multicast group address, return the lower 6 bits.
436 */
437 static u_int8_t
438 vr_calchash(addr)
439 u_int8_t *addr;
440 {
441 u_int32_t crc, carry;
442 int i, j;
443 u_int8_t c;
444
445 /* Compute CRC for the address value. */
446 crc = 0xFFFFFFFF; /* initial value */
447
448 for (i = 0; i < 6; i++) {
449 c = *(addr + i);
450 for (j = 0; j < 8; j++) {
451 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
452 crc <<= 1;
453 c >>= 1;
454 if (carry)
455 crc = (crc ^ 0x04c11db6) | carry;
456 }
457 }
458
459 /* return the filter bit position */
460 return ((crc >> 26) & 0x0000003F);
461 }
462
463 /*
464 * Program the 64-bit multicast hash filter.
465 */
466 static void
467 vr_setmulti(sc)
468 struct vr_softc *sc;
469 {
470 struct ifnet *ifp;
471 int h = 0;
472 u_int32_t hashes[2] = { 0, 0 };
473 struct ether_multistep step;
474 struct ether_multi *enm;
475 int mcnt = 0;
476 u_int8_t rxfilt;
477
478 ifp = &sc->vr_ec.ec_if;
479
480 rxfilt = CSR_READ_1(sc, VR_RXCFG);
481
482 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
483 rxfilt |= VR_RXCFG_RX_MULTI;
484 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
485 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
486 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
487 return;
488 }
489
490 /* first, zot all the existing hash bits */
491 CSR_WRITE_4(sc, VR_MAR0, 0);
492 CSR_WRITE_4(sc, VR_MAR1, 0);
493
494 /* now program new ones */
495 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
496 while (enm != NULL) {
497 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
498 continue;
499
500 h = vr_calchash(enm->enm_addrlo);
501
502 if (h < 32)
503 hashes[0] |= (1 << h);
504 else
505 hashes[1] |= (1 << (h - 32));
506 ETHER_NEXT_MULTI(step, enm);
507 mcnt++;
508 }
509
510 if (mcnt)
511 rxfilt |= VR_RXCFG_RX_MULTI;
512 else
513 rxfilt &= ~VR_RXCFG_RX_MULTI;
514
515 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
516 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
517 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
518 }
519
520 static void
521 vr_reset(sc)
522 struct vr_softc *sc;
523 {
524 int i;
525
526 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
527
528 for (i = 0; i < VR_TIMEOUT; i++) {
529 DELAY(10);
530 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
531 break;
532 }
533 if (i == VR_TIMEOUT)
534 printf("%s: reset never completed!\n",
535 sc->vr_dev.dv_xname);
536
537 /* Wait a little while for the chip to get its brains in order. */
538 DELAY(1000);
539 }
540
541 /*
542 * Initialize an RX descriptor and attach an MBUF cluster.
543 * Note: the length fields are only 11 bits wide, which means the
544 * largest size we can specify is 2047. This is important because
545 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
546 * overflow the field and make a mess.
547 */
548 static int
549 vr_add_rxbuf(sc, i)
550 struct vr_softc *sc;
551 int i;
552 {
553 struct vr_descsoft *ds = VR_DSRX(sc, i);
554 struct mbuf *m_new;
555 int error;
556
557 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
558 if (m_new == NULL)
559 return (ENOBUFS);
560
561 MCLGET(m_new, M_DONTWAIT);
562 if ((m_new->m_flags & M_EXT) == 0) {
563 m_freem(m_new);
564 return (ENOBUFS);
565 }
566
567 if (ds->ds_mbuf != NULL)
568 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
569
570 ds->ds_mbuf = m_new;
571
572 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
573 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
574 if (error) {
575 printf("%s: unable to load rx DMA map %d, error = %d\n",
576 sc->vr_dev.dv_xname, i, error);
577 panic("vr_add_rxbuf"); /* XXX */
578 }
579
580 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
581 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
582
583 VR_INIT_RXDESC(sc, i);
584
585 return (0);
586 }
587
588 /*
589 * A frame has been uploaded: pass the resulting mbuf chain up to
590 * the higher level protocols.
591 */
592 static void
593 vr_rxeof(sc)
594 struct vr_softc *sc;
595 {
596 struct mbuf *m;
597 struct ifnet *ifp;
598 struct vr_desc *d;
599 struct vr_descsoft *ds;
600 int i, total_len;
601 u_int32_t rxstat;
602
603 ifp = &sc->vr_ec.ec_if;
604
605 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
606 d = VR_CDRX(sc, i);
607 ds = VR_DSRX(sc, i);
608
609 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
610
611 rxstat = le32toh(d->vr_status);
612
613 if (rxstat & VR_RXSTAT_OWN) {
614 /*
615 * We have processed all of the receive buffers.
616 */
617 break;
618 }
619
620 /*
621 * If an error occurs, update stats, clear the
622 * status word and leave the mbuf cluster in place:
623 * it should simply get re-used next time this descriptor
624 * comes up in the ring.
625 */
626 if (rxstat & VR_RXSTAT_RXERR) {
627 const char *errstr;
628
629 ifp->if_ierrors++;
630 switch (rxstat & 0x000000FF) {
631 case VR_RXSTAT_CRCERR:
632 errstr = "crc error";
633 break;
634 case VR_RXSTAT_FRAMEALIGNERR:
635 errstr = "frame alignment error";
636 break;
637 case VR_RXSTAT_FIFOOFLOW:
638 errstr = "FIFO overflow";
639 break;
640 case VR_RXSTAT_GIANT:
641 errstr = "received giant packet";
642 break;
643 case VR_RXSTAT_RUNT:
644 errstr = "received runt packet";
645 break;
646 case VR_RXSTAT_BUSERR:
647 errstr = "system bus error";
648 break;
649 case VR_RXSTAT_BUFFERR:
650 errstr = "rx buffer error";
651 break;
652 default:
653 errstr = "unknown rx error";
654 break;
655 }
656 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
657 errstr);
658
659 VR_INIT_RXDESC(sc, i);
660
661 continue;
662 }
663
664 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
666
667 /* No errors; receive the packet. */
668 total_len = VR_RXBYTES(le32toh(d->vr_status));
669
670 /*
671 * XXX The VIA Rhine chip includes the CRC with every
672 * received frame, and there's no way to turn this
673 * behavior off (at least, I can't find anything in
674 * the manual that explains how to do it) so we have
675 * to trim off the CRC manually.
676 */
677 total_len -= ETHER_CRC_LEN;
678
679 #ifdef __NO_STRICT_ALIGNMENT
680 /*
681 * If the packet is small enough to fit in a
682 * single header mbuf, allocate one and copy
683 * the data into it. This greatly reduces
684 * memory consumption when we receive lots
685 * of small packets.
686 *
687 * Otherwise, we add a new buffer to the receive
688 * chain. If this fails, we drop the packet and
689 * recycle the old buffer.
690 */
691 if (vr_copy_small != 0 && total_len <= MHLEN) {
692 MGETHDR(m, M_DONTWAIT, MT_DATA);
693 if (m == NULL)
694 goto dropit;
695 memcpy(mtod(m, caddr_t),
696 mtod(ds->ds_mbuf, caddr_t), total_len);
697 VR_INIT_RXDESC(sc, i);
698 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
699 ds->ds_dmamap->dm_mapsize,
700 BUS_DMASYNC_PREREAD);
701 } else {
702 m = ds->ds_mbuf;
703 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
704 dropit:
705 ifp->if_ierrors++;
706 VR_INIT_RXDESC(sc, i);
707 bus_dmamap_sync(sc->vr_dmat,
708 ds->ds_dmamap, 0,
709 ds->ds_dmamap->dm_mapsize,
710 BUS_DMASYNC_PREREAD);
711 continue;
712 }
713 }
714 #else
715 /*
716 * The Rhine's packet buffers must be 4-byte aligned.
717 * But this means that the data after the Ethernet header
718 * is misaligned. We must allocate a new buffer and
719 * copy the data, shifted forward 2 bytes.
720 */
721 MGETHDR(m, M_DONTWAIT, MT_DATA);
722 if (m == NULL) {
723 dropit:
724 ifp->if_ierrors++;
725 VR_INIT_RXDESC(sc, i);
726 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
727 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
728 continue;
729 }
730 if (total_len > (MHLEN - 2)) {
731 MCLGET(m, M_DONTWAIT);
732 if ((m->m_flags & M_EXT) == 0) {
733 m_freem(m);
734 goto dropit;
735 }
736 }
737 m->m_data += 2;
738
739 /*
740 * Note that we use clusters for incoming frames, so the
741 * buffer is virtually contiguous.
742 */
743 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
744 total_len);
745
746 /* Allow the recieve descriptor to continue using its mbuf. */
747 VR_INIT_RXDESC(sc, i);
748 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
749 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
750 #endif /* __NO_STRICT_ALIGNMENT */
751
752 ifp->if_ipackets++;
753 m->m_pkthdr.rcvif = ifp;
754 m->m_pkthdr.len = m->m_len = total_len;
755 #if NBPFILTER > 0
756 /*
757 * Handle BPF listeners. Let the BPF user see the packet, but
758 * don't pass it up to the ether_input() layer unless it's
759 * a broadcast packet, multicast packet, matches our ethernet
760 * address or the interface is in promiscuous mode.
761 */
762 if (ifp->if_bpf)
763 bpf_mtap(ifp->if_bpf, m);
764 #endif
765 /* Pass it on. */
766 (*ifp->if_input)(ifp, m);
767 }
768
769 /* Update the receive pointer. */
770 sc->vr_rxptr = i;
771 }
772
773 void
774 vr_rxeoc(sc)
775 struct vr_softc *sc;
776 {
777
778 vr_rxeof(sc);
779 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
780 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
781 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
782 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
783 }
784
785 /*
786 * A frame was downloaded to the chip. It's safe for us to clean up
787 * the list buffers.
788 */
789 static void
790 vr_txeof(sc)
791 struct vr_softc *sc;
792 {
793 struct ifnet *ifp = &sc->vr_ec.ec_if;
794 struct vr_desc *d;
795 struct vr_descsoft *ds;
796 u_int32_t txstat;
797 int i;
798
799 ifp->if_flags &= ~IFF_OACTIVE;
800
801 /*
802 * Go through our tx list and free mbufs for those
803 * frames that have been transmitted.
804 */
805 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
806 i = VR_NEXTTX(i), sc->vr_txpending--) {
807 d = VR_CDTX(sc, i);
808 ds = VR_DSTX(sc, i);
809
810 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
811
812 txstat = le32toh(d->vr_status);
813 if (txstat & VR_TXSTAT_OWN)
814 break;
815
816 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
817 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
818 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
819 m_freem(ds->ds_mbuf);
820 ds->ds_mbuf = NULL;
821
822 if (txstat & VR_TXSTAT_ERRSUM) {
823 ifp->if_oerrors++;
824 if (txstat & VR_TXSTAT_DEFER)
825 ifp->if_collisions++;
826 if (txstat & VR_TXSTAT_LATECOLL)
827 ifp->if_collisions++;
828 }
829
830 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
831 ifp->if_opackets++;
832 }
833
834 /* Update the dirty transmit buffer pointer. */
835 sc->vr_txdirty = i;
836
837 /*
838 * Cancel the watchdog timer if there are no pending
839 * transmissions.
840 */
841 if (sc->vr_txpending == 0)
842 ifp->if_timer = 0;
843 }
844
845 static int
846 vr_intr(arg)
847 void *arg;
848 {
849 struct vr_softc *sc;
850 struct ifnet *ifp;
851 u_int16_t status;
852 int handled = 0, dotx = 0;
853
854 sc = arg;
855 ifp = &sc->vr_ec.ec_if;
856
857 /* Suppress unwanted interrupts. */
858 if ((ifp->if_flags & IFF_UP) == 0) {
859 vr_stop(sc, 1);
860 return (0);
861 }
862
863 /* Disable interrupts. */
864 CSR_WRITE_2(sc, VR_IMR, 0x0000);
865
866 for (;;) {
867 status = CSR_READ_2(sc, VR_ISR);
868 if (status)
869 CSR_WRITE_2(sc, VR_ISR, status);
870
871 if ((status & VR_INTRS) == 0)
872 break;
873
874 handled = 1;
875
876 if (status & VR_ISR_RX_OK)
877 vr_rxeof(sc);
878
879 if (status &
880 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
881 VR_ISR_RX_DROPPED))
882 vr_rxeoc(sc);
883
884 if (status & VR_ISR_TX_OK) {
885 dotx = 1;
886 vr_txeof(sc);
887 }
888
889 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
890 if (status & VR_ISR_TX_UNDERRUN)
891 printf("%s: transmit underrun\n",
892 sc->vr_dev.dv_xname);
893 if (status & VR_ISR_TX_ABRT)
894 printf("%s: transmit aborted\n",
895 sc->vr_dev.dv_xname);
896 ifp->if_oerrors++;
897 dotx = 1;
898 vr_txeof(sc);
899 if (sc->vr_txpending) {
900 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
901 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
902 }
903 }
904
905 if (status & VR_ISR_BUSERR) {
906 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
907 /* vr_init() calls vr_start() */
908 dotx = 0;
909 (void) vr_init(sc);
910 }
911 }
912
913 /* Re-enable interrupts. */
914 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
915
916 if (dotx)
917 vr_start(ifp);
918
919 return (handled);
920 }
921
922 /*
923 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
924 * to the mbuf data regions directly in the transmit lists. We also save a
925 * copy of the pointers since the transmit list fragment pointers are
926 * physical addresses.
927 */
928 static void
929 vr_start(ifp)
930 struct ifnet *ifp;
931 {
932 struct vr_softc *sc = ifp->if_softc;
933 struct mbuf *m0, *m;
934 struct vr_desc *d;
935 struct vr_descsoft *ds;
936 int error, firsttx, nexttx, opending;
937
938 /*
939 * Remember the previous txpending and the first transmit
940 * descriptor we use.
941 */
942 opending = sc->vr_txpending;
943 firsttx = VR_NEXTTX(sc->vr_txlast);
944
945 /*
946 * Loop through the send queue, setting up transmit descriptors
947 * until we drain the queue, or use up all available transmit
948 * descriptors.
949 */
950 while (sc->vr_txpending < VR_NTXDESC) {
951 /*
952 * Grab a packet off the queue.
953 */
954 IF_DEQUEUE(&ifp->if_snd, m0);
955 if (m0 == NULL)
956 break;
957
958 /*
959 * Get the next available transmit descriptor.
960 */
961 nexttx = VR_NEXTTX(sc->vr_txlast);
962 d = VR_CDTX(sc, nexttx);
963 ds = VR_DSTX(sc, nexttx);
964
965 /*
966 * Load the DMA map. If this fails, the packet didn't
967 * fit in one DMA segment, and we need to copy. Note,
968 * the packet must also be aligned.
969 */
970 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
971 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
972 BUS_DMA_NOWAIT) != 0) {
973 MGETHDR(m, M_DONTWAIT, MT_DATA);
974 if (m == NULL) {
975 printf("%s: unable to allocate Tx mbuf\n",
976 sc->vr_dev.dv_xname);
977 IF_PREPEND(&ifp->if_snd, m0);
978 break;
979 }
980 if (m0->m_pkthdr.len > MHLEN) {
981 MCLGET(m, M_DONTWAIT);
982 if ((m->m_flags & M_EXT) == 0) {
983 printf("%s: unable to allocate Tx "
984 "cluster\n", sc->vr_dev.dv_xname);
985 m_freem(m);
986 IF_PREPEND(&ifp->if_snd, m0);
987 break;
988 }
989 }
990 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
991 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
992 m_freem(m0);
993 m0 = m;
994 error = bus_dmamap_load_mbuf(sc->vr_dmat,
995 ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
996 if (error) {
997 printf("%s: unable to load Tx buffer, "
998 "error = %d\n", sc->vr_dev.dv_xname, error);
999 IF_PREPEND(&ifp->if_snd, m0);
1000 break;
1001 }
1002 }
1003
1004 /* Sync the DMA map. */
1005 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1006 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1007
1008 /*
1009 * Store a pointer to the packet so we can free it later.
1010 */
1011 ds->ds_mbuf = m0;
1012
1013 #if NBPFILTER > 0
1014 /*
1015 * If there's a BPF listener, bounce a copy of this frame
1016 * to him.
1017 */
1018 if (ifp->if_bpf)
1019 bpf_mtap(ifp->if_bpf, m0);
1020 #endif
1021
1022 /*
1023 * Fill in the transmit descriptor. The Rhine
1024 * doesn't auto-pad, so we have to do this ourselves.
1025 */
1026 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1027 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1028 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1029 d->vr_ctl |=
1030 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1031 VR_TXCTL_LASTFRAG);
1032
1033 /*
1034 * If this is the first descriptor we're enqueuing,
1035 * don't give it to the Rhine yet. That could cause
1036 * a race condition. We'll do it below.
1037 */
1038 if (nexttx == firsttx)
1039 d->vr_status = 0;
1040 else
1041 d->vr_status = htole32(VR_TXSTAT_OWN);
1042
1043 VR_CDTXSYNC(sc, nexttx,
1044 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1045
1046 /* Advance the tx pointer. */
1047 sc->vr_txpending++;
1048 sc->vr_txlast = nexttx;
1049 }
1050
1051 if (sc->vr_txpending == VR_NTXDESC) {
1052 /* No more slots left; notify upper layer. */
1053 ifp->if_flags |= IFF_OACTIVE;
1054 }
1055
1056 if (sc->vr_txpending != opending) {
1057 /*
1058 * We enqueued packets. If the transmitter was idle,
1059 * reset the txdirty pointer.
1060 */
1061 if (opending == 0)
1062 sc->vr_txdirty = firsttx;
1063
1064 /*
1065 * Cause a transmit interrupt to happen on the
1066 * last packet we enqueued.
1067 */
1068 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1069 VR_CDTXSYNC(sc, sc->vr_txlast,
1070 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1071
1072 /*
1073 * The entire packet chain is set up. Give the
1074 * first descriptor to the Rhine now.
1075 */
1076 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1077 VR_CDTXSYNC(sc, firsttx,
1078 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079
1080 /* Start the transmitter. */
1081 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1082
1083 /* Set the watchdog timer in case the chip flakes out. */
1084 ifp->if_timer = 5;
1085 }
1086 }
1087
1088 /*
1089 * Initialize the interface. Must be called at splnet.
1090 */
1091 static int
1092 vr_init(sc)
1093 struct vr_softc *sc;
1094 {
1095 struct ifnet *ifp = &sc->vr_ec.ec_if;
1096 struct vr_desc *d;
1097 struct vr_descsoft *ds;
1098 int i, error = 0;
1099
1100 /* Cancel pending I/O. */
1101 vr_stop(sc, 0);
1102
1103 /* Reset the Rhine to a known state. */
1104 vr_reset(sc);
1105
1106 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1107 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1108
1109 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1110 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1111
1112 /*
1113 * Initialize the transmit desciptor ring. txlast is initialized
1114 * to the end of the list so that it will wrap around to the first
1115 * descriptor when the first packet is transmitted.
1116 */
1117 for (i = 0; i < VR_NTXDESC; i++) {
1118 d = VR_CDTX(sc, i);
1119 memset(d, 0, sizeof(struct vr_desc));
1120 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1121 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122 }
1123 sc->vr_txpending = 0;
1124 sc->vr_txdirty = 0;
1125 sc->vr_txlast = VR_NTXDESC - 1;
1126
1127 /*
1128 * Initialize the receive descriptor ring.
1129 */
1130 for (i = 0; i < VR_NRXDESC; i++) {
1131 ds = VR_DSRX(sc, i);
1132 if (ds->ds_mbuf == NULL) {
1133 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1134 printf("%s: unable to allocate or map rx "
1135 "buffer %d, error = %d\n",
1136 sc->vr_dev.dv_xname, i, error);
1137 /*
1138 * XXX Should attempt to run with fewer receive
1139 * XXX buffers instead of just failing.
1140 */
1141 vr_rxdrain(sc);
1142 goto out;
1143 }
1144 }
1145 }
1146 sc->vr_rxptr = 0;
1147
1148 /* If we want promiscuous mode, set the allframes bit. */
1149 if (ifp->if_flags & IFF_PROMISC)
1150 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1151 else
1152 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1153
1154 /* Set capture broadcast bit to capture broadcast frames. */
1155 if (ifp->if_flags & IFF_BROADCAST)
1156 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1157 else
1158 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1159
1160 /* Program the multicast filter, if necessary. */
1161 vr_setmulti(sc);
1162
1163 /* Give the transmit and recieve rings to the Rhine. */
1164 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1165 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1166
1167 /* Set current media. */
1168 mii_mediachg(&sc->vr_mii);
1169
1170 /* Enable receiver and transmitter. */
1171 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1172 VR_CMD_TX_ON|VR_CMD_RX_ON|
1173 VR_CMD_RX_GO);
1174
1175 /* Enable interrupts. */
1176 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1177 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1178
1179 ifp->if_flags |= IFF_RUNNING;
1180 ifp->if_flags &= ~IFF_OACTIVE;
1181
1182 /* Start one second timer. */
1183 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1184
1185 /* Attempt to start output on the interface. */
1186 vr_start(ifp);
1187
1188 out:
1189 if (error)
1190 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1191 return (error);
1192 }
1193
1194 /*
1195 * Set media options.
1196 */
1197 static int
1198 vr_ifmedia_upd(ifp)
1199 struct ifnet *ifp;
1200 {
1201 struct vr_softc *sc = ifp->if_softc;
1202
1203 if (ifp->if_flags & IFF_UP)
1204 mii_mediachg(&sc->vr_mii);
1205 return (0);
1206 }
1207
1208 /*
1209 * Report current media status.
1210 */
1211 static void
1212 vr_ifmedia_sts(ifp, ifmr)
1213 struct ifnet *ifp;
1214 struct ifmediareq *ifmr;
1215 {
1216 struct vr_softc *sc = ifp->if_softc;
1217
1218 mii_pollstat(&sc->vr_mii);
1219 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1220 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1221 }
1222
1223 static int
1224 vr_ioctl(ifp, command, data)
1225 struct ifnet *ifp;
1226 u_long command;
1227 caddr_t data;
1228 {
1229 struct vr_softc *sc = ifp->if_softc;
1230 struct ifreq *ifr = (struct ifreq *)data;
1231 struct ifaddr *ifa = (struct ifaddr *)data;
1232 int s, error = 0;
1233
1234 s = splnet();
1235
1236 switch (command) {
1237 case SIOCSIFADDR:
1238 ifp->if_flags |= IFF_UP;
1239
1240 switch (ifa->ifa_addr->sa_family) {
1241 #ifdef INET
1242 case AF_INET:
1243 if ((error = vr_init(sc)) != 0)
1244 break;
1245 arp_ifinit(ifp, ifa);
1246 break;
1247 #endif /* INET */
1248 default:
1249 error = vr_init(sc);
1250 break;
1251 }
1252 break;
1253
1254 case SIOCGIFADDR:
1255 bcopy((caddr_t) sc->vr_enaddr,
1256 (caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
1257 ETHER_ADDR_LEN);
1258 break;
1259
1260 case SIOCSIFMTU:
1261 if (ifr->ifr_mtu > ETHERMTU)
1262 error = EINVAL;
1263 else
1264 ifp->if_mtu = ifr->ifr_mtu;
1265 break;
1266
1267 case SIOCSIFFLAGS:
1268 if ((ifp->if_flags & IFF_UP) == 0 &&
1269 (ifp->if_flags & IFF_RUNNING) != 0) {
1270 /*
1271 * If interface is marked down and it is running, then
1272 * stop it.
1273 */
1274 vr_stop(sc, 1);
1275 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1276 (ifp->if_flags & IFF_RUNNING) == 0) {
1277 /*
1278 * If interface is marked up and it is stopped, then
1279 * start it.
1280 */
1281 error = vr_init(sc);
1282 } else if ((ifp->if_flags & IFF_UP) != 0) {
1283 /*
1284 * Reset the interface to pick up changes in any other
1285 * flags that affect the hardware state.
1286 */
1287 error = vr_init(sc);
1288 }
1289 break;
1290
1291 case SIOCADDMULTI:
1292 case SIOCDELMULTI:
1293 if (command == SIOCADDMULTI)
1294 error = ether_addmulti(ifr, &sc->vr_ec);
1295 else
1296 error = ether_delmulti(ifr, &sc->vr_ec);
1297
1298 if (error == ENETRESET) {
1299 /*
1300 * Multicast list has changed; set the hardware filter
1301 * accordingly.
1302 */
1303 vr_setmulti(sc);
1304 error = 0;
1305 }
1306 break;
1307
1308 case SIOCGIFMEDIA:
1309 case SIOCSIFMEDIA:
1310 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1311 break;
1312
1313 default:
1314 error = EINVAL;
1315 break;
1316 }
1317
1318 splx(s);
1319 return (error);
1320 }
1321
1322 static void
1323 vr_watchdog(ifp)
1324 struct ifnet *ifp;
1325 {
1326 struct vr_softc *sc = ifp->if_softc;
1327
1328 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1329 ifp->if_oerrors++;
1330
1331 (void) vr_init(sc);
1332 }
1333
1334 /*
1335 * One second timer, used to tick MII.
1336 */
1337 static void
1338 vr_tick(arg)
1339 void *arg;
1340 {
1341 struct vr_softc *sc = arg;
1342 int s;
1343
1344 s = splnet();
1345 mii_tick(&sc->vr_mii);
1346 splx(s);
1347
1348 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1349 }
1350
1351 /*
1352 * Drain the receive queue.
1353 */
1354 static void
1355 vr_rxdrain(sc)
1356 struct vr_softc *sc;
1357 {
1358 struct vr_descsoft *ds;
1359 int i;
1360
1361 for (i = 0; i < VR_NRXDESC; i++) {
1362 ds = VR_DSRX(sc, i);
1363 if (ds->ds_mbuf != NULL) {
1364 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1365 m_freem(ds->ds_mbuf);
1366 ds->ds_mbuf = NULL;
1367 }
1368 }
1369 }
1370
1371 /*
1372 * Stop the adapter and free any mbufs allocated to the
1373 * transmit lists.
1374 */
1375 static void
1376 vr_stop(sc, drain)
1377 struct vr_softc *sc;
1378 int drain;
1379 {
1380 struct vr_descsoft *ds;
1381 struct ifnet *ifp;
1382 int i;
1383
1384 /* Cancel one second timer. */
1385 callout_stop(&sc->vr_tick_ch);
1386
1387 /* Down the MII. */
1388 mii_down(&sc->vr_mii);
1389
1390 ifp = &sc->vr_ec.ec_if;
1391 ifp->if_timer = 0;
1392
1393 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1394 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1395 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1396 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1397 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1398
1399 /*
1400 * Release any queued transmit buffers.
1401 */
1402 for (i = 0; i < VR_NTXDESC; i++) {
1403 ds = VR_DSTX(sc, i);
1404 if (ds->ds_mbuf != NULL) {
1405 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1406 m_freem(ds->ds_mbuf);
1407 ds->ds_mbuf = NULL;
1408 }
1409 }
1410
1411 if (drain) {
1412 /*
1413 * Release the receive buffers.
1414 */
1415 vr_rxdrain(sc);
1416 }
1417
1418 /*
1419 * Mark the interface down and cancel the watchdog timer.
1420 */
1421 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1422 ifp->if_timer = 0;
1423 }
1424
1425 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1426 static int vr_probe __P((struct device *, struct cfdata *, void *));
1427 static void vr_attach __P((struct device *, struct device *, void *));
1428 static void vr_shutdown __P((void *));
1429
1430 struct cfattach vr_ca = {
1431 sizeof (struct vr_softc), vr_probe, vr_attach
1432 };
1433
1434 static struct vr_type *
1435 vr_lookup(pa)
1436 struct pci_attach_args *pa;
1437 {
1438 struct vr_type *vrt;
1439
1440 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1441 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1442 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1443 return (vrt);
1444 }
1445 return (NULL);
1446 }
1447
1448 static int
1449 vr_probe(parent, match, aux)
1450 struct device *parent;
1451 struct cfdata *match;
1452 void *aux;
1453 {
1454 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1455
1456 if (vr_lookup(pa) != NULL)
1457 return (1);
1458
1459 return (0);
1460 }
1461
1462 /*
1463 * Stop all chip I/O so that the kernel's probe routines don't
1464 * get confused by errant DMAs when rebooting.
1465 */
1466 static void
1467 vr_shutdown(arg)
1468 void *arg;
1469 {
1470 struct vr_softc *sc = (struct vr_softc *)arg;
1471
1472 vr_stop(sc, 1);
1473 }
1474
1475 /*
1476 * Attach the interface. Allocate softc structures, do ifmedia
1477 * setup and ethernet/BPF attach.
1478 */
1479 static void
1480 vr_attach(parent, self, aux)
1481 struct device *parent;
1482 struct device *self;
1483 void *aux;
1484 {
1485 struct vr_softc *sc = (struct vr_softc *) self;
1486 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1487 bus_dma_segment_t seg;
1488 struct vr_type *vrt;
1489 u_int32_t command;
1490 struct ifnet *ifp;
1491 u_char eaddr[ETHER_ADDR_LEN];
1492 int i, rseg, error;
1493
1494 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1495 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1496
1497 callout_init(&sc->vr_tick_ch);
1498
1499 vrt = vr_lookup(pa);
1500 if (vrt == NULL) {
1501 printf("\n");
1502 panic("vr_attach: impossible");
1503 }
1504
1505 printf(": %s Ethernet\n", vrt->vr_name);
1506
1507 /*
1508 * Handle power management nonsense.
1509 */
1510
1511 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1512 if (command == 0x01) {
1513 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1514 if (command & VR_PSTATE_MASK) {
1515 u_int32_t iobase, membase, irq;
1516
1517 /* Save important PCI config data. */
1518 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1519 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1520 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1521
1522 /* Reset the power state. */
1523 printf("%s: chip is in D%d power mode "
1524 "-- setting to D0\n",
1525 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1526 command &= 0xFFFFFFFC;
1527 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1528
1529 /* Restore PCI config data. */
1530 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1531 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1532 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1533 }
1534 }
1535
1536 /* Make sure bus mastering is enabled. */
1537 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1538 command |= PCI_COMMAND_MASTER_ENABLE;
1539 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1540
1541 /*
1542 * Map control/status registers.
1543 */
1544 {
1545 bus_space_tag_t iot, memt;
1546 bus_space_handle_t ioh, memh;
1547 int ioh_valid, memh_valid;
1548 pci_intr_handle_t intrhandle;
1549 const char *intrstr;
1550
1551 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1552 PCI_MAPREG_TYPE_IO, 0,
1553 &iot, &ioh, NULL, NULL) == 0);
1554 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1555 PCI_MAPREG_TYPE_MEM |
1556 PCI_MAPREG_MEM_TYPE_32BIT,
1557 0, &memt, &memh, NULL, NULL) == 0);
1558 #if defined(VR_USEIOSPACE)
1559 if (ioh_valid) {
1560 sc->vr_bst = iot;
1561 sc->vr_bsh = ioh;
1562 } else if (memh_valid) {
1563 sc->vr_bst = memt;
1564 sc->vr_bsh = memh;
1565 }
1566 #else
1567 if (memh_valid) {
1568 sc->vr_bst = memt;
1569 sc->vr_bsh = memh;
1570 } else if (ioh_valid) {
1571 sc->vr_bst = iot;
1572 sc->vr_bsh = ioh;
1573 }
1574 #endif
1575 else {
1576 printf(": unable to map device registers\n");
1577 return;
1578 }
1579
1580 /* Allocate interrupt */
1581 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1582 pa->pa_intrline, &intrhandle)) {
1583 printf("%s: couldn't map interrupt\n",
1584 sc->vr_dev.dv_xname);
1585 return;
1586 }
1587 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1588 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1589 vr_intr, sc);
1590 if (sc->vr_ih == NULL) {
1591 printf("%s: couldn't establish interrupt",
1592 sc->vr_dev.dv_xname);
1593 if (intrstr != NULL)
1594 printf(" at %s", intrstr);
1595 printf("\n");
1596 }
1597 printf("%s: interrupting at %s\n",
1598 sc->vr_dev.dv_xname, intrstr);
1599 }
1600
1601 /* Reset the adapter. */
1602 vr_reset(sc);
1603
1604 /*
1605 * Get station address. The way the Rhine chips work,
1606 * you're not allowed to directly access the EEPROM once
1607 * they've been programmed a special way. Consequently,
1608 * we need to read the node address from the PAR0 and PAR1
1609 * registers.
1610 */
1611 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1612 DELAY(200);
1613 for (i = 0; i < ETHER_ADDR_LEN; i++)
1614 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1615
1616 /*
1617 * A Rhine chip was detected. Inform the world.
1618 */
1619 printf("%s: Ethernet address: %s\n",
1620 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1621
1622 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1623
1624 sc->vr_dmat = pa->pa_dmat;
1625
1626 /*
1627 * Allocate the control data structures, and create and load
1628 * the DMA map for it.
1629 */
1630 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1631 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1632 0)) != 0) {
1633 printf("%s: unable to allocate control data, error = %d\n",
1634 sc->vr_dev.dv_xname, error);
1635 goto fail_0;
1636 }
1637
1638 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1639 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1640 BUS_DMA_COHERENT)) != 0) {
1641 printf("%s: unable to map control data, error = %d\n",
1642 sc->vr_dev.dv_xname, error);
1643 goto fail_1;
1644 }
1645
1646 if ((error = bus_dmamap_create(sc->vr_dmat,
1647 sizeof(struct vr_control_data), 1,
1648 sizeof(struct vr_control_data), 0, 0,
1649 &sc->vr_cddmamap)) != 0) {
1650 printf("%s: unable to create control data DMA map, "
1651 "error = %d\n", sc->vr_dev.dv_xname, error);
1652 goto fail_2;
1653 }
1654
1655 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1656 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1657 0)) != 0) {
1658 printf("%s: unable to load control data DMA map, error = %d\n",
1659 sc->vr_dev.dv_xname, error);
1660 goto fail_3;
1661 }
1662
1663 /*
1664 * Create the transmit buffer DMA maps.
1665 */
1666 for (i = 0; i < VR_NTXDESC; i++) {
1667 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1668 1, MCLBYTES, 0, 0,
1669 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1670 printf("%s: unable to create tx DMA map %d, "
1671 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1672 goto fail_4;
1673 }
1674 }
1675
1676 /*
1677 * Create the receive buffer DMA maps.
1678 */
1679 for (i = 0; i < VR_NRXDESC; i++) {
1680 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1681 MCLBYTES, 0, 0,
1682 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1683 printf("%s: unable to create rx DMA map %d, "
1684 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1685 goto fail_5;
1686 }
1687 VR_DSRX(sc, i)->ds_mbuf = NULL;
1688 }
1689
1690 ifp = &sc->vr_ec.ec_if;
1691 ifp->if_softc = sc;
1692 ifp->if_mtu = ETHERMTU;
1693 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1694 ifp->if_ioctl = vr_ioctl;
1695 ifp->if_start = vr_start;
1696 ifp->if_watchdog = vr_watchdog;
1697 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1698
1699 /*
1700 * Initialize MII/media info.
1701 */
1702 sc->vr_mii.mii_ifp = ifp;
1703 sc->vr_mii.mii_readreg = vr_mii_readreg;
1704 sc->vr_mii.mii_writereg = vr_mii_writereg;
1705 sc->vr_mii.mii_statchg = vr_mii_statchg;
1706 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1707 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1708 MII_OFFSET_ANY, 0);
1709 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1710 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1711 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1712 } else
1713 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1714
1715 /*
1716 * Call MI attach routines.
1717 */
1718 if_attach(ifp);
1719 ether_ifattach(ifp, sc->vr_enaddr);
1720
1721 #if NBPFILTER > 0
1722 bpfattach(&sc->vr_ec.ec_if.if_bpf,
1723 ifp, DLT_EN10MB, sizeof (struct ether_header));
1724 #endif
1725
1726 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1727 if (sc->vr_ats == NULL)
1728 printf("%s: warning: couldn't establish shutdown hook\n",
1729 sc->vr_dev.dv_xname);
1730 return;
1731
1732 fail_5:
1733 for (i = 0; i < VR_NRXDESC; i++) {
1734 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1735 bus_dmamap_destroy(sc->vr_dmat,
1736 sc->vr_rxsoft[i].ds_dmamap);
1737 }
1738 fail_4:
1739 for (i = 0; i < VR_NTXDESC; i++) {
1740 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1741 bus_dmamap_destroy(sc->vr_dmat,
1742 sc->vr_txsoft[i].ds_dmamap);
1743 }
1744 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1745 fail_3:
1746 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1747 fail_2:
1748 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1749 sizeof(struct vr_control_data));
1750 fail_1:
1751 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1752 fail_0:
1753 return;
1754 }
1755