Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.38
      1 /*	$NetBSD: if_vr.c,v 1.38 2000/10/01 23:32:44 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/sockio.h>
    112 #include <sys/mbuf.h>
    113 #include <sys/malloc.h>
    114 #include <sys/kernel.h>
    115 #include <sys/socket.h>
    116 #include <sys/device.h>
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #if defined(INET)
    127 #include <netinet/in.h>
    128 #include <netinet/if_inarp.h>
    129 #endif
    130 
    131 #include "bpfilter.h"
    132 #if NBPFILTER > 0
    133 #include <net/bpf.h>
    134 #endif
    135 
    136 #include <machine/bus.h>
    137 #include <machine/intr.h>
    138 #include <machine/endian.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 #include <dev/mii/mii_bitbang.h>
    143 
    144 #include <dev/pci/pcireg.h>
    145 #include <dev/pci/pcivar.h>
    146 #include <dev/pci/pcidevs.h>
    147 
    148 #include <dev/pci/if_vrreg.h>
    149 
    150 #define	VR_USEIOSPACE
    151 
    152 /*
    153  * Various supported device vendors/types and their names.
    154  */
    155 static struct vr_type {
    156 	pci_vendor_id_t		vr_vid;
    157 	pci_product_id_t	vr_did;
    158 	const char		*vr_name;
    159 } vr_devs[] = {
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    161 		"VIA VT3043 (Rhine) 10/100" },
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    163 		"VIA VT6102 (Rhine II) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    165 		"VIA VT86C100A (Rhine-II) 10/100" },
    166 	{ 0, 0, NULL }
    167 };
    168 
    169 /*
    170  * Transmit descriptor list size.
    171  */
    172 #define	VR_NTXDESC		64
    173 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    174 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    175 
    176 /*
    177  * Receive descriptor list size.
    178  */
    179 #define	VR_NRXDESC		64
    180 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    181 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    182 
    183 /*
    184  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    185  * them in a single clump that maps to a single DMA segment to make several
    186  * things easier.
    187  *
    188  * Note that since we always copy outgoing packets to aligned transmit
    189  * buffers, we can reduce the transmit descriptors to one per packet.
    190  */
    191 struct vr_control_data {
    192 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    193 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    194 };
    195 
    196 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    197 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    198 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    199 
    200 /*
    201  * Software state of transmit and receive descriptors.
    202  */
    203 struct vr_descsoft {
    204 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    205 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    206 };
    207 
    208 struct vr_softc {
    209 	struct device		vr_dev;		/* generic device glue */
    210 	void			*vr_ih;		/* interrupt cookie */
    211 	void			*vr_ats;	/* shutdown hook */
    212 	bus_space_tag_t		vr_bst;		/* bus space tag */
    213 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    214 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    215 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    216 	struct ethercom		vr_ec;		/* Ethernet common info */
    217 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    218 	struct mii_data		vr_mii;		/* MII/media info */
    219 
    220 	struct callout		vr_tick_ch;	/* tick callout */
    221 
    222 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    223 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    224 
    225 	/*
    226 	 * Software state for transmit and receive descriptors.
    227 	 */
    228 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    229 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    230 
    231 	/*
    232 	 * Control data structures.
    233 	 */
    234 	struct vr_control_data	*vr_control_data;
    235 
    236 	int	vr_txpending;		/* number of TX requests pending */
    237 	int	vr_txdirty;		/* first dirty TX descriptor */
    238 	int	vr_txlast;		/* last used TX descriptor */
    239 
    240 	int	vr_rxptr;		/* next ready RX descriptor */
    241 };
    242 
    243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    245 
    246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    248 
    249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    251 
    252 #define	VR_CDTXSYNC(sc, x, ops)						\
    253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    255 
    256 #define	VR_CDRXSYNC(sc, x, ops)						\
    257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    259 
    260 /*
    261  * Note we rely on MCLBYTES being a power of two below.
    262  */
    263 #define	VR_INIT_RXDESC(sc, i)						\
    264 do {									\
    265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    267 									\
    268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    269 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    270 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    271 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    272 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    273 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    275 } while (0)
    276 
    277 /*
    278  * register space access macros
    279  */
    280 #define	CSR_WRITE_4(sc, reg, val)					\
    281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_2(sc, reg, val)					\
    283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    284 #define	CSR_WRITE_1(sc, reg, val)					\
    285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    286 
    287 #define	CSR_READ_4(sc, reg)						\
    288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_2(sc, reg)						\
    290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    291 #define	CSR_READ_1(sc, reg)						\
    292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    293 
    294 #define	VR_TIMEOUT		1000
    295 
    296 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    297 
    298 static void vr_rxeof		__P((struct vr_softc *));
    299 static void vr_rxeoc		__P((struct vr_softc *));
    300 static void vr_txeof		__P((struct vr_softc *));
    301 static int vr_intr		__P((void *));
    302 static void vr_start		__P((struct ifnet *));
    303 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    304 static int vr_init		__P((struct vr_softc *));
    305 static void vr_stop		__P((struct vr_softc *, int));
    306 static void vr_rxdrain		__P((struct vr_softc *));
    307 static void vr_watchdog		__P((struct ifnet *));
    308 static void vr_tick		__P((void *));
    309 
    310 static int vr_ifmedia_upd	__P((struct ifnet *));
    311 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    312 
    313 static int vr_mii_readreg	__P((struct device *, int, int));
    314 static void vr_mii_writereg	__P((struct device *, int, int, int));
    315 static void vr_mii_statchg	__P((struct device *));
    316 
    317 static u_int8_t vr_calchash	__P((u_int8_t *));
    318 static void vr_setmulti		__P((struct vr_softc *));
    319 static void vr_reset		__P((struct vr_softc *));
    320 
    321 int	vr_copy_small = 0;
    322 
    323 #define	VR_SETBIT(sc, reg, x)				\
    324 	CSR_WRITE_1(sc, reg,				\
    325 		CSR_READ_1(sc, reg) | x)
    326 
    327 #define	VR_CLRBIT(sc, reg, x)				\
    328 	CSR_WRITE_1(sc, reg,				\
    329 		CSR_READ_1(sc, reg) & ~x)
    330 
    331 #define	VR_SETBIT16(sc, reg, x)				\
    332 	CSR_WRITE_2(sc, reg,				\
    333 		CSR_READ_2(sc, reg) | x)
    334 
    335 #define	VR_CLRBIT16(sc, reg, x)				\
    336 	CSR_WRITE_2(sc, reg,				\
    337 		CSR_READ_2(sc, reg) & ~x)
    338 
    339 #define	VR_SETBIT32(sc, reg, x)				\
    340 	CSR_WRITE_4(sc, reg,				\
    341 		CSR_READ_4(sc, reg) | x)
    342 
    343 #define	VR_CLRBIT32(sc, reg, x)				\
    344 	CSR_WRITE_4(sc, reg,				\
    345 		CSR_READ_4(sc, reg) & ~x)
    346 
    347 /*
    348  * MII bit-bang glue.
    349  */
    350 u_int32_t vr_mii_bitbang_read __P((struct device *));
    351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    352 
    353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    354 	vr_mii_bitbang_read,
    355 	vr_mii_bitbang_write,
    356 	{
    357 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    358 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    359 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    360 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    361 		0,			/* MII_BIT_DIR_PHY_HOST */
    362 	}
    363 };
    364 
    365 u_int32_t
    366 vr_mii_bitbang_read(self)
    367 	struct device *self;
    368 {
    369 	struct vr_softc *sc = (void *) self;
    370 
    371 	return (CSR_READ_1(sc, VR_MIICMD));
    372 }
    373 
    374 void
    375 vr_mii_bitbang_write(self, val)
    376 	struct device *self;
    377 	u_int32_t val;
    378 {
    379 	struct vr_softc *sc = (void *) self;
    380 
    381 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    382 }
    383 
    384 /*
    385  * Read an PHY register through the MII.
    386  */
    387 static int
    388 vr_mii_readreg(self, phy, reg)
    389 	struct device *self;
    390 	int phy, reg;
    391 {
    392 	struct vr_softc *sc = (void *) self;
    393 
    394 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    395 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    396 }
    397 
    398 /*
    399  * Write to a PHY register through the MII.
    400  */
    401 static void
    402 vr_mii_writereg(self, phy, reg, val)
    403 	struct device *self;
    404 	int phy, reg, val;
    405 {
    406 	struct vr_softc *sc = (void *) self;
    407 
    408 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    409 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    410 }
    411 
    412 static void
    413 vr_mii_statchg(self)
    414 	struct device *self;
    415 {
    416 	struct vr_softc *sc = (struct vr_softc *)self;
    417 
    418 	/*
    419 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    420 	 * register, we first have to put the transmit and/or receive logic
    421 	 * in the idle state.
    422 	 */
    423 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    424 
    425 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    427 	else
    428 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    429 
    430 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    431 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    432 }
    433 
    434 /*
    435  * Calculate CRC of a multicast group address, return the lower 6 bits.
    436  */
    437 static u_int8_t
    438 vr_calchash(addr)
    439 	u_int8_t *addr;
    440 {
    441 	u_int32_t crc, carry;
    442 	int i, j;
    443 	u_int8_t c;
    444 
    445 	/* Compute CRC for the address value. */
    446 	crc = 0xFFFFFFFF; /* initial value */
    447 
    448 	for (i = 0; i < 6; i++) {
    449 		c = *(addr + i);
    450 		for (j = 0; j < 8; j++) {
    451 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    452 			crc <<= 1;
    453 			c >>= 1;
    454 			if (carry)
    455 				crc = (crc ^ 0x04c11db6) | carry;
    456 		}
    457 	}
    458 
    459 	/* return the filter bit position */
    460 	return ((crc >> 26) & 0x0000003F);
    461 }
    462 
    463 /*
    464  * Program the 64-bit multicast hash filter.
    465  */
    466 static void
    467 vr_setmulti(sc)
    468 	struct vr_softc *sc;
    469 {
    470 	struct ifnet *ifp;
    471 	int h = 0;
    472 	u_int32_t hashes[2] = { 0, 0 };
    473 	struct ether_multistep step;
    474 	struct ether_multi *enm;
    475 	int mcnt = 0;
    476 	u_int8_t rxfilt;
    477 
    478 	ifp = &sc->vr_ec.ec_if;
    479 
    480 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    481 
    482 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    483 		rxfilt |= VR_RXCFG_RX_MULTI;
    484 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    485 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    486 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    487 		return;
    488 	}
    489 
    490 	/* first, zot all the existing hash bits */
    491 	CSR_WRITE_4(sc, VR_MAR0, 0);
    492 	CSR_WRITE_4(sc, VR_MAR1, 0);
    493 
    494 	/* now program new ones */
    495 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    496 	while (enm != NULL) {
    497 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    498 			continue;
    499 
    500 		h = vr_calchash(enm->enm_addrlo);
    501 
    502 		if (h < 32)
    503 			hashes[0] |= (1 << h);
    504 		else
    505 			hashes[1] |= (1 << (h - 32));
    506 		ETHER_NEXT_MULTI(step, enm);
    507 		mcnt++;
    508 	}
    509 
    510 	if (mcnt)
    511 		rxfilt |= VR_RXCFG_RX_MULTI;
    512 	else
    513 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    514 
    515 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    516 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    517 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    518 }
    519 
    520 static void
    521 vr_reset(sc)
    522 	struct vr_softc *sc;
    523 {
    524 	int i;
    525 
    526 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    527 
    528 	for (i = 0; i < VR_TIMEOUT; i++) {
    529 		DELAY(10);
    530 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    531 			break;
    532 	}
    533 	if (i == VR_TIMEOUT)
    534 		printf("%s: reset never completed!\n",
    535 			sc->vr_dev.dv_xname);
    536 
    537 	/* Wait a little while for the chip to get its brains in order. */
    538 	DELAY(1000);
    539 }
    540 
    541 /*
    542  * Initialize an RX descriptor and attach an MBUF cluster.
    543  * Note: the length fields are only 11 bits wide, which means the
    544  * largest size we can specify is 2047. This is important because
    545  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    546  * overflow the field and make a mess.
    547  */
    548 static int
    549 vr_add_rxbuf(sc, i)
    550 	struct vr_softc *sc;
    551 	int i;
    552 {
    553 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    554 	struct mbuf *m_new;
    555 	int error;
    556 
    557 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    558 	if (m_new == NULL)
    559 		return (ENOBUFS);
    560 
    561 	MCLGET(m_new, M_DONTWAIT);
    562 	if ((m_new->m_flags & M_EXT) == 0) {
    563 		m_freem(m_new);
    564 		return (ENOBUFS);
    565 	}
    566 
    567 	if (ds->ds_mbuf != NULL)
    568 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    569 
    570 	ds->ds_mbuf = m_new;
    571 
    572 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    573 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    574 	if (error) {
    575 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    576 		    sc->vr_dev.dv_xname, i, error);
    577 		panic("vr_add_rxbuf");		/* XXX */
    578 	}
    579 
    580 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    581 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    582 
    583 	VR_INIT_RXDESC(sc, i);
    584 
    585 	return (0);
    586 }
    587 
    588 /*
    589  * A frame has been uploaded: pass the resulting mbuf chain up to
    590  * the higher level protocols.
    591  */
    592 static void
    593 vr_rxeof(sc)
    594 	struct vr_softc *sc;
    595 {
    596 	struct mbuf *m;
    597 	struct ifnet *ifp;
    598 	struct vr_desc *d;
    599 	struct vr_descsoft *ds;
    600 	int i, total_len;
    601 	u_int32_t rxstat;
    602 
    603 	ifp = &sc->vr_ec.ec_if;
    604 
    605 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    606 		d = VR_CDRX(sc, i);
    607 		ds = VR_DSRX(sc, i);
    608 
    609 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    610 
    611 		rxstat = le32toh(d->vr_status);
    612 
    613 		if (rxstat & VR_RXSTAT_OWN) {
    614 			/*
    615 			 * We have processed all of the receive buffers.
    616 			 */
    617 			break;
    618 		}
    619 
    620 		/*
    621 		 * If an error occurs, update stats, clear the
    622 		 * status word and leave the mbuf cluster in place:
    623 		 * it should simply get re-used next time this descriptor
    624 		 * comes up in the ring.
    625 		 */
    626 		if (rxstat & VR_RXSTAT_RXERR) {
    627 			const char *errstr;
    628 
    629 			ifp->if_ierrors++;
    630 			switch (rxstat & 0x000000FF) {
    631 			case VR_RXSTAT_CRCERR:
    632 				errstr = "crc error";
    633 				break;
    634 			case VR_RXSTAT_FRAMEALIGNERR:
    635 				errstr = "frame alignment error";
    636 				break;
    637 			case VR_RXSTAT_FIFOOFLOW:
    638 				errstr = "FIFO overflow";
    639 				break;
    640 			case VR_RXSTAT_GIANT:
    641 				errstr = "received giant packet";
    642 				break;
    643 			case VR_RXSTAT_RUNT:
    644 				errstr = "received runt packet";
    645 				break;
    646 			case VR_RXSTAT_BUSERR:
    647 				errstr = "system bus error";
    648 				break;
    649 			case VR_RXSTAT_BUFFERR:
    650 				errstr = "rx buffer error";
    651 				break;
    652 			default:
    653 				errstr = "unknown rx error";
    654 				break;
    655 			}
    656 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    657 			    errstr);
    658 
    659 			VR_INIT_RXDESC(sc, i);
    660 
    661 			continue;
    662 		}
    663 
    664 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    665 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    666 
    667 		/* No errors; receive the packet. */
    668 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    669 
    670 		/*
    671 		 * XXX The VIA Rhine chip includes the CRC with every
    672 		 * received frame, and there's no way to turn this
    673 		 * behavior off (at least, I can't find anything in
    674 		 * the manual that explains how to do it) so we have
    675 		 * to trim off the CRC manually.
    676 		 */
    677 		total_len -= ETHER_CRC_LEN;
    678 
    679 #ifdef __NO_STRICT_ALIGNMENT
    680 		/*
    681 		 * If the packet is small enough to fit in a
    682 		 * single header mbuf, allocate one and copy
    683 		 * the data into it.  This greatly reduces
    684 		 * memory consumption when we receive lots
    685 		 * of small packets.
    686 		 *
    687 		 * Otherwise, we add a new buffer to the receive
    688 		 * chain.  If this fails, we drop the packet and
    689 		 * recycle the old buffer.
    690 		 */
    691 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    692 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    693 			if (m == NULL)
    694 				goto dropit;
    695 			memcpy(mtod(m, caddr_t),
    696 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    697 			VR_INIT_RXDESC(sc, i);
    698 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    699 			    ds->ds_dmamap->dm_mapsize,
    700 			    BUS_DMASYNC_PREREAD);
    701 		} else {
    702 			m = ds->ds_mbuf;
    703 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    704  dropit:
    705 				ifp->if_ierrors++;
    706 				VR_INIT_RXDESC(sc, i);
    707 				bus_dmamap_sync(sc->vr_dmat,
    708 				    ds->ds_dmamap, 0,
    709 				    ds->ds_dmamap->dm_mapsize,
    710 				    BUS_DMASYNC_PREREAD);
    711 				continue;
    712 			}
    713 		}
    714 #else
    715 		/*
    716 		 * The Rhine's packet buffers must be 4-byte aligned.
    717 		 * But this means that the data after the Ethernet header
    718 		 * is misaligned.  We must allocate a new buffer and
    719 		 * copy the data, shifted forward 2 bytes.
    720 		 */
    721 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    722 		if (m == NULL) {
    723  dropit:
    724 			ifp->if_ierrors++;
    725 			VR_INIT_RXDESC(sc, i);
    726 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    727 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    728 			continue;
    729 		}
    730 		if (total_len > (MHLEN - 2)) {
    731 			MCLGET(m, M_DONTWAIT);
    732 			if ((m->m_flags & M_EXT) == 0) {
    733 				m_freem(m);
    734 				goto dropit;
    735 			}
    736 		}
    737 		m->m_data += 2;
    738 
    739 		/*
    740 		 * Note that we use clusters for incoming frames, so the
    741 		 * buffer is virtually contiguous.
    742 		 */
    743 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    744 		    total_len);
    745 
    746 		/* Allow the recieve descriptor to continue using its mbuf. */
    747 		VR_INIT_RXDESC(sc, i);
    748 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    749 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    750 #endif /* __NO_STRICT_ALIGNMENT */
    751 
    752 		ifp->if_ipackets++;
    753 		m->m_pkthdr.rcvif = ifp;
    754 		m->m_pkthdr.len = m->m_len = total_len;
    755 #if NBPFILTER > 0
    756 		/*
    757 		 * Handle BPF listeners. Let the BPF user see the packet, but
    758 		 * don't pass it up to the ether_input() layer unless it's
    759 		 * a broadcast packet, multicast packet, matches our ethernet
    760 		 * address or the interface is in promiscuous mode.
    761 		 */
    762 		if (ifp->if_bpf)
    763 			bpf_mtap(ifp->if_bpf, m);
    764 #endif
    765 		/* Pass it on. */
    766 		(*ifp->if_input)(ifp, m);
    767 	}
    768 
    769 	/* Update the receive pointer. */
    770 	sc->vr_rxptr = i;
    771 }
    772 
    773 void
    774 vr_rxeoc(sc)
    775 	struct vr_softc *sc;
    776 {
    777 
    778 	vr_rxeof(sc);
    779 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    780 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    781 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    782 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    783 }
    784 
    785 /*
    786  * A frame was downloaded to the chip. It's safe for us to clean up
    787  * the list buffers.
    788  */
    789 static void
    790 vr_txeof(sc)
    791 	struct vr_softc *sc;
    792 {
    793 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    794 	struct vr_desc *d;
    795 	struct vr_descsoft *ds;
    796 	u_int32_t txstat;
    797 	int i;
    798 
    799 	ifp->if_flags &= ~IFF_OACTIVE;
    800 
    801 	/*
    802 	 * Go through our tx list and free mbufs for those
    803 	 * frames that have been transmitted.
    804 	 */
    805 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    806 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    807 		d = VR_CDTX(sc, i);
    808 		ds = VR_DSTX(sc, i);
    809 
    810 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    811 
    812 		txstat = le32toh(d->vr_status);
    813 		if (txstat & VR_TXSTAT_OWN)
    814 			break;
    815 
    816 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    817 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    818 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    819 		m_freem(ds->ds_mbuf);
    820 		ds->ds_mbuf = NULL;
    821 
    822 		if (txstat & VR_TXSTAT_ERRSUM) {
    823 			ifp->if_oerrors++;
    824 			if (txstat & VR_TXSTAT_DEFER)
    825 				ifp->if_collisions++;
    826 			if (txstat & VR_TXSTAT_LATECOLL)
    827 				ifp->if_collisions++;
    828 		}
    829 
    830 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    831 		ifp->if_opackets++;
    832 	}
    833 
    834 	/* Update the dirty transmit buffer pointer. */
    835 	sc->vr_txdirty = i;
    836 
    837 	/*
    838 	 * Cancel the watchdog timer if there are no pending
    839 	 * transmissions.
    840 	 */
    841 	if (sc->vr_txpending == 0)
    842 		ifp->if_timer = 0;
    843 }
    844 
    845 static int
    846 vr_intr(arg)
    847 	void *arg;
    848 {
    849 	struct vr_softc *sc;
    850 	struct ifnet *ifp;
    851 	u_int16_t status;
    852 	int handled = 0, dotx = 0;
    853 
    854 	sc = arg;
    855 	ifp = &sc->vr_ec.ec_if;
    856 
    857 	/* Suppress unwanted interrupts. */
    858 	if ((ifp->if_flags & IFF_UP) == 0) {
    859 		vr_stop(sc, 1);
    860 		return (0);
    861 	}
    862 
    863 	/* Disable interrupts. */
    864 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    865 
    866 	for (;;) {
    867 		status = CSR_READ_2(sc, VR_ISR);
    868 		if (status)
    869 			CSR_WRITE_2(sc, VR_ISR, status);
    870 
    871 		if ((status & VR_INTRS) == 0)
    872 			break;
    873 
    874 		handled = 1;
    875 
    876 		if (status & VR_ISR_RX_OK)
    877 			vr_rxeof(sc);
    878 
    879 		if (status &
    880 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    881 		     VR_ISR_RX_DROPPED))
    882 			vr_rxeoc(sc);
    883 
    884 		if (status & VR_ISR_TX_OK) {
    885 			dotx = 1;
    886 			vr_txeof(sc);
    887 		}
    888 
    889 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    890 			if (status & VR_ISR_TX_UNDERRUN)
    891 				printf("%s: transmit underrun\n",
    892 				    sc->vr_dev.dv_xname);
    893 			if (status & VR_ISR_TX_ABRT)
    894 				printf("%s: transmit aborted\n",
    895 				    sc->vr_dev.dv_xname);
    896 			ifp->if_oerrors++;
    897 			dotx = 1;
    898 			vr_txeof(sc);
    899 			if (sc->vr_txpending) {
    900 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    901 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    902 			}
    903 		}
    904 
    905 		if (status & VR_ISR_BUSERR) {
    906 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    907 			/* vr_init() calls vr_start() */
    908 			dotx = 0;
    909 			(void) vr_init(sc);
    910 		}
    911 	}
    912 
    913 	/* Re-enable interrupts. */
    914 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    915 
    916 	if (dotx)
    917 		vr_start(ifp);
    918 
    919 	return (handled);
    920 }
    921 
    922 /*
    923  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    924  * to the mbuf data regions directly in the transmit lists. We also save a
    925  * copy of the pointers since the transmit list fragment pointers are
    926  * physical addresses.
    927  */
    928 static void
    929 vr_start(ifp)
    930 	struct ifnet *ifp;
    931 {
    932 	struct vr_softc *sc = ifp->if_softc;
    933 	struct mbuf *m0, *m;
    934 	struct vr_desc *d;
    935 	struct vr_descsoft *ds;
    936 	int error, firsttx, nexttx, opending;
    937 
    938 	/*
    939 	 * Remember the previous txpending and the first transmit
    940 	 * descriptor we use.
    941 	 */
    942 	opending = sc->vr_txpending;
    943 	firsttx = VR_NEXTTX(sc->vr_txlast);
    944 
    945 	/*
    946 	 * Loop through the send queue, setting up transmit descriptors
    947 	 * until we drain the queue, or use up all available transmit
    948 	 * descriptors.
    949 	 */
    950 	while (sc->vr_txpending < VR_NTXDESC) {
    951 		/*
    952 		 * Grab a packet off the queue.
    953 		 */
    954 		IF_DEQUEUE(&ifp->if_snd, m0);
    955 		if (m0 == NULL)
    956 			break;
    957 
    958 		/*
    959 		 * Get the next available transmit descriptor.
    960 		 */
    961 		nexttx = VR_NEXTTX(sc->vr_txlast);
    962 		d = VR_CDTX(sc, nexttx);
    963 		ds = VR_DSTX(sc, nexttx);
    964 
    965 		/*
    966 		 * Load the DMA map.  If this fails, the packet didn't
    967 		 * fit in one DMA segment, and we need to copy.  Note,
    968 		 * the packet must also be aligned.
    969 		 */
    970 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    971 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    972 		     BUS_DMA_NOWAIT) != 0) {
    973 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    974 			if (m == NULL) {
    975 				printf("%s: unable to allocate Tx mbuf\n",
    976 				    sc->vr_dev.dv_xname);
    977 				IF_PREPEND(&ifp->if_snd, m0);
    978 				break;
    979 			}
    980 			if (m0->m_pkthdr.len > MHLEN) {
    981 				MCLGET(m, M_DONTWAIT);
    982 				if ((m->m_flags & M_EXT) == 0) {
    983 					printf("%s: unable to allocate Tx "
    984 					    "cluster\n", sc->vr_dev.dv_xname);
    985 					m_freem(m);
    986 					IF_PREPEND(&ifp->if_snd, m0);
    987 					break;
    988 				}
    989 			}
    990 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    991 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    992 			m_freem(m0);
    993 			m0 = m;
    994 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    995 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
    996 			if (error) {
    997 				printf("%s: unable to load Tx buffer, "
    998 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    999 				IF_PREPEND(&ifp->if_snd, m0);
   1000 				break;
   1001 			}
   1002 		}
   1003 
   1004 		/* Sync the DMA map. */
   1005 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1006 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1007 
   1008 		/*
   1009 		 * Store a pointer to the packet so we can free it later.
   1010 		 */
   1011 		ds->ds_mbuf = m0;
   1012 
   1013 #if NBPFILTER > 0
   1014 		/*
   1015 		 * If there's a BPF listener, bounce a copy of this frame
   1016 		 * to him.
   1017 		 */
   1018 		if (ifp->if_bpf)
   1019 			bpf_mtap(ifp->if_bpf, m0);
   1020 #endif
   1021 
   1022 		/*
   1023 		 * Fill in the transmit descriptor.  The Rhine
   1024 		 * doesn't auto-pad, so we have to do this ourselves.
   1025 		 */
   1026 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1027 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1028 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1029 		d->vr_ctl |=
   1030 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1031 		    VR_TXCTL_LASTFRAG);
   1032 
   1033 		/*
   1034 		 * If this is the first descriptor we're enqueuing,
   1035 		 * don't give it to the Rhine yet.  That could cause
   1036 		 * a race condition.  We'll do it below.
   1037 		 */
   1038 		if (nexttx == firsttx)
   1039 			d->vr_status = 0;
   1040 		else
   1041 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1042 
   1043 		VR_CDTXSYNC(sc, nexttx,
   1044 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1045 
   1046 		/* Advance the tx pointer. */
   1047 		sc->vr_txpending++;
   1048 		sc->vr_txlast = nexttx;
   1049 	}
   1050 
   1051 	if (sc->vr_txpending == VR_NTXDESC) {
   1052 		/* No more slots left; notify upper layer. */
   1053 		ifp->if_flags |= IFF_OACTIVE;
   1054 	}
   1055 
   1056 	if (sc->vr_txpending != opending) {
   1057 		/*
   1058 		 * We enqueued packets.  If the transmitter was idle,
   1059 		 * reset the txdirty pointer.
   1060 		 */
   1061 		if (opending == 0)
   1062 			sc->vr_txdirty = firsttx;
   1063 
   1064 		/*
   1065 		 * Cause a transmit interrupt to happen on the
   1066 		 * last packet we enqueued.
   1067 		 */
   1068 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1069 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1070 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1071 
   1072 		/*
   1073 		 * The entire packet chain is set up.  Give the
   1074 		 * first descriptor to the Rhine now.
   1075 		 */
   1076 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1077 		VR_CDTXSYNC(sc, firsttx,
   1078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1079 
   1080 		/* Start the transmitter. */
   1081 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1082 
   1083 		/* Set the watchdog timer in case the chip flakes out. */
   1084 		ifp->if_timer = 5;
   1085 	}
   1086 }
   1087 
   1088 /*
   1089  * Initialize the interface.  Must be called at splnet.
   1090  */
   1091 static int
   1092 vr_init(sc)
   1093 	struct vr_softc *sc;
   1094 {
   1095 	struct ifnet *ifp = &sc->vr_ec.ec_if;
   1096 	struct vr_desc *d;
   1097 	struct vr_descsoft *ds;
   1098 	int i, error = 0;
   1099 
   1100 	/* Cancel pending I/O. */
   1101 	vr_stop(sc, 0);
   1102 
   1103 	/* Reset the Rhine to a known state. */
   1104 	vr_reset(sc);
   1105 
   1106 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1107 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1108 
   1109 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1110 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1111 
   1112 	/*
   1113 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1114 	 * to the end of the list so that it will wrap around to the first
   1115 	 * descriptor when the first packet is transmitted.
   1116 	 */
   1117 	for (i = 0; i < VR_NTXDESC; i++) {
   1118 		d = VR_CDTX(sc, i);
   1119 		memset(d, 0, sizeof(struct vr_desc));
   1120 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1121 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1122 	}
   1123 	sc->vr_txpending = 0;
   1124 	sc->vr_txdirty = 0;
   1125 	sc->vr_txlast = VR_NTXDESC - 1;
   1126 
   1127 	/*
   1128 	 * Initialize the receive descriptor ring.
   1129 	 */
   1130 	for (i = 0; i < VR_NRXDESC; i++) {
   1131 		ds = VR_DSRX(sc, i);
   1132 		if (ds->ds_mbuf == NULL) {
   1133 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1134 				printf("%s: unable to allocate or map rx "
   1135 				    "buffer %d, error = %d\n",
   1136 				    sc->vr_dev.dv_xname, i, error);
   1137 				/*
   1138 				 * XXX Should attempt to run with fewer receive
   1139 				 * XXX buffers instead of just failing.
   1140 				 */
   1141 				vr_rxdrain(sc);
   1142 				goto out;
   1143 			}
   1144 		}
   1145 	}
   1146 	sc->vr_rxptr = 0;
   1147 
   1148 	/* If we want promiscuous mode, set the allframes bit. */
   1149 	if (ifp->if_flags & IFF_PROMISC)
   1150 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1151 	else
   1152 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1153 
   1154 	/* Set capture broadcast bit to capture broadcast frames. */
   1155 	if (ifp->if_flags & IFF_BROADCAST)
   1156 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1157 	else
   1158 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1159 
   1160 	/* Program the multicast filter, if necessary. */
   1161 	vr_setmulti(sc);
   1162 
   1163 	/* Give the transmit and recieve rings to the Rhine. */
   1164 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1165 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1166 
   1167 	/* Set current media. */
   1168 	mii_mediachg(&sc->vr_mii);
   1169 
   1170 	/* Enable receiver and transmitter. */
   1171 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1172 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1173 				    VR_CMD_RX_GO);
   1174 
   1175 	/* Enable interrupts. */
   1176 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1177 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1178 
   1179 	ifp->if_flags |= IFF_RUNNING;
   1180 	ifp->if_flags &= ~IFF_OACTIVE;
   1181 
   1182 	/* Start one second timer. */
   1183 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1184 
   1185 	/* Attempt to start output on the interface. */
   1186 	vr_start(ifp);
   1187 
   1188  out:
   1189 	if (error)
   1190 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1191 	return (error);
   1192 }
   1193 
   1194 /*
   1195  * Set media options.
   1196  */
   1197 static int
   1198 vr_ifmedia_upd(ifp)
   1199 	struct ifnet *ifp;
   1200 {
   1201 	struct vr_softc *sc = ifp->if_softc;
   1202 
   1203 	if (ifp->if_flags & IFF_UP)
   1204 		mii_mediachg(&sc->vr_mii);
   1205 	return (0);
   1206 }
   1207 
   1208 /*
   1209  * Report current media status.
   1210  */
   1211 static void
   1212 vr_ifmedia_sts(ifp, ifmr)
   1213 	struct ifnet *ifp;
   1214 	struct ifmediareq *ifmr;
   1215 {
   1216 	struct vr_softc *sc = ifp->if_softc;
   1217 
   1218 	mii_pollstat(&sc->vr_mii);
   1219 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1220 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1221 }
   1222 
   1223 static int
   1224 vr_ioctl(ifp, command, data)
   1225 	struct ifnet *ifp;
   1226 	u_long command;
   1227 	caddr_t data;
   1228 {
   1229 	struct vr_softc *sc = ifp->if_softc;
   1230 	struct ifreq *ifr = (struct ifreq *)data;
   1231 	struct ifaddr *ifa = (struct ifaddr *)data;
   1232 	int s, error = 0;
   1233 
   1234 	s = splnet();
   1235 
   1236 	switch (command) {
   1237 	case SIOCSIFADDR:
   1238 		ifp->if_flags |= IFF_UP;
   1239 
   1240 		switch (ifa->ifa_addr->sa_family) {
   1241 #ifdef INET
   1242 		case AF_INET:
   1243 			if ((error = vr_init(sc)) != 0)
   1244 				break;
   1245 			arp_ifinit(ifp, ifa);
   1246 			break;
   1247 #endif /* INET */
   1248 		default:
   1249 			error = vr_init(sc);
   1250 			break;
   1251 		}
   1252 		break;
   1253 
   1254 	case SIOCGIFADDR:
   1255 		bcopy((caddr_t) sc->vr_enaddr,
   1256 			(caddr_t) ((struct sockaddr *)&ifr->ifr_data)->sa_data,
   1257 			ETHER_ADDR_LEN);
   1258 		break;
   1259 
   1260 	case SIOCSIFMTU:
   1261 		if (ifr->ifr_mtu > ETHERMTU)
   1262 			error = EINVAL;
   1263 		else
   1264 			ifp->if_mtu = ifr->ifr_mtu;
   1265 		break;
   1266 
   1267 	case SIOCSIFFLAGS:
   1268 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1269 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1270 			/*
   1271 			 * If interface is marked down and it is running, then
   1272 			 * stop it.
   1273 			 */
   1274 			vr_stop(sc, 1);
   1275 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1276 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1277 			/*
   1278 			 * If interface is marked up and it is stopped, then
   1279 			 * start it.
   1280 			 */
   1281 			error = vr_init(sc);
   1282 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1283 			/*
   1284 			 * Reset the interface to pick up changes in any other
   1285 			 * flags that affect the hardware state.
   1286 			 */
   1287 			error = vr_init(sc);
   1288 		}
   1289 		break;
   1290 
   1291 	case SIOCADDMULTI:
   1292 	case SIOCDELMULTI:
   1293 		if (command == SIOCADDMULTI)
   1294 			error = ether_addmulti(ifr, &sc->vr_ec);
   1295 		else
   1296 			error = ether_delmulti(ifr, &sc->vr_ec);
   1297 
   1298 		if (error == ENETRESET) {
   1299 			/*
   1300 			 * Multicast list has changed; set the hardware filter
   1301 			 * accordingly.
   1302 			 */
   1303 			vr_setmulti(sc);
   1304 			error = 0;
   1305 		}
   1306 		break;
   1307 
   1308 	case SIOCGIFMEDIA:
   1309 	case SIOCSIFMEDIA:
   1310 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1311 		break;
   1312 
   1313 	default:
   1314 		error = EINVAL;
   1315 		break;
   1316 	}
   1317 
   1318 	splx(s);
   1319 	return (error);
   1320 }
   1321 
   1322 static void
   1323 vr_watchdog(ifp)
   1324 	struct ifnet *ifp;
   1325 {
   1326 	struct vr_softc *sc = ifp->if_softc;
   1327 
   1328 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1329 	ifp->if_oerrors++;
   1330 
   1331 	(void) vr_init(sc);
   1332 }
   1333 
   1334 /*
   1335  * One second timer, used to tick MII.
   1336  */
   1337 static void
   1338 vr_tick(arg)
   1339 	void *arg;
   1340 {
   1341 	struct vr_softc *sc = arg;
   1342 	int s;
   1343 
   1344 	s = splnet();
   1345 	mii_tick(&sc->vr_mii);
   1346 	splx(s);
   1347 
   1348 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1349 }
   1350 
   1351 /*
   1352  * Drain the receive queue.
   1353  */
   1354 static void
   1355 vr_rxdrain(sc)
   1356 	struct vr_softc *sc;
   1357 {
   1358 	struct vr_descsoft *ds;
   1359 	int i;
   1360 
   1361 	for (i = 0; i < VR_NRXDESC; i++) {
   1362 		ds = VR_DSRX(sc, i);
   1363 		if (ds->ds_mbuf != NULL) {
   1364 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1365 			m_freem(ds->ds_mbuf);
   1366 			ds->ds_mbuf = NULL;
   1367 		}
   1368 	}
   1369 }
   1370 
   1371 /*
   1372  * Stop the adapter and free any mbufs allocated to the
   1373  * transmit lists.
   1374  */
   1375 static void
   1376 vr_stop(sc, drain)
   1377 	struct vr_softc *sc;
   1378 	int drain;
   1379 {
   1380 	struct vr_descsoft *ds;
   1381 	struct ifnet *ifp;
   1382 	int i;
   1383 
   1384 	/* Cancel one second timer. */
   1385 	callout_stop(&sc->vr_tick_ch);
   1386 
   1387 	/* Down the MII. */
   1388 	mii_down(&sc->vr_mii);
   1389 
   1390 	ifp = &sc->vr_ec.ec_if;
   1391 	ifp->if_timer = 0;
   1392 
   1393 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1394 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1395 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1396 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1397 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1398 
   1399 	/*
   1400 	 * Release any queued transmit buffers.
   1401 	 */
   1402 	for (i = 0; i < VR_NTXDESC; i++) {
   1403 		ds = VR_DSTX(sc, i);
   1404 		if (ds->ds_mbuf != NULL) {
   1405 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1406 			m_freem(ds->ds_mbuf);
   1407 			ds->ds_mbuf = NULL;
   1408 		}
   1409 	}
   1410 
   1411 	if (drain) {
   1412 		/*
   1413 		 * Release the receive buffers.
   1414 		 */
   1415 		vr_rxdrain(sc);
   1416 	}
   1417 
   1418 	/*
   1419 	 * Mark the interface down and cancel the watchdog timer.
   1420 	 */
   1421 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1422 	ifp->if_timer = 0;
   1423 }
   1424 
   1425 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1426 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1427 static void vr_attach __P((struct device *, struct device *, void *));
   1428 static void vr_shutdown __P((void *));
   1429 
   1430 struct cfattach vr_ca = {
   1431 	sizeof (struct vr_softc), vr_probe, vr_attach
   1432 };
   1433 
   1434 static struct vr_type *
   1435 vr_lookup(pa)
   1436 	struct pci_attach_args *pa;
   1437 {
   1438 	struct vr_type *vrt;
   1439 
   1440 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1441 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1442 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1443 			return (vrt);
   1444 	}
   1445 	return (NULL);
   1446 }
   1447 
   1448 static int
   1449 vr_probe(parent, match, aux)
   1450 	struct device *parent;
   1451 	struct cfdata *match;
   1452 	void *aux;
   1453 {
   1454 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1455 
   1456 	if (vr_lookup(pa) != NULL)
   1457 		return (1);
   1458 
   1459 	return (0);
   1460 }
   1461 
   1462 /*
   1463  * Stop all chip I/O so that the kernel's probe routines don't
   1464  * get confused by errant DMAs when rebooting.
   1465  */
   1466 static void
   1467 vr_shutdown(arg)
   1468 	void *arg;
   1469 {
   1470 	struct vr_softc *sc = (struct vr_softc *)arg;
   1471 
   1472 	vr_stop(sc, 1);
   1473 }
   1474 
   1475 /*
   1476  * Attach the interface. Allocate softc structures, do ifmedia
   1477  * setup and ethernet/BPF attach.
   1478  */
   1479 static void
   1480 vr_attach(parent, self, aux)
   1481 	struct device *parent;
   1482 	struct device *self;
   1483 	void *aux;
   1484 {
   1485 	struct vr_softc *sc = (struct vr_softc *) self;
   1486 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1487 	bus_dma_segment_t seg;
   1488 	struct vr_type *vrt;
   1489 	u_int32_t command;
   1490 	struct ifnet *ifp;
   1491 	u_char eaddr[ETHER_ADDR_LEN];
   1492 	int i, rseg, error;
   1493 
   1494 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1495 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1496 
   1497 	callout_init(&sc->vr_tick_ch);
   1498 
   1499 	vrt = vr_lookup(pa);
   1500 	if (vrt == NULL) {
   1501 		printf("\n");
   1502 		panic("vr_attach: impossible");
   1503 	}
   1504 
   1505 	printf(": %s Ethernet\n", vrt->vr_name);
   1506 
   1507 	/*
   1508 	 * Handle power management nonsense.
   1509 	 */
   1510 
   1511 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1512 	if (command == 0x01) {
   1513 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1514 		if (command & VR_PSTATE_MASK) {
   1515 			u_int32_t iobase, membase, irq;
   1516 
   1517 			/* Save important PCI config data. */
   1518 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1519 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1520 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1521 
   1522 			/* Reset the power state. */
   1523 			printf("%s: chip is in D%d power mode "
   1524 				"-- setting to D0\n",
   1525 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1526 			command &= 0xFFFFFFFC;
   1527 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1528 
   1529 			/* Restore PCI config data. */
   1530 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1531 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1532 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1533 		}
   1534 	}
   1535 
   1536 	/* Make sure bus mastering is enabled. */
   1537 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1538 	command |= PCI_COMMAND_MASTER_ENABLE;
   1539 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1540 
   1541 	/*
   1542 	 * Map control/status registers.
   1543 	 */
   1544 	{
   1545 		bus_space_tag_t iot, memt;
   1546 		bus_space_handle_t ioh, memh;
   1547 		int ioh_valid, memh_valid;
   1548 		pci_intr_handle_t intrhandle;
   1549 		const char *intrstr;
   1550 
   1551 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1552 			PCI_MAPREG_TYPE_IO, 0,
   1553 			&iot, &ioh, NULL, NULL) == 0);
   1554 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1555 			PCI_MAPREG_TYPE_MEM |
   1556 			PCI_MAPREG_MEM_TYPE_32BIT,
   1557 			0, &memt, &memh, NULL, NULL) == 0);
   1558 #if defined(VR_USEIOSPACE)
   1559 		if (ioh_valid) {
   1560 			sc->vr_bst = iot;
   1561 			sc->vr_bsh = ioh;
   1562 		} else if (memh_valid) {
   1563 			sc->vr_bst = memt;
   1564 			sc->vr_bsh = memh;
   1565 		}
   1566 #else
   1567 		if (memh_valid) {
   1568 			sc->vr_bst = memt;
   1569 			sc->vr_bsh = memh;
   1570 		} else if (ioh_valid) {
   1571 			sc->vr_bst = iot;
   1572 			sc->vr_bsh = ioh;
   1573 		}
   1574 #endif
   1575 		else {
   1576 			printf(": unable to map device registers\n");
   1577 			return;
   1578 		}
   1579 
   1580 		/* Allocate interrupt */
   1581 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1582 				pa->pa_intrline, &intrhandle)) {
   1583 			printf("%s: couldn't map interrupt\n",
   1584 				sc->vr_dev.dv_xname);
   1585 			return;
   1586 		}
   1587 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1588 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1589 						vr_intr, sc);
   1590 		if (sc->vr_ih == NULL) {
   1591 			printf("%s: couldn't establish interrupt",
   1592 				sc->vr_dev.dv_xname);
   1593 			if (intrstr != NULL)
   1594 				printf(" at %s", intrstr);
   1595 			printf("\n");
   1596 		}
   1597 		printf("%s: interrupting at %s\n",
   1598 			sc->vr_dev.dv_xname, intrstr);
   1599 	}
   1600 
   1601 	/* Reset the adapter. */
   1602 	vr_reset(sc);
   1603 
   1604 	/*
   1605 	 * Get station address. The way the Rhine chips work,
   1606 	 * you're not allowed to directly access the EEPROM once
   1607 	 * they've been programmed a special way. Consequently,
   1608 	 * we need to read the node address from the PAR0 and PAR1
   1609 	 * registers.
   1610 	 */
   1611 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1612 	DELAY(200);
   1613 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1614 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1615 
   1616 	/*
   1617 	 * A Rhine chip was detected. Inform the world.
   1618 	 */
   1619 	printf("%s: Ethernet address: %s\n",
   1620 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1621 
   1622 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1623 
   1624 	sc->vr_dmat = pa->pa_dmat;
   1625 
   1626 	/*
   1627 	 * Allocate the control data structures, and create and load
   1628 	 * the DMA map for it.
   1629 	 */
   1630 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1631 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1632 	    0)) != 0) {
   1633 		printf("%s: unable to allocate control data, error = %d\n",
   1634 		    sc->vr_dev.dv_xname, error);
   1635 		goto fail_0;
   1636 	}
   1637 
   1638 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1639 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1640 	    BUS_DMA_COHERENT)) != 0) {
   1641 		printf("%s: unable to map control data, error = %d\n",
   1642 		    sc->vr_dev.dv_xname, error);
   1643 		goto fail_1;
   1644 	}
   1645 
   1646 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1647 	    sizeof(struct vr_control_data), 1,
   1648 	    sizeof(struct vr_control_data), 0, 0,
   1649 	    &sc->vr_cddmamap)) != 0) {
   1650 		printf("%s: unable to create control data DMA map, "
   1651 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1652 		goto fail_2;
   1653 	}
   1654 
   1655 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1656 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1657 	    0)) != 0) {
   1658 		printf("%s: unable to load control data DMA map, error = %d\n",
   1659 		    sc->vr_dev.dv_xname, error);
   1660 		goto fail_3;
   1661 	}
   1662 
   1663 	/*
   1664 	 * Create the transmit buffer DMA maps.
   1665 	 */
   1666 	for (i = 0; i < VR_NTXDESC; i++) {
   1667 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1668 		    1, MCLBYTES, 0, 0,
   1669 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1670 			printf("%s: unable to create tx DMA map %d, "
   1671 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1672 			goto fail_4;
   1673 		}
   1674 	}
   1675 
   1676 	/*
   1677 	 * Create the receive buffer DMA maps.
   1678 	 */
   1679 	for (i = 0; i < VR_NRXDESC; i++) {
   1680 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1681 		    MCLBYTES, 0, 0,
   1682 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1683 			printf("%s: unable to create rx DMA map %d, "
   1684 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1685 			goto fail_5;
   1686 		}
   1687 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1688 	}
   1689 
   1690 	ifp = &sc->vr_ec.ec_if;
   1691 	ifp->if_softc = sc;
   1692 	ifp->if_mtu = ETHERMTU;
   1693 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1694 	ifp->if_ioctl = vr_ioctl;
   1695 	ifp->if_start = vr_start;
   1696 	ifp->if_watchdog = vr_watchdog;
   1697 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1698 
   1699 	/*
   1700 	 * Initialize MII/media info.
   1701 	 */
   1702 	sc->vr_mii.mii_ifp = ifp;
   1703 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1704 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1705 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1706 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1707 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1708 	    MII_OFFSET_ANY, 0);
   1709 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1710 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1711 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1712 	} else
   1713 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1714 
   1715 	/*
   1716 	 * Call MI attach routines.
   1717 	 */
   1718 	if_attach(ifp);
   1719 	ether_ifattach(ifp, sc->vr_enaddr);
   1720 
   1721 #if NBPFILTER > 0
   1722 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1723 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1724 #endif
   1725 
   1726 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1727 	if (sc->vr_ats == NULL)
   1728 		printf("%s: warning: couldn't establish shutdown hook\n",
   1729 			sc->vr_dev.dv_xname);
   1730 	return;
   1731 
   1732  fail_5:
   1733 	for (i = 0; i < VR_NRXDESC; i++) {
   1734 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1735 			bus_dmamap_destroy(sc->vr_dmat,
   1736 			    sc->vr_rxsoft[i].ds_dmamap);
   1737 	}
   1738  fail_4:
   1739 	for (i = 0; i < VR_NTXDESC; i++) {
   1740 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1741 			bus_dmamap_destroy(sc->vr_dmat,
   1742 			    sc->vr_txsoft[i].ds_dmamap);
   1743 	}
   1744 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1745  fail_3:
   1746 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1747  fail_2:
   1748 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1749 	    sizeof(struct vr_control_data));
   1750  fail_1:
   1751 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1752  fail_0:
   1753 	return;
   1754 }
   1755