Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.40
      1 /*	$NetBSD: if_vr.c,v 1.40 2000/10/15 20:03:44 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/sockio.h>
    112 #include <sys/mbuf.h>
    113 #include <sys/malloc.h>
    114 #include <sys/kernel.h>
    115 #include <sys/socket.h>
    116 #include <sys/device.h>
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #if defined(INET)
    127 #include <netinet/in.h>
    128 #include <netinet/if_inarp.h>
    129 #endif
    130 
    131 #include "bpfilter.h"
    132 #if NBPFILTER > 0
    133 #include <net/bpf.h>
    134 #endif
    135 
    136 #include <machine/bus.h>
    137 #include <machine/intr.h>
    138 #include <machine/endian.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 #include <dev/mii/mii_bitbang.h>
    143 
    144 #include <dev/pci/pcireg.h>
    145 #include <dev/pci/pcivar.h>
    146 #include <dev/pci/pcidevs.h>
    147 
    148 #include <dev/pci/if_vrreg.h>
    149 
    150 #define	VR_USEIOSPACE
    151 
    152 /*
    153  * Various supported device vendors/types and their names.
    154  */
    155 static struct vr_type {
    156 	pci_vendor_id_t		vr_vid;
    157 	pci_product_id_t	vr_did;
    158 	const char		*vr_name;
    159 } vr_devs[] = {
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    161 		"VIA VT3043 (Rhine) 10/100" },
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    163 		"VIA VT6102 (Rhine II) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    165 		"VIA VT86C100A (Rhine-II) 10/100" },
    166 	{ 0, 0, NULL }
    167 };
    168 
    169 /*
    170  * Transmit descriptor list size.
    171  */
    172 #define	VR_NTXDESC		64
    173 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    174 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    175 
    176 /*
    177  * Receive descriptor list size.
    178  */
    179 #define	VR_NRXDESC		64
    180 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    181 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    182 
    183 /*
    184  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    185  * them in a single clump that maps to a single DMA segment to make several
    186  * things easier.
    187  *
    188  * Note that since we always copy outgoing packets to aligned transmit
    189  * buffers, we can reduce the transmit descriptors to one per packet.
    190  */
    191 struct vr_control_data {
    192 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    193 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    194 };
    195 
    196 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    197 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    198 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    199 
    200 /*
    201  * Software state of transmit and receive descriptors.
    202  */
    203 struct vr_descsoft {
    204 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    205 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    206 };
    207 
    208 struct vr_softc {
    209 	struct device		vr_dev;		/* generic device glue */
    210 	void			*vr_ih;		/* interrupt cookie */
    211 	void			*vr_ats;	/* shutdown hook */
    212 	bus_space_tag_t		vr_bst;		/* bus space tag */
    213 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    214 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    215 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    216 	struct ethercom		vr_ec;		/* Ethernet common info */
    217 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    218 	struct mii_data		vr_mii;		/* MII/media info */
    219 
    220 	struct callout		vr_tick_ch;	/* tick callout */
    221 
    222 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    223 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    224 
    225 	/*
    226 	 * Software state for transmit and receive descriptors.
    227 	 */
    228 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    229 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    230 
    231 	/*
    232 	 * Control data structures.
    233 	 */
    234 	struct vr_control_data	*vr_control_data;
    235 
    236 	int	vr_txpending;		/* number of TX requests pending */
    237 	int	vr_txdirty;		/* first dirty TX descriptor */
    238 	int	vr_txlast;		/* last used TX descriptor */
    239 
    240 	int	vr_rxptr;		/* next ready RX descriptor */
    241 };
    242 
    243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    245 
    246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    248 
    249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    251 
    252 #define	VR_CDTXSYNC(sc, x, ops)						\
    253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    255 
    256 #define	VR_CDRXSYNC(sc, x, ops)						\
    257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    259 
    260 /*
    261  * Note we rely on MCLBYTES being a power of two below.
    262  */
    263 #define	VR_INIT_RXDESC(sc, i)						\
    264 do {									\
    265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    267 									\
    268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    269 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    270 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    271 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    272 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    273 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    275 } while (0)
    276 
    277 /*
    278  * register space access macros
    279  */
    280 #define	CSR_WRITE_4(sc, reg, val)					\
    281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_2(sc, reg, val)					\
    283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    284 #define	CSR_WRITE_1(sc, reg, val)					\
    285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    286 
    287 #define	CSR_READ_4(sc, reg)						\
    288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_2(sc, reg)						\
    290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    291 #define	CSR_READ_1(sc, reg)						\
    292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    293 
    294 #define	VR_TIMEOUT		1000
    295 
    296 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    297 
    298 static void vr_rxeof		__P((struct vr_softc *));
    299 static void vr_rxeoc		__P((struct vr_softc *));
    300 static void vr_txeof		__P((struct vr_softc *));
    301 static int vr_intr		__P((void *));
    302 static void vr_start		__P((struct ifnet *));
    303 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    304 static int vr_init		__P((struct ifnet *));
    305 static void vr_stop		__P((struct ifnet *, int));
    306 static void vr_rxdrain		__P((struct vr_softc *));
    307 static void vr_watchdog		__P((struct ifnet *));
    308 static void vr_tick		__P((void *));
    309 
    310 static int vr_ifmedia_upd	__P((struct ifnet *));
    311 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    312 
    313 static int vr_mii_readreg	__P((struct device *, int, int));
    314 static void vr_mii_writereg	__P((struct device *, int, int, int));
    315 static void vr_mii_statchg	__P((struct device *));
    316 
    317 static u_int8_t vr_calchash	__P((u_int8_t *));
    318 static void vr_setmulti		__P((struct vr_softc *));
    319 static void vr_reset		__P((struct vr_softc *));
    320 
    321 int	vr_copy_small = 0;
    322 
    323 #define	VR_SETBIT(sc, reg, x)				\
    324 	CSR_WRITE_1(sc, reg,				\
    325 		CSR_READ_1(sc, reg) | x)
    326 
    327 #define	VR_CLRBIT(sc, reg, x)				\
    328 	CSR_WRITE_1(sc, reg,				\
    329 		CSR_READ_1(sc, reg) & ~x)
    330 
    331 #define	VR_SETBIT16(sc, reg, x)				\
    332 	CSR_WRITE_2(sc, reg,				\
    333 		CSR_READ_2(sc, reg) | x)
    334 
    335 #define	VR_CLRBIT16(sc, reg, x)				\
    336 	CSR_WRITE_2(sc, reg,				\
    337 		CSR_READ_2(sc, reg) & ~x)
    338 
    339 #define	VR_SETBIT32(sc, reg, x)				\
    340 	CSR_WRITE_4(sc, reg,				\
    341 		CSR_READ_4(sc, reg) | x)
    342 
    343 #define	VR_CLRBIT32(sc, reg, x)				\
    344 	CSR_WRITE_4(sc, reg,				\
    345 		CSR_READ_4(sc, reg) & ~x)
    346 
    347 /*
    348  * MII bit-bang glue.
    349  */
    350 u_int32_t vr_mii_bitbang_read __P((struct device *));
    351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    352 
    353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    354 	vr_mii_bitbang_read,
    355 	vr_mii_bitbang_write,
    356 	{
    357 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    358 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    359 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    360 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    361 		0,			/* MII_BIT_DIR_PHY_HOST */
    362 	}
    363 };
    364 
    365 u_int32_t
    366 vr_mii_bitbang_read(self)
    367 	struct device *self;
    368 {
    369 	struct vr_softc *sc = (void *) self;
    370 
    371 	return (CSR_READ_1(sc, VR_MIICMD));
    372 }
    373 
    374 void
    375 vr_mii_bitbang_write(self, val)
    376 	struct device *self;
    377 	u_int32_t val;
    378 {
    379 	struct vr_softc *sc = (void *) self;
    380 
    381 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    382 }
    383 
    384 /*
    385  * Read an PHY register through the MII.
    386  */
    387 static int
    388 vr_mii_readreg(self, phy, reg)
    389 	struct device *self;
    390 	int phy, reg;
    391 {
    392 	struct vr_softc *sc = (void *) self;
    393 
    394 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    395 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    396 }
    397 
    398 /*
    399  * Write to a PHY register through the MII.
    400  */
    401 static void
    402 vr_mii_writereg(self, phy, reg, val)
    403 	struct device *self;
    404 	int phy, reg, val;
    405 {
    406 	struct vr_softc *sc = (void *) self;
    407 
    408 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    409 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    410 }
    411 
    412 static void
    413 vr_mii_statchg(self)
    414 	struct device *self;
    415 {
    416 	struct vr_softc *sc = (struct vr_softc *)self;
    417 
    418 	/*
    419 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    420 	 * register, we first have to put the transmit and/or receive logic
    421 	 * in the idle state.
    422 	 */
    423 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    424 
    425 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    427 	else
    428 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    429 
    430 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    431 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    432 }
    433 
    434 /*
    435  * Calculate CRC of a multicast group address, return the lower 6 bits.
    436  */
    437 static u_int8_t
    438 vr_calchash(addr)
    439 	u_int8_t *addr;
    440 {
    441 	u_int32_t crc, carry;
    442 	int i, j;
    443 	u_int8_t c;
    444 
    445 	/* Compute CRC for the address value. */
    446 	crc = 0xFFFFFFFF; /* initial value */
    447 
    448 	for (i = 0; i < 6; i++) {
    449 		c = *(addr + i);
    450 		for (j = 0; j < 8; j++) {
    451 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    452 			crc <<= 1;
    453 			c >>= 1;
    454 			if (carry)
    455 				crc = (crc ^ 0x04c11db6) | carry;
    456 		}
    457 	}
    458 
    459 	/* return the filter bit position */
    460 	return ((crc >> 26) & 0x0000003F);
    461 }
    462 
    463 /*
    464  * Program the 64-bit multicast hash filter.
    465  */
    466 static void
    467 vr_setmulti(sc)
    468 	struct vr_softc *sc;
    469 {
    470 	struct ifnet *ifp;
    471 	int h = 0;
    472 	u_int32_t hashes[2] = { 0, 0 };
    473 	struct ether_multistep step;
    474 	struct ether_multi *enm;
    475 	int mcnt = 0;
    476 	u_int8_t rxfilt;
    477 
    478 	ifp = &sc->vr_ec.ec_if;
    479 
    480 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    481 
    482 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    483 		rxfilt |= VR_RXCFG_RX_MULTI;
    484 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    485 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    486 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    487 		return;
    488 	}
    489 
    490 	/* first, zot all the existing hash bits */
    491 	CSR_WRITE_4(sc, VR_MAR0, 0);
    492 	CSR_WRITE_4(sc, VR_MAR1, 0);
    493 
    494 	/* now program new ones */
    495 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    496 	while (enm != NULL) {
    497 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
    498 			continue;
    499 
    500 		h = vr_calchash(enm->enm_addrlo);
    501 
    502 		if (h < 32)
    503 			hashes[0] |= (1 << h);
    504 		else
    505 			hashes[1] |= (1 << (h - 32));
    506 		ETHER_NEXT_MULTI(step, enm);
    507 		mcnt++;
    508 	}
    509 
    510 	if (mcnt)
    511 		rxfilt |= VR_RXCFG_RX_MULTI;
    512 	else
    513 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    514 
    515 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    516 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    517 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    518 }
    519 
    520 static void
    521 vr_reset(sc)
    522 	struct vr_softc *sc;
    523 {
    524 	int i;
    525 
    526 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    527 
    528 	for (i = 0; i < VR_TIMEOUT; i++) {
    529 		DELAY(10);
    530 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    531 			break;
    532 	}
    533 	if (i == VR_TIMEOUT)
    534 		printf("%s: reset never completed!\n",
    535 			sc->vr_dev.dv_xname);
    536 
    537 	/* Wait a little while for the chip to get its brains in order. */
    538 	DELAY(1000);
    539 }
    540 
    541 /*
    542  * Initialize an RX descriptor and attach an MBUF cluster.
    543  * Note: the length fields are only 11 bits wide, which means the
    544  * largest size we can specify is 2047. This is important because
    545  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    546  * overflow the field and make a mess.
    547  */
    548 static int
    549 vr_add_rxbuf(sc, i)
    550 	struct vr_softc *sc;
    551 	int i;
    552 {
    553 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    554 	struct mbuf *m_new;
    555 	int error;
    556 
    557 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    558 	if (m_new == NULL)
    559 		return (ENOBUFS);
    560 
    561 	MCLGET(m_new, M_DONTWAIT);
    562 	if ((m_new->m_flags & M_EXT) == 0) {
    563 		m_freem(m_new);
    564 		return (ENOBUFS);
    565 	}
    566 
    567 	if (ds->ds_mbuf != NULL)
    568 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    569 
    570 	ds->ds_mbuf = m_new;
    571 
    572 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    573 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    574 	if (error) {
    575 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    576 		    sc->vr_dev.dv_xname, i, error);
    577 		panic("vr_add_rxbuf");		/* XXX */
    578 	}
    579 
    580 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    581 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    582 
    583 	VR_INIT_RXDESC(sc, i);
    584 
    585 	return (0);
    586 }
    587 
    588 /*
    589  * A frame has been uploaded: pass the resulting mbuf chain up to
    590  * the higher level protocols.
    591  */
    592 static void
    593 vr_rxeof(sc)
    594 	struct vr_softc *sc;
    595 {
    596 	struct mbuf *m;
    597 	struct ifnet *ifp;
    598 	struct vr_desc *d;
    599 	struct vr_descsoft *ds;
    600 	int i, total_len;
    601 	u_int32_t rxstat;
    602 
    603 	ifp = &sc->vr_ec.ec_if;
    604 
    605 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    606 		d = VR_CDRX(sc, i);
    607 		ds = VR_DSRX(sc, i);
    608 
    609 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    610 
    611 		rxstat = le32toh(d->vr_status);
    612 
    613 		if (rxstat & VR_RXSTAT_OWN) {
    614 			/*
    615 			 * We have processed all of the receive buffers.
    616 			 */
    617 			break;
    618 		}
    619 
    620 		/*
    621 		 * If an error occurs, update stats, clear the
    622 		 * status word and leave the mbuf cluster in place:
    623 		 * it should simply get re-used next time this descriptor
    624 		 * comes up in the ring.
    625 		 */
    626 		if (rxstat & VR_RXSTAT_RXERR) {
    627 			const char *errstr;
    628 
    629 			ifp->if_ierrors++;
    630 			switch (rxstat & 0x000000FF) {
    631 			case VR_RXSTAT_CRCERR:
    632 				errstr = "crc error";
    633 				break;
    634 			case VR_RXSTAT_FRAMEALIGNERR:
    635 				errstr = "frame alignment error";
    636 				break;
    637 			case VR_RXSTAT_FIFOOFLOW:
    638 				errstr = "FIFO overflow";
    639 				break;
    640 			case VR_RXSTAT_GIANT:
    641 				errstr = "received giant packet";
    642 				break;
    643 			case VR_RXSTAT_RUNT:
    644 				errstr = "received runt packet";
    645 				break;
    646 			case VR_RXSTAT_BUSERR:
    647 				errstr = "system bus error";
    648 				break;
    649 			case VR_RXSTAT_BUFFERR:
    650 				errstr = "rx buffer error";
    651 				break;
    652 			default:
    653 				errstr = "unknown rx error";
    654 				break;
    655 			}
    656 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    657 			    errstr);
    658 
    659 			VR_INIT_RXDESC(sc, i);
    660 
    661 			continue;
    662 		}
    663 
    664 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    665 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    666 
    667 		/* No errors; receive the packet. */
    668 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    669 
    670 #ifdef __NO_STRICT_ALIGNMENT
    671 		/*
    672 		 * If the packet is small enough to fit in a
    673 		 * single header mbuf, allocate one and copy
    674 		 * the data into it.  This greatly reduces
    675 		 * memory consumption when we receive lots
    676 		 * of small packets.
    677 		 *
    678 		 * Otherwise, we add a new buffer to the receive
    679 		 * chain.  If this fails, we drop the packet and
    680 		 * recycle the old buffer.
    681 		 */
    682 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    683 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    684 			if (m == NULL)
    685 				goto dropit;
    686 			memcpy(mtod(m, caddr_t),
    687 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    688 			VR_INIT_RXDESC(sc, i);
    689 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    690 			    ds->ds_dmamap->dm_mapsize,
    691 			    BUS_DMASYNC_PREREAD);
    692 		} else {
    693 			m = ds->ds_mbuf;
    694 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    695  dropit:
    696 				ifp->if_ierrors++;
    697 				VR_INIT_RXDESC(sc, i);
    698 				bus_dmamap_sync(sc->vr_dmat,
    699 				    ds->ds_dmamap, 0,
    700 				    ds->ds_dmamap->dm_mapsize,
    701 				    BUS_DMASYNC_PREREAD);
    702 				continue;
    703 			}
    704 		}
    705 #else
    706 		/*
    707 		 * The Rhine's packet buffers must be 4-byte aligned.
    708 		 * But this means that the data after the Ethernet header
    709 		 * is misaligned.  We must allocate a new buffer and
    710 		 * copy the data, shifted forward 2 bytes.
    711 		 */
    712 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    713 		if (m == NULL) {
    714  dropit:
    715 			ifp->if_ierrors++;
    716 			VR_INIT_RXDESC(sc, i);
    717 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    718 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    719 			continue;
    720 		}
    721 		if (total_len > (MHLEN - 2)) {
    722 			MCLGET(m, M_DONTWAIT);
    723 			if ((m->m_flags & M_EXT) == 0) {
    724 				m_freem(m);
    725 				goto dropit;
    726 			}
    727 		}
    728 		m->m_data += 2;
    729 
    730 		/*
    731 		 * Note that we use clusters for incoming frames, so the
    732 		 * buffer is virtually contiguous.
    733 		 */
    734 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    735 		    total_len);
    736 
    737 		/* Allow the recieve descriptor to continue using its mbuf. */
    738 		VR_INIT_RXDESC(sc, i);
    739 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    740 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    741 #endif /* __NO_STRICT_ALIGNMENT */
    742 
    743 		/*
    744 		 * The Rhine chip includes the FCS with every
    745 		 * received packet.
    746 		 */
    747 		m->m_flags |= M_HASFCS;
    748 
    749 		ifp->if_ipackets++;
    750 		m->m_pkthdr.rcvif = ifp;
    751 		m->m_pkthdr.len = m->m_len = total_len;
    752 #if NBPFILTER > 0
    753 		/*
    754 		 * Handle BPF listeners. Let the BPF user see the packet, but
    755 		 * don't pass it up to the ether_input() layer unless it's
    756 		 * a broadcast packet, multicast packet, matches our ethernet
    757 		 * address or the interface is in promiscuous mode.
    758 		 */
    759 		if (ifp->if_bpf)
    760 			bpf_mtap(ifp->if_bpf, m);
    761 #endif
    762 		/* Pass it on. */
    763 		(*ifp->if_input)(ifp, m);
    764 	}
    765 
    766 	/* Update the receive pointer. */
    767 	sc->vr_rxptr = i;
    768 }
    769 
    770 void
    771 vr_rxeoc(sc)
    772 	struct vr_softc *sc;
    773 {
    774 
    775 	vr_rxeof(sc);
    776 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    777 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    778 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    779 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    780 }
    781 
    782 /*
    783  * A frame was downloaded to the chip. It's safe for us to clean up
    784  * the list buffers.
    785  */
    786 static void
    787 vr_txeof(sc)
    788 	struct vr_softc *sc;
    789 {
    790 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    791 	struct vr_desc *d;
    792 	struct vr_descsoft *ds;
    793 	u_int32_t txstat;
    794 	int i;
    795 
    796 	ifp->if_flags &= ~IFF_OACTIVE;
    797 
    798 	/*
    799 	 * Go through our tx list and free mbufs for those
    800 	 * frames that have been transmitted.
    801 	 */
    802 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    803 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    804 		d = VR_CDTX(sc, i);
    805 		ds = VR_DSTX(sc, i);
    806 
    807 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    808 
    809 		txstat = le32toh(d->vr_status);
    810 		if (txstat & VR_TXSTAT_OWN)
    811 			break;
    812 
    813 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    814 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    815 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    816 		m_freem(ds->ds_mbuf);
    817 		ds->ds_mbuf = NULL;
    818 
    819 		if (txstat & VR_TXSTAT_ERRSUM) {
    820 			ifp->if_oerrors++;
    821 			if (txstat & VR_TXSTAT_DEFER)
    822 				ifp->if_collisions++;
    823 			if (txstat & VR_TXSTAT_LATECOLL)
    824 				ifp->if_collisions++;
    825 		}
    826 
    827 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    828 		ifp->if_opackets++;
    829 	}
    830 
    831 	/* Update the dirty transmit buffer pointer. */
    832 	sc->vr_txdirty = i;
    833 
    834 	/*
    835 	 * Cancel the watchdog timer if there are no pending
    836 	 * transmissions.
    837 	 */
    838 	if (sc->vr_txpending == 0)
    839 		ifp->if_timer = 0;
    840 }
    841 
    842 static int
    843 vr_intr(arg)
    844 	void *arg;
    845 {
    846 	struct vr_softc *sc;
    847 	struct ifnet *ifp;
    848 	u_int16_t status;
    849 	int handled = 0, dotx = 0;
    850 
    851 	sc = arg;
    852 	ifp = &sc->vr_ec.ec_if;
    853 
    854 	/* Suppress unwanted interrupts. */
    855 	if ((ifp->if_flags & IFF_UP) == 0) {
    856 		vr_stop(ifp, 1);
    857 		return (0);
    858 	}
    859 
    860 	/* Disable interrupts. */
    861 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    862 
    863 	for (;;) {
    864 		status = CSR_READ_2(sc, VR_ISR);
    865 		if (status)
    866 			CSR_WRITE_2(sc, VR_ISR, status);
    867 
    868 		if ((status & VR_INTRS) == 0)
    869 			break;
    870 
    871 		handled = 1;
    872 
    873 		if (status & VR_ISR_RX_OK)
    874 			vr_rxeof(sc);
    875 
    876 		if (status &
    877 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    878 		     VR_ISR_RX_DROPPED))
    879 			vr_rxeoc(sc);
    880 
    881 		if (status & VR_ISR_TX_OK) {
    882 			dotx = 1;
    883 			vr_txeof(sc);
    884 		}
    885 
    886 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    887 			if (status & VR_ISR_TX_UNDERRUN)
    888 				printf("%s: transmit underrun\n",
    889 				    sc->vr_dev.dv_xname);
    890 			if (status & VR_ISR_TX_ABRT)
    891 				printf("%s: transmit aborted\n",
    892 				    sc->vr_dev.dv_xname);
    893 			ifp->if_oerrors++;
    894 			dotx = 1;
    895 			vr_txeof(sc);
    896 			if (sc->vr_txpending) {
    897 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    898 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    899 			}
    900 		}
    901 
    902 		if (status & VR_ISR_BUSERR) {
    903 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    904 			/* vr_init() calls vr_start() */
    905 			dotx = 0;
    906 			(void) vr_init(ifp);
    907 		}
    908 	}
    909 
    910 	/* Re-enable interrupts. */
    911 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    912 
    913 	if (dotx)
    914 		vr_start(ifp);
    915 
    916 	return (handled);
    917 }
    918 
    919 /*
    920  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    921  * to the mbuf data regions directly in the transmit lists. We also save a
    922  * copy of the pointers since the transmit list fragment pointers are
    923  * physical addresses.
    924  */
    925 static void
    926 vr_start(ifp)
    927 	struct ifnet *ifp;
    928 {
    929 	struct vr_softc *sc = ifp->if_softc;
    930 	struct mbuf *m0, *m;
    931 	struct vr_desc *d;
    932 	struct vr_descsoft *ds;
    933 	int error, firsttx, nexttx, opending;
    934 
    935 	/*
    936 	 * Remember the previous txpending and the first transmit
    937 	 * descriptor we use.
    938 	 */
    939 	opending = sc->vr_txpending;
    940 	firsttx = VR_NEXTTX(sc->vr_txlast);
    941 
    942 	/*
    943 	 * Loop through the send queue, setting up transmit descriptors
    944 	 * until we drain the queue, or use up all available transmit
    945 	 * descriptors.
    946 	 */
    947 	while (sc->vr_txpending < VR_NTXDESC) {
    948 		/*
    949 		 * Grab a packet off the queue.
    950 		 */
    951 		IF_DEQUEUE(&ifp->if_snd, m0);
    952 		if (m0 == NULL)
    953 			break;
    954 
    955 		/*
    956 		 * Get the next available transmit descriptor.
    957 		 */
    958 		nexttx = VR_NEXTTX(sc->vr_txlast);
    959 		d = VR_CDTX(sc, nexttx);
    960 		ds = VR_DSTX(sc, nexttx);
    961 
    962 		/*
    963 		 * Load the DMA map.  If this fails, the packet didn't
    964 		 * fit in one DMA segment, and we need to copy.  Note,
    965 		 * the packet must also be aligned.
    966 		 */
    967 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    968 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    969 		     BUS_DMA_NOWAIT) != 0) {
    970 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    971 			if (m == NULL) {
    972 				printf("%s: unable to allocate Tx mbuf\n",
    973 				    sc->vr_dev.dv_xname);
    974 				IF_PREPEND(&ifp->if_snd, m0);
    975 				break;
    976 			}
    977 			if (m0->m_pkthdr.len > MHLEN) {
    978 				MCLGET(m, M_DONTWAIT);
    979 				if ((m->m_flags & M_EXT) == 0) {
    980 					printf("%s: unable to allocate Tx "
    981 					    "cluster\n", sc->vr_dev.dv_xname);
    982 					m_freem(m);
    983 					IF_PREPEND(&ifp->if_snd, m0);
    984 					break;
    985 				}
    986 			}
    987 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    988 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    989 			m_freem(m0);
    990 			m0 = m;
    991 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    992 			    ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
    993 			if (error) {
    994 				printf("%s: unable to load Tx buffer, "
    995 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    996 				IF_PREPEND(&ifp->if_snd, m0);
    997 				break;
    998 			}
    999 		}
   1000 
   1001 		/* Sync the DMA map. */
   1002 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1003 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1004 
   1005 		/*
   1006 		 * Store a pointer to the packet so we can free it later.
   1007 		 */
   1008 		ds->ds_mbuf = m0;
   1009 
   1010 #if NBPFILTER > 0
   1011 		/*
   1012 		 * If there's a BPF listener, bounce a copy of this frame
   1013 		 * to him.
   1014 		 */
   1015 		if (ifp->if_bpf)
   1016 			bpf_mtap(ifp->if_bpf, m0);
   1017 #endif
   1018 
   1019 		/*
   1020 		 * Fill in the transmit descriptor.  The Rhine
   1021 		 * doesn't auto-pad, so we have to do this ourselves.
   1022 		 */
   1023 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1024 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1025 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1026 		d->vr_ctl |=
   1027 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1028 		    VR_TXCTL_LASTFRAG);
   1029 
   1030 		/*
   1031 		 * If this is the first descriptor we're enqueuing,
   1032 		 * don't give it to the Rhine yet.  That could cause
   1033 		 * a race condition.  We'll do it below.
   1034 		 */
   1035 		if (nexttx == firsttx)
   1036 			d->vr_status = 0;
   1037 		else
   1038 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1039 
   1040 		VR_CDTXSYNC(sc, nexttx,
   1041 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1042 
   1043 		/* Advance the tx pointer. */
   1044 		sc->vr_txpending++;
   1045 		sc->vr_txlast = nexttx;
   1046 	}
   1047 
   1048 	if (sc->vr_txpending == VR_NTXDESC) {
   1049 		/* No more slots left; notify upper layer. */
   1050 		ifp->if_flags |= IFF_OACTIVE;
   1051 	}
   1052 
   1053 	if (sc->vr_txpending != opending) {
   1054 		/*
   1055 		 * We enqueued packets.  If the transmitter was idle,
   1056 		 * reset the txdirty pointer.
   1057 		 */
   1058 		if (opending == 0)
   1059 			sc->vr_txdirty = firsttx;
   1060 
   1061 		/*
   1062 		 * Cause a transmit interrupt to happen on the
   1063 		 * last packet we enqueued.
   1064 		 */
   1065 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1066 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1067 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1068 
   1069 		/*
   1070 		 * The entire packet chain is set up.  Give the
   1071 		 * first descriptor to the Rhine now.
   1072 		 */
   1073 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1074 		VR_CDTXSYNC(sc, firsttx,
   1075 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1076 
   1077 		/* Start the transmitter. */
   1078 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1079 
   1080 		/* Set the watchdog timer in case the chip flakes out. */
   1081 		ifp->if_timer = 5;
   1082 	}
   1083 }
   1084 
   1085 /*
   1086  * Initialize the interface.  Must be called at splnet.
   1087  */
   1088 static int
   1089 vr_init(ifp)
   1090 	struct ifnet *ifp;
   1091 {
   1092 	struct vr_softc *sc = ifp->if_softc;
   1093 	struct vr_desc *d;
   1094 	struct vr_descsoft *ds;
   1095 	int i, error = 0;
   1096 
   1097 	/* Cancel pending I/O. */
   1098 	vr_stop(ifp, 0);
   1099 
   1100 	/* Reset the Rhine to a known state. */
   1101 	vr_reset(sc);
   1102 
   1103 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1104 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1105 
   1106 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1107 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1108 
   1109 	/*
   1110 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1111 	 * to the end of the list so that it will wrap around to the first
   1112 	 * descriptor when the first packet is transmitted.
   1113 	 */
   1114 	for (i = 0; i < VR_NTXDESC; i++) {
   1115 		d = VR_CDTX(sc, i);
   1116 		memset(d, 0, sizeof(struct vr_desc));
   1117 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1118 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1119 	}
   1120 	sc->vr_txpending = 0;
   1121 	sc->vr_txdirty = 0;
   1122 	sc->vr_txlast = VR_NTXDESC - 1;
   1123 
   1124 	/*
   1125 	 * Initialize the receive descriptor ring.
   1126 	 */
   1127 	for (i = 0; i < VR_NRXDESC; i++) {
   1128 		ds = VR_DSRX(sc, i);
   1129 		if (ds->ds_mbuf == NULL) {
   1130 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1131 				printf("%s: unable to allocate or map rx "
   1132 				    "buffer %d, error = %d\n",
   1133 				    sc->vr_dev.dv_xname, i, error);
   1134 				/*
   1135 				 * XXX Should attempt to run with fewer receive
   1136 				 * XXX buffers instead of just failing.
   1137 				 */
   1138 				vr_rxdrain(sc);
   1139 				goto out;
   1140 			}
   1141 		}
   1142 	}
   1143 	sc->vr_rxptr = 0;
   1144 
   1145 	/* If we want promiscuous mode, set the allframes bit. */
   1146 	if (ifp->if_flags & IFF_PROMISC)
   1147 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1148 	else
   1149 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1150 
   1151 	/* Set capture broadcast bit to capture broadcast frames. */
   1152 	if (ifp->if_flags & IFF_BROADCAST)
   1153 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1154 	else
   1155 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1156 
   1157 	/* Program the multicast filter, if necessary. */
   1158 	vr_setmulti(sc);
   1159 
   1160 	/* Give the transmit and recieve rings to the Rhine. */
   1161 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1162 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1163 
   1164 	/* Set current media. */
   1165 	mii_mediachg(&sc->vr_mii);
   1166 
   1167 	/* Enable receiver and transmitter. */
   1168 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1169 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1170 				    VR_CMD_RX_GO);
   1171 
   1172 	/* Enable interrupts. */
   1173 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1174 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1175 
   1176 	ifp->if_flags |= IFF_RUNNING;
   1177 	ifp->if_flags &= ~IFF_OACTIVE;
   1178 
   1179 	/* Start one second timer. */
   1180 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1181 
   1182 	/* Attempt to start output on the interface. */
   1183 	vr_start(ifp);
   1184 
   1185  out:
   1186 	if (error)
   1187 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1188 	return (error);
   1189 }
   1190 
   1191 /*
   1192  * Set media options.
   1193  */
   1194 static int
   1195 vr_ifmedia_upd(ifp)
   1196 	struct ifnet *ifp;
   1197 {
   1198 	struct vr_softc *sc = ifp->if_softc;
   1199 
   1200 	if (ifp->if_flags & IFF_UP)
   1201 		mii_mediachg(&sc->vr_mii);
   1202 	return (0);
   1203 }
   1204 
   1205 /*
   1206  * Report current media status.
   1207  */
   1208 static void
   1209 vr_ifmedia_sts(ifp, ifmr)
   1210 	struct ifnet *ifp;
   1211 	struct ifmediareq *ifmr;
   1212 {
   1213 	struct vr_softc *sc = ifp->if_softc;
   1214 
   1215 	mii_pollstat(&sc->vr_mii);
   1216 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1217 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1218 }
   1219 
   1220 static int
   1221 vr_ioctl(ifp, command, data)
   1222 	struct ifnet *ifp;
   1223 	u_long command;
   1224 	caddr_t data;
   1225 {
   1226 	struct vr_softc *sc = ifp->if_softc;
   1227 	struct ifreq *ifr = (struct ifreq *)data;
   1228 	int s, error = 0;
   1229 
   1230 	s = splnet();
   1231 
   1232 	switch (command) {
   1233 	case SIOCGIFMEDIA:
   1234 	case SIOCSIFMEDIA:
   1235 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1236 		break;
   1237 
   1238 	default:
   1239 		error = ether_ioctl(ifp, command, data);
   1240 		if (error == ENETRESET) {
   1241 			/*
   1242 			 * Multicast list has changed; set the hardware filter
   1243 			 * accordingly.
   1244 			 */
   1245 			vr_setmulti(sc);
   1246 			error = 0;
   1247 		}
   1248 		break;
   1249 	}
   1250 
   1251 	splx(s);
   1252 	return (error);
   1253 }
   1254 
   1255 static void
   1256 vr_watchdog(ifp)
   1257 	struct ifnet *ifp;
   1258 {
   1259 	struct vr_softc *sc = ifp->if_softc;
   1260 
   1261 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1262 	ifp->if_oerrors++;
   1263 
   1264 	(void) vr_init(ifp);
   1265 }
   1266 
   1267 /*
   1268  * One second timer, used to tick MII.
   1269  */
   1270 static void
   1271 vr_tick(arg)
   1272 	void *arg;
   1273 {
   1274 	struct vr_softc *sc = arg;
   1275 	int s;
   1276 
   1277 	s = splnet();
   1278 	mii_tick(&sc->vr_mii);
   1279 	splx(s);
   1280 
   1281 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1282 }
   1283 
   1284 /*
   1285  * Drain the receive queue.
   1286  */
   1287 static void
   1288 vr_rxdrain(sc)
   1289 	struct vr_softc *sc;
   1290 {
   1291 	struct vr_descsoft *ds;
   1292 	int i;
   1293 
   1294 	for (i = 0; i < VR_NRXDESC; i++) {
   1295 		ds = VR_DSRX(sc, i);
   1296 		if (ds->ds_mbuf != NULL) {
   1297 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1298 			m_freem(ds->ds_mbuf);
   1299 			ds->ds_mbuf = NULL;
   1300 		}
   1301 	}
   1302 }
   1303 
   1304 /*
   1305  * Stop the adapter and free any mbufs allocated to the
   1306  * transmit lists.
   1307  */
   1308 static void
   1309 vr_stop(ifp, disable)
   1310 	struct ifnet *ifp;
   1311 	int disable;
   1312 {
   1313 	struct vr_softc *sc = ifp->if_softc;
   1314 	struct vr_descsoft *ds;
   1315 	int i;
   1316 
   1317 	/* Cancel one second timer. */
   1318 	callout_stop(&sc->vr_tick_ch);
   1319 
   1320 	/* Down the MII. */
   1321 	mii_down(&sc->vr_mii);
   1322 
   1323 	ifp = &sc->vr_ec.ec_if;
   1324 	ifp->if_timer = 0;
   1325 
   1326 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1327 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1328 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1329 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1330 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1331 
   1332 	/*
   1333 	 * Release any queued transmit buffers.
   1334 	 */
   1335 	for (i = 0; i < VR_NTXDESC; i++) {
   1336 		ds = VR_DSTX(sc, i);
   1337 		if (ds->ds_mbuf != NULL) {
   1338 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1339 			m_freem(ds->ds_mbuf);
   1340 			ds->ds_mbuf = NULL;
   1341 		}
   1342 	}
   1343 
   1344 	if (disable)
   1345 		vr_rxdrain(sc);
   1346 
   1347 	/*
   1348 	 * Mark the interface down and cancel the watchdog timer.
   1349 	 */
   1350 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1351 	ifp->if_timer = 0;
   1352 }
   1353 
   1354 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1355 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1356 static void vr_attach __P((struct device *, struct device *, void *));
   1357 static void vr_shutdown __P((void *));
   1358 
   1359 struct cfattach vr_ca = {
   1360 	sizeof (struct vr_softc), vr_probe, vr_attach
   1361 };
   1362 
   1363 static struct vr_type *
   1364 vr_lookup(pa)
   1365 	struct pci_attach_args *pa;
   1366 {
   1367 	struct vr_type *vrt;
   1368 
   1369 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1370 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1371 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1372 			return (vrt);
   1373 	}
   1374 	return (NULL);
   1375 }
   1376 
   1377 static int
   1378 vr_probe(parent, match, aux)
   1379 	struct device *parent;
   1380 	struct cfdata *match;
   1381 	void *aux;
   1382 {
   1383 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1384 
   1385 	if (vr_lookup(pa) != NULL)
   1386 		return (1);
   1387 
   1388 	return (0);
   1389 }
   1390 
   1391 /*
   1392  * Stop all chip I/O so that the kernel's probe routines don't
   1393  * get confused by errant DMAs when rebooting.
   1394  */
   1395 static void
   1396 vr_shutdown(arg)
   1397 	void *arg;
   1398 {
   1399 	struct vr_softc *sc = (struct vr_softc *)arg;
   1400 
   1401 	vr_stop(&sc->vr_ec.ec_if, 1);
   1402 }
   1403 
   1404 /*
   1405  * Attach the interface. Allocate softc structures, do ifmedia
   1406  * setup and ethernet/BPF attach.
   1407  */
   1408 static void
   1409 vr_attach(parent, self, aux)
   1410 	struct device *parent;
   1411 	struct device *self;
   1412 	void *aux;
   1413 {
   1414 	struct vr_softc *sc = (struct vr_softc *) self;
   1415 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1416 	bus_dma_segment_t seg;
   1417 	struct vr_type *vrt;
   1418 	u_int32_t command;
   1419 	struct ifnet *ifp;
   1420 	u_char eaddr[ETHER_ADDR_LEN];
   1421 	int i, rseg, error;
   1422 
   1423 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1424 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1425 
   1426 	callout_init(&sc->vr_tick_ch);
   1427 
   1428 	vrt = vr_lookup(pa);
   1429 	if (vrt == NULL) {
   1430 		printf("\n");
   1431 		panic("vr_attach: impossible");
   1432 	}
   1433 
   1434 	printf(": %s Ethernet\n", vrt->vr_name);
   1435 
   1436 	/*
   1437 	 * Handle power management nonsense.
   1438 	 */
   1439 
   1440 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1441 	if (command == 0x01) {
   1442 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1443 		if (command & VR_PSTATE_MASK) {
   1444 			u_int32_t iobase, membase, irq;
   1445 
   1446 			/* Save important PCI config data. */
   1447 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1448 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1449 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1450 
   1451 			/* Reset the power state. */
   1452 			printf("%s: chip is in D%d power mode "
   1453 				"-- setting to D0\n",
   1454 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1455 			command &= 0xFFFFFFFC;
   1456 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1457 
   1458 			/* Restore PCI config data. */
   1459 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1460 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1461 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1462 		}
   1463 	}
   1464 
   1465 	/* Make sure bus mastering is enabled. */
   1466 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1467 	command |= PCI_COMMAND_MASTER_ENABLE;
   1468 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1469 
   1470 	/*
   1471 	 * Map control/status registers.
   1472 	 */
   1473 	{
   1474 		bus_space_tag_t iot, memt;
   1475 		bus_space_handle_t ioh, memh;
   1476 		int ioh_valid, memh_valid;
   1477 		pci_intr_handle_t intrhandle;
   1478 		const char *intrstr;
   1479 
   1480 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1481 			PCI_MAPREG_TYPE_IO, 0,
   1482 			&iot, &ioh, NULL, NULL) == 0);
   1483 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1484 			PCI_MAPREG_TYPE_MEM |
   1485 			PCI_MAPREG_MEM_TYPE_32BIT,
   1486 			0, &memt, &memh, NULL, NULL) == 0);
   1487 #if defined(VR_USEIOSPACE)
   1488 		if (ioh_valid) {
   1489 			sc->vr_bst = iot;
   1490 			sc->vr_bsh = ioh;
   1491 		} else if (memh_valid) {
   1492 			sc->vr_bst = memt;
   1493 			sc->vr_bsh = memh;
   1494 		}
   1495 #else
   1496 		if (memh_valid) {
   1497 			sc->vr_bst = memt;
   1498 			sc->vr_bsh = memh;
   1499 		} else if (ioh_valid) {
   1500 			sc->vr_bst = iot;
   1501 			sc->vr_bsh = ioh;
   1502 		}
   1503 #endif
   1504 		else {
   1505 			printf(": unable to map device registers\n");
   1506 			return;
   1507 		}
   1508 
   1509 		/* Allocate interrupt */
   1510 		if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
   1511 				pa->pa_intrline, &intrhandle)) {
   1512 			printf("%s: couldn't map interrupt\n",
   1513 				sc->vr_dev.dv_xname);
   1514 			return;
   1515 		}
   1516 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1517 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1518 						vr_intr, sc);
   1519 		if (sc->vr_ih == NULL) {
   1520 			printf("%s: couldn't establish interrupt",
   1521 				sc->vr_dev.dv_xname);
   1522 			if (intrstr != NULL)
   1523 				printf(" at %s", intrstr);
   1524 			printf("\n");
   1525 		}
   1526 		printf("%s: interrupting at %s\n",
   1527 			sc->vr_dev.dv_xname, intrstr);
   1528 	}
   1529 
   1530 	/* Reset the adapter. */
   1531 	vr_reset(sc);
   1532 
   1533 	/*
   1534 	 * Get station address. The way the Rhine chips work,
   1535 	 * you're not allowed to directly access the EEPROM once
   1536 	 * they've been programmed a special way. Consequently,
   1537 	 * we need to read the node address from the PAR0 and PAR1
   1538 	 * registers.
   1539 	 */
   1540 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1541 	DELAY(200);
   1542 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1543 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1544 
   1545 	/*
   1546 	 * A Rhine chip was detected. Inform the world.
   1547 	 */
   1548 	printf("%s: Ethernet address: %s\n",
   1549 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1550 
   1551 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1552 
   1553 	sc->vr_dmat = pa->pa_dmat;
   1554 
   1555 	/*
   1556 	 * Allocate the control data structures, and create and load
   1557 	 * the DMA map for it.
   1558 	 */
   1559 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1560 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1561 	    0)) != 0) {
   1562 		printf("%s: unable to allocate control data, error = %d\n",
   1563 		    sc->vr_dev.dv_xname, error);
   1564 		goto fail_0;
   1565 	}
   1566 
   1567 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1568 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1569 	    BUS_DMA_COHERENT)) != 0) {
   1570 		printf("%s: unable to map control data, error = %d\n",
   1571 		    sc->vr_dev.dv_xname, error);
   1572 		goto fail_1;
   1573 	}
   1574 
   1575 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1576 	    sizeof(struct vr_control_data), 1,
   1577 	    sizeof(struct vr_control_data), 0, 0,
   1578 	    &sc->vr_cddmamap)) != 0) {
   1579 		printf("%s: unable to create control data DMA map, "
   1580 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1581 		goto fail_2;
   1582 	}
   1583 
   1584 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1585 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1586 	    0)) != 0) {
   1587 		printf("%s: unable to load control data DMA map, error = %d\n",
   1588 		    sc->vr_dev.dv_xname, error);
   1589 		goto fail_3;
   1590 	}
   1591 
   1592 	/*
   1593 	 * Create the transmit buffer DMA maps.
   1594 	 */
   1595 	for (i = 0; i < VR_NTXDESC; i++) {
   1596 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1597 		    1, MCLBYTES, 0, 0,
   1598 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1599 			printf("%s: unable to create tx DMA map %d, "
   1600 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1601 			goto fail_4;
   1602 		}
   1603 	}
   1604 
   1605 	/*
   1606 	 * Create the receive buffer DMA maps.
   1607 	 */
   1608 	for (i = 0; i < VR_NRXDESC; i++) {
   1609 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1610 		    MCLBYTES, 0, 0,
   1611 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1612 			printf("%s: unable to create rx DMA map %d, "
   1613 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1614 			goto fail_5;
   1615 		}
   1616 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1617 	}
   1618 
   1619 	ifp = &sc->vr_ec.ec_if;
   1620 	ifp->if_softc = sc;
   1621 	ifp->if_mtu = ETHERMTU;
   1622 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1623 	ifp->if_ioctl = vr_ioctl;
   1624 	ifp->if_start = vr_start;
   1625 	ifp->if_watchdog = vr_watchdog;
   1626 	ifp->if_init = vr_init;
   1627 	ifp->if_stop = vr_stop;
   1628 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1629 
   1630 	/*
   1631 	 * Initialize MII/media info.
   1632 	 */
   1633 	sc->vr_mii.mii_ifp = ifp;
   1634 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1635 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1636 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1637 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1638 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1639 	    MII_OFFSET_ANY, 0);
   1640 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1641 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1642 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1643 	} else
   1644 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1645 
   1646 	/*
   1647 	 * Call MI attach routines.
   1648 	 */
   1649 	if_attach(ifp);
   1650 	ether_ifattach(ifp, sc->vr_enaddr);
   1651 
   1652 #if NBPFILTER > 0
   1653 	bpfattach(&sc->vr_ec.ec_if.if_bpf,
   1654 		ifp, DLT_EN10MB, sizeof (struct ether_header));
   1655 #endif
   1656 
   1657 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1658 	if (sc->vr_ats == NULL)
   1659 		printf("%s: warning: couldn't establish shutdown hook\n",
   1660 			sc->vr_dev.dv_xname);
   1661 	return;
   1662 
   1663  fail_5:
   1664 	for (i = 0; i < VR_NRXDESC; i++) {
   1665 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1666 			bus_dmamap_destroy(sc->vr_dmat,
   1667 			    sc->vr_rxsoft[i].ds_dmamap);
   1668 	}
   1669  fail_4:
   1670 	for (i = 0; i < VR_NTXDESC; i++) {
   1671 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1672 			bus_dmamap_destroy(sc->vr_dmat,
   1673 			    sc->vr_txsoft[i].ds_dmamap);
   1674 	}
   1675 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1676  fail_3:
   1677 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1678  fail_2:
   1679 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1680 	    sizeof(struct vr_control_data));
   1681  fail_1:
   1682 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1683  fail_0:
   1684 	return;
   1685 }
   1686