if_vr.c revision 1.42 1 /* $NetBSD: if_vr.c,v 1.42 2000/12/14 06:42:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct ifnet *));
305 static void vr_stop __P((struct ifnet *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static u_int8_t vr_calchash __P((u_int8_t *));
318 static void vr_setmulti __P((struct vr_softc *));
319 static void vr_reset __P((struct vr_softc *));
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | x)
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~x)
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | x)
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~x)
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | x)
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~x)
346
347 /*
348 * MII bit-bang glue.
349 */
350 u_int32_t vr_mii_bitbang_read __P((struct device *));
351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
352
353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 u_int32_t
366 vr_mii_bitbang_read(self)
367 struct device *self;
368 {
369 struct vr_softc *sc = (void *) self;
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 void
375 vr_mii_bitbang_write(self, val)
376 struct device *self;
377 u_int32_t val;
378 {
379 struct vr_softc *sc = (void *) self;
380
381 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
382 }
383
384 /*
385 * Read an PHY register through the MII.
386 */
387 static int
388 vr_mii_readreg(self, phy, reg)
389 struct device *self;
390 int phy, reg;
391 {
392 struct vr_softc *sc = (void *) self;
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
396 }
397
398 /*
399 * Write to a PHY register through the MII.
400 */
401 static void
402 vr_mii_writereg(self, phy, reg, val)
403 struct device *self;
404 int phy, reg, val;
405 {
406 struct vr_softc *sc = (void *) self;
407
408 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
409 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
410 }
411
412 static void
413 vr_mii_statchg(self)
414 struct device *self;
415 {
416 struct vr_softc *sc = (struct vr_softc *)self;
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 /*
435 * Calculate CRC of a multicast group address, return the lower 6 bits.
436 */
437 static u_int8_t
438 vr_calchash(addr)
439 u_int8_t *addr;
440 {
441 u_int32_t crc, carry;
442 int i, j;
443 u_int8_t c;
444
445 /* Compute CRC for the address value. */
446 crc = 0xFFFFFFFF; /* initial value */
447
448 for (i = 0; i < 6; i++) {
449 c = *(addr + i);
450 for (j = 0; j < 8; j++) {
451 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
452 crc <<= 1;
453 c >>= 1;
454 if (carry)
455 crc = (crc ^ 0x04c11db6) | carry;
456 }
457 }
458
459 /* return the filter bit position */
460 return ((crc >> 26) & 0x0000003F);
461 }
462
463 /*
464 * Program the 64-bit multicast hash filter.
465 */
466 static void
467 vr_setmulti(sc)
468 struct vr_softc *sc;
469 {
470 struct ifnet *ifp;
471 int h = 0;
472 u_int32_t hashes[2] = { 0, 0 };
473 struct ether_multistep step;
474 struct ether_multi *enm;
475 int mcnt = 0;
476 u_int8_t rxfilt;
477
478 ifp = &sc->vr_ec.ec_if;
479
480 rxfilt = CSR_READ_1(sc, VR_RXCFG);
481
482 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
483 rxfilt |= VR_RXCFG_RX_MULTI;
484 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
485 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
486 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
487 return;
488 }
489
490 /* first, zot all the existing hash bits */
491 CSR_WRITE_4(sc, VR_MAR0, 0);
492 CSR_WRITE_4(sc, VR_MAR1, 0);
493
494 /* now program new ones */
495 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
496 while (enm != NULL) {
497 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
498 continue;
499
500 h = vr_calchash(enm->enm_addrlo);
501
502 if (h < 32)
503 hashes[0] |= (1 << h);
504 else
505 hashes[1] |= (1 << (h - 32));
506 ETHER_NEXT_MULTI(step, enm);
507 mcnt++;
508 }
509
510 if (mcnt)
511 rxfilt |= VR_RXCFG_RX_MULTI;
512 else
513 rxfilt &= ~VR_RXCFG_RX_MULTI;
514
515 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
516 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
517 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
518 }
519
520 static void
521 vr_reset(sc)
522 struct vr_softc *sc;
523 {
524 int i;
525
526 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
527
528 for (i = 0; i < VR_TIMEOUT; i++) {
529 DELAY(10);
530 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
531 break;
532 }
533 if (i == VR_TIMEOUT)
534 printf("%s: reset never completed!\n",
535 sc->vr_dev.dv_xname);
536
537 /* Wait a little while for the chip to get its brains in order. */
538 DELAY(1000);
539 }
540
541 /*
542 * Initialize an RX descriptor and attach an MBUF cluster.
543 * Note: the length fields are only 11 bits wide, which means the
544 * largest size we can specify is 2047. This is important because
545 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
546 * overflow the field and make a mess.
547 */
548 static int
549 vr_add_rxbuf(sc, i)
550 struct vr_softc *sc;
551 int i;
552 {
553 struct vr_descsoft *ds = VR_DSRX(sc, i);
554 struct mbuf *m_new;
555 int error;
556
557 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
558 if (m_new == NULL)
559 return (ENOBUFS);
560
561 MCLGET(m_new, M_DONTWAIT);
562 if ((m_new->m_flags & M_EXT) == 0) {
563 m_freem(m_new);
564 return (ENOBUFS);
565 }
566
567 if (ds->ds_mbuf != NULL)
568 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
569
570 ds->ds_mbuf = m_new;
571
572 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
573 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
574 if (error) {
575 printf("%s: unable to load rx DMA map %d, error = %d\n",
576 sc->vr_dev.dv_xname, i, error);
577 panic("vr_add_rxbuf"); /* XXX */
578 }
579
580 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
581 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
582
583 VR_INIT_RXDESC(sc, i);
584
585 return (0);
586 }
587
588 /*
589 * A frame has been uploaded: pass the resulting mbuf chain up to
590 * the higher level protocols.
591 */
592 static void
593 vr_rxeof(sc)
594 struct vr_softc *sc;
595 {
596 struct mbuf *m;
597 struct ifnet *ifp;
598 struct vr_desc *d;
599 struct vr_descsoft *ds;
600 int i, total_len;
601 u_int32_t rxstat;
602
603 ifp = &sc->vr_ec.ec_if;
604
605 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
606 d = VR_CDRX(sc, i);
607 ds = VR_DSRX(sc, i);
608
609 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
610
611 rxstat = le32toh(d->vr_status);
612
613 if (rxstat & VR_RXSTAT_OWN) {
614 /*
615 * We have processed all of the receive buffers.
616 */
617 break;
618 }
619
620 /*
621 * If an error occurs, update stats, clear the
622 * status word and leave the mbuf cluster in place:
623 * it should simply get re-used next time this descriptor
624 * comes up in the ring.
625 */
626 if (rxstat & VR_RXSTAT_RXERR) {
627 const char *errstr;
628
629 ifp->if_ierrors++;
630 switch (rxstat & 0x000000FF) {
631 case VR_RXSTAT_CRCERR:
632 errstr = "crc error";
633 break;
634 case VR_RXSTAT_FRAMEALIGNERR:
635 errstr = "frame alignment error";
636 break;
637 case VR_RXSTAT_FIFOOFLOW:
638 errstr = "FIFO overflow";
639 break;
640 case VR_RXSTAT_GIANT:
641 errstr = "received giant packet";
642 break;
643 case VR_RXSTAT_RUNT:
644 errstr = "received runt packet";
645 break;
646 case VR_RXSTAT_BUSERR:
647 errstr = "system bus error";
648 break;
649 case VR_RXSTAT_BUFFERR:
650 errstr = "rx buffer error";
651 break;
652 default:
653 errstr = "unknown rx error";
654 break;
655 }
656 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
657 errstr);
658
659 VR_INIT_RXDESC(sc, i);
660
661 continue;
662 }
663
664 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
666
667 /* No errors; receive the packet. */
668 total_len = VR_RXBYTES(le32toh(d->vr_status));
669
670 #ifdef __NO_STRICT_ALIGNMENT
671 /*
672 * If the packet is small enough to fit in a
673 * single header mbuf, allocate one and copy
674 * the data into it. This greatly reduces
675 * memory consumption when we receive lots
676 * of small packets.
677 *
678 * Otherwise, we add a new buffer to the receive
679 * chain. If this fails, we drop the packet and
680 * recycle the old buffer.
681 */
682 if (vr_copy_small != 0 && total_len <= MHLEN) {
683 MGETHDR(m, M_DONTWAIT, MT_DATA);
684 if (m == NULL)
685 goto dropit;
686 memcpy(mtod(m, caddr_t),
687 mtod(ds->ds_mbuf, caddr_t), total_len);
688 VR_INIT_RXDESC(sc, i);
689 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
690 ds->ds_dmamap->dm_mapsize,
691 BUS_DMASYNC_PREREAD);
692 } else {
693 m = ds->ds_mbuf;
694 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
695 dropit:
696 ifp->if_ierrors++;
697 VR_INIT_RXDESC(sc, i);
698 bus_dmamap_sync(sc->vr_dmat,
699 ds->ds_dmamap, 0,
700 ds->ds_dmamap->dm_mapsize,
701 BUS_DMASYNC_PREREAD);
702 continue;
703 }
704 }
705 #else
706 /*
707 * The Rhine's packet buffers must be 4-byte aligned.
708 * But this means that the data after the Ethernet header
709 * is misaligned. We must allocate a new buffer and
710 * copy the data, shifted forward 2 bytes.
711 */
712 MGETHDR(m, M_DONTWAIT, MT_DATA);
713 if (m == NULL) {
714 dropit:
715 ifp->if_ierrors++;
716 VR_INIT_RXDESC(sc, i);
717 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
718 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
719 continue;
720 }
721 if (total_len > (MHLEN - 2)) {
722 MCLGET(m, M_DONTWAIT);
723 if ((m->m_flags & M_EXT) == 0) {
724 m_freem(m);
725 goto dropit;
726 }
727 }
728 m->m_data += 2;
729
730 /*
731 * Note that we use clusters for incoming frames, so the
732 * buffer is virtually contiguous.
733 */
734 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
735 total_len);
736
737 /* Allow the recieve descriptor to continue using its mbuf. */
738 VR_INIT_RXDESC(sc, i);
739 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
740 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
741 #endif /* __NO_STRICT_ALIGNMENT */
742
743 /*
744 * The Rhine chip includes the FCS with every
745 * received packet.
746 */
747 m->m_flags |= M_HASFCS;
748
749 ifp->if_ipackets++;
750 m->m_pkthdr.rcvif = ifp;
751 m->m_pkthdr.len = m->m_len = total_len;
752 #if NBPFILTER > 0
753 /*
754 * Handle BPF listeners. Let the BPF user see the packet, but
755 * don't pass it up to the ether_input() layer unless it's
756 * a broadcast packet, multicast packet, matches our ethernet
757 * address or the interface is in promiscuous mode.
758 */
759 if (ifp->if_bpf)
760 bpf_mtap(ifp->if_bpf, m);
761 #endif
762 /* Pass it on. */
763 (*ifp->if_input)(ifp, m);
764 }
765
766 /* Update the receive pointer. */
767 sc->vr_rxptr = i;
768 }
769
770 void
771 vr_rxeoc(sc)
772 struct vr_softc *sc;
773 {
774
775 vr_rxeof(sc);
776 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
777 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
778 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
779 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
780 }
781
782 /*
783 * A frame was downloaded to the chip. It's safe for us to clean up
784 * the list buffers.
785 */
786 static void
787 vr_txeof(sc)
788 struct vr_softc *sc;
789 {
790 struct ifnet *ifp = &sc->vr_ec.ec_if;
791 struct vr_desc *d;
792 struct vr_descsoft *ds;
793 u_int32_t txstat;
794 int i;
795
796 ifp->if_flags &= ~IFF_OACTIVE;
797
798 /*
799 * Go through our tx list and free mbufs for those
800 * frames that have been transmitted.
801 */
802 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
803 i = VR_NEXTTX(i), sc->vr_txpending--) {
804 d = VR_CDTX(sc, i);
805 ds = VR_DSTX(sc, i);
806
807 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
808
809 txstat = le32toh(d->vr_status);
810 if (txstat & VR_TXSTAT_OWN)
811 break;
812
813 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
814 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
815 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
816 m_freem(ds->ds_mbuf);
817 ds->ds_mbuf = NULL;
818
819 if (txstat & VR_TXSTAT_ERRSUM) {
820 ifp->if_oerrors++;
821 if (txstat & VR_TXSTAT_DEFER)
822 ifp->if_collisions++;
823 if (txstat & VR_TXSTAT_LATECOLL)
824 ifp->if_collisions++;
825 }
826
827 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
828 ifp->if_opackets++;
829 }
830
831 /* Update the dirty transmit buffer pointer. */
832 sc->vr_txdirty = i;
833
834 /*
835 * Cancel the watchdog timer if there are no pending
836 * transmissions.
837 */
838 if (sc->vr_txpending == 0)
839 ifp->if_timer = 0;
840 }
841
842 static int
843 vr_intr(arg)
844 void *arg;
845 {
846 struct vr_softc *sc;
847 struct ifnet *ifp;
848 u_int16_t status;
849 int handled = 0, dotx = 0;
850
851 sc = arg;
852 ifp = &sc->vr_ec.ec_if;
853
854 /* Suppress unwanted interrupts. */
855 if ((ifp->if_flags & IFF_UP) == 0) {
856 vr_stop(ifp, 1);
857 return (0);
858 }
859
860 /* Disable interrupts. */
861 CSR_WRITE_2(sc, VR_IMR, 0x0000);
862
863 for (;;) {
864 status = CSR_READ_2(sc, VR_ISR);
865 if (status)
866 CSR_WRITE_2(sc, VR_ISR, status);
867
868 if ((status & VR_INTRS) == 0)
869 break;
870
871 handled = 1;
872
873 if (status & VR_ISR_RX_OK)
874 vr_rxeof(sc);
875
876 if (status &
877 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
878 VR_ISR_RX_DROPPED))
879 vr_rxeoc(sc);
880
881 if (status & VR_ISR_TX_OK) {
882 dotx = 1;
883 vr_txeof(sc);
884 }
885
886 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
887 if (status & VR_ISR_TX_UNDERRUN)
888 printf("%s: transmit underrun\n",
889 sc->vr_dev.dv_xname);
890 if (status & VR_ISR_TX_ABRT)
891 printf("%s: transmit aborted\n",
892 sc->vr_dev.dv_xname);
893 ifp->if_oerrors++;
894 dotx = 1;
895 vr_txeof(sc);
896 if (sc->vr_txpending) {
897 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
898 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
899 }
900 }
901
902 if (status & VR_ISR_BUSERR) {
903 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
904 /* vr_init() calls vr_start() */
905 dotx = 0;
906 (void) vr_init(ifp);
907 }
908 }
909
910 /* Re-enable interrupts. */
911 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
912
913 if (dotx)
914 vr_start(ifp);
915
916 return (handled);
917 }
918
919 /*
920 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
921 * to the mbuf data regions directly in the transmit lists. We also save a
922 * copy of the pointers since the transmit list fragment pointers are
923 * physical addresses.
924 */
925 static void
926 vr_start(ifp)
927 struct ifnet *ifp;
928 {
929 struct vr_softc *sc = ifp->if_softc;
930 struct mbuf *m0, *m;
931 struct vr_desc *d;
932 struct vr_descsoft *ds;
933 int error, firsttx, nexttx, opending;
934
935 /*
936 * Remember the previous txpending and the first transmit
937 * descriptor we use.
938 */
939 opending = sc->vr_txpending;
940 firsttx = VR_NEXTTX(sc->vr_txlast);
941
942 /*
943 * Loop through the send queue, setting up transmit descriptors
944 * until we drain the queue, or use up all available transmit
945 * descriptors.
946 */
947 while (sc->vr_txpending < VR_NTXDESC) {
948 /*
949 * Grab a packet off the queue.
950 */
951 IFQ_POLL(&ifp->if_snd, m0);
952 if (m0 == NULL)
953 break;
954
955 /*
956 * Get the next available transmit descriptor.
957 */
958 nexttx = VR_NEXTTX(sc->vr_txlast);
959 d = VR_CDTX(sc, nexttx);
960 ds = VR_DSTX(sc, nexttx);
961
962 /*
963 * Load the DMA map. If this fails, the packet didn't
964 * fit in one DMA segment, and we need to copy. Note,
965 * the packet must also be aligned.
966 */
967 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
968 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
969 BUS_DMA_NOWAIT) != 0) {
970 MGETHDR(m, M_DONTWAIT, MT_DATA);
971 if (m == NULL) {
972 printf("%s: unable to allocate Tx mbuf\n",
973 sc->vr_dev.dv_xname);
974 break;
975 }
976 if (m0->m_pkthdr.len > MHLEN) {
977 MCLGET(m, M_DONTWAIT);
978 if ((m->m_flags & M_EXT) == 0) {
979 printf("%s: unable to allocate Tx "
980 "cluster\n", sc->vr_dev.dv_xname);
981 m_freem(m);
982 break;
983 }
984 }
985 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
986 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
987 m_freem(m0);
988 m0 = m;
989 error = bus_dmamap_load_mbuf(sc->vr_dmat,
990 ds->ds_dmamap, m0, BUS_DMA_NOWAIT);
991 if (error) {
992 printf("%s: unable to load Tx buffer, "
993 "error = %d\n", sc->vr_dev.dv_xname, error);
994 break;
995 }
996 }
997
998 IFQ_DEQUEUE(&ifp->if_snd, m0);
999
1000 /* Sync the DMA map. */
1001 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1002 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1003
1004 /*
1005 * Store a pointer to the packet so we can free it later.
1006 */
1007 ds->ds_mbuf = m0;
1008
1009 #if NBPFILTER > 0
1010 /*
1011 * If there's a BPF listener, bounce a copy of this frame
1012 * to him.
1013 */
1014 if (ifp->if_bpf)
1015 bpf_mtap(ifp->if_bpf, m0);
1016 #endif
1017
1018 /*
1019 * Fill in the transmit descriptor. The Rhine
1020 * doesn't auto-pad, so we have to do this ourselves.
1021 */
1022 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1023 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1024 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1025 d->vr_ctl |=
1026 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1027 VR_TXCTL_LASTFRAG);
1028
1029 /*
1030 * If this is the first descriptor we're enqueuing,
1031 * don't give it to the Rhine yet. That could cause
1032 * a race condition. We'll do it below.
1033 */
1034 if (nexttx == firsttx)
1035 d->vr_status = 0;
1036 else
1037 d->vr_status = htole32(VR_TXSTAT_OWN);
1038
1039 VR_CDTXSYNC(sc, nexttx,
1040 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1041
1042 /* Advance the tx pointer. */
1043 sc->vr_txpending++;
1044 sc->vr_txlast = nexttx;
1045 }
1046
1047 if (sc->vr_txpending == VR_NTXDESC) {
1048 /* No more slots left; notify upper layer. */
1049 ifp->if_flags |= IFF_OACTIVE;
1050 }
1051
1052 if (sc->vr_txpending != opending) {
1053 /*
1054 * We enqueued packets. If the transmitter was idle,
1055 * reset the txdirty pointer.
1056 */
1057 if (opending == 0)
1058 sc->vr_txdirty = firsttx;
1059
1060 /*
1061 * Cause a transmit interrupt to happen on the
1062 * last packet we enqueued.
1063 */
1064 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1065 VR_CDTXSYNC(sc, sc->vr_txlast,
1066 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067
1068 /*
1069 * The entire packet chain is set up. Give the
1070 * first descriptor to the Rhine now.
1071 */
1072 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1073 VR_CDTXSYNC(sc, firsttx,
1074 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1075
1076 /* Start the transmitter. */
1077 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1078
1079 /* Set the watchdog timer in case the chip flakes out. */
1080 ifp->if_timer = 5;
1081 }
1082 }
1083
1084 /*
1085 * Initialize the interface. Must be called at splnet.
1086 */
1087 static int
1088 vr_init(ifp)
1089 struct ifnet *ifp;
1090 {
1091 struct vr_softc *sc = ifp->if_softc;
1092 struct vr_desc *d;
1093 struct vr_descsoft *ds;
1094 int i, error = 0;
1095
1096 /* Cancel pending I/O. */
1097 vr_stop(ifp, 0);
1098
1099 /* Reset the Rhine to a known state. */
1100 vr_reset(sc);
1101
1102 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1103 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1104
1105 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1106 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1107
1108 /*
1109 * Initialize the transmit desciptor ring. txlast is initialized
1110 * to the end of the list so that it will wrap around to the first
1111 * descriptor when the first packet is transmitted.
1112 */
1113 for (i = 0; i < VR_NTXDESC; i++) {
1114 d = VR_CDTX(sc, i);
1115 memset(d, 0, sizeof(struct vr_desc));
1116 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1117 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1118 }
1119 sc->vr_txpending = 0;
1120 sc->vr_txdirty = 0;
1121 sc->vr_txlast = VR_NTXDESC - 1;
1122
1123 /*
1124 * Initialize the receive descriptor ring.
1125 */
1126 for (i = 0; i < VR_NRXDESC; i++) {
1127 ds = VR_DSRX(sc, i);
1128 if (ds->ds_mbuf == NULL) {
1129 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1130 printf("%s: unable to allocate or map rx "
1131 "buffer %d, error = %d\n",
1132 sc->vr_dev.dv_xname, i, error);
1133 /*
1134 * XXX Should attempt to run with fewer receive
1135 * XXX buffers instead of just failing.
1136 */
1137 vr_rxdrain(sc);
1138 goto out;
1139 }
1140 }
1141 }
1142 sc->vr_rxptr = 0;
1143
1144 /* If we want promiscuous mode, set the allframes bit. */
1145 if (ifp->if_flags & IFF_PROMISC)
1146 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1147 else
1148 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1149
1150 /* Set capture broadcast bit to capture broadcast frames. */
1151 if (ifp->if_flags & IFF_BROADCAST)
1152 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1153 else
1154 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1155
1156 /* Program the multicast filter, if necessary. */
1157 vr_setmulti(sc);
1158
1159 /* Give the transmit and recieve rings to the Rhine. */
1160 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1161 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1162
1163 /* Set current media. */
1164 mii_mediachg(&sc->vr_mii);
1165
1166 /* Enable receiver and transmitter. */
1167 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1168 VR_CMD_TX_ON|VR_CMD_RX_ON|
1169 VR_CMD_RX_GO);
1170
1171 /* Enable interrupts. */
1172 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1173 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1174
1175 ifp->if_flags |= IFF_RUNNING;
1176 ifp->if_flags &= ~IFF_OACTIVE;
1177
1178 /* Start one second timer. */
1179 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1180
1181 /* Attempt to start output on the interface. */
1182 vr_start(ifp);
1183
1184 out:
1185 if (error)
1186 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1187 return (error);
1188 }
1189
1190 /*
1191 * Set media options.
1192 */
1193 static int
1194 vr_ifmedia_upd(ifp)
1195 struct ifnet *ifp;
1196 {
1197 struct vr_softc *sc = ifp->if_softc;
1198
1199 if (ifp->if_flags & IFF_UP)
1200 mii_mediachg(&sc->vr_mii);
1201 return (0);
1202 }
1203
1204 /*
1205 * Report current media status.
1206 */
1207 static void
1208 vr_ifmedia_sts(ifp, ifmr)
1209 struct ifnet *ifp;
1210 struct ifmediareq *ifmr;
1211 {
1212 struct vr_softc *sc = ifp->if_softc;
1213
1214 mii_pollstat(&sc->vr_mii);
1215 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1216 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1217 }
1218
1219 static int
1220 vr_ioctl(ifp, command, data)
1221 struct ifnet *ifp;
1222 u_long command;
1223 caddr_t data;
1224 {
1225 struct vr_softc *sc = ifp->if_softc;
1226 struct ifreq *ifr = (struct ifreq *)data;
1227 int s, error = 0;
1228
1229 s = splnet();
1230
1231 switch (command) {
1232 case SIOCGIFMEDIA:
1233 case SIOCSIFMEDIA:
1234 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1235 break;
1236
1237 default:
1238 error = ether_ioctl(ifp, command, data);
1239 if (error == ENETRESET) {
1240 /*
1241 * Multicast list has changed; set the hardware filter
1242 * accordingly.
1243 */
1244 vr_setmulti(sc);
1245 error = 0;
1246 }
1247 break;
1248 }
1249
1250 splx(s);
1251 return (error);
1252 }
1253
1254 static void
1255 vr_watchdog(ifp)
1256 struct ifnet *ifp;
1257 {
1258 struct vr_softc *sc = ifp->if_softc;
1259
1260 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1261 ifp->if_oerrors++;
1262
1263 (void) vr_init(ifp);
1264 }
1265
1266 /*
1267 * One second timer, used to tick MII.
1268 */
1269 static void
1270 vr_tick(arg)
1271 void *arg;
1272 {
1273 struct vr_softc *sc = arg;
1274 int s;
1275
1276 s = splnet();
1277 mii_tick(&sc->vr_mii);
1278 splx(s);
1279
1280 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1281 }
1282
1283 /*
1284 * Drain the receive queue.
1285 */
1286 static void
1287 vr_rxdrain(sc)
1288 struct vr_softc *sc;
1289 {
1290 struct vr_descsoft *ds;
1291 int i;
1292
1293 for (i = 0; i < VR_NRXDESC; i++) {
1294 ds = VR_DSRX(sc, i);
1295 if (ds->ds_mbuf != NULL) {
1296 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1297 m_freem(ds->ds_mbuf);
1298 ds->ds_mbuf = NULL;
1299 }
1300 }
1301 }
1302
1303 /*
1304 * Stop the adapter and free any mbufs allocated to the
1305 * transmit lists.
1306 */
1307 static void
1308 vr_stop(ifp, disable)
1309 struct ifnet *ifp;
1310 int disable;
1311 {
1312 struct vr_softc *sc = ifp->if_softc;
1313 struct vr_descsoft *ds;
1314 int i;
1315
1316 /* Cancel one second timer. */
1317 callout_stop(&sc->vr_tick_ch);
1318
1319 /* Down the MII. */
1320 mii_down(&sc->vr_mii);
1321
1322 ifp = &sc->vr_ec.ec_if;
1323 ifp->if_timer = 0;
1324
1325 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1326 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1327 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1328 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1329 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1330
1331 /*
1332 * Release any queued transmit buffers.
1333 */
1334 for (i = 0; i < VR_NTXDESC; i++) {
1335 ds = VR_DSTX(sc, i);
1336 if (ds->ds_mbuf != NULL) {
1337 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1338 m_freem(ds->ds_mbuf);
1339 ds->ds_mbuf = NULL;
1340 }
1341 }
1342
1343 if (disable)
1344 vr_rxdrain(sc);
1345
1346 /*
1347 * Mark the interface down and cancel the watchdog timer.
1348 */
1349 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1350 ifp->if_timer = 0;
1351 }
1352
1353 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1354 static int vr_probe __P((struct device *, struct cfdata *, void *));
1355 static void vr_attach __P((struct device *, struct device *, void *));
1356 static void vr_shutdown __P((void *));
1357
1358 struct cfattach vr_ca = {
1359 sizeof (struct vr_softc), vr_probe, vr_attach
1360 };
1361
1362 static struct vr_type *
1363 vr_lookup(pa)
1364 struct pci_attach_args *pa;
1365 {
1366 struct vr_type *vrt;
1367
1368 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1369 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1370 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1371 return (vrt);
1372 }
1373 return (NULL);
1374 }
1375
1376 static int
1377 vr_probe(parent, match, aux)
1378 struct device *parent;
1379 struct cfdata *match;
1380 void *aux;
1381 {
1382 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1383
1384 if (vr_lookup(pa) != NULL)
1385 return (1);
1386
1387 return (0);
1388 }
1389
1390 /*
1391 * Stop all chip I/O so that the kernel's probe routines don't
1392 * get confused by errant DMAs when rebooting.
1393 */
1394 static void
1395 vr_shutdown(arg)
1396 void *arg;
1397 {
1398 struct vr_softc *sc = (struct vr_softc *)arg;
1399
1400 vr_stop(&sc->vr_ec.ec_if, 1);
1401 }
1402
1403 /*
1404 * Attach the interface. Allocate softc structures, do ifmedia
1405 * setup and ethernet/BPF attach.
1406 */
1407 static void
1408 vr_attach(parent, self, aux)
1409 struct device *parent;
1410 struct device *self;
1411 void *aux;
1412 {
1413 struct vr_softc *sc = (struct vr_softc *) self;
1414 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1415 bus_dma_segment_t seg;
1416 struct vr_type *vrt;
1417 u_int32_t command;
1418 struct ifnet *ifp;
1419 u_char eaddr[ETHER_ADDR_LEN];
1420 int i, rseg, error;
1421
1422 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1423 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1424
1425 callout_init(&sc->vr_tick_ch);
1426
1427 vrt = vr_lookup(pa);
1428 if (vrt == NULL) {
1429 printf("\n");
1430 panic("vr_attach: impossible");
1431 }
1432
1433 printf(": %s Ethernet\n", vrt->vr_name);
1434
1435 /*
1436 * Handle power management nonsense.
1437 */
1438
1439 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1440 if (command == 0x01) {
1441 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1442 if (command & VR_PSTATE_MASK) {
1443 u_int32_t iobase, membase, irq;
1444
1445 /* Save important PCI config data. */
1446 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1447 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1448 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1449
1450 /* Reset the power state. */
1451 printf("%s: chip is in D%d power mode "
1452 "-- setting to D0\n",
1453 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1454 command &= 0xFFFFFFFC;
1455 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1456
1457 /* Restore PCI config data. */
1458 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1459 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1460 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1461 }
1462 }
1463
1464 /* Make sure bus mastering is enabled. */
1465 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1466 command |= PCI_COMMAND_MASTER_ENABLE;
1467 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1468
1469 /*
1470 * Map control/status registers.
1471 */
1472 {
1473 bus_space_tag_t iot, memt;
1474 bus_space_handle_t ioh, memh;
1475 int ioh_valid, memh_valid;
1476 pci_intr_handle_t intrhandle;
1477 const char *intrstr;
1478
1479 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1480 PCI_MAPREG_TYPE_IO, 0,
1481 &iot, &ioh, NULL, NULL) == 0);
1482 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1483 PCI_MAPREG_TYPE_MEM |
1484 PCI_MAPREG_MEM_TYPE_32BIT,
1485 0, &memt, &memh, NULL, NULL) == 0);
1486 #if defined(VR_USEIOSPACE)
1487 if (ioh_valid) {
1488 sc->vr_bst = iot;
1489 sc->vr_bsh = ioh;
1490 } else if (memh_valid) {
1491 sc->vr_bst = memt;
1492 sc->vr_bsh = memh;
1493 }
1494 #else
1495 if (memh_valid) {
1496 sc->vr_bst = memt;
1497 sc->vr_bsh = memh;
1498 } else if (ioh_valid) {
1499 sc->vr_bst = iot;
1500 sc->vr_bsh = ioh;
1501 }
1502 #endif
1503 else {
1504 printf(": unable to map device registers\n");
1505 return;
1506 }
1507
1508 /* Allocate interrupt */
1509 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1510 pa->pa_intrline, &intrhandle)) {
1511 printf("%s: couldn't map interrupt\n",
1512 sc->vr_dev.dv_xname);
1513 return;
1514 }
1515 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1516 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1517 vr_intr, sc);
1518 if (sc->vr_ih == NULL) {
1519 printf("%s: couldn't establish interrupt",
1520 sc->vr_dev.dv_xname);
1521 if (intrstr != NULL)
1522 printf(" at %s", intrstr);
1523 printf("\n");
1524 }
1525 printf("%s: interrupting at %s\n",
1526 sc->vr_dev.dv_xname, intrstr);
1527 }
1528
1529 /* Reset the adapter. */
1530 vr_reset(sc);
1531
1532 /*
1533 * Get station address. The way the Rhine chips work,
1534 * you're not allowed to directly access the EEPROM once
1535 * they've been programmed a special way. Consequently,
1536 * we need to read the node address from the PAR0 and PAR1
1537 * registers.
1538 */
1539 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1540 DELAY(200);
1541 for (i = 0; i < ETHER_ADDR_LEN; i++)
1542 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1543
1544 /*
1545 * A Rhine chip was detected. Inform the world.
1546 */
1547 printf("%s: Ethernet address: %s\n",
1548 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1549
1550 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1551
1552 sc->vr_dmat = pa->pa_dmat;
1553
1554 /*
1555 * Allocate the control data structures, and create and load
1556 * the DMA map for it.
1557 */
1558 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1559 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1560 0)) != 0) {
1561 printf("%s: unable to allocate control data, error = %d\n",
1562 sc->vr_dev.dv_xname, error);
1563 goto fail_0;
1564 }
1565
1566 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1567 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1568 BUS_DMA_COHERENT)) != 0) {
1569 printf("%s: unable to map control data, error = %d\n",
1570 sc->vr_dev.dv_xname, error);
1571 goto fail_1;
1572 }
1573
1574 if ((error = bus_dmamap_create(sc->vr_dmat,
1575 sizeof(struct vr_control_data), 1,
1576 sizeof(struct vr_control_data), 0, 0,
1577 &sc->vr_cddmamap)) != 0) {
1578 printf("%s: unable to create control data DMA map, "
1579 "error = %d\n", sc->vr_dev.dv_xname, error);
1580 goto fail_2;
1581 }
1582
1583 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1584 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1585 0)) != 0) {
1586 printf("%s: unable to load control data DMA map, error = %d\n",
1587 sc->vr_dev.dv_xname, error);
1588 goto fail_3;
1589 }
1590
1591 /*
1592 * Create the transmit buffer DMA maps.
1593 */
1594 for (i = 0; i < VR_NTXDESC; i++) {
1595 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1596 1, MCLBYTES, 0, 0,
1597 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1598 printf("%s: unable to create tx DMA map %d, "
1599 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1600 goto fail_4;
1601 }
1602 }
1603
1604 /*
1605 * Create the receive buffer DMA maps.
1606 */
1607 for (i = 0; i < VR_NRXDESC; i++) {
1608 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1609 MCLBYTES, 0, 0,
1610 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1611 printf("%s: unable to create rx DMA map %d, "
1612 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1613 goto fail_5;
1614 }
1615 VR_DSRX(sc, i)->ds_mbuf = NULL;
1616 }
1617
1618 ifp = &sc->vr_ec.ec_if;
1619 ifp->if_softc = sc;
1620 ifp->if_mtu = ETHERMTU;
1621 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1622 ifp->if_ioctl = vr_ioctl;
1623 ifp->if_start = vr_start;
1624 ifp->if_watchdog = vr_watchdog;
1625 ifp->if_init = vr_init;
1626 ifp->if_stop = vr_stop;
1627 IFQ_SET_READY(&ifp->if_snd);
1628
1629 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1630
1631 /*
1632 * Initialize MII/media info.
1633 */
1634 sc->vr_mii.mii_ifp = ifp;
1635 sc->vr_mii.mii_readreg = vr_mii_readreg;
1636 sc->vr_mii.mii_writereg = vr_mii_writereg;
1637 sc->vr_mii.mii_statchg = vr_mii_statchg;
1638 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1639 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1640 MII_OFFSET_ANY, 0);
1641 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1642 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1643 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1644 } else
1645 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1646
1647 /*
1648 * Call MI attach routines.
1649 */
1650 if_attach(ifp);
1651 ether_ifattach(ifp, sc->vr_enaddr);
1652
1653 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1654 if (sc->vr_ats == NULL)
1655 printf("%s: warning: couldn't establish shutdown hook\n",
1656 sc->vr_dev.dv_xname);
1657 return;
1658
1659 fail_5:
1660 for (i = 0; i < VR_NRXDESC; i++) {
1661 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1662 bus_dmamap_destroy(sc->vr_dmat,
1663 sc->vr_rxsoft[i].ds_dmamap);
1664 }
1665 fail_4:
1666 for (i = 0; i < VR_NTXDESC; i++) {
1667 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1668 bus_dmamap_destroy(sc->vr_dmat,
1669 sc->vr_txsoft[i].ds_dmamap);
1670 }
1671 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1672 fail_3:
1673 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1674 fail_2:
1675 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1676 sizeof(struct vr_control_data));
1677 fail_1:
1678 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1679 fail_0:
1680 return;
1681 }
1682