if_vr.c revision 1.43 1 /* $NetBSD: if_vr.c,v 1.43 2000/12/19 00:12:47 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct ifnet *));
305 static void vr_stop __P((struct ifnet *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static u_int8_t vr_calchash __P((u_int8_t *));
318 static void vr_setmulti __P((struct vr_softc *));
319 static void vr_reset __P((struct vr_softc *));
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | x)
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~x)
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | x)
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~x)
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | x)
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~x)
346
347 /*
348 * MII bit-bang glue.
349 */
350 u_int32_t vr_mii_bitbang_read __P((struct device *));
351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
352
353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 u_int32_t
366 vr_mii_bitbang_read(self)
367 struct device *self;
368 {
369 struct vr_softc *sc = (void *) self;
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 void
375 vr_mii_bitbang_write(self, val)
376 struct device *self;
377 u_int32_t val;
378 {
379 struct vr_softc *sc = (void *) self;
380
381 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
382 }
383
384 /*
385 * Read an PHY register through the MII.
386 */
387 static int
388 vr_mii_readreg(self, phy, reg)
389 struct device *self;
390 int phy, reg;
391 {
392 struct vr_softc *sc = (void *) self;
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
396 }
397
398 /*
399 * Write to a PHY register through the MII.
400 */
401 static void
402 vr_mii_writereg(self, phy, reg, val)
403 struct device *self;
404 int phy, reg, val;
405 {
406 struct vr_softc *sc = (void *) self;
407
408 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
409 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
410 }
411
412 static void
413 vr_mii_statchg(self)
414 struct device *self;
415 {
416 struct vr_softc *sc = (struct vr_softc *)self;
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 /*
435 * Calculate CRC of a multicast group address, return the lower 6 bits.
436 */
437 static u_int8_t
438 vr_calchash(addr)
439 u_int8_t *addr;
440 {
441 u_int32_t crc, carry;
442 int i, j;
443 u_int8_t c;
444
445 /* Compute CRC for the address value. */
446 crc = 0xFFFFFFFF; /* initial value */
447
448 for (i = 0; i < 6; i++) {
449 c = *(addr + i);
450 for (j = 0; j < 8; j++) {
451 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
452 crc <<= 1;
453 c >>= 1;
454 if (carry)
455 crc = (crc ^ 0x04c11db6) | carry;
456 }
457 }
458
459 /* return the filter bit position */
460 return ((crc >> 26) & 0x0000003F);
461 }
462
463 /*
464 * Program the 64-bit multicast hash filter.
465 */
466 static void
467 vr_setmulti(sc)
468 struct vr_softc *sc;
469 {
470 struct ifnet *ifp;
471 int h = 0;
472 u_int32_t hashes[2] = { 0, 0 };
473 struct ether_multistep step;
474 struct ether_multi *enm;
475 int mcnt = 0;
476 u_int8_t rxfilt;
477
478 ifp = &sc->vr_ec.ec_if;
479
480 rxfilt = CSR_READ_1(sc, VR_RXCFG);
481
482 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
483 rxfilt |= VR_RXCFG_RX_MULTI;
484 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
485 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
486 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
487 return;
488 }
489
490 /* first, zot all the existing hash bits */
491 CSR_WRITE_4(sc, VR_MAR0, 0);
492 CSR_WRITE_4(sc, VR_MAR1, 0);
493
494 /* now program new ones */
495 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
496 while (enm != NULL) {
497 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0)
498 continue;
499
500 h = vr_calchash(enm->enm_addrlo);
501
502 if (h < 32)
503 hashes[0] |= (1 << h);
504 else
505 hashes[1] |= (1 << (h - 32));
506 ETHER_NEXT_MULTI(step, enm);
507 mcnt++;
508 }
509
510 if (mcnt)
511 rxfilt |= VR_RXCFG_RX_MULTI;
512 else
513 rxfilt &= ~VR_RXCFG_RX_MULTI;
514
515 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
516 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
517 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
518 }
519
520 static void
521 vr_reset(sc)
522 struct vr_softc *sc;
523 {
524 int i;
525
526 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
527
528 for (i = 0; i < VR_TIMEOUT; i++) {
529 DELAY(10);
530 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
531 break;
532 }
533 if (i == VR_TIMEOUT)
534 printf("%s: reset never completed!\n",
535 sc->vr_dev.dv_xname);
536
537 /* Wait a little while for the chip to get its brains in order. */
538 DELAY(1000);
539 }
540
541 /*
542 * Initialize an RX descriptor and attach an MBUF cluster.
543 * Note: the length fields are only 11 bits wide, which means the
544 * largest size we can specify is 2047. This is important because
545 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
546 * overflow the field and make a mess.
547 */
548 static int
549 vr_add_rxbuf(sc, i)
550 struct vr_softc *sc;
551 int i;
552 {
553 struct vr_descsoft *ds = VR_DSRX(sc, i);
554 struct mbuf *m_new;
555 int error;
556
557 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
558 if (m_new == NULL)
559 return (ENOBUFS);
560
561 MCLGET(m_new, M_DONTWAIT);
562 if ((m_new->m_flags & M_EXT) == 0) {
563 m_freem(m_new);
564 return (ENOBUFS);
565 }
566
567 if (ds->ds_mbuf != NULL)
568 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
569
570 ds->ds_mbuf = m_new;
571
572 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
573 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
574 if (error) {
575 printf("%s: unable to load rx DMA map %d, error = %d\n",
576 sc->vr_dev.dv_xname, i, error);
577 panic("vr_add_rxbuf"); /* XXX */
578 }
579
580 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
581 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
582
583 VR_INIT_RXDESC(sc, i);
584
585 return (0);
586 }
587
588 /*
589 * A frame has been uploaded: pass the resulting mbuf chain up to
590 * the higher level protocols.
591 */
592 static void
593 vr_rxeof(sc)
594 struct vr_softc *sc;
595 {
596 struct mbuf *m;
597 struct ifnet *ifp;
598 struct vr_desc *d;
599 struct vr_descsoft *ds;
600 int i, total_len;
601 u_int32_t rxstat;
602
603 ifp = &sc->vr_ec.ec_if;
604
605 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
606 d = VR_CDRX(sc, i);
607 ds = VR_DSRX(sc, i);
608
609 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
610
611 rxstat = le32toh(d->vr_status);
612
613 if (rxstat & VR_RXSTAT_OWN) {
614 /*
615 * We have processed all of the receive buffers.
616 */
617 break;
618 }
619
620 /*
621 * If an error occurs, update stats, clear the
622 * status word and leave the mbuf cluster in place:
623 * it should simply get re-used next time this descriptor
624 * comes up in the ring.
625 */
626 if (rxstat & VR_RXSTAT_RXERR) {
627 const char *errstr;
628
629 ifp->if_ierrors++;
630 switch (rxstat & 0x000000FF) {
631 case VR_RXSTAT_CRCERR:
632 errstr = "crc error";
633 break;
634 case VR_RXSTAT_FRAMEALIGNERR:
635 errstr = "frame alignment error";
636 break;
637 case VR_RXSTAT_FIFOOFLOW:
638 errstr = "FIFO overflow";
639 break;
640 case VR_RXSTAT_GIANT:
641 errstr = "received giant packet";
642 break;
643 case VR_RXSTAT_RUNT:
644 errstr = "received runt packet";
645 break;
646 case VR_RXSTAT_BUSERR:
647 errstr = "system bus error";
648 break;
649 case VR_RXSTAT_BUFFERR:
650 errstr = "rx buffer error";
651 break;
652 default:
653 errstr = "unknown rx error";
654 break;
655 }
656 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
657 errstr);
658
659 VR_INIT_RXDESC(sc, i);
660
661 continue;
662 }
663
664 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
666
667 /* No errors; receive the packet. */
668 total_len = VR_RXBYTES(le32toh(d->vr_status));
669
670 #ifdef __NO_STRICT_ALIGNMENT
671 /*
672 * If the packet is small enough to fit in a
673 * single header mbuf, allocate one and copy
674 * the data into it. This greatly reduces
675 * memory consumption when we receive lots
676 * of small packets.
677 *
678 * Otherwise, we add a new buffer to the receive
679 * chain. If this fails, we drop the packet and
680 * recycle the old buffer.
681 */
682 if (vr_copy_small != 0 && total_len <= MHLEN) {
683 MGETHDR(m, M_DONTWAIT, MT_DATA);
684 if (m == NULL)
685 goto dropit;
686 memcpy(mtod(m, caddr_t),
687 mtod(ds->ds_mbuf, caddr_t), total_len);
688 VR_INIT_RXDESC(sc, i);
689 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
690 ds->ds_dmamap->dm_mapsize,
691 BUS_DMASYNC_PREREAD);
692 } else {
693 m = ds->ds_mbuf;
694 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
695 dropit:
696 ifp->if_ierrors++;
697 VR_INIT_RXDESC(sc, i);
698 bus_dmamap_sync(sc->vr_dmat,
699 ds->ds_dmamap, 0,
700 ds->ds_dmamap->dm_mapsize,
701 BUS_DMASYNC_PREREAD);
702 continue;
703 }
704 }
705 #else
706 /*
707 * The Rhine's packet buffers must be 4-byte aligned.
708 * But this means that the data after the Ethernet header
709 * is misaligned. We must allocate a new buffer and
710 * copy the data, shifted forward 2 bytes.
711 */
712 MGETHDR(m, M_DONTWAIT, MT_DATA);
713 if (m == NULL) {
714 dropit:
715 ifp->if_ierrors++;
716 VR_INIT_RXDESC(sc, i);
717 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
718 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
719 continue;
720 }
721 if (total_len > (MHLEN - 2)) {
722 MCLGET(m, M_DONTWAIT);
723 if ((m->m_flags & M_EXT) == 0) {
724 m_freem(m);
725 goto dropit;
726 }
727 }
728 m->m_data += 2;
729
730 /*
731 * Note that we use clusters for incoming frames, so the
732 * buffer is virtually contiguous.
733 */
734 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
735 total_len);
736
737 /* Allow the recieve descriptor to continue using its mbuf. */
738 VR_INIT_RXDESC(sc, i);
739 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
740 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
741 #endif /* __NO_STRICT_ALIGNMENT */
742
743 /*
744 * The Rhine chip includes the FCS with every
745 * received packet.
746 */
747 m->m_flags |= M_HASFCS;
748
749 ifp->if_ipackets++;
750 m->m_pkthdr.rcvif = ifp;
751 m->m_pkthdr.len = m->m_len = total_len;
752 #if NBPFILTER > 0
753 /*
754 * Handle BPF listeners. Let the BPF user see the packet, but
755 * don't pass it up to the ether_input() layer unless it's
756 * a broadcast packet, multicast packet, matches our ethernet
757 * address or the interface is in promiscuous mode.
758 */
759 if (ifp->if_bpf)
760 bpf_mtap(ifp->if_bpf, m);
761 #endif
762 /* Pass it on. */
763 (*ifp->if_input)(ifp, m);
764 }
765
766 /* Update the receive pointer. */
767 sc->vr_rxptr = i;
768 }
769
770 void
771 vr_rxeoc(sc)
772 struct vr_softc *sc;
773 {
774
775 vr_rxeof(sc);
776 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
777 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
778 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
779 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
780 }
781
782 /*
783 * A frame was downloaded to the chip. It's safe for us to clean up
784 * the list buffers.
785 */
786 static void
787 vr_txeof(sc)
788 struct vr_softc *sc;
789 {
790 struct ifnet *ifp = &sc->vr_ec.ec_if;
791 struct vr_desc *d;
792 struct vr_descsoft *ds;
793 u_int32_t txstat;
794 int i;
795
796 ifp->if_flags &= ~IFF_OACTIVE;
797
798 /*
799 * Go through our tx list and free mbufs for those
800 * frames that have been transmitted.
801 */
802 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
803 i = VR_NEXTTX(i), sc->vr_txpending--) {
804 d = VR_CDTX(sc, i);
805 ds = VR_DSTX(sc, i);
806
807 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
808
809 txstat = le32toh(d->vr_status);
810 if (txstat & VR_TXSTAT_OWN)
811 break;
812
813 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
814 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
815 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
816 m_freem(ds->ds_mbuf);
817 ds->ds_mbuf = NULL;
818
819 if (txstat & VR_TXSTAT_ERRSUM) {
820 ifp->if_oerrors++;
821 if (txstat & VR_TXSTAT_DEFER)
822 ifp->if_collisions++;
823 if (txstat & VR_TXSTAT_LATECOLL)
824 ifp->if_collisions++;
825 }
826
827 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
828 ifp->if_opackets++;
829 }
830
831 /* Update the dirty transmit buffer pointer. */
832 sc->vr_txdirty = i;
833
834 /*
835 * Cancel the watchdog timer if there are no pending
836 * transmissions.
837 */
838 if (sc->vr_txpending == 0)
839 ifp->if_timer = 0;
840 }
841
842 static int
843 vr_intr(arg)
844 void *arg;
845 {
846 struct vr_softc *sc;
847 struct ifnet *ifp;
848 u_int16_t status;
849 int handled = 0, dotx = 0;
850
851 sc = arg;
852 ifp = &sc->vr_ec.ec_if;
853
854 /* Suppress unwanted interrupts. */
855 if ((ifp->if_flags & IFF_UP) == 0) {
856 vr_stop(ifp, 1);
857 return (0);
858 }
859
860 /* Disable interrupts. */
861 CSR_WRITE_2(sc, VR_IMR, 0x0000);
862
863 for (;;) {
864 status = CSR_READ_2(sc, VR_ISR);
865 if (status)
866 CSR_WRITE_2(sc, VR_ISR, status);
867
868 if ((status & VR_INTRS) == 0)
869 break;
870
871 handled = 1;
872
873 if (status & VR_ISR_RX_OK)
874 vr_rxeof(sc);
875
876 if (status &
877 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
878 VR_ISR_RX_DROPPED))
879 vr_rxeoc(sc);
880
881 if (status & VR_ISR_TX_OK) {
882 dotx = 1;
883 vr_txeof(sc);
884 }
885
886 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
887 if (status & VR_ISR_TX_UNDERRUN)
888 printf("%s: transmit underrun\n",
889 sc->vr_dev.dv_xname);
890 if (status & VR_ISR_TX_ABRT)
891 printf("%s: transmit aborted\n",
892 sc->vr_dev.dv_xname);
893 ifp->if_oerrors++;
894 dotx = 1;
895 vr_txeof(sc);
896 if (sc->vr_txpending) {
897 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
898 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
899 }
900 }
901
902 if (status & VR_ISR_BUSERR) {
903 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
904 /* vr_init() calls vr_start() */
905 dotx = 0;
906 (void) vr_init(ifp);
907 }
908 }
909
910 /* Re-enable interrupts. */
911 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
912
913 if (dotx)
914 vr_start(ifp);
915
916 return (handled);
917 }
918
919 /*
920 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
921 * to the mbuf data regions directly in the transmit lists. We also save a
922 * copy of the pointers since the transmit list fragment pointers are
923 * physical addresses.
924 */
925 static void
926 vr_start(ifp)
927 struct ifnet *ifp;
928 {
929 struct vr_softc *sc = ifp->if_softc;
930 struct mbuf *m0, *m;
931 struct vr_desc *d;
932 struct vr_descsoft *ds;
933 int error, firsttx, nexttx, opending;
934
935 /*
936 * Remember the previous txpending and the first transmit
937 * descriptor we use.
938 */
939 opending = sc->vr_txpending;
940 firsttx = VR_NEXTTX(sc->vr_txlast);
941
942 /*
943 * Loop through the send queue, setting up transmit descriptors
944 * until we drain the queue, or use up all available transmit
945 * descriptors.
946 */
947 while (sc->vr_txpending < VR_NTXDESC) {
948 /*
949 * Grab a packet off the queue.
950 */
951 IFQ_POLL(&ifp->if_snd, m0);
952 if (m0 == NULL)
953 break;
954 m = NULL;
955
956 /*
957 * Get the next available transmit descriptor.
958 */
959 nexttx = VR_NEXTTX(sc->vr_txlast);
960 d = VR_CDTX(sc, nexttx);
961 ds = VR_DSTX(sc, nexttx);
962
963 /*
964 * Load the DMA map. If this fails, the packet didn't
965 * fit in one DMA segment, and we need to copy. Note,
966 * the packet must also be aligned.
967 */
968 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
969 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
970 BUS_DMA_NOWAIT) != 0) {
971 MGETHDR(m, M_DONTWAIT, MT_DATA);
972 if (m == NULL) {
973 printf("%s: unable to allocate Tx mbuf\n",
974 sc->vr_dev.dv_xname);
975 break;
976 }
977 if (m0->m_pkthdr.len > MHLEN) {
978 MCLGET(m, M_DONTWAIT);
979 if ((m->m_flags & M_EXT) == 0) {
980 printf("%s: unable to allocate Tx "
981 "cluster\n", sc->vr_dev.dv_xname);
982 m_freem(m);
983 break;
984 }
985 }
986 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
987 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
988 error = bus_dmamap_load_mbuf(sc->vr_dmat,
989 ds->ds_dmamap, m, BUS_DMA_NOWAIT);
990 if (error) {
991 printf("%s: unable to load Tx buffer, "
992 "error = %d\n", sc->vr_dev.dv_xname, error);
993 break;
994 }
995 }
996
997 IFQ_DEQUEUE(&ifp->if_snd, m0);
998 if (m != NULL) {
999 m_freem(m0);
1000 m0 = m;
1001 }
1002
1003 /* Sync the DMA map. */
1004 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1005 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1006
1007 /*
1008 * Store a pointer to the packet so we can free it later.
1009 */
1010 ds->ds_mbuf = m0;
1011
1012 #if NBPFILTER > 0
1013 /*
1014 * If there's a BPF listener, bounce a copy of this frame
1015 * to him.
1016 */
1017 if (ifp->if_bpf)
1018 bpf_mtap(ifp->if_bpf, m0);
1019 #endif
1020
1021 /*
1022 * Fill in the transmit descriptor. The Rhine
1023 * doesn't auto-pad, so we have to do this ourselves.
1024 */
1025 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1026 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1027 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1028 d->vr_ctl |=
1029 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1030 VR_TXCTL_LASTFRAG);
1031
1032 /*
1033 * If this is the first descriptor we're enqueuing,
1034 * don't give it to the Rhine yet. That could cause
1035 * a race condition. We'll do it below.
1036 */
1037 if (nexttx == firsttx)
1038 d->vr_status = 0;
1039 else
1040 d->vr_status = htole32(VR_TXSTAT_OWN);
1041
1042 VR_CDTXSYNC(sc, nexttx,
1043 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1044
1045 /* Advance the tx pointer. */
1046 sc->vr_txpending++;
1047 sc->vr_txlast = nexttx;
1048 }
1049
1050 if (sc->vr_txpending == VR_NTXDESC) {
1051 /* No more slots left; notify upper layer. */
1052 ifp->if_flags |= IFF_OACTIVE;
1053 }
1054
1055 if (sc->vr_txpending != opending) {
1056 /*
1057 * We enqueued packets. If the transmitter was idle,
1058 * reset the txdirty pointer.
1059 */
1060 if (opending == 0)
1061 sc->vr_txdirty = firsttx;
1062
1063 /*
1064 * Cause a transmit interrupt to happen on the
1065 * last packet we enqueued.
1066 */
1067 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1068 VR_CDTXSYNC(sc, sc->vr_txlast,
1069 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1070
1071 /*
1072 * The entire packet chain is set up. Give the
1073 * first descriptor to the Rhine now.
1074 */
1075 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1076 VR_CDTXSYNC(sc, firsttx,
1077 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078
1079 /* Start the transmitter. */
1080 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1081
1082 /* Set the watchdog timer in case the chip flakes out. */
1083 ifp->if_timer = 5;
1084 }
1085 }
1086
1087 /*
1088 * Initialize the interface. Must be called at splnet.
1089 */
1090 static int
1091 vr_init(ifp)
1092 struct ifnet *ifp;
1093 {
1094 struct vr_softc *sc = ifp->if_softc;
1095 struct vr_desc *d;
1096 struct vr_descsoft *ds;
1097 int i, error = 0;
1098
1099 /* Cancel pending I/O. */
1100 vr_stop(ifp, 0);
1101
1102 /* Reset the Rhine to a known state. */
1103 vr_reset(sc);
1104
1105 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1106 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1107
1108 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1109 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1110
1111 /*
1112 * Initialize the transmit desciptor ring. txlast is initialized
1113 * to the end of the list so that it will wrap around to the first
1114 * descriptor when the first packet is transmitted.
1115 */
1116 for (i = 0; i < VR_NTXDESC; i++) {
1117 d = VR_CDTX(sc, i);
1118 memset(d, 0, sizeof(struct vr_desc));
1119 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1120 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121 }
1122 sc->vr_txpending = 0;
1123 sc->vr_txdirty = 0;
1124 sc->vr_txlast = VR_NTXDESC - 1;
1125
1126 /*
1127 * Initialize the receive descriptor ring.
1128 */
1129 for (i = 0; i < VR_NRXDESC; i++) {
1130 ds = VR_DSRX(sc, i);
1131 if (ds->ds_mbuf == NULL) {
1132 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1133 printf("%s: unable to allocate or map rx "
1134 "buffer %d, error = %d\n",
1135 sc->vr_dev.dv_xname, i, error);
1136 /*
1137 * XXX Should attempt to run with fewer receive
1138 * XXX buffers instead of just failing.
1139 */
1140 vr_rxdrain(sc);
1141 goto out;
1142 }
1143 }
1144 }
1145 sc->vr_rxptr = 0;
1146
1147 /* If we want promiscuous mode, set the allframes bit. */
1148 if (ifp->if_flags & IFF_PROMISC)
1149 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1150 else
1151 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1152
1153 /* Set capture broadcast bit to capture broadcast frames. */
1154 if (ifp->if_flags & IFF_BROADCAST)
1155 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1156 else
1157 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1158
1159 /* Program the multicast filter, if necessary. */
1160 vr_setmulti(sc);
1161
1162 /* Give the transmit and recieve rings to the Rhine. */
1163 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1164 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1165
1166 /* Set current media. */
1167 mii_mediachg(&sc->vr_mii);
1168
1169 /* Enable receiver and transmitter. */
1170 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1171 VR_CMD_TX_ON|VR_CMD_RX_ON|
1172 VR_CMD_RX_GO);
1173
1174 /* Enable interrupts. */
1175 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1176 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1177
1178 ifp->if_flags |= IFF_RUNNING;
1179 ifp->if_flags &= ~IFF_OACTIVE;
1180
1181 /* Start one second timer. */
1182 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1183
1184 /* Attempt to start output on the interface. */
1185 vr_start(ifp);
1186
1187 out:
1188 if (error)
1189 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1190 return (error);
1191 }
1192
1193 /*
1194 * Set media options.
1195 */
1196 static int
1197 vr_ifmedia_upd(ifp)
1198 struct ifnet *ifp;
1199 {
1200 struct vr_softc *sc = ifp->if_softc;
1201
1202 if (ifp->if_flags & IFF_UP)
1203 mii_mediachg(&sc->vr_mii);
1204 return (0);
1205 }
1206
1207 /*
1208 * Report current media status.
1209 */
1210 static void
1211 vr_ifmedia_sts(ifp, ifmr)
1212 struct ifnet *ifp;
1213 struct ifmediareq *ifmr;
1214 {
1215 struct vr_softc *sc = ifp->if_softc;
1216
1217 mii_pollstat(&sc->vr_mii);
1218 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1219 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1220 }
1221
1222 static int
1223 vr_ioctl(ifp, command, data)
1224 struct ifnet *ifp;
1225 u_long command;
1226 caddr_t data;
1227 {
1228 struct vr_softc *sc = ifp->if_softc;
1229 struct ifreq *ifr = (struct ifreq *)data;
1230 int s, error = 0;
1231
1232 s = splnet();
1233
1234 switch (command) {
1235 case SIOCGIFMEDIA:
1236 case SIOCSIFMEDIA:
1237 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1238 break;
1239
1240 default:
1241 error = ether_ioctl(ifp, command, data);
1242 if (error == ENETRESET) {
1243 /*
1244 * Multicast list has changed; set the hardware filter
1245 * accordingly.
1246 */
1247 vr_setmulti(sc);
1248 error = 0;
1249 }
1250 break;
1251 }
1252
1253 splx(s);
1254 return (error);
1255 }
1256
1257 static void
1258 vr_watchdog(ifp)
1259 struct ifnet *ifp;
1260 {
1261 struct vr_softc *sc = ifp->if_softc;
1262
1263 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1264 ifp->if_oerrors++;
1265
1266 (void) vr_init(ifp);
1267 }
1268
1269 /*
1270 * One second timer, used to tick MII.
1271 */
1272 static void
1273 vr_tick(arg)
1274 void *arg;
1275 {
1276 struct vr_softc *sc = arg;
1277 int s;
1278
1279 s = splnet();
1280 mii_tick(&sc->vr_mii);
1281 splx(s);
1282
1283 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1284 }
1285
1286 /*
1287 * Drain the receive queue.
1288 */
1289 static void
1290 vr_rxdrain(sc)
1291 struct vr_softc *sc;
1292 {
1293 struct vr_descsoft *ds;
1294 int i;
1295
1296 for (i = 0; i < VR_NRXDESC; i++) {
1297 ds = VR_DSRX(sc, i);
1298 if (ds->ds_mbuf != NULL) {
1299 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1300 m_freem(ds->ds_mbuf);
1301 ds->ds_mbuf = NULL;
1302 }
1303 }
1304 }
1305
1306 /*
1307 * Stop the adapter and free any mbufs allocated to the
1308 * transmit lists.
1309 */
1310 static void
1311 vr_stop(ifp, disable)
1312 struct ifnet *ifp;
1313 int disable;
1314 {
1315 struct vr_softc *sc = ifp->if_softc;
1316 struct vr_descsoft *ds;
1317 int i;
1318
1319 /* Cancel one second timer. */
1320 callout_stop(&sc->vr_tick_ch);
1321
1322 /* Down the MII. */
1323 mii_down(&sc->vr_mii);
1324
1325 ifp = &sc->vr_ec.ec_if;
1326 ifp->if_timer = 0;
1327
1328 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1329 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1330 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1331 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1332 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1333
1334 /*
1335 * Release any queued transmit buffers.
1336 */
1337 for (i = 0; i < VR_NTXDESC; i++) {
1338 ds = VR_DSTX(sc, i);
1339 if (ds->ds_mbuf != NULL) {
1340 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1341 m_freem(ds->ds_mbuf);
1342 ds->ds_mbuf = NULL;
1343 }
1344 }
1345
1346 if (disable)
1347 vr_rxdrain(sc);
1348
1349 /*
1350 * Mark the interface down and cancel the watchdog timer.
1351 */
1352 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1353 ifp->if_timer = 0;
1354 }
1355
1356 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1357 static int vr_probe __P((struct device *, struct cfdata *, void *));
1358 static void vr_attach __P((struct device *, struct device *, void *));
1359 static void vr_shutdown __P((void *));
1360
1361 struct cfattach vr_ca = {
1362 sizeof (struct vr_softc), vr_probe, vr_attach
1363 };
1364
1365 static struct vr_type *
1366 vr_lookup(pa)
1367 struct pci_attach_args *pa;
1368 {
1369 struct vr_type *vrt;
1370
1371 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1372 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1373 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1374 return (vrt);
1375 }
1376 return (NULL);
1377 }
1378
1379 static int
1380 vr_probe(parent, match, aux)
1381 struct device *parent;
1382 struct cfdata *match;
1383 void *aux;
1384 {
1385 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1386
1387 if (vr_lookup(pa) != NULL)
1388 return (1);
1389
1390 return (0);
1391 }
1392
1393 /*
1394 * Stop all chip I/O so that the kernel's probe routines don't
1395 * get confused by errant DMAs when rebooting.
1396 */
1397 static void
1398 vr_shutdown(arg)
1399 void *arg;
1400 {
1401 struct vr_softc *sc = (struct vr_softc *)arg;
1402
1403 vr_stop(&sc->vr_ec.ec_if, 1);
1404 }
1405
1406 /*
1407 * Attach the interface. Allocate softc structures, do ifmedia
1408 * setup and ethernet/BPF attach.
1409 */
1410 static void
1411 vr_attach(parent, self, aux)
1412 struct device *parent;
1413 struct device *self;
1414 void *aux;
1415 {
1416 struct vr_softc *sc = (struct vr_softc *) self;
1417 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1418 bus_dma_segment_t seg;
1419 struct vr_type *vrt;
1420 u_int32_t command;
1421 struct ifnet *ifp;
1422 u_char eaddr[ETHER_ADDR_LEN];
1423 int i, rseg, error;
1424
1425 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1426 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1427
1428 callout_init(&sc->vr_tick_ch);
1429
1430 vrt = vr_lookup(pa);
1431 if (vrt == NULL) {
1432 printf("\n");
1433 panic("vr_attach: impossible");
1434 }
1435
1436 printf(": %s Ethernet\n", vrt->vr_name);
1437
1438 /*
1439 * Handle power management nonsense.
1440 */
1441
1442 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1443 if (command == 0x01) {
1444 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1445 if (command & VR_PSTATE_MASK) {
1446 u_int32_t iobase, membase, irq;
1447
1448 /* Save important PCI config data. */
1449 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1450 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1451 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1452
1453 /* Reset the power state. */
1454 printf("%s: chip is in D%d power mode "
1455 "-- setting to D0\n",
1456 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1457 command &= 0xFFFFFFFC;
1458 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1459
1460 /* Restore PCI config data. */
1461 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1462 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1463 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1464 }
1465 }
1466
1467 /* Make sure bus mastering is enabled. */
1468 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1469 command |= PCI_COMMAND_MASTER_ENABLE;
1470 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1471
1472 /*
1473 * Map control/status registers.
1474 */
1475 {
1476 bus_space_tag_t iot, memt;
1477 bus_space_handle_t ioh, memh;
1478 int ioh_valid, memh_valid;
1479 pci_intr_handle_t intrhandle;
1480 const char *intrstr;
1481
1482 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1483 PCI_MAPREG_TYPE_IO, 0,
1484 &iot, &ioh, NULL, NULL) == 0);
1485 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1486 PCI_MAPREG_TYPE_MEM |
1487 PCI_MAPREG_MEM_TYPE_32BIT,
1488 0, &memt, &memh, NULL, NULL) == 0);
1489 #if defined(VR_USEIOSPACE)
1490 if (ioh_valid) {
1491 sc->vr_bst = iot;
1492 sc->vr_bsh = ioh;
1493 } else if (memh_valid) {
1494 sc->vr_bst = memt;
1495 sc->vr_bsh = memh;
1496 }
1497 #else
1498 if (memh_valid) {
1499 sc->vr_bst = memt;
1500 sc->vr_bsh = memh;
1501 } else if (ioh_valid) {
1502 sc->vr_bst = iot;
1503 sc->vr_bsh = ioh;
1504 }
1505 #endif
1506 else {
1507 printf(": unable to map device registers\n");
1508 return;
1509 }
1510
1511 /* Allocate interrupt */
1512 if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
1513 pa->pa_intrline, &intrhandle)) {
1514 printf("%s: couldn't map interrupt\n",
1515 sc->vr_dev.dv_xname);
1516 return;
1517 }
1518 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1519 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1520 vr_intr, sc);
1521 if (sc->vr_ih == NULL) {
1522 printf("%s: couldn't establish interrupt",
1523 sc->vr_dev.dv_xname);
1524 if (intrstr != NULL)
1525 printf(" at %s", intrstr);
1526 printf("\n");
1527 }
1528 printf("%s: interrupting at %s\n",
1529 sc->vr_dev.dv_xname, intrstr);
1530 }
1531
1532 /* Reset the adapter. */
1533 vr_reset(sc);
1534
1535 /*
1536 * Get station address. The way the Rhine chips work,
1537 * you're not allowed to directly access the EEPROM once
1538 * they've been programmed a special way. Consequently,
1539 * we need to read the node address from the PAR0 and PAR1
1540 * registers.
1541 */
1542 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1543 DELAY(200);
1544 for (i = 0; i < ETHER_ADDR_LEN; i++)
1545 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1546
1547 /*
1548 * A Rhine chip was detected. Inform the world.
1549 */
1550 printf("%s: Ethernet address: %s\n",
1551 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1552
1553 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1554
1555 sc->vr_dmat = pa->pa_dmat;
1556
1557 /*
1558 * Allocate the control data structures, and create and load
1559 * the DMA map for it.
1560 */
1561 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1562 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1563 0)) != 0) {
1564 printf("%s: unable to allocate control data, error = %d\n",
1565 sc->vr_dev.dv_xname, error);
1566 goto fail_0;
1567 }
1568
1569 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1570 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1571 BUS_DMA_COHERENT)) != 0) {
1572 printf("%s: unable to map control data, error = %d\n",
1573 sc->vr_dev.dv_xname, error);
1574 goto fail_1;
1575 }
1576
1577 if ((error = bus_dmamap_create(sc->vr_dmat,
1578 sizeof(struct vr_control_data), 1,
1579 sizeof(struct vr_control_data), 0, 0,
1580 &sc->vr_cddmamap)) != 0) {
1581 printf("%s: unable to create control data DMA map, "
1582 "error = %d\n", sc->vr_dev.dv_xname, error);
1583 goto fail_2;
1584 }
1585
1586 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1587 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1588 0)) != 0) {
1589 printf("%s: unable to load control data DMA map, error = %d\n",
1590 sc->vr_dev.dv_xname, error);
1591 goto fail_3;
1592 }
1593
1594 /*
1595 * Create the transmit buffer DMA maps.
1596 */
1597 for (i = 0; i < VR_NTXDESC; i++) {
1598 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1599 1, MCLBYTES, 0, 0,
1600 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1601 printf("%s: unable to create tx DMA map %d, "
1602 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1603 goto fail_4;
1604 }
1605 }
1606
1607 /*
1608 * Create the receive buffer DMA maps.
1609 */
1610 for (i = 0; i < VR_NRXDESC; i++) {
1611 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1612 MCLBYTES, 0, 0,
1613 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1614 printf("%s: unable to create rx DMA map %d, "
1615 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1616 goto fail_5;
1617 }
1618 VR_DSRX(sc, i)->ds_mbuf = NULL;
1619 }
1620
1621 ifp = &sc->vr_ec.ec_if;
1622 ifp->if_softc = sc;
1623 ifp->if_mtu = ETHERMTU;
1624 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1625 ifp->if_ioctl = vr_ioctl;
1626 ifp->if_start = vr_start;
1627 ifp->if_watchdog = vr_watchdog;
1628 ifp->if_init = vr_init;
1629 ifp->if_stop = vr_stop;
1630 IFQ_SET_READY(&ifp->if_snd);
1631
1632 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1633
1634 /*
1635 * Initialize MII/media info.
1636 */
1637 sc->vr_mii.mii_ifp = ifp;
1638 sc->vr_mii.mii_readreg = vr_mii_readreg;
1639 sc->vr_mii.mii_writereg = vr_mii_writereg;
1640 sc->vr_mii.mii_statchg = vr_mii_statchg;
1641 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1642 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1643 MII_OFFSET_ANY, 0);
1644 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1645 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1646 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1647 } else
1648 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1649
1650 /*
1651 * Call MI attach routines.
1652 */
1653 if_attach(ifp);
1654 ether_ifattach(ifp, sc->vr_enaddr);
1655
1656 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1657 if (sc->vr_ats == NULL)
1658 printf("%s: warning: couldn't establish shutdown hook\n",
1659 sc->vr_dev.dv_xname);
1660 return;
1661
1662 fail_5:
1663 for (i = 0; i < VR_NRXDESC; i++) {
1664 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1665 bus_dmamap_destroy(sc->vr_dmat,
1666 sc->vr_rxsoft[i].ds_dmamap);
1667 }
1668 fail_4:
1669 for (i = 0; i < VR_NTXDESC; i++) {
1670 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1671 bus_dmamap_destroy(sc->vr_dmat,
1672 sc->vr_txsoft[i].ds_dmamap);
1673 }
1674 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1675 fail_3:
1676 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1677 fail_2:
1678 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1679 sizeof(struct vr_control_data));
1680 fail_1:
1681 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1682 fail_0:
1683 return;
1684 }
1685