if_vr.c revision 1.45 1 /* $NetBSD: if_vr.c,v 1.45 2001/01/29 01:24:42 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include "opt_inet.h"
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/sockio.h>
112 #include <sys/mbuf.h>
113 #include <sys/malloc.h>
114 #include <sys/kernel.h>
115 #include <sys/socket.h>
116 #include <sys/device.h>
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #if defined(INET)
127 #include <netinet/in.h>
128 #include <netinet/if_inarp.h>
129 #endif
130
131 #include "bpfilter.h"
132 #if NBPFILTER > 0
133 #include <net/bpf.h>
134 #endif
135
136 #include <machine/bus.h>
137 #include <machine/intr.h>
138 #include <machine/endian.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142 #include <dev/mii/mii_bitbang.h>
143
144 #include <dev/pci/pcireg.h>
145 #include <dev/pci/pcivar.h>
146 #include <dev/pci/pcidevs.h>
147
148 #include <dev/pci/if_vrreg.h>
149
150 #define VR_USEIOSPACE
151
152 /*
153 * Various supported device vendors/types and their names.
154 */
155 static struct vr_type {
156 pci_vendor_id_t vr_vid;
157 pci_product_id_t vr_did;
158 const char *vr_name;
159 } vr_devs[] = {
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
161 "VIA VT3043 (Rhine) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
163 "VIA VT6102 (Rhine II) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
165 "VIA VT86C100A (Rhine-II) 10/100" },
166 { 0, 0, NULL }
167 };
168
169 /*
170 * Transmit descriptor list size.
171 */
172 #define VR_NTXDESC 64
173 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
174 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
175
176 /*
177 * Receive descriptor list size.
178 */
179 #define VR_NRXDESC 64
180 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
181 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
182
183 /*
184 * Control data structres that are DMA'd to the Rhine chip. We allocate
185 * them in a single clump that maps to a single DMA segment to make several
186 * things easier.
187 *
188 * Note that since we always copy outgoing packets to aligned transmit
189 * buffers, we can reduce the transmit descriptors to one per packet.
190 */
191 struct vr_control_data {
192 struct vr_desc vr_txdescs[VR_NTXDESC];
193 struct vr_desc vr_rxdescs[VR_NRXDESC];
194 };
195
196 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
197 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
198 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
199
200 /*
201 * Software state of transmit and receive descriptors.
202 */
203 struct vr_descsoft {
204 struct mbuf *ds_mbuf; /* head of mbuf chain */
205 bus_dmamap_t ds_dmamap; /* our DMA map */
206 };
207
208 struct vr_softc {
209 struct device vr_dev; /* generic device glue */
210 void *vr_ih; /* interrupt cookie */
211 void *vr_ats; /* shutdown hook */
212 bus_space_tag_t vr_bst; /* bus space tag */
213 bus_space_handle_t vr_bsh; /* bus space handle */
214 bus_dma_tag_t vr_dmat; /* bus DMA tag */
215 pci_chipset_tag_t vr_pc; /* PCI chipset info */
216 struct ethercom vr_ec; /* Ethernet common info */
217 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct ifnet *));
305 static void vr_stop __P((struct ifnet *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static u_int8_t vr_calchash __P((u_int8_t *));
318 static void vr_setmulti __P((struct vr_softc *));
319 static void vr_reset __P((struct vr_softc *));
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | x)
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~x)
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | x)
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~x)
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | x)
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~x)
346
347 /*
348 * MII bit-bang glue.
349 */
350 u_int32_t vr_mii_bitbang_read __P((struct device *));
351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
352
353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 u_int32_t
366 vr_mii_bitbang_read(self)
367 struct device *self;
368 {
369 struct vr_softc *sc = (void *) self;
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 void
375 vr_mii_bitbang_write(self, val)
376 struct device *self;
377 u_int32_t val;
378 {
379 struct vr_softc *sc = (void *) self;
380
381 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
382 }
383
384 /*
385 * Read an PHY register through the MII.
386 */
387 static int
388 vr_mii_readreg(self, phy, reg)
389 struct device *self;
390 int phy, reg;
391 {
392 struct vr_softc *sc = (void *) self;
393
394 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
395 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
396 }
397
398 /*
399 * Write to a PHY register through the MII.
400 */
401 static void
402 vr_mii_writereg(self, phy, reg, val)
403 struct device *self;
404 int phy, reg, val;
405 {
406 struct vr_softc *sc = (void *) self;
407
408 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
409 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
410 }
411
412 static void
413 vr_mii_statchg(self)
414 struct device *self;
415 {
416 struct vr_softc *sc = (struct vr_softc *)self;
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 /*
435 * Calculate CRC of a multicast group address, return the lower 6 bits.
436 */
437 static u_int8_t
438 vr_calchash(addr)
439 u_int8_t *addr;
440 {
441 u_int32_t crc, carry;
442 int i, j;
443 u_int8_t c;
444
445 /* Compute CRC for the address value. */
446 crc = 0xFFFFFFFF; /* initial value */
447
448 for (i = 0; i < 6; i++) {
449 c = *(addr + i);
450 for (j = 0; j < 8; j++) {
451 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
452 crc <<= 1;
453 c >>= 1;
454 if (carry)
455 crc = (crc ^ 0x04c11db6) | carry;
456 }
457 }
458
459 /* return the filter bit position */
460 return ((crc >> 26) & 0x0000003F);
461 }
462
463 /*
464 * Program the 64-bit multicast hash filter.
465 */
466 static void
467 vr_setmulti(sc)
468 struct vr_softc *sc;
469 {
470 struct ifnet *ifp;
471 int h = 0;
472 u_int32_t hashes[2] = { 0, 0 };
473 struct ether_multistep step;
474 struct ether_multi *enm;
475 int mcnt = 0;
476 u_int8_t rxfilt;
477
478 ifp = &sc->vr_ec.ec_if;
479
480 rxfilt = CSR_READ_1(sc, VR_RXCFG);
481
482 if (ifp->if_flags & IFF_PROMISC) {
483 allmulti:
484 ifp->if_flags |= IFF_ALLMULTI;
485 rxfilt |= VR_RXCFG_RX_MULTI;
486 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
487 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
488 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
489 return;
490 }
491
492 /* first, zot all the existing hash bits */
493 CSR_WRITE_4(sc, VR_MAR0, 0);
494 CSR_WRITE_4(sc, VR_MAR1, 0);
495
496 /* now program new ones */
497 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
498 while (enm != NULL) {
499 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
500 ETHER_ADDR_LEN) != 0)
501 goto allmulti;
502
503 h = vr_calchash(enm->enm_addrlo);
504
505 if (h < 32)
506 hashes[0] |= (1 << h);
507 else
508 hashes[1] |= (1 << (h - 32));
509 ETHER_NEXT_MULTI(step, enm);
510 mcnt++;
511 }
512
513 ifp->if_flags &= ~IFF_ALLMULTI;
514
515 if (mcnt)
516 rxfilt |= VR_RXCFG_RX_MULTI;
517 else
518 rxfilt &= ~VR_RXCFG_RX_MULTI;
519
520 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
521 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
522 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
523 }
524
525 static void
526 vr_reset(sc)
527 struct vr_softc *sc;
528 {
529 int i;
530
531 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
532
533 for (i = 0; i < VR_TIMEOUT; i++) {
534 DELAY(10);
535 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
536 break;
537 }
538 if (i == VR_TIMEOUT)
539 printf("%s: reset never completed!\n",
540 sc->vr_dev.dv_xname);
541
542 /* Wait a little while for the chip to get its brains in order. */
543 DELAY(1000);
544 }
545
546 /*
547 * Initialize an RX descriptor and attach an MBUF cluster.
548 * Note: the length fields are only 11 bits wide, which means the
549 * largest size we can specify is 2047. This is important because
550 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
551 * overflow the field and make a mess.
552 */
553 static int
554 vr_add_rxbuf(sc, i)
555 struct vr_softc *sc;
556 int i;
557 {
558 struct vr_descsoft *ds = VR_DSRX(sc, i);
559 struct mbuf *m_new;
560 int error;
561
562 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
563 if (m_new == NULL)
564 return (ENOBUFS);
565
566 MCLGET(m_new, M_DONTWAIT);
567 if ((m_new->m_flags & M_EXT) == 0) {
568 m_freem(m_new);
569 return (ENOBUFS);
570 }
571
572 if (ds->ds_mbuf != NULL)
573 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
574
575 ds->ds_mbuf = m_new;
576
577 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
578 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
579 if (error) {
580 printf("%s: unable to load rx DMA map %d, error = %d\n",
581 sc->vr_dev.dv_xname, i, error);
582 panic("vr_add_rxbuf"); /* XXX */
583 }
584
585 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
586 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
587
588 VR_INIT_RXDESC(sc, i);
589
590 return (0);
591 }
592
593 /*
594 * A frame has been uploaded: pass the resulting mbuf chain up to
595 * the higher level protocols.
596 */
597 static void
598 vr_rxeof(sc)
599 struct vr_softc *sc;
600 {
601 struct mbuf *m;
602 struct ifnet *ifp;
603 struct vr_desc *d;
604 struct vr_descsoft *ds;
605 int i, total_len;
606 u_int32_t rxstat;
607
608 ifp = &sc->vr_ec.ec_if;
609
610 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
611 d = VR_CDRX(sc, i);
612 ds = VR_DSRX(sc, i);
613
614 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
615
616 rxstat = le32toh(d->vr_status);
617
618 if (rxstat & VR_RXSTAT_OWN) {
619 /*
620 * We have processed all of the receive buffers.
621 */
622 break;
623 }
624
625 /*
626 * If an error occurs, update stats, clear the
627 * status word and leave the mbuf cluster in place:
628 * it should simply get re-used next time this descriptor
629 * comes up in the ring.
630 */
631 if (rxstat & VR_RXSTAT_RXERR) {
632 const char *errstr;
633
634 ifp->if_ierrors++;
635 switch (rxstat & 0x000000FF) {
636 case VR_RXSTAT_CRCERR:
637 errstr = "crc error";
638 break;
639 case VR_RXSTAT_FRAMEALIGNERR:
640 errstr = "frame alignment error";
641 break;
642 case VR_RXSTAT_FIFOOFLOW:
643 errstr = "FIFO overflow";
644 break;
645 case VR_RXSTAT_GIANT:
646 errstr = "received giant packet";
647 break;
648 case VR_RXSTAT_RUNT:
649 errstr = "received runt packet";
650 break;
651 case VR_RXSTAT_BUSERR:
652 errstr = "system bus error";
653 break;
654 case VR_RXSTAT_BUFFERR:
655 errstr = "rx buffer error";
656 break;
657 default:
658 errstr = "unknown rx error";
659 break;
660 }
661 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
662 errstr);
663
664 VR_INIT_RXDESC(sc, i);
665
666 continue;
667 }
668
669 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
670 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
671
672 /* No errors; receive the packet. */
673 total_len = VR_RXBYTES(le32toh(d->vr_status));
674
675 #ifdef __NO_STRICT_ALIGNMENT
676 /*
677 * If the packet is small enough to fit in a
678 * single header mbuf, allocate one and copy
679 * the data into it. This greatly reduces
680 * memory consumption when we receive lots
681 * of small packets.
682 *
683 * Otherwise, we add a new buffer to the receive
684 * chain. If this fails, we drop the packet and
685 * recycle the old buffer.
686 */
687 if (vr_copy_small != 0 && total_len <= MHLEN) {
688 MGETHDR(m, M_DONTWAIT, MT_DATA);
689 if (m == NULL)
690 goto dropit;
691 memcpy(mtod(m, caddr_t),
692 mtod(ds->ds_mbuf, caddr_t), total_len);
693 VR_INIT_RXDESC(sc, i);
694 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
695 ds->ds_dmamap->dm_mapsize,
696 BUS_DMASYNC_PREREAD);
697 } else {
698 m = ds->ds_mbuf;
699 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
700 dropit:
701 ifp->if_ierrors++;
702 VR_INIT_RXDESC(sc, i);
703 bus_dmamap_sync(sc->vr_dmat,
704 ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize,
706 BUS_DMASYNC_PREREAD);
707 continue;
708 }
709 }
710 #else
711 /*
712 * The Rhine's packet buffers must be 4-byte aligned.
713 * But this means that the data after the Ethernet header
714 * is misaligned. We must allocate a new buffer and
715 * copy the data, shifted forward 2 bytes.
716 */
717 MGETHDR(m, M_DONTWAIT, MT_DATA);
718 if (m == NULL) {
719 dropit:
720 ifp->if_ierrors++;
721 VR_INIT_RXDESC(sc, i);
722 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
723 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
724 continue;
725 }
726 if (total_len > (MHLEN - 2)) {
727 MCLGET(m, M_DONTWAIT);
728 if ((m->m_flags & M_EXT) == 0) {
729 m_freem(m);
730 goto dropit;
731 }
732 }
733 m->m_data += 2;
734
735 /*
736 * Note that we use clusters for incoming frames, so the
737 * buffer is virtually contiguous.
738 */
739 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
740 total_len);
741
742 /* Allow the recieve descriptor to continue using its mbuf. */
743 VR_INIT_RXDESC(sc, i);
744 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
745 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
746 #endif /* __NO_STRICT_ALIGNMENT */
747
748 /*
749 * The Rhine chip includes the FCS with every
750 * received packet.
751 */
752 m->m_flags |= M_HASFCS;
753
754 ifp->if_ipackets++;
755 m->m_pkthdr.rcvif = ifp;
756 m->m_pkthdr.len = m->m_len = total_len;
757 #if NBPFILTER > 0
758 /*
759 * Handle BPF listeners. Let the BPF user see the packet, but
760 * don't pass it up to the ether_input() layer unless it's
761 * a broadcast packet, multicast packet, matches our ethernet
762 * address or the interface is in promiscuous mode.
763 */
764 if (ifp->if_bpf)
765 bpf_mtap(ifp->if_bpf, m);
766 #endif
767 /* Pass it on. */
768 (*ifp->if_input)(ifp, m);
769 }
770
771 /* Update the receive pointer. */
772 sc->vr_rxptr = i;
773 }
774
775 void
776 vr_rxeoc(sc)
777 struct vr_softc *sc;
778 {
779
780 vr_rxeof(sc);
781 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
782 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
783 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
784 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
785 }
786
787 /*
788 * A frame was downloaded to the chip. It's safe for us to clean up
789 * the list buffers.
790 */
791 static void
792 vr_txeof(sc)
793 struct vr_softc *sc;
794 {
795 struct ifnet *ifp = &sc->vr_ec.ec_if;
796 struct vr_desc *d;
797 struct vr_descsoft *ds;
798 u_int32_t txstat;
799 int i;
800
801 ifp->if_flags &= ~IFF_OACTIVE;
802
803 /*
804 * Go through our tx list and free mbufs for those
805 * frames that have been transmitted.
806 */
807 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
808 i = VR_NEXTTX(i), sc->vr_txpending--) {
809 d = VR_CDTX(sc, i);
810 ds = VR_DSTX(sc, i);
811
812 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
813
814 txstat = le32toh(d->vr_status);
815 if (txstat & VR_TXSTAT_OWN)
816 break;
817
818 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
819 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
820 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
821 m_freem(ds->ds_mbuf);
822 ds->ds_mbuf = NULL;
823
824 if (txstat & VR_TXSTAT_ERRSUM) {
825 ifp->if_oerrors++;
826 if (txstat & VR_TXSTAT_DEFER)
827 ifp->if_collisions++;
828 if (txstat & VR_TXSTAT_LATECOLL)
829 ifp->if_collisions++;
830 }
831
832 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
833 ifp->if_opackets++;
834 }
835
836 /* Update the dirty transmit buffer pointer. */
837 sc->vr_txdirty = i;
838
839 /*
840 * Cancel the watchdog timer if there are no pending
841 * transmissions.
842 */
843 if (sc->vr_txpending == 0)
844 ifp->if_timer = 0;
845 }
846
847 static int
848 vr_intr(arg)
849 void *arg;
850 {
851 struct vr_softc *sc;
852 struct ifnet *ifp;
853 u_int16_t status;
854 int handled = 0, dotx = 0;
855
856 sc = arg;
857 ifp = &sc->vr_ec.ec_if;
858
859 /* Suppress unwanted interrupts. */
860 if ((ifp->if_flags & IFF_UP) == 0) {
861 vr_stop(ifp, 1);
862 return (0);
863 }
864
865 /* Disable interrupts. */
866 CSR_WRITE_2(sc, VR_IMR, 0x0000);
867
868 for (;;) {
869 status = CSR_READ_2(sc, VR_ISR);
870 if (status)
871 CSR_WRITE_2(sc, VR_ISR, status);
872
873 if ((status & VR_INTRS) == 0)
874 break;
875
876 handled = 1;
877
878 if (status & VR_ISR_RX_OK)
879 vr_rxeof(sc);
880
881 if (status &
882 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
883 VR_ISR_RX_DROPPED))
884 vr_rxeoc(sc);
885
886 if (status & VR_ISR_TX_OK) {
887 dotx = 1;
888 vr_txeof(sc);
889 }
890
891 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
892 if (status & VR_ISR_TX_UNDERRUN)
893 printf("%s: transmit underrun\n",
894 sc->vr_dev.dv_xname);
895 if (status & VR_ISR_TX_ABRT)
896 printf("%s: transmit aborted\n",
897 sc->vr_dev.dv_xname);
898 ifp->if_oerrors++;
899 dotx = 1;
900 vr_txeof(sc);
901 if (sc->vr_txpending) {
902 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
903 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
904 }
905 }
906
907 if (status & VR_ISR_BUSERR) {
908 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
909 /* vr_init() calls vr_start() */
910 dotx = 0;
911 (void) vr_init(ifp);
912 }
913 }
914
915 /* Re-enable interrupts. */
916 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
917
918 if (dotx)
919 vr_start(ifp);
920
921 return (handled);
922 }
923
924 /*
925 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
926 * to the mbuf data regions directly in the transmit lists. We also save a
927 * copy of the pointers since the transmit list fragment pointers are
928 * physical addresses.
929 */
930 static void
931 vr_start(ifp)
932 struct ifnet *ifp;
933 {
934 struct vr_softc *sc = ifp->if_softc;
935 struct mbuf *m0, *m;
936 struct vr_desc *d;
937 struct vr_descsoft *ds;
938 int error, firsttx, nexttx, opending;
939
940 /*
941 * Remember the previous txpending and the first transmit
942 * descriptor we use.
943 */
944 opending = sc->vr_txpending;
945 firsttx = VR_NEXTTX(sc->vr_txlast);
946
947 /*
948 * Loop through the send queue, setting up transmit descriptors
949 * until we drain the queue, or use up all available transmit
950 * descriptors.
951 */
952 while (sc->vr_txpending < VR_NTXDESC) {
953 /*
954 * Grab a packet off the queue.
955 */
956 IFQ_POLL(&ifp->if_snd, m0);
957 if (m0 == NULL)
958 break;
959 m = NULL;
960
961 /*
962 * Get the next available transmit descriptor.
963 */
964 nexttx = VR_NEXTTX(sc->vr_txlast);
965 d = VR_CDTX(sc, nexttx);
966 ds = VR_DSTX(sc, nexttx);
967
968 /*
969 * Load the DMA map. If this fails, the packet didn't
970 * fit in one DMA segment, and we need to copy. Note,
971 * the packet must also be aligned.
972 */
973 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
974 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
975 BUS_DMA_NOWAIT) != 0) {
976 MGETHDR(m, M_DONTWAIT, MT_DATA);
977 if (m == NULL) {
978 printf("%s: unable to allocate Tx mbuf\n",
979 sc->vr_dev.dv_xname);
980 break;
981 }
982 if (m0->m_pkthdr.len > MHLEN) {
983 MCLGET(m, M_DONTWAIT);
984 if ((m->m_flags & M_EXT) == 0) {
985 printf("%s: unable to allocate Tx "
986 "cluster\n", sc->vr_dev.dv_xname);
987 m_freem(m);
988 break;
989 }
990 }
991 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
992 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
993 error = bus_dmamap_load_mbuf(sc->vr_dmat,
994 ds->ds_dmamap, m, BUS_DMA_NOWAIT);
995 if (error) {
996 printf("%s: unable to load Tx buffer, "
997 "error = %d\n", sc->vr_dev.dv_xname, error);
998 break;
999 }
1000 }
1001
1002 IFQ_DEQUEUE(&ifp->if_snd, m0);
1003 if (m != NULL) {
1004 m_freem(m0);
1005 m0 = m;
1006 }
1007
1008 /* Sync the DMA map. */
1009 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1010 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1011
1012 /*
1013 * Store a pointer to the packet so we can free it later.
1014 */
1015 ds->ds_mbuf = m0;
1016
1017 #if NBPFILTER > 0
1018 /*
1019 * If there's a BPF listener, bounce a copy of this frame
1020 * to him.
1021 */
1022 if (ifp->if_bpf)
1023 bpf_mtap(ifp->if_bpf, m0);
1024 #endif
1025
1026 /*
1027 * Fill in the transmit descriptor. The Rhine
1028 * doesn't auto-pad, so we have to do this ourselves.
1029 */
1030 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1031 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1032 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1033 d->vr_ctl |=
1034 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1035 VR_TXCTL_LASTFRAG);
1036
1037 /*
1038 * If this is the first descriptor we're enqueuing,
1039 * don't give it to the Rhine yet. That could cause
1040 * a race condition. We'll do it below.
1041 */
1042 if (nexttx == firsttx)
1043 d->vr_status = 0;
1044 else
1045 d->vr_status = htole32(VR_TXSTAT_OWN);
1046
1047 VR_CDTXSYNC(sc, nexttx,
1048 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1049
1050 /* Advance the tx pointer. */
1051 sc->vr_txpending++;
1052 sc->vr_txlast = nexttx;
1053 }
1054
1055 if (sc->vr_txpending == VR_NTXDESC) {
1056 /* No more slots left; notify upper layer. */
1057 ifp->if_flags |= IFF_OACTIVE;
1058 }
1059
1060 if (sc->vr_txpending != opending) {
1061 /*
1062 * We enqueued packets. If the transmitter was idle,
1063 * reset the txdirty pointer.
1064 */
1065 if (opending == 0)
1066 sc->vr_txdirty = firsttx;
1067
1068 /*
1069 * Cause a transmit interrupt to happen on the
1070 * last packet we enqueued.
1071 */
1072 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1073 VR_CDTXSYNC(sc, sc->vr_txlast,
1074 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1075
1076 /*
1077 * The entire packet chain is set up. Give the
1078 * first descriptor to the Rhine now.
1079 */
1080 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1081 VR_CDTXSYNC(sc, firsttx,
1082 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083
1084 /* Start the transmitter. */
1085 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1086
1087 /* Set the watchdog timer in case the chip flakes out. */
1088 ifp->if_timer = 5;
1089 }
1090 }
1091
1092 /*
1093 * Initialize the interface. Must be called at splnet.
1094 */
1095 static int
1096 vr_init(ifp)
1097 struct ifnet *ifp;
1098 {
1099 struct vr_softc *sc = ifp->if_softc;
1100 struct vr_desc *d;
1101 struct vr_descsoft *ds;
1102 int i, error = 0;
1103
1104 /* Cancel pending I/O. */
1105 vr_stop(ifp, 0);
1106
1107 /* Reset the Rhine to a known state. */
1108 vr_reset(sc);
1109
1110 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1111 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1112
1113 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1114 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1115
1116 /*
1117 * Initialize the transmit desciptor ring. txlast is initialized
1118 * to the end of the list so that it will wrap around to the first
1119 * descriptor when the first packet is transmitted.
1120 */
1121 for (i = 0; i < VR_NTXDESC; i++) {
1122 d = VR_CDTX(sc, i);
1123 memset(d, 0, sizeof(struct vr_desc));
1124 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1125 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1126 }
1127 sc->vr_txpending = 0;
1128 sc->vr_txdirty = 0;
1129 sc->vr_txlast = VR_NTXDESC - 1;
1130
1131 /*
1132 * Initialize the receive descriptor ring.
1133 */
1134 for (i = 0; i < VR_NRXDESC; i++) {
1135 ds = VR_DSRX(sc, i);
1136 if (ds->ds_mbuf == NULL) {
1137 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1138 printf("%s: unable to allocate or map rx "
1139 "buffer %d, error = %d\n",
1140 sc->vr_dev.dv_xname, i, error);
1141 /*
1142 * XXX Should attempt to run with fewer receive
1143 * XXX buffers instead of just failing.
1144 */
1145 vr_rxdrain(sc);
1146 goto out;
1147 }
1148 }
1149 }
1150 sc->vr_rxptr = 0;
1151
1152 /* If we want promiscuous mode, set the allframes bit. */
1153 if (ifp->if_flags & IFF_PROMISC)
1154 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1155 else
1156 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1157
1158 /* Set capture broadcast bit to capture broadcast frames. */
1159 if (ifp->if_flags & IFF_BROADCAST)
1160 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1161 else
1162 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1163
1164 /* Program the multicast filter, if necessary. */
1165 vr_setmulti(sc);
1166
1167 /* Give the transmit and recieve rings to the Rhine. */
1168 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1169 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1170
1171 /* Set current media. */
1172 mii_mediachg(&sc->vr_mii);
1173
1174 /* Enable receiver and transmitter. */
1175 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1176 VR_CMD_TX_ON|VR_CMD_RX_ON|
1177 VR_CMD_RX_GO);
1178
1179 /* Enable interrupts. */
1180 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1181 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1182
1183 ifp->if_flags |= IFF_RUNNING;
1184 ifp->if_flags &= ~IFF_OACTIVE;
1185
1186 /* Start one second timer. */
1187 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1188
1189 /* Attempt to start output on the interface. */
1190 vr_start(ifp);
1191
1192 out:
1193 if (error)
1194 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1195 return (error);
1196 }
1197
1198 /*
1199 * Set media options.
1200 */
1201 static int
1202 vr_ifmedia_upd(ifp)
1203 struct ifnet *ifp;
1204 {
1205 struct vr_softc *sc = ifp->if_softc;
1206
1207 if (ifp->if_flags & IFF_UP)
1208 mii_mediachg(&sc->vr_mii);
1209 return (0);
1210 }
1211
1212 /*
1213 * Report current media status.
1214 */
1215 static void
1216 vr_ifmedia_sts(ifp, ifmr)
1217 struct ifnet *ifp;
1218 struct ifmediareq *ifmr;
1219 {
1220 struct vr_softc *sc = ifp->if_softc;
1221
1222 mii_pollstat(&sc->vr_mii);
1223 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1224 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1225 }
1226
1227 static int
1228 vr_ioctl(ifp, command, data)
1229 struct ifnet *ifp;
1230 u_long command;
1231 caddr_t data;
1232 {
1233 struct vr_softc *sc = ifp->if_softc;
1234 struct ifreq *ifr = (struct ifreq *)data;
1235 int s, error = 0;
1236
1237 s = splnet();
1238
1239 switch (command) {
1240 case SIOCGIFMEDIA:
1241 case SIOCSIFMEDIA:
1242 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1243 break;
1244
1245 default:
1246 error = ether_ioctl(ifp, command, data);
1247 if (error == ENETRESET) {
1248 /*
1249 * Multicast list has changed; set the hardware filter
1250 * accordingly.
1251 */
1252 vr_setmulti(sc);
1253 error = 0;
1254 }
1255 break;
1256 }
1257
1258 splx(s);
1259 return (error);
1260 }
1261
1262 static void
1263 vr_watchdog(ifp)
1264 struct ifnet *ifp;
1265 {
1266 struct vr_softc *sc = ifp->if_softc;
1267
1268 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1269 ifp->if_oerrors++;
1270
1271 (void) vr_init(ifp);
1272 }
1273
1274 /*
1275 * One second timer, used to tick MII.
1276 */
1277 static void
1278 vr_tick(arg)
1279 void *arg;
1280 {
1281 struct vr_softc *sc = arg;
1282 int s;
1283
1284 s = splnet();
1285 mii_tick(&sc->vr_mii);
1286 splx(s);
1287
1288 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1289 }
1290
1291 /*
1292 * Drain the receive queue.
1293 */
1294 static void
1295 vr_rxdrain(sc)
1296 struct vr_softc *sc;
1297 {
1298 struct vr_descsoft *ds;
1299 int i;
1300
1301 for (i = 0; i < VR_NRXDESC; i++) {
1302 ds = VR_DSRX(sc, i);
1303 if (ds->ds_mbuf != NULL) {
1304 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1305 m_freem(ds->ds_mbuf);
1306 ds->ds_mbuf = NULL;
1307 }
1308 }
1309 }
1310
1311 /*
1312 * Stop the adapter and free any mbufs allocated to the
1313 * transmit lists.
1314 */
1315 static void
1316 vr_stop(ifp, disable)
1317 struct ifnet *ifp;
1318 int disable;
1319 {
1320 struct vr_softc *sc = ifp->if_softc;
1321 struct vr_descsoft *ds;
1322 int i;
1323
1324 /* Cancel one second timer. */
1325 callout_stop(&sc->vr_tick_ch);
1326
1327 /* Down the MII. */
1328 mii_down(&sc->vr_mii);
1329
1330 ifp = &sc->vr_ec.ec_if;
1331 ifp->if_timer = 0;
1332
1333 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1334 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1335 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1336 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1337 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1338
1339 /*
1340 * Release any queued transmit buffers.
1341 */
1342 for (i = 0; i < VR_NTXDESC; i++) {
1343 ds = VR_DSTX(sc, i);
1344 if (ds->ds_mbuf != NULL) {
1345 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1346 m_freem(ds->ds_mbuf);
1347 ds->ds_mbuf = NULL;
1348 }
1349 }
1350
1351 if (disable)
1352 vr_rxdrain(sc);
1353
1354 /*
1355 * Mark the interface down and cancel the watchdog timer.
1356 */
1357 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1358 ifp->if_timer = 0;
1359 }
1360
1361 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1362 static int vr_probe __P((struct device *, struct cfdata *, void *));
1363 static void vr_attach __P((struct device *, struct device *, void *));
1364 static void vr_shutdown __P((void *));
1365
1366 struct cfattach vr_ca = {
1367 sizeof (struct vr_softc), vr_probe, vr_attach
1368 };
1369
1370 static struct vr_type *
1371 vr_lookup(pa)
1372 struct pci_attach_args *pa;
1373 {
1374 struct vr_type *vrt;
1375
1376 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1377 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1378 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1379 return (vrt);
1380 }
1381 return (NULL);
1382 }
1383
1384 static int
1385 vr_probe(parent, match, aux)
1386 struct device *parent;
1387 struct cfdata *match;
1388 void *aux;
1389 {
1390 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1391
1392 if (vr_lookup(pa) != NULL)
1393 return (1);
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * Stop all chip I/O so that the kernel's probe routines don't
1400 * get confused by errant DMAs when rebooting.
1401 */
1402 static void
1403 vr_shutdown(arg)
1404 void *arg;
1405 {
1406 struct vr_softc *sc = (struct vr_softc *)arg;
1407
1408 vr_stop(&sc->vr_ec.ec_if, 1);
1409 }
1410
1411 /*
1412 * Attach the interface. Allocate softc structures, do ifmedia
1413 * setup and ethernet/BPF attach.
1414 */
1415 static void
1416 vr_attach(parent, self, aux)
1417 struct device *parent;
1418 struct device *self;
1419 void *aux;
1420 {
1421 struct vr_softc *sc = (struct vr_softc *) self;
1422 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1423 bus_dma_segment_t seg;
1424 struct vr_type *vrt;
1425 u_int32_t command;
1426 struct ifnet *ifp;
1427 u_char eaddr[ETHER_ADDR_LEN];
1428 int i, rseg, error;
1429
1430 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1431 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1432
1433 callout_init(&sc->vr_tick_ch);
1434
1435 vrt = vr_lookup(pa);
1436 if (vrt == NULL) {
1437 printf("\n");
1438 panic("vr_attach: impossible");
1439 }
1440
1441 printf(": %s Ethernet\n", vrt->vr_name);
1442
1443 /*
1444 * Handle power management nonsense.
1445 */
1446
1447 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1448 if (command == 0x01) {
1449 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1450 if (command & VR_PSTATE_MASK) {
1451 u_int32_t iobase, membase, irq;
1452
1453 /* Save important PCI config data. */
1454 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1455 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1456 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1457
1458 /* Reset the power state. */
1459 printf("%s: chip is in D%d power mode "
1460 "-- setting to D0\n",
1461 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1462 command &= 0xFFFFFFFC;
1463 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1464
1465 /* Restore PCI config data. */
1466 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1467 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1468 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1469 }
1470 }
1471
1472 /* Make sure bus mastering is enabled. */
1473 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1474 command |= PCI_COMMAND_MASTER_ENABLE;
1475 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1476
1477 /*
1478 * Map control/status registers.
1479 */
1480 {
1481 bus_space_tag_t iot, memt;
1482 bus_space_handle_t ioh, memh;
1483 int ioh_valid, memh_valid;
1484 pci_intr_handle_t intrhandle;
1485 const char *intrstr;
1486
1487 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1488 PCI_MAPREG_TYPE_IO, 0,
1489 &iot, &ioh, NULL, NULL) == 0);
1490 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1491 PCI_MAPREG_TYPE_MEM |
1492 PCI_MAPREG_MEM_TYPE_32BIT,
1493 0, &memt, &memh, NULL, NULL) == 0);
1494 #if defined(VR_USEIOSPACE)
1495 if (ioh_valid) {
1496 sc->vr_bst = iot;
1497 sc->vr_bsh = ioh;
1498 } else if (memh_valid) {
1499 sc->vr_bst = memt;
1500 sc->vr_bsh = memh;
1501 }
1502 #else
1503 if (memh_valid) {
1504 sc->vr_bst = memt;
1505 sc->vr_bsh = memh;
1506 } else if (ioh_valid) {
1507 sc->vr_bst = iot;
1508 sc->vr_bsh = ioh;
1509 }
1510 #endif
1511 else {
1512 printf(": unable to map device registers\n");
1513 return;
1514 }
1515
1516 /* Allocate interrupt */
1517 if (pci_intr_map(pa, &intrhandle)) {
1518 printf("%s: couldn't map interrupt\n",
1519 sc->vr_dev.dv_xname);
1520 return;
1521 }
1522 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1523 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1524 vr_intr, sc);
1525 if (sc->vr_ih == NULL) {
1526 printf("%s: couldn't establish interrupt",
1527 sc->vr_dev.dv_xname);
1528 if (intrstr != NULL)
1529 printf(" at %s", intrstr);
1530 printf("\n");
1531 }
1532 printf("%s: interrupting at %s\n",
1533 sc->vr_dev.dv_xname, intrstr);
1534 }
1535
1536 /* Reset the adapter. */
1537 vr_reset(sc);
1538
1539 /*
1540 * Get station address. The way the Rhine chips work,
1541 * you're not allowed to directly access the EEPROM once
1542 * they've been programmed a special way. Consequently,
1543 * we need to read the node address from the PAR0 and PAR1
1544 * registers.
1545 */
1546 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1547 DELAY(200);
1548 for (i = 0; i < ETHER_ADDR_LEN; i++)
1549 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1550
1551 /*
1552 * A Rhine chip was detected. Inform the world.
1553 */
1554 printf("%s: Ethernet address: %s\n",
1555 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1556
1557 bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
1558
1559 sc->vr_dmat = pa->pa_dmat;
1560
1561 /*
1562 * Allocate the control data structures, and create and load
1563 * the DMA map for it.
1564 */
1565 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1566 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1567 0)) != 0) {
1568 printf("%s: unable to allocate control data, error = %d\n",
1569 sc->vr_dev.dv_xname, error);
1570 goto fail_0;
1571 }
1572
1573 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1574 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1575 BUS_DMA_COHERENT)) != 0) {
1576 printf("%s: unable to map control data, error = %d\n",
1577 sc->vr_dev.dv_xname, error);
1578 goto fail_1;
1579 }
1580
1581 if ((error = bus_dmamap_create(sc->vr_dmat,
1582 sizeof(struct vr_control_data), 1,
1583 sizeof(struct vr_control_data), 0, 0,
1584 &sc->vr_cddmamap)) != 0) {
1585 printf("%s: unable to create control data DMA map, "
1586 "error = %d\n", sc->vr_dev.dv_xname, error);
1587 goto fail_2;
1588 }
1589
1590 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1591 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1592 0)) != 0) {
1593 printf("%s: unable to load control data DMA map, error = %d\n",
1594 sc->vr_dev.dv_xname, error);
1595 goto fail_3;
1596 }
1597
1598 /*
1599 * Create the transmit buffer DMA maps.
1600 */
1601 for (i = 0; i < VR_NTXDESC; i++) {
1602 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1603 1, MCLBYTES, 0, 0,
1604 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1605 printf("%s: unable to create tx DMA map %d, "
1606 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1607 goto fail_4;
1608 }
1609 }
1610
1611 /*
1612 * Create the receive buffer DMA maps.
1613 */
1614 for (i = 0; i < VR_NRXDESC; i++) {
1615 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1616 MCLBYTES, 0, 0,
1617 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1618 printf("%s: unable to create rx DMA map %d, "
1619 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1620 goto fail_5;
1621 }
1622 VR_DSRX(sc, i)->ds_mbuf = NULL;
1623 }
1624
1625 ifp = &sc->vr_ec.ec_if;
1626 ifp->if_softc = sc;
1627 ifp->if_mtu = ETHERMTU;
1628 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1629 ifp->if_ioctl = vr_ioctl;
1630 ifp->if_start = vr_start;
1631 ifp->if_watchdog = vr_watchdog;
1632 ifp->if_init = vr_init;
1633 ifp->if_stop = vr_stop;
1634 IFQ_SET_READY(&ifp->if_snd);
1635
1636 bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1637
1638 /*
1639 * Initialize MII/media info.
1640 */
1641 sc->vr_mii.mii_ifp = ifp;
1642 sc->vr_mii.mii_readreg = vr_mii_readreg;
1643 sc->vr_mii.mii_writereg = vr_mii_writereg;
1644 sc->vr_mii.mii_statchg = vr_mii_statchg;
1645 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1646 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1647 MII_OFFSET_ANY, 0);
1648 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1649 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1650 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1651 } else
1652 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1653
1654 /*
1655 * Call MI attach routines.
1656 */
1657 if_attach(ifp);
1658 ether_ifattach(ifp, sc->vr_enaddr);
1659
1660 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1661 if (sc->vr_ats == NULL)
1662 printf("%s: warning: couldn't establish shutdown hook\n",
1663 sc->vr_dev.dv_xname);
1664 return;
1665
1666 fail_5:
1667 for (i = 0; i < VR_NRXDESC; i++) {
1668 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1669 bus_dmamap_destroy(sc->vr_dmat,
1670 sc->vr_rxsoft[i].ds_dmamap);
1671 }
1672 fail_4:
1673 for (i = 0; i < VR_NTXDESC; i++) {
1674 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1675 bus_dmamap_destroy(sc->vr_dmat,
1676 sc->vr_txsoft[i].ds_dmamap);
1677 }
1678 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1679 fail_3:
1680 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1681 fail_2:
1682 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1683 sizeof(struct vr_control_data));
1684 fail_1:
1685 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1686 fail_0:
1687 return;
1688 }
1689