Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.45
      1 /*	$NetBSD: if_vr.c,v 1.45 2001/01/29 01:24:42 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include "opt_inet.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/sockio.h>
    112 #include <sys/mbuf.h>
    113 #include <sys/malloc.h>
    114 #include <sys/kernel.h>
    115 #include <sys/socket.h>
    116 #include <sys/device.h>
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #if defined(INET)
    127 #include <netinet/in.h>
    128 #include <netinet/if_inarp.h>
    129 #endif
    130 
    131 #include "bpfilter.h"
    132 #if NBPFILTER > 0
    133 #include <net/bpf.h>
    134 #endif
    135 
    136 #include <machine/bus.h>
    137 #include <machine/intr.h>
    138 #include <machine/endian.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 #include <dev/mii/mii_bitbang.h>
    143 
    144 #include <dev/pci/pcireg.h>
    145 #include <dev/pci/pcivar.h>
    146 #include <dev/pci/pcidevs.h>
    147 
    148 #include <dev/pci/if_vrreg.h>
    149 
    150 #define	VR_USEIOSPACE
    151 
    152 /*
    153  * Various supported device vendors/types and their names.
    154  */
    155 static struct vr_type {
    156 	pci_vendor_id_t		vr_vid;
    157 	pci_product_id_t	vr_did;
    158 	const char		*vr_name;
    159 } vr_devs[] = {
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    161 		"VIA VT3043 (Rhine) 10/100" },
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    163 		"VIA VT6102 (Rhine II) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    165 		"VIA VT86C100A (Rhine-II) 10/100" },
    166 	{ 0, 0, NULL }
    167 };
    168 
    169 /*
    170  * Transmit descriptor list size.
    171  */
    172 #define	VR_NTXDESC		64
    173 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    174 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    175 
    176 /*
    177  * Receive descriptor list size.
    178  */
    179 #define	VR_NRXDESC		64
    180 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    181 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    182 
    183 /*
    184  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    185  * them in a single clump that maps to a single DMA segment to make several
    186  * things easier.
    187  *
    188  * Note that since we always copy outgoing packets to aligned transmit
    189  * buffers, we can reduce the transmit descriptors to one per packet.
    190  */
    191 struct vr_control_data {
    192 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    193 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    194 };
    195 
    196 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    197 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    198 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    199 
    200 /*
    201  * Software state of transmit and receive descriptors.
    202  */
    203 struct vr_descsoft {
    204 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    205 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    206 };
    207 
    208 struct vr_softc {
    209 	struct device		vr_dev;		/* generic device glue */
    210 	void			*vr_ih;		/* interrupt cookie */
    211 	void			*vr_ats;	/* shutdown hook */
    212 	bus_space_tag_t		vr_bst;		/* bus space tag */
    213 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    214 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    215 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    216 	struct ethercom		vr_ec;		/* Ethernet common info */
    217 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    218 	struct mii_data		vr_mii;		/* MII/media info */
    219 
    220 	struct callout		vr_tick_ch;	/* tick callout */
    221 
    222 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    223 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    224 
    225 	/*
    226 	 * Software state for transmit and receive descriptors.
    227 	 */
    228 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    229 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    230 
    231 	/*
    232 	 * Control data structures.
    233 	 */
    234 	struct vr_control_data	*vr_control_data;
    235 
    236 	int	vr_txpending;		/* number of TX requests pending */
    237 	int	vr_txdirty;		/* first dirty TX descriptor */
    238 	int	vr_txlast;		/* last used TX descriptor */
    239 
    240 	int	vr_rxptr;		/* next ready RX descriptor */
    241 };
    242 
    243 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    244 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    245 
    246 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    247 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    248 
    249 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    250 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    251 
    252 #define	VR_CDTXSYNC(sc, x, ops)						\
    253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    254 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    255 
    256 #define	VR_CDRXSYNC(sc, x, ops)						\
    257 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    258 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    259 
    260 /*
    261  * Note we rely on MCLBYTES being a power of two below.
    262  */
    263 #define	VR_INIT_RXDESC(sc, i)						\
    264 do {									\
    265 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    266 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    267 									\
    268 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    269 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    270 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    271 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    272 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    273 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    274 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    275 } while (0)
    276 
    277 /*
    278  * register space access macros
    279  */
    280 #define	CSR_WRITE_4(sc, reg, val)					\
    281 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    282 #define	CSR_WRITE_2(sc, reg, val)					\
    283 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    284 #define	CSR_WRITE_1(sc, reg, val)					\
    285 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    286 
    287 #define	CSR_READ_4(sc, reg)						\
    288 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    289 #define	CSR_READ_2(sc, reg)						\
    290 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    291 #define	CSR_READ_1(sc, reg)						\
    292 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    293 
    294 #define	VR_TIMEOUT		1000
    295 
    296 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    297 
    298 static void vr_rxeof		__P((struct vr_softc *));
    299 static void vr_rxeoc		__P((struct vr_softc *));
    300 static void vr_txeof		__P((struct vr_softc *));
    301 static int vr_intr		__P((void *));
    302 static void vr_start		__P((struct ifnet *));
    303 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    304 static int vr_init		__P((struct ifnet *));
    305 static void vr_stop		__P((struct ifnet *, int));
    306 static void vr_rxdrain		__P((struct vr_softc *));
    307 static void vr_watchdog		__P((struct ifnet *));
    308 static void vr_tick		__P((void *));
    309 
    310 static int vr_ifmedia_upd	__P((struct ifnet *));
    311 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    312 
    313 static int vr_mii_readreg	__P((struct device *, int, int));
    314 static void vr_mii_writereg	__P((struct device *, int, int, int));
    315 static void vr_mii_statchg	__P((struct device *));
    316 
    317 static u_int8_t vr_calchash	__P((u_int8_t *));
    318 static void vr_setmulti		__P((struct vr_softc *));
    319 static void vr_reset		__P((struct vr_softc *));
    320 
    321 int	vr_copy_small = 0;
    322 
    323 #define	VR_SETBIT(sc, reg, x)				\
    324 	CSR_WRITE_1(sc, reg,				\
    325 		CSR_READ_1(sc, reg) | x)
    326 
    327 #define	VR_CLRBIT(sc, reg, x)				\
    328 	CSR_WRITE_1(sc, reg,				\
    329 		CSR_READ_1(sc, reg) & ~x)
    330 
    331 #define	VR_SETBIT16(sc, reg, x)				\
    332 	CSR_WRITE_2(sc, reg,				\
    333 		CSR_READ_2(sc, reg) | x)
    334 
    335 #define	VR_CLRBIT16(sc, reg, x)				\
    336 	CSR_WRITE_2(sc, reg,				\
    337 		CSR_READ_2(sc, reg) & ~x)
    338 
    339 #define	VR_SETBIT32(sc, reg, x)				\
    340 	CSR_WRITE_4(sc, reg,				\
    341 		CSR_READ_4(sc, reg) | x)
    342 
    343 #define	VR_CLRBIT32(sc, reg, x)				\
    344 	CSR_WRITE_4(sc, reg,				\
    345 		CSR_READ_4(sc, reg) & ~x)
    346 
    347 /*
    348  * MII bit-bang glue.
    349  */
    350 u_int32_t vr_mii_bitbang_read __P((struct device *));
    351 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    352 
    353 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    354 	vr_mii_bitbang_read,
    355 	vr_mii_bitbang_write,
    356 	{
    357 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    358 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    359 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    360 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    361 		0,			/* MII_BIT_DIR_PHY_HOST */
    362 	}
    363 };
    364 
    365 u_int32_t
    366 vr_mii_bitbang_read(self)
    367 	struct device *self;
    368 {
    369 	struct vr_softc *sc = (void *) self;
    370 
    371 	return (CSR_READ_1(sc, VR_MIICMD));
    372 }
    373 
    374 void
    375 vr_mii_bitbang_write(self, val)
    376 	struct device *self;
    377 	u_int32_t val;
    378 {
    379 	struct vr_softc *sc = (void *) self;
    380 
    381 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    382 }
    383 
    384 /*
    385  * Read an PHY register through the MII.
    386  */
    387 static int
    388 vr_mii_readreg(self, phy, reg)
    389 	struct device *self;
    390 	int phy, reg;
    391 {
    392 	struct vr_softc *sc = (void *) self;
    393 
    394 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    395 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    396 }
    397 
    398 /*
    399  * Write to a PHY register through the MII.
    400  */
    401 static void
    402 vr_mii_writereg(self, phy, reg, val)
    403 	struct device *self;
    404 	int phy, reg, val;
    405 {
    406 	struct vr_softc *sc = (void *) self;
    407 
    408 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    409 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    410 }
    411 
    412 static void
    413 vr_mii_statchg(self)
    414 	struct device *self;
    415 {
    416 	struct vr_softc *sc = (struct vr_softc *)self;
    417 
    418 	/*
    419 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    420 	 * register, we first have to put the transmit and/or receive logic
    421 	 * in the idle state.
    422 	 */
    423 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    424 
    425 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    427 	else
    428 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    429 
    430 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    431 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    432 }
    433 
    434 /*
    435  * Calculate CRC of a multicast group address, return the lower 6 bits.
    436  */
    437 static u_int8_t
    438 vr_calchash(addr)
    439 	u_int8_t *addr;
    440 {
    441 	u_int32_t crc, carry;
    442 	int i, j;
    443 	u_int8_t c;
    444 
    445 	/* Compute CRC for the address value. */
    446 	crc = 0xFFFFFFFF; /* initial value */
    447 
    448 	for (i = 0; i < 6; i++) {
    449 		c = *(addr + i);
    450 		for (j = 0; j < 8; j++) {
    451 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
    452 			crc <<= 1;
    453 			c >>= 1;
    454 			if (carry)
    455 				crc = (crc ^ 0x04c11db6) | carry;
    456 		}
    457 	}
    458 
    459 	/* return the filter bit position */
    460 	return ((crc >> 26) & 0x0000003F);
    461 }
    462 
    463 /*
    464  * Program the 64-bit multicast hash filter.
    465  */
    466 static void
    467 vr_setmulti(sc)
    468 	struct vr_softc *sc;
    469 {
    470 	struct ifnet *ifp;
    471 	int h = 0;
    472 	u_int32_t hashes[2] = { 0, 0 };
    473 	struct ether_multistep step;
    474 	struct ether_multi *enm;
    475 	int mcnt = 0;
    476 	u_int8_t rxfilt;
    477 
    478 	ifp = &sc->vr_ec.ec_if;
    479 
    480 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    481 
    482 	if (ifp->if_flags & IFF_PROMISC) {
    483 allmulti:
    484 		ifp->if_flags |= IFF_ALLMULTI;
    485 		rxfilt |= VR_RXCFG_RX_MULTI;
    486 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    487 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    488 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    489 		return;
    490 	}
    491 
    492 	/* first, zot all the existing hash bits */
    493 	CSR_WRITE_4(sc, VR_MAR0, 0);
    494 	CSR_WRITE_4(sc, VR_MAR1, 0);
    495 
    496 	/* now program new ones */
    497 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    498 	while (enm != NULL) {
    499 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    500 		    ETHER_ADDR_LEN) != 0)
    501 			goto allmulti;
    502 
    503 		h = vr_calchash(enm->enm_addrlo);
    504 
    505 		if (h < 32)
    506 			hashes[0] |= (1 << h);
    507 		else
    508 			hashes[1] |= (1 << (h - 32));
    509 		ETHER_NEXT_MULTI(step, enm);
    510 		mcnt++;
    511 	}
    512 
    513 	ifp->if_flags &= ~IFF_ALLMULTI;
    514 
    515 	if (mcnt)
    516 		rxfilt |= VR_RXCFG_RX_MULTI;
    517 	else
    518 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    519 
    520 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    521 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    522 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    523 }
    524 
    525 static void
    526 vr_reset(sc)
    527 	struct vr_softc *sc;
    528 {
    529 	int i;
    530 
    531 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    532 
    533 	for (i = 0; i < VR_TIMEOUT; i++) {
    534 		DELAY(10);
    535 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    536 			break;
    537 	}
    538 	if (i == VR_TIMEOUT)
    539 		printf("%s: reset never completed!\n",
    540 			sc->vr_dev.dv_xname);
    541 
    542 	/* Wait a little while for the chip to get its brains in order. */
    543 	DELAY(1000);
    544 }
    545 
    546 /*
    547  * Initialize an RX descriptor and attach an MBUF cluster.
    548  * Note: the length fields are only 11 bits wide, which means the
    549  * largest size we can specify is 2047. This is important because
    550  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    551  * overflow the field and make a mess.
    552  */
    553 static int
    554 vr_add_rxbuf(sc, i)
    555 	struct vr_softc *sc;
    556 	int i;
    557 {
    558 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    559 	struct mbuf *m_new;
    560 	int error;
    561 
    562 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    563 	if (m_new == NULL)
    564 		return (ENOBUFS);
    565 
    566 	MCLGET(m_new, M_DONTWAIT);
    567 	if ((m_new->m_flags & M_EXT) == 0) {
    568 		m_freem(m_new);
    569 		return (ENOBUFS);
    570 	}
    571 
    572 	if (ds->ds_mbuf != NULL)
    573 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    574 
    575 	ds->ds_mbuf = m_new;
    576 
    577 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    578 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
    579 	if (error) {
    580 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    581 		    sc->vr_dev.dv_xname, i, error);
    582 		panic("vr_add_rxbuf");		/* XXX */
    583 	}
    584 
    585 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    586 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    587 
    588 	VR_INIT_RXDESC(sc, i);
    589 
    590 	return (0);
    591 }
    592 
    593 /*
    594  * A frame has been uploaded: pass the resulting mbuf chain up to
    595  * the higher level protocols.
    596  */
    597 static void
    598 vr_rxeof(sc)
    599 	struct vr_softc *sc;
    600 {
    601 	struct mbuf *m;
    602 	struct ifnet *ifp;
    603 	struct vr_desc *d;
    604 	struct vr_descsoft *ds;
    605 	int i, total_len;
    606 	u_int32_t rxstat;
    607 
    608 	ifp = &sc->vr_ec.ec_if;
    609 
    610 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    611 		d = VR_CDRX(sc, i);
    612 		ds = VR_DSRX(sc, i);
    613 
    614 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    615 
    616 		rxstat = le32toh(d->vr_status);
    617 
    618 		if (rxstat & VR_RXSTAT_OWN) {
    619 			/*
    620 			 * We have processed all of the receive buffers.
    621 			 */
    622 			break;
    623 		}
    624 
    625 		/*
    626 		 * If an error occurs, update stats, clear the
    627 		 * status word and leave the mbuf cluster in place:
    628 		 * it should simply get re-used next time this descriptor
    629 		 * comes up in the ring.
    630 		 */
    631 		if (rxstat & VR_RXSTAT_RXERR) {
    632 			const char *errstr;
    633 
    634 			ifp->if_ierrors++;
    635 			switch (rxstat & 0x000000FF) {
    636 			case VR_RXSTAT_CRCERR:
    637 				errstr = "crc error";
    638 				break;
    639 			case VR_RXSTAT_FRAMEALIGNERR:
    640 				errstr = "frame alignment error";
    641 				break;
    642 			case VR_RXSTAT_FIFOOFLOW:
    643 				errstr = "FIFO overflow";
    644 				break;
    645 			case VR_RXSTAT_GIANT:
    646 				errstr = "received giant packet";
    647 				break;
    648 			case VR_RXSTAT_RUNT:
    649 				errstr = "received runt packet";
    650 				break;
    651 			case VR_RXSTAT_BUSERR:
    652 				errstr = "system bus error";
    653 				break;
    654 			case VR_RXSTAT_BUFFERR:
    655 				errstr = "rx buffer error";
    656 				break;
    657 			default:
    658 				errstr = "unknown rx error";
    659 				break;
    660 			}
    661 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    662 			    errstr);
    663 
    664 			VR_INIT_RXDESC(sc, i);
    665 
    666 			continue;
    667 		}
    668 
    669 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    670 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    671 
    672 		/* No errors; receive the packet. */
    673 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    674 
    675 #ifdef __NO_STRICT_ALIGNMENT
    676 		/*
    677 		 * If the packet is small enough to fit in a
    678 		 * single header mbuf, allocate one and copy
    679 		 * the data into it.  This greatly reduces
    680 		 * memory consumption when we receive lots
    681 		 * of small packets.
    682 		 *
    683 		 * Otherwise, we add a new buffer to the receive
    684 		 * chain.  If this fails, we drop the packet and
    685 		 * recycle the old buffer.
    686 		 */
    687 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    688 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    689 			if (m == NULL)
    690 				goto dropit;
    691 			memcpy(mtod(m, caddr_t),
    692 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    693 			VR_INIT_RXDESC(sc, i);
    694 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    695 			    ds->ds_dmamap->dm_mapsize,
    696 			    BUS_DMASYNC_PREREAD);
    697 		} else {
    698 			m = ds->ds_mbuf;
    699 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    700  dropit:
    701 				ifp->if_ierrors++;
    702 				VR_INIT_RXDESC(sc, i);
    703 				bus_dmamap_sync(sc->vr_dmat,
    704 				    ds->ds_dmamap, 0,
    705 				    ds->ds_dmamap->dm_mapsize,
    706 				    BUS_DMASYNC_PREREAD);
    707 				continue;
    708 			}
    709 		}
    710 #else
    711 		/*
    712 		 * The Rhine's packet buffers must be 4-byte aligned.
    713 		 * But this means that the data after the Ethernet header
    714 		 * is misaligned.  We must allocate a new buffer and
    715 		 * copy the data, shifted forward 2 bytes.
    716 		 */
    717 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    718 		if (m == NULL) {
    719  dropit:
    720 			ifp->if_ierrors++;
    721 			VR_INIT_RXDESC(sc, i);
    722 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    723 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    724 			continue;
    725 		}
    726 		if (total_len > (MHLEN - 2)) {
    727 			MCLGET(m, M_DONTWAIT);
    728 			if ((m->m_flags & M_EXT) == 0) {
    729 				m_freem(m);
    730 				goto dropit;
    731 			}
    732 		}
    733 		m->m_data += 2;
    734 
    735 		/*
    736 		 * Note that we use clusters for incoming frames, so the
    737 		 * buffer is virtually contiguous.
    738 		 */
    739 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    740 		    total_len);
    741 
    742 		/* Allow the recieve descriptor to continue using its mbuf. */
    743 		VR_INIT_RXDESC(sc, i);
    744 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    745 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    746 #endif /* __NO_STRICT_ALIGNMENT */
    747 
    748 		/*
    749 		 * The Rhine chip includes the FCS with every
    750 		 * received packet.
    751 		 */
    752 		m->m_flags |= M_HASFCS;
    753 
    754 		ifp->if_ipackets++;
    755 		m->m_pkthdr.rcvif = ifp;
    756 		m->m_pkthdr.len = m->m_len = total_len;
    757 #if NBPFILTER > 0
    758 		/*
    759 		 * Handle BPF listeners. Let the BPF user see the packet, but
    760 		 * don't pass it up to the ether_input() layer unless it's
    761 		 * a broadcast packet, multicast packet, matches our ethernet
    762 		 * address or the interface is in promiscuous mode.
    763 		 */
    764 		if (ifp->if_bpf)
    765 			bpf_mtap(ifp->if_bpf, m);
    766 #endif
    767 		/* Pass it on. */
    768 		(*ifp->if_input)(ifp, m);
    769 	}
    770 
    771 	/* Update the receive pointer. */
    772 	sc->vr_rxptr = i;
    773 }
    774 
    775 void
    776 vr_rxeoc(sc)
    777 	struct vr_softc *sc;
    778 {
    779 
    780 	vr_rxeof(sc);
    781 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    782 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    783 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    784 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    785 }
    786 
    787 /*
    788  * A frame was downloaded to the chip. It's safe for us to clean up
    789  * the list buffers.
    790  */
    791 static void
    792 vr_txeof(sc)
    793 	struct vr_softc *sc;
    794 {
    795 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    796 	struct vr_desc *d;
    797 	struct vr_descsoft *ds;
    798 	u_int32_t txstat;
    799 	int i;
    800 
    801 	ifp->if_flags &= ~IFF_OACTIVE;
    802 
    803 	/*
    804 	 * Go through our tx list and free mbufs for those
    805 	 * frames that have been transmitted.
    806 	 */
    807 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    808 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    809 		d = VR_CDTX(sc, i);
    810 		ds = VR_DSTX(sc, i);
    811 
    812 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    813 
    814 		txstat = le32toh(d->vr_status);
    815 		if (txstat & VR_TXSTAT_OWN)
    816 			break;
    817 
    818 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    819 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    820 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    821 		m_freem(ds->ds_mbuf);
    822 		ds->ds_mbuf = NULL;
    823 
    824 		if (txstat & VR_TXSTAT_ERRSUM) {
    825 			ifp->if_oerrors++;
    826 			if (txstat & VR_TXSTAT_DEFER)
    827 				ifp->if_collisions++;
    828 			if (txstat & VR_TXSTAT_LATECOLL)
    829 				ifp->if_collisions++;
    830 		}
    831 
    832 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    833 		ifp->if_opackets++;
    834 	}
    835 
    836 	/* Update the dirty transmit buffer pointer. */
    837 	sc->vr_txdirty = i;
    838 
    839 	/*
    840 	 * Cancel the watchdog timer if there are no pending
    841 	 * transmissions.
    842 	 */
    843 	if (sc->vr_txpending == 0)
    844 		ifp->if_timer = 0;
    845 }
    846 
    847 static int
    848 vr_intr(arg)
    849 	void *arg;
    850 {
    851 	struct vr_softc *sc;
    852 	struct ifnet *ifp;
    853 	u_int16_t status;
    854 	int handled = 0, dotx = 0;
    855 
    856 	sc = arg;
    857 	ifp = &sc->vr_ec.ec_if;
    858 
    859 	/* Suppress unwanted interrupts. */
    860 	if ((ifp->if_flags & IFF_UP) == 0) {
    861 		vr_stop(ifp, 1);
    862 		return (0);
    863 	}
    864 
    865 	/* Disable interrupts. */
    866 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    867 
    868 	for (;;) {
    869 		status = CSR_READ_2(sc, VR_ISR);
    870 		if (status)
    871 			CSR_WRITE_2(sc, VR_ISR, status);
    872 
    873 		if ((status & VR_INTRS) == 0)
    874 			break;
    875 
    876 		handled = 1;
    877 
    878 		if (status & VR_ISR_RX_OK)
    879 			vr_rxeof(sc);
    880 
    881 		if (status &
    882 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    883 		     VR_ISR_RX_DROPPED))
    884 			vr_rxeoc(sc);
    885 
    886 		if (status & VR_ISR_TX_OK) {
    887 			dotx = 1;
    888 			vr_txeof(sc);
    889 		}
    890 
    891 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    892 			if (status & VR_ISR_TX_UNDERRUN)
    893 				printf("%s: transmit underrun\n",
    894 				    sc->vr_dev.dv_xname);
    895 			if (status & VR_ISR_TX_ABRT)
    896 				printf("%s: transmit aborted\n",
    897 				    sc->vr_dev.dv_xname);
    898 			ifp->if_oerrors++;
    899 			dotx = 1;
    900 			vr_txeof(sc);
    901 			if (sc->vr_txpending) {
    902 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    903 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    904 			}
    905 		}
    906 
    907 		if (status & VR_ISR_BUSERR) {
    908 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    909 			/* vr_init() calls vr_start() */
    910 			dotx = 0;
    911 			(void) vr_init(ifp);
    912 		}
    913 	}
    914 
    915 	/* Re-enable interrupts. */
    916 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    917 
    918 	if (dotx)
    919 		vr_start(ifp);
    920 
    921 	return (handled);
    922 }
    923 
    924 /*
    925  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    926  * to the mbuf data regions directly in the transmit lists. We also save a
    927  * copy of the pointers since the transmit list fragment pointers are
    928  * physical addresses.
    929  */
    930 static void
    931 vr_start(ifp)
    932 	struct ifnet *ifp;
    933 {
    934 	struct vr_softc *sc = ifp->if_softc;
    935 	struct mbuf *m0, *m;
    936 	struct vr_desc *d;
    937 	struct vr_descsoft *ds;
    938 	int error, firsttx, nexttx, opending;
    939 
    940 	/*
    941 	 * Remember the previous txpending and the first transmit
    942 	 * descriptor we use.
    943 	 */
    944 	opending = sc->vr_txpending;
    945 	firsttx = VR_NEXTTX(sc->vr_txlast);
    946 
    947 	/*
    948 	 * Loop through the send queue, setting up transmit descriptors
    949 	 * until we drain the queue, or use up all available transmit
    950 	 * descriptors.
    951 	 */
    952 	while (sc->vr_txpending < VR_NTXDESC) {
    953 		/*
    954 		 * Grab a packet off the queue.
    955 		 */
    956 		IFQ_POLL(&ifp->if_snd, m0);
    957 		if (m0 == NULL)
    958 			break;
    959 		m = NULL;
    960 
    961 		/*
    962 		 * Get the next available transmit descriptor.
    963 		 */
    964 		nexttx = VR_NEXTTX(sc->vr_txlast);
    965 		d = VR_CDTX(sc, nexttx);
    966 		ds = VR_DSTX(sc, nexttx);
    967 
    968 		/*
    969 		 * Load the DMA map.  If this fails, the packet didn't
    970 		 * fit in one DMA segment, and we need to copy.  Note,
    971 		 * the packet must also be aligned.
    972 		 */
    973 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    974 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    975 		     BUS_DMA_NOWAIT) != 0) {
    976 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    977 			if (m == NULL) {
    978 				printf("%s: unable to allocate Tx mbuf\n",
    979 				    sc->vr_dev.dv_xname);
    980 				break;
    981 			}
    982 			if (m0->m_pkthdr.len > MHLEN) {
    983 				MCLGET(m, M_DONTWAIT);
    984 				if ((m->m_flags & M_EXT) == 0) {
    985 					printf("%s: unable to allocate Tx "
    986 					    "cluster\n", sc->vr_dev.dv_xname);
    987 					m_freem(m);
    988 					break;
    989 				}
    990 			}
    991 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    992 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    993 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    994 			    ds->ds_dmamap, m, BUS_DMA_NOWAIT);
    995 			if (error) {
    996 				printf("%s: unable to load Tx buffer, "
    997 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    998 				break;
    999 			}
   1000 		}
   1001 
   1002 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1003 		if (m != NULL) {
   1004 			m_freem(m0);
   1005 			m0 = m;
   1006 		}
   1007 
   1008 		/* Sync the DMA map. */
   1009 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1010 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1011 
   1012 		/*
   1013 		 * Store a pointer to the packet so we can free it later.
   1014 		 */
   1015 		ds->ds_mbuf = m0;
   1016 
   1017 #if NBPFILTER > 0
   1018 		/*
   1019 		 * If there's a BPF listener, bounce a copy of this frame
   1020 		 * to him.
   1021 		 */
   1022 		if (ifp->if_bpf)
   1023 			bpf_mtap(ifp->if_bpf, m0);
   1024 #endif
   1025 
   1026 		/*
   1027 		 * Fill in the transmit descriptor.  The Rhine
   1028 		 * doesn't auto-pad, so we have to do this ourselves.
   1029 		 */
   1030 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1031 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1032 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1033 		d->vr_ctl |=
   1034 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1035 		    VR_TXCTL_LASTFRAG);
   1036 
   1037 		/*
   1038 		 * If this is the first descriptor we're enqueuing,
   1039 		 * don't give it to the Rhine yet.  That could cause
   1040 		 * a race condition.  We'll do it below.
   1041 		 */
   1042 		if (nexttx == firsttx)
   1043 			d->vr_status = 0;
   1044 		else
   1045 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1046 
   1047 		VR_CDTXSYNC(sc, nexttx,
   1048 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1049 
   1050 		/* Advance the tx pointer. */
   1051 		sc->vr_txpending++;
   1052 		sc->vr_txlast = nexttx;
   1053 	}
   1054 
   1055 	if (sc->vr_txpending == VR_NTXDESC) {
   1056 		/* No more slots left; notify upper layer. */
   1057 		ifp->if_flags |= IFF_OACTIVE;
   1058 	}
   1059 
   1060 	if (sc->vr_txpending != opending) {
   1061 		/*
   1062 		 * We enqueued packets.  If the transmitter was idle,
   1063 		 * reset the txdirty pointer.
   1064 		 */
   1065 		if (opending == 0)
   1066 			sc->vr_txdirty = firsttx;
   1067 
   1068 		/*
   1069 		 * Cause a transmit interrupt to happen on the
   1070 		 * last packet we enqueued.
   1071 		 */
   1072 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1073 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1074 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1075 
   1076 		/*
   1077 		 * The entire packet chain is set up.  Give the
   1078 		 * first descriptor to the Rhine now.
   1079 		 */
   1080 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1081 		VR_CDTXSYNC(sc, firsttx,
   1082 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1083 
   1084 		/* Start the transmitter. */
   1085 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1086 
   1087 		/* Set the watchdog timer in case the chip flakes out. */
   1088 		ifp->if_timer = 5;
   1089 	}
   1090 }
   1091 
   1092 /*
   1093  * Initialize the interface.  Must be called at splnet.
   1094  */
   1095 static int
   1096 vr_init(ifp)
   1097 	struct ifnet *ifp;
   1098 {
   1099 	struct vr_softc *sc = ifp->if_softc;
   1100 	struct vr_desc *d;
   1101 	struct vr_descsoft *ds;
   1102 	int i, error = 0;
   1103 
   1104 	/* Cancel pending I/O. */
   1105 	vr_stop(ifp, 0);
   1106 
   1107 	/* Reset the Rhine to a known state. */
   1108 	vr_reset(sc);
   1109 
   1110 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1111 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1112 
   1113 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1114 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1115 
   1116 	/*
   1117 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1118 	 * to the end of the list so that it will wrap around to the first
   1119 	 * descriptor when the first packet is transmitted.
   1120 	 */
   1121 	for (i = 0; i < VR_NTXDESC; i++) {
   1122 		d = VR_CDTX(sc, i);
   1123 		memset(d, 0, sizeof(struct vr_desc));
   1124 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1125 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1126 	}
   1127 	sc->vr_txpending = 0;
   1128 	sc->vr_txdirty = 0;
   1129 	sc->vr_txlast = VR_NTXDESC - 1;
   1130 
   1131 	/*
   1132 	 * Initialize the receive descriptor ring.
   1133 	 */
   1134 	for (i = 0; i < VR_NRXDESC; i++) {
   1135 		ds = VR_DSRX(sc, i);
   1136 		if (ds->ds_mbuf == NULL) {
   1137 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1138 				printf("%s: unable to allocate or map rx "
   1139 				    "buffer %d, error = %d\n",
   1140 				    sc->vr_dev.dv_xname, i, error);
   1141 				/*
   1142 				 * XXX Should attempt to run with fewer receive
   1143 				 * XXX buffers instead of just failing.
   1144 				 */
   1145 				vr_rxdrain(sc);
   1146 				goto out;
   1147 			}
   1148 		}
   1149 	}
   1150 	sc->vr_rxptr = 0;
   1151 
   1152 	/* If we want promiscuous mode, set the allframes bit. */
   1153 	if (ifp->if_flags & IFF_PROMISC)
   1154 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1155 	else
   1156 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1157 
   1158 	/* Set capture broadcast bit to capture broadcast frames. */
   1159 	if (ifp->if_flags & IFF_BROADCAST)
   1160 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1161 	else
   1162 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1163 
   1164 	/* Program the multicast filter, if necessary. */
   1165 	vr_setmulti(sc);
   1166 
   1167 	/* Give the transmit and recieve rings to the Rhine. */
   1168 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1169 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1170 
   1171 	/* Set current media. */
   1172 	mii_mediachg(&sc->vr_mii);
   1173 
   1174 	/* Enable receiver and transmitter. */
   1175 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1176 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1177 				    VR_CMD_RX_GO);
   1178 
   1179 	/* Enable interrupts. */
   1180 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1181 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1182 
   1183 	ifp->if_flags |= IFF_RUNNING;
   1184 	ifp->if_flags &= ~IFF_OACTIVE;
   1185 
   1186 	/* Start one second timer. */
   1187 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1188 
   1189 	/* Attempt to start output on the interface. */
   1190 	vr_start(ifp);
   1191 
   1192  out:
   1193 	if (error)
   1194 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1195 	return (error);
   1196 }
   1197 
   1198 /*
   1199  * Set media options.
   1200  */
   1201 static int
   1202 vr_ifmedia_upd(ifp)
   1203 	struct ifnet *ifp;
   1204 {
   1205 	struct vr_softc *sc = ifp->if_softc;
   1206 
   1207 	if (ifp->if_flags & IFF_UP)
   1208 		mii_mediachg(&sc->vr_mii);
   1209 	return (0);
   1210 }
   1211 
   1212 /*
   1213  * Report current media status.
   1214  */
   1215 static void
   1216 vr_ifmedia_sts(ifp, ifmr)
   1217 	struct ifnet *ifp;
   1218 	struct ifmediareq *ifmr;
   1219 {
   1220 	struct vr_softc *sc = ifp->if_softc;
   1221 
   1222 	mii_pollstat(&sc->vr_mii);
   1223 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1224 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1225 }
   1226 
   1227 static int
   1228 vr_ioctl(ifp, command, data)
   1229 	struct ifnet *ifp;
   1230 	u_long command;
   1231 	caddr_t data;
   1232 {
   1233 	struct vr_softc *sc = ifp->if_softc;
   1234 	struct ifreq *ifr = (struct ifreq *)data;
   1235 	int s, error = 0;
   1236 
   1237 	s = splnet();
   1238 
   1239 	switch (command) {
   1240 	case SIOCGIFMEDIA:
   1241 	case SIOCSIFMEDIA:
   1242 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1243 		break;
   1244 
   1245 	default:
   1246 		error = ether_ioctl(ifp, command, data);
   1247 		if (error == ENETRESET) {
   1248 			/*
   1249 			 * Multicast list has changed; set the hardware filter
   1250 			 * accordingly.
   1251 			 */
   1252 			vr_setmulti(sc);
   1253 			error = 0;
   1254 		}
   1255 		break;
   1256 	}
   1257 
   1258 	splx(s);
   1259 	return (error);
   1260 }
   1261 
   1262 static void
   1263 vr_watchdog(ifp)
   1264 	struct ifnet *ifp;
   1265 {
   1266 	struct vr_softc *sc = ifp->if_softc;
   1267 
   1268 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1269 	ifp->if_oerrors++;
   1270 
   1271 	(void) vr_init(ifp);
   1272 }
   1273 
   1274 /*
   1275  * One second timer, used to tick MII.
   1276  */
   1277 static void
   1278 vr_tick(arg)
   1279 	void *arg;
   1280 {
   1281 	struct vr_softc *sc = arg;
   1282 	int s;
   1283 
   1284 	s = splnet();
   1285 	mii_tick(&sc->vr_mii);
   1286 	splx(s);
   1287 
   1288 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1289 }
   1290 
   1291 /*
   1292  * Drain the receive queue.
   1293  */
   1294 static void
   1295 vr_rxdrain(sc)
   1296 	struct vr_softc *sc;
   1297 {
   1298 	struct vr_descsoft *ds;
   1299 	int i;
   1300 
   1301 	for (i = 0; i < VR_NRXDESC; i++) {
   1302 		ds = VR_DSRX(sc, i);
   1303 		if (ds->ds_mbuf != NULL) {
   1304 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1305 			m_freem(ds->ds_mbuf);
   1306 			ds->ds_mbuf = NULL;
   1307 		}
   1308 	}
   1309 }
   1310 
   1311 /*
   1312  * Stop the adapter and free any mbufs allocated to the
   1313  * transmit lists.
   1314  */
   1315 static void
   1316 vr_stop(ifp, disable)
   1317 	struct ifnet *ifp;
   1318 	int disable;
   1319 {
   1320 	struct vr_softc *sc = ifp->if_softc;
   1321 	struct vr_descsoft *ds;
   1322 	int i;
   1323 
   1324 	/* Cancel one second timer. */
   1325 	callout_stop(&sc->vr_tick_ch);
   1326 
   1327 	/* Down the MII. */
   1328 	mii_down(&sc->vr_mii);
   1329 
   1330 	ifp = &sc->vr_ec.ec_if;
   1331 	ifp->if_timer = 0;
   1332 
   1333 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1334 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1335 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1336 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1337 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1338 
   1339 	/*
   1340 	 * Release any queued transmit buffers.
   1341 	 */
   1342 	for (i = 0; i < VR_NTXDESC; i++) {
   1343 		ds = VR_DSTX(sc, i);
   1344 		if (ds->ds_mbuf != NULL) {
   1345 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1346 			m_freem(ds->ds_mbuf);
   1347 			ds->ds_mbuf = NULL;
   1348 		}
   1349 	}
   1350 
   1351 	if (disable)
   1352 		vr_rxdrain(sc);
   1353 
   1354 	/*
   1355 	 * Mark the interface down and cancel the watchdog timer.
   1356 	 */
   1357 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1358 	ifp->if_timer = 0;
   1359 }
   1360 
   1361 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1362 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1363 static void vr_attach __P((struct device *, struct device *, void *));
   1364 static void vr_shutdown __P((void *));
   1365 
   1366 struct cfattach vr_ca = {
   1367 	sizeof (struct vr_softc), vr_probe, vr_attach
   1368 };
   1369 
   1370 static struct vr_type *
   1371 vr_lookup(pa)
   1372 	struct pci_attach_args *pa;
   1373 {
   1374 	struct vr_type *vrt;
   1375 
   1376 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1377 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1378 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1379 			return (vrt);
   1380 	}
   1381 	return (NULL);
   1382 }
   1383 
   1384 static int
   1385 vr_probe(parent, match, aux)
   1386 	struct device *parent;
   1387 	struct cfdata *match;
   1388 	void *aux;
   1389 {
   1390 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1391 
   1392 	if (vr_lookup(pa) != NULL)
   1393 		return (1);
   1394 
   1395 	return (0);
   1396 }
   1397 
   1398 /*
   1399  * Stop all chip I/O so that the kernel's probe routines don't
   1400  * get confused by errant DMAs when rebooting.
   1401  */
   1402 static void
   1403 vr_shutdown(arg)
   1404 	void *arg;
   1405 {
   1406 	struct vr_softc *sc = (struct vr_softc *)arg;
   1407 
   1408 	vr_stop(&sc->vr_ec.ec_if, 1);
   1409 }
   1410 
   1411 /*
   1412  * Attach the interface. Allocate softc structures, do ifmedia
   1413  * setup and ethernet/BPF attach.
   1414  */
   1415 static void
   1416 vr_attach(parent, self, aux)
   1417 	struct device *parent;
   1418 	struct device *self;
   1419 	void *aux;
   1420 {
   1421 	struct vr_softc *sc = (struct vr_softc *) self;
   1422 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1423 	bus_dma_segment_t seg;
   1424 	struct vr_type *vrt;
   1425 	u_int32_t command;
   1426 	struct ifnet *ifp;
   1427 	u_char eaddr[ETHER_ADDR_LEN];
   1428 	int i, rseg, error;
   1429 
   1430 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1431 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1432 
   1433 	callout_init(&sc->vr_tick_ch);
   1434 
   1435 	vrt = vr_lookup(pa);
   1436 	if (vrt == NULL) {
   1437 		printf("\n");
   1438 		panic("vr_attach: impossible");
   1439 	}
   1440 
   1441 	printf(": %s Ethernet\n", vrt->vr_name);
   1442 
   1443 	/*
   1444 	 * Handle power management nonsense.
   1445 	 */
   1446 
   1447 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1448 	if (command == 0x01) {
   1449 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1450 		if (command & VR_PSTATE_MASK) {
   1451 			u_int32_t iobase, membase, irq;
   1452 
   1453 			/* Save important PCI config data. */
   1454 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1455 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1456 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1457 
   1458 			/* Reset the power state. */
   1459 			printf("%s: chip is in D%d power mode "
   1460 				"-- setting to D0\n",
   1461 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1462 			command &= 0xFFFFFFFC;
   1463 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1464 
   1465 			/* Restore PCI config data. */
   1466 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1467 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1468 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1469 		}
   1470 	}
   1471 
   1472 	/* Make sure bus mastering is enabled. */
   1473 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1474 	command |= PCI_COMMAND_MASTER_ENABLE;
   1475 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1476 
   1477 	/*
   1478 	 * Map control/status registers.
   1479 	 */
   1480 	{
   1481 		bus_space_tag_t iot, memt;
   1482 		bus_space_handle_t ioh, memh;
   1483 		int ioh_valid, memh_valid;
   1484 		pci_intr_handle_t intrhandle;
   1485 		const char *intrstr;
   1486 
   1487 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1488 			PCI_MAPREG_TYPE_IO, 0,
   1489 			&iot, &ioh, NULL, NULL) == 0);
   1490 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1491 			PCI_MAPREG_TYPE_MEM |
   1492 			PCI_MAPREG_MEM_TYPE_32BIT,
   1493 			0, &memt, &memh, NULL, NULL) == 0);
   1494 #if defined(VR_USEIOSPACE)
   1495 		if (ioh_valid) {
   1496 			sc->vr_bst = iot;
   1497 			sc->vr_bsh = ioh;
   1498 		} else if (memh_valid) {
   1499 			sc->vr_bst = memt;
   1500 			sc->vr_bsh = memh;
   1501 		}
   1502 #else
   1503 		if (memh_valid) {
   1504 			sc->vr_bst = memt;
   1505 			sc->vr_bsh = memh;
   1506 		} else if (ioh_valid) {
   1507 			sc->vr_bst = iot;
   1508 			sc->vr_bsh = ioh;
   1509 		}
   1510 #endif
   1511 		else {
   1512 			printf(": unable to map device registers\n");
   1513 			return;
   1514 		}
   1515 
   1516 		/* Allocate interrupt */
   1517 		if (pci_intr_map(pa, &intrhandle)) {
   1518 			printf("%s: couldn't map interrupt\n",
   1519 				sc->vr_dev.dv_xname);
   1520 			return;
   1521 		}
   1522 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1523 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1524 						vr_intr, sc);
   1525 		if (sc->vr_ih == NULL) {
   1526 			printf("%s: couldn't establish interrupt",
   1527 				sc->vr_dev.dv_xname);
   1528 			if (intrstr != NULL)
   1529 				printf(" at %s", intrstr);
   1530 			printf("\n");
   1531 		}
   1532 		printf("%s: interrupting at %s\n",
   1533 			sc->vr_dev.dv_xname, intrstr);
   1534 	}
   1535 
   1536 	/* Reset the adapter. */
   1537 	vr_reset(sc);
   1538 
   1539 	/*
   1540 	 * Get station address. The way the Rhine chips work,
   1541 	 * you're not allowed to directly access the EEPROM once
   1542 	 * they've been programmed a special way. Consequently,
   1543 	 * we need to read the node address from the PAR0 and PAR1
   1544 	 * registers.
   1545 	 */
   1546 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1547 	DELAY(200);
   1548 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1549 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1550 
   1551 	/*
   1552 	 * A Rhine chip was detected. Inform the world.
   1553 	 */
   1554 	printf("%s: Ethernet address: %s\n",
   1555 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1556 
   1557 	bcopy(eaddr, sc->vr_enaddr, ETHER_ADDR_LEN);
   1558 
   1559 	sc->vr_dmat = pa->pa_dmat;
   1560 
   1561 	/*
   1562 	 * Allocate the control data structures, and create and load
   1563 	 * the DMA map for it.
   1564 	 */
   1565 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1566 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1567 	    0)) != 0) {
   1568 		printf("%s: unable to allocate control data, error = %d\n",
   1569 		    sc->vr_dev.dv_xname, error);
   1570 		goto fail_0;
   1571 	}
   1572 
   1573 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1574 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1575 	    BUS_DMA_COHERENT)) != 0) {
   1576 		printf("%s: unable to map control data, error = %d\n",
   1577 		    sc->vr_dev.dv_xname, error);
   1578 		goto fail_1;
   1579 	}
   1580 
   1581 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1582 	    sizeof(struct vr_control_data), 1,
   1583 	    sizeof(struct vr_control_data), 0, 0,
   1584 	    &sc->vr_cddmamap)) != 0) {
   1585 		printf("%s: unable to create control data DMA map, "
   1586 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1587 		goto fail_2;
   1588 	}
   1589 
   1590 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1591 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1592 	    0)) != 0) {
   1593 		printf("%s: unable to load control data DMA map, error = %d\n",
   1594 		    sc->vr_dev.dv_xname, error);
   1595 		goto fail_3;
   1596 	}
   1597 
   1598 	/*
   1599 	 * Create the transmit buffer DMA maps.
   1600 	 */
   1601 	for (i = 0; i < VR_NTXDESC; i++) {
   1602 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1603 		    1, MCLBYTES, 0, 0,
   1604 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1605 			printf("%s: unable to create tx DMA map %d, "
   1606 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1607 			goto fail_4;
   1608 		}
   1609 	}
   1610 
   1611 	/*
   1612 	 * Create the receive buffer DMA maps.
   1613 	 */
   1614 	for (i = 0; i < VR_NRXDESC; i++) {
   1615 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1616 		    MCLBYTES, 0, 0,
   1617 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1618 			printf("%s: unable to create rx DMA map %d, "
   1619 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1620 			goto fail_5;
   1621 		}
   1622 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1623 	}
   1624 
   1625 	ifp = &sc->vr_ec.ec_if;
   1626 	ifp->if_softc = sc;
   1627 	ifp->if_mtu = ETHERMTU;
   1628 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1629 	ifp->if_ioctl = vr_ioctl;
   1630 	ifp->if_start = vr_start;
   1631 	ifp->if_watchdog = vr_watchdog;
   1632 	ifp->if_init = vr_init;
   1633 	ifp->if_stop = vr_stop;
   1634 	IFQ_SET_READY(&ifp->if_snd);
   1635 
   1636 	bcopy(sc->vr_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   1637 
   1638 	/*
   1639 	 * Initialize MII/media info.
   1640 	 */
   1641 	sc->vr_mii.mii_ifp = ifp;
   1642 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1643 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1644 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1645 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1646 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1647 	    MII_OFFSET_ANY, 0);
   1648 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1649 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1650 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1651 	} else
   1652 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1653 
   1654 	/*
   1655 	 * Call MI attach routines.
   1656 	 */
   1657 	if_attach(ifp);
   1658 	ether_ifattach(ifp, sc->vr_enaddr);
   1659 
   1660 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1661 	if (sc->vr_ats == NULL)
   1662 		printf("%s: warning: couldn't establish shutdown hook\n",
   1663 			sc->vr_dev.dv_xname);
   1664 	return;
   1665 
   1666  fail_5:
   1667 	for (i = 0; i < VR_NRXDESC; i++) {
   1668 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1669 			bus_dmamap_destroy(sc->vr_dmat,
   1670 			    sc->vr_rxsoft[i].ds_dmamap);
   1671 	}
   1672  fail_4:
   1673 	for (i = 0; i < VR_NTXDESC; i++) {
   1674 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1675 			bus_dmamap_destroy(sc->vr_dmat,
   1676 			    sc->vr_txsoft[i].ds_dmamap);
   1677 	}
   1678 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1679  fail_3:
   1680 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1681  fail_2:
   1682 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1683 	    sizeof(struct vr_control_data));
   1684  fail_1:
   1685 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1686  fail_0:
   1687 	return;
   1688 }
   1689