Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.50
      1 /*	$NetBSD: if_vr.c,v 1.50 2001/07/19 16:36:15 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include <sys/param.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/sockio.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/malloc.h>
    112 #include <sys/kernel.h>
    113 #include <sys/socket.h>
    114 #include <sys/device.h>
    115 
    116 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    117 
    118 #include <net/if.h>
    119 #include <net/if_arp.h>
    120 #include <net/if_dl.h>
    121 #include <net/if_media.h>
    122 #include <net/if_ether.h>
    123 
    124 #include "bpfilter.h"
    125 #if NBPFILTER > 0
    126 #include <net/bpf.h>
    127 #endif
    128 
    129 #include <machine/bus.h>
    130 #include <machine/intr.h>
    131 #include <machine/endian.h>
    132 
    133 #include <dev/mii/mii.h>
    134 #include <dev/mii/miivar.h>
    135 #include <dev/mii/mii_bitbang.h>
    136 
    137 #include <dev/pci/pcireg.h>
    138 #include <dev/pci/pcivar.h>
    139 #include <dev/pci/pcidevs.h>
    140 
    141 #include <dev/pci/if_vrreg.h>
    142 
    143 #define	VR_USEIOSPACE
    144 
    145 /*
    146  * Various supported device vendors/types and their names.
    147  */
    148 static struct vr_type {
    149 	pci_vendor_id_t		vr_vid;
    150 	pci_product_id_t	vr_did;
    151 	const char		*vr_name;
    152 } vr_devs[] = {
    153 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    154 		"VIA VT3043 (Rhine) 10/100" },
    155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    156 		"VIA VT6102 (Rhine II) 10/100" },
    157 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    158 		"VIA VT86C100A (Rhine-II) 10/100" },
    159 	{ 0, 0, NULL }
    160 };
    161 
    162 /*
    163  * Transmit descriptor list size.
    164  */
    165 #define	VR_NTXDESC		64
    166 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    167 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    168 
    169 /*
    170  * Receive descriptor list size.
    171  */
    172 #define	VR_NRXDESC		64
    173 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    174 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    175 
    176 /*
    177  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    178  * them in a single clump that maps to a single DMA segment to make several
    179  * things easier.
    180  *
    181  * Note that since we always copy outgoing packets to aligned transmit
    182  * buffers, we can reduce the transmit descriptors to one per packet.
    183  */
    184 struct vr_control_data {
    185 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    186 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    187 };
    188 
    189 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    190 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    191 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    192 
    193 /*
    194  * Software state of transmit and receive descriptors.
    195  */
    196 struct vr_descsoft {
    197 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    198 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    199 };
    200 
    201 struct vr_softc {
    202 	struct device		vr_dev;		/* generic device glue */
    203 	void			*vr_ih;		/* interrupt cookie */
    204 	void			*vr_ats;	/* shutdown hook */
    205 	bus_space_tag_t		vr_bst;		/* bus space tag */
    206 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    207 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    208 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    209 	struct ethercom		vr_ec;		/* Ethernet common info */
    210 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    211 	struct mii_data		vr_mii;		/* MII/media info */
    212 
    213 	struct callout		vr_tick_ch;	/* tick callout */
    214 
    215 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    216 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    217 
    218 	/*
    219 	 * Software state for transmit and receive descriptors.
    220 	 */
    221 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    222 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    223 
    224 	/*
    225 	 * Control data structures.
    226 	 */
    227 	struct vr_control_data	*vr_control_data;
    228 
    229 	int	vr_txpending;		/* number of TX requests pending */
    230 	int	vr_txdirty;		/* first dirty TX descriptor */
    231 	int	vr_txlast;		/* last used TX descriptor */
    232 
    233 	int	vr_rxptr;		/* next ready RX descriptor */
    234 };
    235 
    236 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    237 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    238 
    239 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    240 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    241 
    242 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    243 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    244 
    245 #define	VR_CDTXSYNC(sc, x, ops)						\
    246 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    247 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    248 
    249 #define	VR_CDRXSYNC(sc, x, ops)						\
    250 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    251 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    252 
    253 /*
    254  * Note we rely on MCLBYTES being a power of two below.
    255  */
    256 #define	VR_INIT_RXDESC(sc, i)						\
    257 do {									\
    258 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    259 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    260 									\
    261 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    262 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    263 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    264 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    265 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    266 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    267 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    268 } while (0)
    269 
    270 /*
    271  * register space access macros
    272  */
    273 #define	CSR_WRITE_4(sc, reg, val)					\
    274 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    275 #define	CSR_WRITE_2(sc, reg, val)					\
    276 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    277 #define	CSR_WRITE_1(sc, reg, val)					\
    278 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    279 
    280 #define	CSR_READ_4(sc, reg)						\
    281 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    282 #define	CSR_READ_2(sc, reg)						\
    283 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    284 #define	CSR_READ_1(sc, reg)						\
    285 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    286 
    287 #define	VR_TIMEOUT		1000
    288 
    289 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    290 
    291 static void vr_rxeof		__P((struct vr_softc *));
    292 static void vr_rxeoc		__P((struct vr_softc *));
    293 static void vr_txeof		__P((struct vr_softc *));
    294 static int vr_intr		__P((void *));
    295 static void vr_start		__P((struct ifnet *));
    296 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    297 static int vr_init		__P((struct ifnet *));
    298 static void vr_stop		__P((struct ifnet *, int));
    299 static void vr_rxdrain		__P((struct vr_softc *));
    300 static void vr_watchdog		__P((struct ifnet *));
    301 static void vr_tick		__P((void *));
    302 
    303 static int vr_ifmedia_upd	__P((struct ifnet *));
    304 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    305 
    306 static int vr_mii_readreg	__P((struct device *, int, int));
    307 static void vr_mii_writereg	__P((struct device *, int, int, int));
    308 static void vr_mii_statchg	__P((struct device *));
    309 
    310 static void vr_setmulti		__P((struct vr_softc *));
    311 static void vr_reset		__P((struct vr_softc *));
    312 
    313 int	vr_copy_small = 0;
    314 
    315 #define	VR_SETBIT(sc, reg, x)				\
    316 	CSR_WRITE_1(sc, reg,				\
    317 		CSR_READ_1(sc, reg) | x)
    318 
    319 #define	VR_CLRBIT(sc, reg, x)				\
    320 	CSR_WRITE_1(sc, reg,				\
    321 		CSR_READ_1(sc, reg) & ~x)
    322 
    323 #define	VR_SETBIT16(sc, reg, x)				\
    324 	CSR_WRITE_2(sc, reg,				\
    325 		CSR_READ_2(sc, reg) | x)
    326 
    327 #define	VR_CLRBIT16(sc, reg, x)				\
    328 	CSR_WRITE_2(sc, reg,				\
    329 		CSR_READ_2(sc, reg) & ~x)
    330 
    331 #define	VR_SETBIT32(sc, reg, x)				\
    332 	CSR_WRITE_4(sc, reg,				\
    333 		CSR_READ_4(sc, reg) | x)
    334 
    335 #define	VR_CLRBIT32(sc, reg, x)				\
    336 	CSR_WRITE_4(sc, reg,				\
    337 		CSR_READ_4(sc, reg) & ~x)
    338 
    339 /*
    340  * MII bit-bang glue.
    341  */
    342 u_int32_t vr_mii_bitbang_read __P((struct device *));
    343 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    344 
    345 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    346 	vr_mii_bitbang_read,
    347 	vr_mii_bitbang_write,
    348 	{
    349 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    350 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    351 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    352 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    353 		0,			/* MII_BIT_DIR_PHY_HOST */
    354 	}
    355 };
    356 
    357 u_int32_t
    358 vr_mii_bitbang_read(self)
    359 	struct device *self;
    360 {
    361 	struct vr_softc *sc = (void *) self;
    362 
    363 	return (CSR_READ_1(sc, VR_MIICMD));
    364 }
    365 
    366 void
    367 vr_mii_bitbang_write(self, val)
    368 	struct device *self;
    369 	u_int32_t val;
    370 {
    371 	struct vr_softc *sc = (void *) self;
    372 
    373 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    374 }
    375 
    376 /*
    377  * Read an PHY register through the MII.
    378  */
    379 static int
    380 vr_mii_readreg(self, phy, reg)
    381 	struct device *self;
    382 	int phy, reg;
    383 {
    384 	struct vr_softc *sc = (void *) self;
    385 
    386 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    387 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    388 }
    389 
    390 /*
    391  * Write to a PHY register through the MII.
    392  */
    393 static void
    394 vr_mii_writereg(self, phy, reg, val)
    395 	struct device *self;
    396 	int phy, reg, val;
    397 {
    398 	struct vr_softc *sc = (void *) self;
    399 
    400 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    401 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    402 }
    403 
    404 static void
    405 vr_mii_statchg(self)
    406 	struct device *self;
    407 {
    408 	struct vr_softc *sc = (struct vr_softc *)self;
    409 
    410 	/*
    411 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    412 	 * register, we first have to put the transmit and/or receive logic
    413 	 * in the idle state.
    414 	 */
    415 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    416 
    417 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    418 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    419 	else
    420 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    421 
    422 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    423 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    424 }
    425 
    426 #define	vr_calchash(addr) \
    427 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    428 
    429 /*
    430  * Program the 64-bit multicast hash filter.
    431  */
    432 static void
    433 vr_setmulti(sc)
    434 	struct vr_softc *sc;
    435 {
    436 	struct ifnet *ifp;
    437 	int h = 0;
    438 	u_int32_t hashes[2] = { 0, 0 };
    439 	struct ether_multistep step;
    440 	struct ether_multi *enm;
    441 	int mcnt = 0;
    442 	u_int8_t rxfilt;
    443 
    444 	ifp = &sc->vr_ec.ec_if;
    445 
    446 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    447 
    448 	if (ifp->if_flags & IFF_PROMISC) {
    449 allmulti:
    450 		ifp->if_flags |= IFF_ALLMULTI;
    451 		rxfilt |= VR_RXCFG_RX_MULTI;
    452 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    453 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    454 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    455 		return;
    456 	}
    457 
    458 	/* first, zot all the existing hash bits */
    459 	CSR_WRITE_4(sc, VR_MAR0, 0);
    460 	CSR_WRITE_4(sc, VR_MAR1, 0);
    461 
    462 	/* now program new ones */
    463 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    464 	while (enm != NULL) {
    465 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    466 		    ETHER_ADDR_LEN) != 0)
    467 			goto allmulti;
    468 
    469 		h = vr_calchash(enm->enm_addrlo);
    470 
    471 		if (h < 32)
    472 			hashes[0] |= (1 << h);
    473 		else
    474 			hashes[1] |= (1 << (h - 32));
    475 		ETHER_NEXT_MULTI(step, enm);
    476 		mcnt++;
    477 	}
    478 
    479 	ifp->if_flags &= ~IFF_ALLMULTI;
    480 
    481 	if (mcnt)
    482 		rxfilt |= VR_RXCFG_RX_MULTI;
    483 	else
    484 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    485 
    486 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    487 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    488 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    489 }
    490 
    491 static void
    492 vr_reset(sc)
    493 	struct vr_softc *sc;
    494 {
    495 	int i;
    496 
    497 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    498 
    499 	for (i = 0; i < VR_TIMEOUT; i++) {
    500 		DELAY(10);
    501 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    502 			break;
    503 	}
    504 	if (i == VR_TIMEOUT)
    505 		printf("%s: reset never completed!\n",
    506 			sc->vr_dev.dv_xname);
    507 
    508 	/* Wait a little while for the chip to get its brains in order. */
    509 	DELAY(1000);
    510 }
    511 
    512 /*
    513  * Initialize an RX descriptor and attach an MBUF cluster.
    514  * Note: the length fields are only 11 bits wide, which means the
    515  * largest size we can specify is 2047. This is important because
    516  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    517  * overflow the field and make a mess.
    518  */
    519 static int
    520 vr_add_rxbuf(sc, i)
    521 	struct vr_softc *sc;
    522 	int i;
    523 {
    524 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    525 	struct mbuf *m_new;
    526 	int error;
    527 
    528 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    529 	if (m_new == NULL)
    530 		return (ENOBUFS);
    531 
    532 	MCLGET(m_new, M_DONTWAIT);
    533 	if ((m_new->m_flags & M_EXT) == 0) {
    534 		m_freem(m_new);
    535 		return (ENOBUFS);
    536 	}
    537 
    538 	if (ds->ds_mbuf != NULL)
    539 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    540 
    541 	ds->ds_mbuf = m_new;
    542 
    543 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    544 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    545 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    546 	if (error) {
    547 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    548 		    sc->vr_dev.dv_xname, i, error);
    549 		panic("vr_add_rxbuf");		/* XXX */
    550 	}
    551 
    552 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    553 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    554 
    555 	VR_INIT_RXDESC(sc, i);
    556 
    557 	return (0);
    558 }
    559 
    560 /*
    561  * A frame has been uploaded: pass the resulting mbuf chain up to
    562  * the higher level protocols.
    563  */
    564 static void
    565 vr_rxeof(sc)
    566 	struct vr_softc *sc;
    567 {
    568 	struct mbuf *m;
    569 	struct ifnet *ifp;
    570 	struct vr_desc *d;
    571 	struct vr_descsoft *ds;
    572 	int i, total_len;
    573 	u_int32_t rxstat;
    574 
    575 	ifp = &sc->vr_ec.ec_if;
    576 
    577 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    578 		d = VR_CDRX(sc, i);
    579 		ds = VR_DSRX(sc, i);
    580 
    581 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    582 
    583 		rxstat = le32toh(d->vr_status);
    584 
    585 		if (rxstat & VR_RXSTAT_OWN) {
    586 			/*
    587 			 * We have processed all of the receive buffers.
    588 			 */
    589 			break;
    590 		}
    591 
    592 		/*
    593 		 * If an error occurs, update stats, clear the
    594 		 * status word and leave the mbuf cluster in place:
    595 		 * it should simply get re-used next time this descriptor
    596 		 * comes up in the ring.
    597 		 */
    598 		if (rxstat & VR_RXSTAT_RXERR) {
    599 			const char *errstr;
    600 
    601 			ifp->if_ierrors++;
    602 			switch (rxstat & 0x000000FF) {
    603 			case VR_RXSTAT_CRCERR:
    604 				errstr = "crc error";
    605 				break;
    606 			case VR_RXSTAT_FRAMEALIGNERR:
    607 				errstr = "frame alignment error";
    608 				break;
    609 			case VR_RXSTAT_FIFOOFLOW:
    610 				errstr = "FIFO overflow";
    611 				break;
    612 			case VR_RXSTAT_GIANT:
    613 				errstr = "received giant packet";
    614 				break;
    615 			case VR_RXSTAT_RUNT:
    616 				errstr = "received runt packet";
    617 				break;
    618 			case VR_RXSTAT_BUSERR:
    619 				errstr = "system bus error";
    620 				break;
    621 			case VR_RXSTAT_BUFFERR:
    622 				errstr = "rx buffer error";
    623 				break;
    624 			default:
    625 				errstr = "unknown rx error";
    626 				break;
    627 			}
    628 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    629 			    errstr);
    630 
    631 			VR_INIT_RXDESC(sc, i);
    632 
    633 			continue;
    634 		}
    635 
    636 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    637 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    638 
    639 		/* No errors; receive the packet. */
    640 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    641 
    642 #ifdef __NO_STRICT_ALIGNMENT
    643 		/*
    644 		 * If the packet is small enough to fit in a
    645 		 * single header mbuf, allocate one and copy
    646 		 * the data into it.  This greatly reduces
    647 		 * memory consumption when we receive lots
    648 		 * of small packets.
    649 		 *
    650 		 * Otherwise, we add a new buffer to the receive
    651 		 * chain.  If this fails, we drop the packet and
    652 		 * recycle the old buffer.
    653 		 */
    654 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    655 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    656 			if (m == NULL)
    657 				goto dropit;
    658 			memcpy(mtod(m, caddr_t),
    659 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    660 			VR_INIT_RXDESC(sc, i);
    661 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    662 			    ds->ds_dmamap->dm_mapsize,
    663 			    BUS_DMASYNC_PREREAD);
    664 		} else {
    665 			m = ds->ds_mbuf;
    666 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    667  dropit:
    668 				ifp->if_ierrors++;
    669 				VR_INIT_RXDESC(sc, i);
    670 				bus_dmamap_sync(sc->vr_dmat,
    671 				    ds->ds_dmamap, 0,
    672 				    ds->ds_dmamap->dm_mapsize,
    673 				    BUS_DMASYNC_PREREAD);
    674 				continue;
    675 			}
    676 		}
    677 #else
    678 		/*
    679 		 * The Rhine's packet buffers must be 4-byte aligned.
    680 		 * But this means that the data after the Ethernet header
    681 		 * is misaligned.  We must allocate a new buffer and
    682 		 * copy the data, shifted forward 2 bytes.
    683 		 */
    684 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    685 		if (m == NULL) {
    686  dropit:
    687 			ifp->if_ierrors++;
    688 			VR_INIT_RXDESC(sc, i);
    689 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    690 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    691 			continue;
    692 		}
    693 		if (total_len > (MHLEN - 2)) {
    694 			MCLGET(m, M_DONTWAIT);
    695 			if ((m->m_flags & M_EXT) == 0) {
    696 				m_freem(m);
    697 				goto dropit;
    698 			}
    699 		}
    700 		m->m_data += 2;
    701 
    702 		/*
    703 		 * Note that we use clusters for incoming frames, so the
    704 		 * buffer is virtually contiguous.
    705 		 */
    706 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    707 		    total_len);
    708 
    709 		/* Allow the receive descriptor to continue using its mbuf. */
    710 		VR_INIT_RXDESC(sc, i);
    711 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    712 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    713 #endif /* __NO_STRICT_ALIGNMENT */
    714 
    715 		/*
    716 		 * The Rhine chip includes the FCS with every
    717 		 * received packet.
    718 		 */
    719 		m->m_flags |= M_HASFCS;
    720 
    721 		ifp->if_ipackets++;
    722 		m->m_pkthdr.rcvif = ifp;
    723 		m->m_pkthdr.len = m->m_len = total_len;
    724 #if NBPFILTER > 0
    725 		/*
    726 		 * Handle BPF listeners. Let the BPF user see the packet, but
    727 		 * don't pass it up to the ether_input() layer unless it's
    728 		 * a broadcast packet, multicast packet, matches our ethernet
    729 		 * address or the interface is in promiscuous mode.
    730 		 */
    731 		if (ifp->if_bpf)
    732 			bpf_mtap(ifp->if_bpf, m);
    733 #endif
    734 		/* Pass it on. */
    735 		(*ifp->if_input)(ifp, m);
    736 	}
    737 
    738 	/* Update the receive pointer. */
    739 	sc->vr_rxptr = i;
    740 }
    741 
    742 void
    743 vr_rxeoc(sc)
    744 	struct vr_softc *sc;
    745 {
    746 
    747 	vr_rxeof(sc);
    748 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    749 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    750 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    751 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    752 }
    753 
    754 /*
    755  * A frame was downloaded to the chip. It's safe for us to clean up
    756  * the list buffers.
    757  */
    758 static void
    759 vr_txeof(sc)
    760 	struct vr_softc *sc;
    761 {
    762 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    763 	struct vr_desc *d;
    764 	struct vr_descsoft *ds;
    765 	u_int32_t txstat;
    766 	int i;
    767 
    768 	ifp->if_flags &= ~IFF_OACTIVE;
    769 
    770 	/*
    771 	 * Go through our tx list and free mbufs for those
    772 	 * frames that have been transmitted.
    773 	 */
    774 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    775 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    776 		d = VR_CDTX(sc, i);
    777 		ds = VR_DSTX(sc, i);
    778 
    779 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    780 
    781 		txstat = le32toh(d->vr_status);
    782 		if (txstat & VR_TXSTAT_OWN)
    783 			break;
    784 
    785 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    786 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    787 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    788 		m_freem(ds->ds_mbuf);
    789 		ds->ds_mbuf = NULL;
    790 
    791 		if (txstat & VR_TXSTAT_ERRSUM) {
    792 			ifp->if_oerrors++;
    793 			if (txstat & VR_TXSTAT_DEFER)
    794 				ifp->if_collisions++;
    795 			if (txstat & VR_TXSTAT_LATECOLL)
    796 				ifp->if_collisions++;
    797 		}
    798 
    799 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    800 		ifp->if_opackets++;
    801 	}
    802 
    803 	/* Update the dirty transmit buffer pointer. */
    804 	sc->vr_txdirty = i;
    805 
    806 	/*
    807 	 * Cancel the watchdog timer if there are no pending
    808 	 * transmissions.
    809 	 */
    810 	if (sc->vr_txpending == 0)
    811 		ifp->if_timer = 0;
    812 }
    813 
    814 static int
    815 vr_intr(arg)
    816 	void *arg;
    817 {
    818 	struct vr_softc *sc;
    819 	struct ifnet *ifp;
    820 	u_int16_t status;
    821 	int handled = 0, dotx = 0;
    822 
    823 	sc = arg;
    824 	ifp = &sc->vr_ec.ec_if;
    825 
    826 	/* Suppress unwanted interrupts. */
    827 	if ((ifp->if_flags & IFF_UP) == 0) {
    828 		vr_stop(ifp, 1);
    829 		return (0);
    830 	}
    831 
    832 	/* Disable interrupts. */
    833 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    834 
    835 	for (;;) {
    836 		status = CSR_READ_2(sc, VR_ISR);
    837 		if (status)
    838 			CSR_WRITE_2(sc, VR_ISR, status);
    839 
    840 		if ((status & VR_INTRS) == 0)
    841 			break;
    842 
    843 		handled = 1;
    844 
    845 		if (status & VR_ISR_RX_OK)
    846 			vr_rxeof(sc);
    847 
    848 		if (status &
    849 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    850 		     VR_ISR_RX_DROPPED))
    851 			vr_rxeoc(sc);
    852 
    853 		if (status & VR_ISR_TX_OK) {
    854 			dotx = 1;
    855 			vr_txeof(sc);
    856 		}
    857 
    858 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    859 			if (status & VR_ISR_TX_UNDERRUN)
    860 				printf("%s: transmit underrun\n",
    861 				    sc->vr_dev.dv_xname);
    862 			if (status & VR_ISR_TX_ABRT)
    863 				printf("%s: transmit aborted\n",
    864 				    sc->vr_dev.dv_xname);
    865 			ifp->if_oerrors++;
    866 			dotx = 1;
    867 			vr_txeof(sc);
    868 			if (sc->vr_txpending) {
    869 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    870 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    871 			}
    872 		}
    873 
    874 		if (status & VR_ISR_BUSERR) {
    875 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    876 			/* vr_init() calls vr_start() */
    877 			dotx = 0;
    878 			(void) vr_init(ifp);
    879 		}
    880 	}
    881 
    882 	/* Re-enable interrupts. */
    883 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    884 
    885 	if (dotx)
    886 		vr_start(ifp);
    887 
    888 	return (handled);
    889 }
    890 
    891 /*
    892  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    893  * to the mbuf data regions directly in the transmit lists. We also save a
    894  * copy of the pointers since the transmit list fragment pointers are
    895  * physical addresses.
    896  */
    897 static void
    898 vr_start(ifp)
    899 	struct ifnet *ifp;
    900 {
    901 	struct vr_softc *sc = ifp->if_softc;
    902 	struct mbuf *m0, *m;
    903 	struct vr_desc *d;
    904 	struct vr_descsoft *ds;
    905 	int error, firsttx, nexttx, opending;
    906 
    907 	/*
    908 	 * Remember the previous txpending and the first transmit
    909 	 * descriptor we use.
    910 	 */
    911 	opending = sc->vr_txpending;
    912 	firsttx = VR_NEXTTX(sc->vr_txlast);
    913 
    914 	/*
    915 	 * Loop through the send queue, setting up transmit descriptors
    916 	 * until we drain the queue, or use up all available transmit
    917 	 * descriptors.
    918 	 */
    919 	while (sc->vr_txpending < VR_NTXDESC) {
    920 		/*
    921 		 * Grab a packet off the queue.
    922 		 */
    923 		IFQ_POLL(&ifp->if_snd, m0);
    924 		if (m0 == NULL)
    925 			break;
    926 		m = NULL;
    927 
    928 		/*
    929 		 * Get the next available transmit descriptor.
    930 		 */
    931 		nexttx = VR_NEXTTX(sc->vr_txlast);
    932 		d = VR_CDTX(sc, nexttx);
    933 		ds = VR_DSTX(sc, nexttx);
    934 
    935 		/*
    936 		 * Load the DMA map.  If this fails, the packet didn't
    937 		 * fit in one DMA segment, and we need to copy.  Note,
    938 		 * the packet must also be aligned.
    939 		 */
    940 		if ((mtod(m0, bus_addr_t) & 3) != 0 ||
    941 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    942 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    943 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    944 			if (m == NULL) {
    945 				printf("%s: unable to allocate Tx mbuf\n",
    946 				    sc->vr_dev.dv_xname);
    947 				break;
    948 			}
    949 			if (m0->m_pkthdr.len > MHLEN) {
    950 				MCLGET(m, M_DONTWAIT);
    951 				if ((m->m_flags & M_EXT) == 0) {
    952 					printf("%s: unable to allocate Tx "
    953 					    "cluster\n", sc->vr_dev.dv_xname);
    954 					m_freem(m);
    955 					break;
    956 				}
    957 			}
    958 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    959 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    960 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    961 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    962 			if (error) {
    963 				printf("%s: unable to load Tx buffer, "
    964 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    965 				break;
    966 			}
    967 		}
    968 
    969 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    970 		if (m != NULL) {
    971 			m_freem(m0);
    972 			m0 = m;
    973 		}
    974 
    975 		/* Sync the DMA map. */
    976 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    977 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    978 
    979 		/*
    980 		 * Store a pointer to the packet so we can free it later.
    981 		 */
    982 		ds->ds_mbuf = m0;
    983 
    984 #if NBPFILTER > 0
    985 		/*
    986 		 * If there's a BPF listener, bounce a copy of this frame
    987 		 * to him.
    988 		 */
    989 		if (ifp->if_bpf)
    990 			bpf_mtap(ifp->if_bpf, m0);
    991 #endif
    992 
    993 		/*
    994 		 * Fill in the transmit descriptor.  The Rhine
    995 		 * doesn't auto-pad, so we have to do this ourselves.
    996 		 */
    997 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
    998 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
    999 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1000 		d->vr_ctl |=
   1001 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1002 		    VR_TXCTL_LASTFRAG);
   1003 
   1004 		/*
   1005 		 * If this is the first descriptor we're enqueuing,
   1006 		 * don't give it to the Rhine yet.  That could cause
   1007 		 * a race condition.  We'll do it below.
   1008 		 */
   1009 		if (nexttx == firsttx)
   1010 			d->vr_status = 0;
   1011 		else
   1012 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1013 
   1014 		VR_CDTXSYNC(sc, nexttx,
   1015 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1016 
   1017 		/* Advance the tx pointer. */
   1018 		sc->vr_txpending++;
   1019 		sc->vr_txlast = nexttx;
   1020 	}
   1021 
   1022 	if (sc->vr_txpending == VR_NTXDESC) {
   1023 		/* No more slots left; notify upper layer. */
   1024 		ifp->if_flags |= IFF_OACTIVE;
   1025 	}
   1026 
   1027 	if (sc->vr_txpending != opending) {
   1028 		/*
   1029 		 * We enqueued packets.  If the transmitter was idle,
   1030 		 * reset the txdirty pointer.
   1031 		 */
   1032 		if (opending == 0)
   1033 			sc->vr_txdirty = firsttx;
   1034 
   1035 		/*
   1036 		 * Cause a transmit interrupt to happen on the
   1037 		 * last packet we enqueued.
   1038 		 */
   1039 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1040 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1041 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1042 
   1043 		/*
   1044 		 * The entire packet chain is set up.  Give the
   1045 		 * first descriptor to the Rhine now.
   1046 		 */
   1047 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1048 		VR_CDTXSYNC(sc, firsttx,
   1049 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1050 
   1051 		/* Start the transmitter. */
   1052 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1053 
   1054 		/* Set the watchdog timer in case the chip flakes out. */
   1055 		ifp->if_timer = 5;
   1056 	}
   1057 }
   1058 
   1059 /*
   1060  * Initialize the interface.  Must be called at splnet.
   1061  */
   1062 static int
   1063 vr_init(ifp)
   1064 	struct ifnet *ifp;
   1065 {
   1066 	struct vr_softc *sc = ifp->if_softc;
   1067 	struct vr_desc *d;
   1068 	struct vr_descsoft *ds;
   1069 	int i, error = 0;
   1070 
   1071 	/* Cancel pending I/O. */
   1072 	vr_stop(ifp, 0);
   1073 
   1074 	/* Reset the Rhine to a known state. */
   1075 	vr_reset(sc);
   1076 
   1077 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1078 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1079 
   1080 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1081 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1082 
   1083 	/*
   1084 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1085 	 * to the end of the list so that it will wrap around to the first
   1086 	 * descriptor when the first packet is transmitted.
   1087 	 */
   1088 	for (i = 0; i < VR_NTXDESC; i++) {
   1089 		d = VR_CDTX(sc, i);
   1090 		memset(d, 0, sizeof(struct vr_desc));
   1091 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1092 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1093 	}
   1094 	sc->vr_txpending = 0;
   1095 	sc->vr_txdirty = 0;
   1096 	sc->vr_txlast = VR_NTXDESC - 1;
   1097 
   1098 	/*
   1099 	 * Initialize the receive descriptor ring.
   1100 	 */
   1101 	for (i = 0; i < VR_NRXDESC; i++) {
   1102 		ds = VR_DSRX(sc, i);
   1103 		if (ds->ds_mbuf == NULL) {
   1104 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1105 				printf("%s: unable to allocate or map rx "
   1106 				    "buffer %d, error = %d\n",
   1107 				    sc->vr_dev.dv_xname, i, error);
   1108 				/*
   1109 				 * XXX Should attempt to run with fewer receive
   1110 				 * XXX buffers instead of just failing.
   1111 				 */
   1112 				vr_rxdrain(sc);
   1113 				goto out;
   1114 			}
   1115 		}
   1116 	}
   1117 	sc->vr_rxptr = 0;
   1118 
   1119 	/* If we want promiscuous mode, set the allframes bit. */
   1120 	if (ifp->if_flags & IFF_PROMISC)
   1121 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1122 	else
   1123 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1124 
   1125 	/* Set capture broadcast bit to capture broadcast frames. */
   1126 	if (ifp->if_flags & IFF_BROADCAST)
   1127 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1128 	else
   1129 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1130 
   1131 	/* Program the multicast filter, if necessary. */
   1132 	vr_setmulti(sc);
   1133 
   1134 	/* Give the transmit and receive rings to the Rhine. */
   1135 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1136 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1137 
   1138 	/* Set current media. */
   1139 	mii_mediachg(&sc->vr_mii);
   1140 
   1141 	/* Enable receiver and transmitter. */
   1142 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1143 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1144 				    VR_CMD_RX_GO);
   1145 
   1146 	/* Enable interrupts. */
   1147 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1148 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1149 
   1150 	ifp->if_flags |= IFF_RUNNING;
   1151 	ifp->if_flags &= ~IFF_OACTIVE;
   1152 
   1153 	/* Start one second timer. */
   1154 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1155 
   1156 	/* Attempt to start output on the interface. */
   1157 	vr_start(ifp);
   1158 
   1159  out:
   1160 	if (error)
   1161 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1162 	return (error);
   1163 }
   1164 
   1165 /*
   1166  * Set media options.
   1167  */
   1168 static int
   1169 vr_ifmedia_upd(ifp)
   1170 	struct ifnet *ifp;
   1171 {
   1172 	struct vr_softc *sc = ifp->if_softc;
   1173 
   1174 	if (ifp->if_flags & IFF_UP)
   1175 		mii_mediachg(&sc->vr_mii);
   1176 	return (0);
   1177 }
   1178 
   1179 /*
   1180  * Report current media status.
   1181  */
   1182 static void
   1183 vr_ifmedia_sts(ifp, ifmr)
   1184 	struct ifnet *ifp;
   1185 	struct ifmediareq *ifmr;
   1186 {
   1187 	struct vr_softc *sc = ifp->if_softc;
   1188 
   1189 	mii_pollstat(&sc->vr_mii);
   1190 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1191 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1192 }
   1193 
   1194 static int
   1195 vr_ioctl(ifp, command, data)
   1196 	struct ifnet *ifp;
   1197 	u_long command;
   1198 	caddr_t data;
   1199 {
   1200 	struct vr_softc *sc = ifp->if_softc;
   1201 	struct ifreq *ifr = (struct ifreq *)data;
   1202 	int s, error = 0;
   1203 
   1204 	s = splnet();
   1205 
   1206 	switch (command) {
   1207 	case SIOCGIFMEDIA:
   1208 	case SIOCSIFMEDIA:
   1209 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1210 		break;
   1211 
   1212 	default:
   1213 		error = ether_ioctl(ifp, command, data);
   1214 		if (error == ENETRESET) {
   1215 			/*
   1216 			 * Multicast list has changed; set the hardware filter
   1217 			 * accordingly.
   1218 			 */
   1219 			vr_setmulti(sc);
   1220 			error = 0;
   1221 		}
   1222 		break;
   1223 	}
   1224 
   1225 	splx(s);
   1226 	return (error);
   1227 }
   1228 
   1229 static void
   1230 vr_watchdog(ifp)
   1231 	struct ifnet *ifp;
   1232 {
   1233 	struct vr_softc *sc = ifp->if_softc;
   1234 
   1235 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1236 	ifp->if_oerrors++;
   1237 
   1238 	(void) vr_init(ifp);
   1239 }
   1240 
   1241 /*
   1242  * One second timer, used to tick MII.
   1243  */
   1244 static void
   1245 vr_tick(arg)
   1246 	void *arg;
   1247 {
   1248 	struct vr_softc *sc = arg;
   1249 	int s;
   1250 
   1251 	s = splnet();
   1252 	mii_tick(&sc->vr_mii);
   1253 	splx(s);
   1254 
   1255 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1256 }
   1257 
   1258 /*
   1259  * Drain the receive queue.
   1260  */
   1261 static void
   1262 vr_rxdrain(sc)
   1263 	struct vr_softc *sc;
   1264 {
   1265 	struct vr_descsoft *ds;
   1266 	int i;
   1267 
   1268 	for (i = 0; i < VR_NRXDESC; i++) {
   1269 		ds = VR_DSRX(sc, i);
   1270 		if (ds->ds_mbuf != NULL) {
   1271 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1272 			m_freem(ds->ds_mbuf);
   1273 			ds->ds_mbuf = NULL;
   1274 		}
   1275 	}
   1276 }
   1277 
   1278 /*
   1279  * Stop the adapter and free any mbufs allocated to the
   1280  * transmit lists.
   1281  */
   1282 static void
   1283 vr_stop(ifp, disable)
   1284 	struct ifnet *ifp;
   1285 	int disable;
   1286 {
   1287 	struct vr_softc *sc = ifp->if_softc;
   1288 	struct vr_descsoft *ds;
   1289 	int i;
   1290 
   1291 	/* Cancel one second timer. */
   1292 	callout_stop(&sc->vr_tick_ch);
   1293 
   1294 	/* Down the MII. */
   1295 	mii_down(&sc->vr_mii);
   1296 
   1297 	ifp = &sc->vr_ec.ec_if;
   1298 	ifp->if_timer = 0;
   1299 
   1300 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1301 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1302 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1303 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1304 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1305 
   1306 	/*
   1307 	 * Release any queued transmit buffers.
   1308 	 */
   1309 	for (i = 0; i < VR_NTXDESC; i++) {
   1310 		ds = VR_DSTX(sc, i);
   1311 		if (ds->ds_mbuf != NULL) {
   1312 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1313 			m_freem(ds->ds_mbuf);
   1314 			ds->ds_mbuf = NULL;
   1315 		}
   1316 	}
   1317 
   1318 	if (disable)
   1319 		vr_rxdrain(sc);
   1320 
   1321 	/*
   1322 	 * Mark the interface down and cancel the watchdog timer.
   1323 	 */
   1324 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1325 	ifp->if_timer = 0;
   1326 }
   1327 
   1328 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1329 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1330 static void vr_attach __P((struct device *, struct device *, void *));
   1331 static void vr_shutdown __P((void *));
   1332 
   1333 struct cfattach vr_ca = {
   1334 	sizeof (struct vr_softc), vr_probe, vr_attach
   1335 };
   1336 
   1337 static struct vr_type *
   1338 vr_lookup(pa)
   1339 	struct pci_attach_args *pa;
   1340 {
   1341 	struct vr_type *vrt;
   1342 
   1343 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1344 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1345 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1346 			return (vrt);
   1347 	}
   1348 	return (NULL);
   1349 }
   1350 
   1351 static int
   1352 vr_probe(parent, match, aux)
   1353 	struct device *parent;
   1354 	struct cfdata *match;
   1355 	void *aux;
   1356 {
   1357 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1358 
   1359 	if (vr_lookup(pa) != NULL)
   1360 		return (1);
   1361 
   1362 	return (0);
   1363 }
   1364 
   1365 /*
   1366  * Stop all chip I/O so that the kernel's probe routines don't
   1367  * get confused by errant DMAs when rebooting.
   1368  */
   1369 static void
   1370 vr_shutdown(arg)
   1371 	void *arg;
   1372 {
   1373 	struct vr_softc *sc = (struct vr_softc *)arg;
   1374 
   1375 	vr_stop(&sc->vr_ec.ec_if, 1);
   1376 }
   1377 
   1378 /*
   1379  * Attach the interface. Allocate softc structures, do ifmedia
   1380  * setup and ethernet/BPF attach.
   1381  */
   1382 static void
   1383 vr_attach(parent, self, aux)
   1384 	struct device *parent;
   1385 	struct device *self;
   1386 	void *aux;
   1387 {
   1388 	struct vr_softc *sc = (struct vr_softc *) self;
   1389 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1390 	bus_dma_segment_t seg;
   1391 	struct vr_type *vrt;
   1392 	u_int32_t command;
   1393 	struct ifnet *ifp;
   1394 	u_char eaddr[ETHER_ADDR_LEN];
   1395 	int i, rseg, error;
   1396 
   1397 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1398 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1399 
   1400 	callout_init(&sc->vr_tick_ch);
   1401 
   1402 	vrt = vr_lookup(pa);
   1403 	if (vrt == NULL) {
   1404 		printf("\n");
   1405 		panic("vr_attach: impossible");
   1406 	}
   1407 
   1408 	printf(": %s Ethernet\n", vrt->vr_name);
   1409 
   1410 	/*
   1411 	 * Handle power management nonsense.
   1412 	 */
   1413 
   1414 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1415 	if (command == 0x01) {
   1416 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1417 		if (command & VR_PSTATE_MASK) {
   1418 			u_int32_t iobase, membase, irq;
   1419 
   1420 			/* Save important PCI config data. */
   1421 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1422 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1423 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1424 
   1425 			/* Reset the power state. */
   1426 			printf("%s: chip is in D%d power mode "
   1427 				"-- setting to D0\n",
   1428 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1429 			command &= 0xFFFFFFFC;
   1430 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1431 
   1432 			/* Restore PCI config data. */
   1433 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1434 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1435 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1436 		}
   1437 	}
   1438 
   1439 	/* Make sure bus mastering is enabled. */
   1440 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1441 	command |= PCI_COMMAND_MASTER_ENABLE;
   1442 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1443 
   1444 	/*
   1445 	 * Map control/status registers.
   1446 	 */
   1447 	{
   1448 		bus_space_tag_t iot, memt;
   1449 		bus_space_handle_t ioh, memh;
   1450 		int ioh_valid, memh_valid;
   1451 		pci_intr_handle_t intrhandle;
   1452 		const char *intrstr;
   1453 
   1454 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1455 			PCI_MAPREG_TYPE_IO, 0,
   1456 			&iot, &ioh, NULL, NULL) == 0);
   1457 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1458 			PCI_MAPREG_TYPE_MEM |
   1459 			PCI_MAPREG_MEM_TYPE_32BIT,
   1460 			0, &memt, &memh, NULL, NULL) == 0);
   1461 #if defined(VR_USEIOSPACE)
   1462 		if (ioh_valid) {
   1463 			sc->vr_bst = iot;
   1464 			sc->vr_bsh = ioh;
   1465 		} else if (memh_valid) {
   1466 			sc->vr_bst = memt;
   1467 			sc->vr_bsh = memh;
   1468 		}
   1469 #else
   1470 		if (memh_valid) {
   1471 			sc->vr_bst = memt;
   1472 			sc->vr_bsh = memh;
   1473 		} else if (ioh_valid) {
   1474 			sc->vr_bst = iot;
   1475 			sc->vr_bsh = ioh;
   1476 		}
   1477 #endif
   1478 		else {
   1479 			printf(": unable to map device registers\n");
   1480 			return;
   1481 		}
   1482 
   1483 		/* Allocate interrupt */
   1484 		if (pci_intr_map(pa, &intrhandle)) {
   1485 			printf("%s: couldn't map interrupt\n",
   1486 				sc->vr_dev.dv_xname);
   1487 			return;
   1488 		}
   1489 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1490 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1491 						vr_intr, sc);
   1492 		if (sc->vr_ih == NULL) {
   1493 			printf("%s: couldn't establish interrupt",
   1494 				sc->vr_dev.dv_xname);
   1495 			if (intrstr != NULL)
   1496 				printf(" at %s", intrstr);
   1497 			printf("\n");
   1498 		}
   1499 		printf("%s: interrupting at %s\n",
   1500 			sc->vr_dev.dv_xname, intrstr);
   1501 	}
   1502 
   1503 	/* Reset the adapter. */
   1504 	vr_reset(sc);
   1505 
   1506 	/*
   1507 	 * Get station address. The way the Rhine chips work,
   1508 	 * you're not allowed to directly access the EEPROM once
   1509 	 * they've been programmed a special way. Consequently,
   1510 	 * we need to read the node address from the PAR0 and PAR1
   1511 	 * registers.
   1512 	 */
   1513 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1514 	DELAY(200);
   1515 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1516 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1517 
   1518 	/*
   1519 	 * A Rhine chip was detected. Inform the world.
   1520 	 */
   1521 	printf("%s: Ethernet address: %s\n",
   1522 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1523 
   1524 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1525 
   1526 	sc->vr_dmat = pa->pa_dmat;
   1527 
   1528 	/*
   1529 	 * Allocate the control data structures, and create and load
   1530 	 * the DMA map for it.
   1531 	 */
   1532 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1533 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1534 	    0)) != 0) {
   1535 		printf("%s: unable to allocate control data, error = %d\n",
   1536 		    sc->vr_dev.dv_xname, error);
   1537 		goto fail_0;
   1538 	}
   1539 
   1540 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1541 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1542 	    BUS_DMA_COHERENT)) != 0) {
   1543 		printf("%s: unable to map control data, error = %d\n",
   1544 		    sc->vr_dev.dv_xname, error);
   1545 		goto fail_1;
   1546 	}
   1547 
   1548 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1549 	    sizeof(struct vr_control_data), 1,
   1550 	    sizeof(struct vr_control_data), 0, 0,
   1551 	    &sc->vr_cddmamap)) != 0) {
   1552 		printf("%s: unable to create control data DMA map, "
   1553 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1554 		goto fail_2;
   1555 	}
   1556 
   1557 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1558 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1559 	    0)) != 0) {
   1560 		printf("%s: unable to load control data DMA map, error = %d\n",
   1561 		    sc->vr_dev.dv_xname, error);
   1562 		goto fail_3;
   1563 	}
   1564 
   1565 	/*
   1566 	 * Create the transmit buffer DMA maps.
   1567 	 */
   1568 	for (i = 0; i < VR_NTXDESC; i++) {
   1569 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1570 		    1, MCLBYTES, 0, 0,
   1571 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1572 			printf("%s: unable to create tx DMA map %d, "
   1573 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1574 			goto fail_4;
   1575 		}
   1576 	}
   1577 
   1578 	/*
   1579 	 * Create the receive buffer DMA maps.
   1580 	 */
   1581 	for (i = 0; i < VR_NRXDESC; i++) {
   1582 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1583 		    MCLBYTES, 0, 0,
   1584 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1585 			printf("%s: unable to create rx DMA map %d, "
   1586 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1587 			goto fail_5;
   1588 		}
   1589 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1590 	}
   1591 
   1592 	ifp = &sc->vr_ec.ec_if;
   1593 	ifp->if_softc = sc;
   1594 	ifp->if_mtu = ETHERMTU;
   1595 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1596 	ifp->if_ioctl = vr_ioctl;
   1597 	ifp->if_start = vr_start;
   1598 	ifp->if_watchdog = vr_watchdog;
   1599 	ifp->if_init = vr_init;
   1600 	ifp->if_stop = vr_stop;
   1601 	IFQ_SET_READY(&ifp->if_snd);
   1602 
   1603 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
   1604 
   1605 	/*
   1606 	 * Initialize MII/media info.
   1607 	 */
   1608 	sc->vr_mii.mii_ifp = ifp;
   1609 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1610 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1611 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1612 	ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
   1613 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1614 	    MII_OFFSET_ANY, 0);
   1615 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1616 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1617 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1618 	} else
   1619 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1620 
   1621 	/*
   1622 	 * Call MI attach routines.
   1623 	 */
   1624 	if_attach(ifp);
   1625 	ether_ifattach(ifp, sc->vr_enaddr);
   1626 
   1627 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1628 	if (sc->vr_ats == NULL)
   1629 		printf("%s: warning: couldn't establish shutdown hook\n",
   1630 			sc->vr_dev.dv_xname);
   1631 	return;
   1632 
   1633  fail_5:
   1634 	for (i = 0; i < VR_NRXDESC; i++) {
   1635 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1636 			bus_dmamap_destroy(sc->vr_dmat,
   1637 			    sc->vr_rxsoft[i].ds_dmamap);
   1638 	}
   1639  fail_4:
   1640 	for (i = 0; i < VR_NTXDESC; i++) {
   1641 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1642 			bus_dmamap_destroy(sc->vr_dmat,
   1643 			    sc->vr_txsoft[i].ds_dmamap);
   1644 	}
   1645 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1646  fail_3:
   1647 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1648  fail_2:
   1649 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1650 	    sizeof(struct vr_control_data));
   1651  fail_1:
   1652 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1653  fail_0:
   1654 	return;
   1655 }
   1656