if_vr.c revision 1.51 1 /* $NetBSD: if_vr.c,v 1.51 2001/07/23 17:26:50 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/sockio.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/socket.h>
114 #include <sys/device.h>
115
116 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
117
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123
124 #include "bpfilter.h"
125 #if NBPFILTER > 0
126 #include <net/bpf.h>
127 #endif
128
129 #include <machine/bus.h>
130 #include <machine/intr.h>
131 #include <machine/endian.h>
132
133 #include <dev/mii/mii.h>
134 #include <dev/mii/miivar.h>
135 #include <dev/mii/mii_bitbang.h>
136
137 #include <dev/pci/pcireg.h>
138 #include <dev/pci/pcivar.h>
139 #include <dev/pci/pcidevs.h>
140
141 #include <dev/pci/if_vrreg.h>
142
143 #define VR_USEIOSPACE
144
145 /*
146 * Various supported device vendors/types and their names.
147 */
148 static struct vr_type {
149 pci_vendor_id_t vr_vid;
150 pci_product_id_t vr_did;
151 const char *vr_name;
152 } vr_devs[] = {
153 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
154 "VIA VT3043 (Rhine) 10/100" },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
156 "VIA VT6102 (Rhine II) 10/100" },
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
158 "VIA VT86C100A (Rhine-II) 10/100" },
159 { 0, 0, NULL }
160 };
161
162 /*
163 * Transmit descriptor list size.
164 */
165 #define VR_NTXDESC 64
166 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
167 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
168
169 /*
170 * Receive descriptor list size.
171 */
172 #define VR_NRXDESC 64
173 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
174 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
175
176 /*
177 * Control data structres that are DMA'd to the Rhine chip. We allocate
178 * them in a single clump that maps to a single DMA segment to make several
179 * things easier.
180 *
181 * Note that since we always copy outgoing packets to aligned transmit
182 * buffers, we can reduce the transmit descriptors to one per packet.
183 */
184 struct vr_control_data {
185 struct vr_desc vr_txdescs[VR_NTXDESC];
186 struct vr_desc vr_rxdescs[VR_NRXDESC];
187 };
188
189 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
190 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
191 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
192
193 /*
194 * Software state of transmit and receive descriptors.
195 */
196 struct vr_descsoft {
197 struct mbuf *ds_mbuf; /* head of mbuf chain */
198 bus_dmamap_t ds_dmamap; /* our DMA map */
199 };
200
201 struct vr_softc {
202 struct device vr_dev; /* generic device glue */
203 void *vr_ih; /* interrupt cookie */
204 void *vr_ats; /* shutdown hook */
205 bus_space_tag_t vr_bst; /* bus space tag */
206 bus_space_handle_t vr_bsh; /* bus space handle */
207 bus_dma_tag_t vr_dmat; /* bus DMA tag */
208 pci_chipset_tag_t vr_pc; /* PCI chipset info */
209 struct ethercom vr_ec; /* Ethernet common info */
210 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
211 struct mii_data vr_mii; /* MII/media info */
212
213 struct callout vr_tick_ch; /* tick callout */
214
215 bus_dmamap_t vr_cddmamap; /* control data DMA map */
216 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
217
218 /*
219 * Software state for transmit and receive descriptors.
220 */
221 struct vr_descsoft vr_txsoft[VR_NTXDESC];
222 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
223
224 /*
225 * Control data structures.
226 */
227 struct vr_control_data *vr_control_data;
228
229 int vr_txpending; /* number of TX requests pending */
230 int vr_txdirty; /* first dirty TX descriptor */
231 int vr_txlast; /* last used TX descriptor */
232
233 int vr_rxptr; /* next ready RX descriptor */
234 };
235
236 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
237 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
238
239 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
240 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
241
242 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
243 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
244
245 #define VR_CDTXSYNC(sc, x, ops) \
246 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
247 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
248
249 #define VR_CDRXSYNC(sc, x, ops) \
250 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
251 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
252
253 /*
254 * Note we rely on MCLBYTES being a power of two below.
255 */
256 #define VR_INIT_RXDESC(sc, i) \
257 do { \
258 struct vr_desc *__d = VR_CDRX((sc), (i)); \
259 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
260 \
261 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
262 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
263 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
264 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
265 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
266 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
267 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
268 } while (0)
269
270 /*
271 * register space access macros
272 */
273 #define CSR_WRITE_4(sc, reg, val) \
274 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
275 #define CSR_WRITE_2(sc, reg, val) \
276 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
277 #define CSR_WRITE_1(sc, reg, val) \
278 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
279
280 #define CSR_READ_4(sc, reg) \
281 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
282 #define CSR_READ_2(sc, reg) \
283 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
284 #define CSR_READ_1(sc, reg) \
285 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
286
287 #define VR_TIMEOUT 1000
288
289 static int vr_add_rxbuf __P((struct vr_softc *, int));
290
291 static void vr_rxeof __P((struct vr_softc *));
292 static void vr_rxeoc __P((struct vr_softc *));
293 static void vr_txeof __P((struct vr_softc *));
294 static int vr_intr __P((void *));
295 static void vr_start __P((struct ifnet *));
296 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
297 static int vr_init __P((struct ifnet *));
298 static void vr_stop __P((struct ifnet *, int));
299 static void vr_rxdrain __P((struct vr_softc *));
300 static void vr_watchdog __P((struct ifnet *));
301 static void vr_tick __P((void *));
302
303 static int vr_ifmedia_upd __P((struct ifnet *));
304 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
305
306 static int vr_mii_readreg __P((struct device *, int, int));
307 static void vr_mii_writereg __P((struct device *, int, int, int));
308 static void vr_mii_statchg __P((struct device *));
309
310 static void vr_setmulti __P((struct vr_softc *));
311 static void vr_reset __P((struct vr_softc *));
312
313 int vr_copy_small = 0;
314
315 #define VR_SETBIT(sc, reg, x) \
316 CSR_WRITE_1(sc, reg, \
317 CSR_READ_1(sc, reg) | x)
318
319 #define VR_CLRBIT(sc, reg, x) \
320 CSR_WRITE_1(sc, reg, \
321 CSR_READ_1(sc, reg) & ~x)
322
323 #define VR_SETBIT16(sc, reg, x) \
324 CSR_WRITE_2(sc, reg, \
325 CSR_READ_2(sc, reg) | x)
326
327 #define VR_CLRBIT16(sc, reg, x) \
328 CSR_WRITE_2(sc, reg, \
329 CSR_READ_2(sc, reg) & ~x)
330
331 #define VR_SETBIT32(sc, reg, x) \
332 CSR_WRITE_4(sc, reg, \
333 CSR_READ_4(sc, reg) | x)
334
335 #define VR_CLRBIT32(sc, reg, x) \
336 CSR_WRITE_4(sc, reg, \
337 CSR_READ_4(sc, reg) & ~x)
338
339 /*
340 * MII bit-bang glue.
341 */
342 u_int32_t vr_mii_bitbang_read __P((struct device *));
343 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
344
345 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
346 vr_mii_bitbang_read,
347 vr_mii_bitbang_write,
348 {
349 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
350 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
351 VR_MIICMD_CLK, /* MII_BIT_MDC */
352 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
353 0, /* MII_BIT_DIR_PHY_HOST */
354 }
355 };
356
357 u_int32_t
358 vr_mii_bitbang_read(self)
359 struct device *self;
360 {
361 struct vr_softc *sc = (void *) self;
362
363 return (CSR_READ_1(sc, VR_MIICMD));
364 }
365
366 void
367 vr_mii_bitbang_write(self, val)
368 struct device *self;
369 u_int32_t val;
370 {
371 struct vr_softc *sc = (void *) self;
372
373 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
374 }
375
376 /*
377 * Read an PHY register through the MII.
378 */
379 static int
380 vr_mii_readreg(self, phy, reg)
381 struct device *self;
382 int phy, reg;
383 {
384 struct vr_softc *sc = (void *) self;
385
386 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
387 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
388 }
389
390 /*
391 * Write to a PHY register through the MII.
392 */
393 static void
394 vr_mii_writereg(self, phy, reg, val)
395 struct device *self;
396 int phy, reg, val;
397 {
398 struct vr_softc *sc = (void *) self;
399
400 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
401 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
402 }
403
404 static void
405 vr_mii_statchg(self)
406 struct device *self;
407 {
408 struct vr_softc *sc = (struct vr_softc *)self;
409
410 /*
411 * In order to fiddle with the 'full-duplex' bit in the netconfig
412 * register, we first have to put the transmit and/or receive logic
413 * in the idle state.
414 */
415 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
416
417 if (sc->vr_mii.mii_media_active & IFM_FDX)
418 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
419 else
420 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
421
422 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
424 }
425
426 #define vr_calchash(addr) \
427 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
428
429 /*
430 * Program the 64-bit multicast hash filter.
431 */
432 static void
433 vr_setmulti(sc)
434 struct vr_softc *sc;
435 {
436 struct ifnet *ifp;
437 int h = 0;
438 u_int32_t hashes[2] = { 0, 0 };
439 struct ether_multistep step;
440 struct ether_multi *enm;
441 int mcnt = 0;
442 u_int8_t rxfilt;
443
444 ifp = &sc->vr_ec.ec_if;
445
446 rxfilt = CSR_READ_1(sc, VR_RXCFG);
447
448 if (ifp->if_flags & IFF_PROMISC) {
449 allmulti:
450 ifp->if_flags |= IFF_ALLMULTI;
451 rxfilt |= VR_RXCFG_RX_MULTI;
452 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
453 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
454 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
455 return;
456 }
457
458 /* first, zot all the existing hash bits */
459 CSR_WRITE_4(sc, VR_MAR0, 0);
460 CSR_WRITE_4(sc, VR_MAR1, 0);
461
462 /* now program new ones */
463 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
464 while (enm != NULL) {
465 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
466 ETHER_ADDR_LEN) != 0)
467 goto allmulti;
468
469 h = vr_calchash(enm->enm_addrlo);
470
471 if (h < 32)
472 hashes[0] |= (1 << h);
473 else
474 hashes[1] |= (1 << (h - 32));
475 ETHER_NEXT_MULTI(step, enm);
476 mcnt++;
477 }
478
479 ifp->if_flags &= ~IFF_ALLMULTI;
480
481 if (mcnt)
482 rxfilt |= VR_RXCFG_RX_MULTI;
483 else
484 rxfilt &= ~VR_RXCFG_RX_MULTI;
485
486 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
487 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
488 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
489 }
490
491 static void
492 vr_reset(sc)
493 struct vr_softc *sc;
494 {
495 int i;
496
497 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
498
499 for (i = 0; i < VR_TIMEOUT; i++) {
500 DELAY(10);
501 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
502 break;
503 }
504 if (i == VR_TIMEOUT)
505 printf("%s: reset never completed!\n",
506 sc->vr_dev.dv_xname);
507
508 /* Wait a little while for the chip to get its brains in order. */
509 DELAY(1000);
510 }
511
512 /*
513 * Initialize an RX descriptor and attach an MBUF cluster.
514 * Note: the length fields are only 11 bits wide, which means the
515 * largest size we can specify is 2047. This is important because
516 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
517 * overflow the field and make a mess.
518 */
519 static int
520 vr_add_rxbuf(sc, i)
521 struct vr_softc *sc;
522 int i;
523 {
524 struct vr_descsoft *ds = VR_DSRX(sc, i);
525 struct mbuf *m_new;
526 int error;
527
528 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
529 if (m_new == NULL)
530 return (ENOBUFS);
531
532 MCLGET(m_new, M_DONTWAIT);
533 if ((m_new->m_flags & M_EXT) == 0) {
534 m_freem(m_new);
535 return (ENOBUFS);
536 }
537
538 if (ds->ds_mbuf != NULL)
539 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
540
541 ds->ds_mbuf = m_new;
542
543 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
544 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
545 BUS_DMA_READ|BUS_DMA_NOWAIT);
546 if (error) {
547 printf("%s: unable to load rx DMA map %d, error = %d\n",
548 sc->vr_dev.dv_xname, i, error);
549 panic("vr_add_rxbuf"); /* XXX */
550 }
551
552 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
553 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
554
555 VR_INIT_RXDESC(sc, i);
556
557 return (0);
558 }
559
560 /*
561 * A frame has been uploaded: pass the resulting mbuf chain up to
562 * the higher level protocols.
563 */
564 static void
565 vr_rxeof(sc)
566 struct vr_softc *sc;
567 {
568 struct mbuf *m;
569 struct ifnet *ifp;
570 struct vr_desc *d;
571 struct vr_descsoft *ds;
572 int i, total_len;
573 u_int32_t rxstat;
574
575 ifp = &sc->vr_ec.ec_if;
576
577 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
578 d = VR_CDRX(sc, i);
579 ds = VR_DSRX(sc, i);
580
581 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
582
583 rxstat = le32toh(d->vr_status);
584
585 if (rxstat & VR_RXSTAT_OWN) {
586 /*
587 * We have processed all of the receive buffers.
588 */
589 break;
590 }
591
592 /*
593 * If an error occurs, update stats, clear the
594 * status word and leave the mbuf cluster in place:
595 * it should simply get re-used next time this descriptor
596 * comes up in the ring.
597 */
598 if (rxstat & VR_RXSTAT_RXERR) {
599 const char *errstr;
600
601 ifp->if_ierrors++;
602 switch (rxstat & 0x000000FF) {
603 case VR_RXSTAT_CRCERR:
604 errstr = "crc error";
605 break;
606 case VR_RXSTAT_FRAMEALIGNERR:
607 errstr = "frame alignment error";
608 break;
609 case VR_RXSTAT_FIFOOFLOW:
610 errstr = "FIFO overflow";
611 break;
612 case VR_RXSTAT_GIANT:
613 errstr = "received giant packet";
614 break;
615 case VR_RXSTAT_RUNT:
616 errstr = "received runt packet";
617 break;
618 case VR_RXSTAT_BUSERR:
619 errstr = "system bus error";
620 break;
621 case VR_RXSTAT_BUFFERR:
622 errstr = "rx buffer error";
623 break;
624 default:
625 errstr = "unknown rx error";
626 break;
627 }
628 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
629 errstr);
630
631 VR_INIT_RXDESC(sc, i);
632
633 continue;
634 }
635
636 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
637 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
638
639 /* No errors; receive the packet. */
640 total_len = VR_RXBYTES(le32toh(d->vr_status));
641
642 #ifdef __NO_STRICT_ALIGNMENT
643 /*
644 * If the packet is small enough to fit in a
645 * single header mbuf, allocate one and copy
646 * the data into it. This greatly reduces
647 * memory consumption when we receive lots
648 * of small packets.
649 *
650 * Otherwise, we add a new buffer to the receive
651 * chain. If this fails, we drop the packet and
652 * recycle the old buffer.
653 */
654 if (vr_copy_small != 0 && total_len <= MHLEN) {
655 MGETHDR(m, M_DONTWAIT, MT_DATA);
656 if (m == NULL)
657 goto dropit;
658 memcpy(mtod(m, caddr_t),
659 mtod(ds->ds_mbuf, caddr_t), total_len);
660 VR_INIT_RXDESC(sc, i);
661 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
662 ds->ds_dmamap->dm_mapsize,
663 BUS_DMASYNC_PREREAD);
664 } else {
665 m = ds->ds_mbuf;
666 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
667 dropit:
668 ifp->if_ierrors++;
669 VR_INIT_RXDESC(sc, i);
670 bus_dmamap_sync(sc->vr_dmat,
671 ds->ds_dmamap, 0,
672 ds->ds_dmamap->dm_mapsize,
673 BUS_DMASYNC_PREREAD);
674 continue;
675 }
676 }
677 #else
678 /*
679 * The Rhine's packet buffers must be 4-byte aligned.
680 * But this means that the data after the Ethernet header
681 * is misaligned. We must allocate a new buffer and
682 * copy the data, shifted forward 2 bytes.
683 */
684 MGETHDR(m, M_DONTWAIT, MT_DATA);
685 if (m == NULL) {
686 dropit:
687 ifp->if_ierrors++;
688 VR_INIT_RXDESC(sc, i);
689 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
690 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
691 continue;
692 }
693 if (total_len > (MHLEN - 2)) {
694 MCLGET(m, M_DONTWAIT);
695 if ((m->m_flags & M_EXT) == 0) {
696 m_freem(m);
697 goto dropit;
698 }
699 }
700 m->m_data += 2;
701
702 /*
703 * Note that we use clusters for incoming frames, so the
704 * buffer is virtually contiguous.
705 */
706 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
707 total_len);
708
709 /* Allow the receive descriptor to continue using its mbuf. */
710 VR_INIT_RXDESC(sc, i);
711 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
712 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
713 #endif /* __NO_STRICT_ALIGNMENT */
714
715 /*
716 * The Rhine chip includes the FCS with every
717 * received packet.
718 */
719 m->m_flags |= M_HASFCS;
720
721 ifp->if_ipackets++;
722 m->m_pkthdr.rcvif = ifp;
723 m->m_pkthdr.len = m->m_len = total_len;
724 #if NBPFILTER > 0
725 /*
726 * Handle BPF listeners. Let the BPF user see the packet, but
727 * don't pass it up to the ether_input() layer unless it's
728 * a broadcast packet, multicast packet, matches our ethernet
729 * address or the interface is in promiscuous mode.
730 */
731 if (ifp->if_bpf)
732 bpf_mtap(ifp->if_bpf, m);
733 #endif
734 /* Pass it on. */
735 (*ifp->if_input)(ifp, m);
736 }
737
738 /* Update the receive pointer. */
739 sc->vr_rxptr = i;
740 }
741
742 void
743 vr_rxeoc(sc)
744 struct vr_softc *sc;
745 {
746
747 vr_rxeof(sc);
748 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
749 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
750 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
751 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
752 }
753
754 /*
755 * A frame was downloaded to the chip. It's safe for us to clean up
756 * the list buffers.
757 */
758 static void
759 vr_txeof(sc)
760 struct vr_softc *sc;
761 {
762 struct ifnet *ifp = &sc->vr_ec.ec_if;
763 struct vr_desc *d;
764 struct vr_descsoft *ds;
765 u_int32_t txstat;
766 int i;
767
768 ifp->if_flags &= ~IFF_OACTIVE;
769
770 /*
771 * Go through our tx list and free mbufs for those
772 * frames that have been transmitted.
773 */
774 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
775 i = VR_NEXTTX(i), sc->vr_txpending--) {
776 d = VR_CDTX(sc, i);
777 ds = VR_DSTX(sc, i);
778
779 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
780
781 txstat = le32toh(d->vr_status);
782 if (txstat & VR_TXSTAT_OWN)
783 break;
784
785 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
786 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
787 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
788 m_freem(ds->ds_mbuf);
789 ds->ds_mbuf = NULL;
790
791 if (txstat & VR_TXSTAT_ERRSUM) {
792 ifp->if_oerrors++;
793 if (txstat & VR_TXSTAT_DEFER)
794 ifp->if_collisions++;
795 if (txstat & VR_TXSTAT_LATECOLL)
796 ifp->if_collisions++;
797 }
798
799 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
800 ifp->if_opackets++;
801 }
802
803 /* Update the dirty transmit buffer pointer. */
804 sc->vr_txdirty = i;
805
806 /*
807 * Cancel the watchdog timer if there are no pending
808 * transmissions.
809 */
810 if (sc->vr_txpending == 0)
811 ifp->if_timer = 0;
812 }
813
814 static int
815 vr_intr(arg)
816 void *arg;
817 {
818 struct vr_softc *sc;
819 struct ifnet *ifp;
820 u_int16_t status;
821 int handled = 0, dotx = 0;
822
823 sc = arg;
824 ifp = &sc->vr_ec.ec_if;
825
826 /* Suppress unwanted interrupts. */
827 if ((ifp->if_flags & IFF_UP) == 0) {
828 vr_stop(ifp, 1);
829 return (0);
830 }
831
832 /* Disable interrupts. */
833 CSR_WRITE_2(sc, VR_IMR, 0x0000);
834
835 for (;;) {
836 status = CSR_READ_2(sc, VR_ISR);
837 if (status)
838 CSR_WRITE_2(sc, VR_ISR, status);
839
840 if ((status & VR_INTRS) == 0)
841 break;
842
843 handled = 1;
844
845 if (status & VR_ISR_RX_OK)
846 vr_rxeof(sc);
847
848 if (status &
849 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
850 VR_ISR_RX_DROPPED))
851 vr_rxeoc(sc);
852
853 if (status & VR_ISR_TX_OK) {
854 dotx = 1;
855 vr_txeof(sc);
856 }
857
858 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
859 if (status & VR_ISR_TX_UNDERRUN)
860 printf("%s: transmit underrun\n",
861 sc->vr_dev.dv_xname);
862 if (status & VR_ISR_TX_ABRT)
863 printf("%s: transmit aborted\n",
864 sc->vr_dev.dv_xname);
865 ifp->if_oerrors++;
866 dotx = 1;
867 vr_txeof(sc);
868 if (sc->vr_txpending) {
869 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
870 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
871 }
872 }
873
874 if (status & VR_ISR_BUSERR) {
875 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
876 /* vr_init() calls vr_start() */
877 dotx = 0;
878 (void) vr_init(ifp);
879 }
880 }
881
882 /* Re-enable interrupts. */
883 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
884
885 if (dotx)
886 vr_start(ifp);
887
888 return (handled);
889 }
890
891 /*
892 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
893 * to the mbuf data regions directly in the transmit lists. We also save a
894 * copy of the pointers since the transmit list fragment pointers are
895 * physical addresses.
896 */
897 static void
898 vr_start(ifp)
899 struct ifnet *ifp;
900 {
901 struct vr_softc *sc = ifp->if_softc;
902 struct mbuf *m0, *m;
903 struct vr_desc *d;
904 struct vr_descsoft *ds;
905 int error, firsttx, nexttx, opending;
906
907 /*
908 * Remember the previous txpending and the first transmit
909 * descriptor we use.
910 */
911 opending = sc->vr_txpending;
912 firsttx = VR_NEXTTX(sc->vr_txlast);
913
914 /*
915 * Loop through the send queue, setting up transmit descriptors
916 * until we drain the queue, or use up all available transmit
917 * descriptors.
918 */
919 while (sc->vr_txpending < VR_NTXDESC) {
920 /*
921 * Grab a packet off the queue.
922 */
923 IFQ_POLL(&ifp->if_snd, m0);
924 if (m0 == NULL)
925 break;
926 m = NULL;
927
928 /*
929 * Get the next available transmit descriptor.
930 */
931 nexttx = VR_NEXTTX(sc->vr_txlast);
932 d = VR_CDTX(sc, nexttx);
933 ds = VR_DSTX(sc, nexttx);
934
935 /*
936 * Load the DMA map. If this fails, the packet didn't
937 * fit in one DMA segment, and we need to copy. Note,
938 * the packet must also be aligned.
939 */
940 if ((mtod(m0, bus_addr_t) & 3) != 0 ||
941 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
942 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
943 MGETHDR(m, M_DONTWAIT, MT_DATA);
944 if (m == NULL) {
945 printf("%s: unable to allocate Tx mbuf\n",
946 sc->vr_dev.dv_xname);
947 break;
948 }
949 if (m0->m_pkthdr.len > MHLEN) {
950 MCLGET(m, M_DONTWAIT);
951 if ((m->m_flags & M_EXT) == 0) {
952 printf("%s: unable to allocate Tx "
953 "cluster\n", sc->vr_dev.dv_xname);
954 m_freem(m);
955 break;
956 }
957 }
958 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
959 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
960 error = bus_dmamap_load_mbuf(sc->vr_dmat,
961 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
962 if (error) {
963 printf("%s: unable to load Tx buffer, "
964 "error = %d\n", sc->vr_dev.dv_xname, error);
965 break;
966 }
967 }
968
969 IFQ_DEQUEUE(&ifp->if_snd, m0);
970 if (m != NULL) {
971 m_freem(m0);
972 m0 = m;
973 }
974
975 /* Sync the DMA map. */
976 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
977 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
978
979 /*
980 * Store a pointer to the packet so we can free it later.
981 */
982 ds->ds_mbuf = m0;
983
984 #if NBPFILTER > 0
985 /*
986 * If there's a BPF listener, bounce a copy of this frame
987 * to him.
988 */
989 if (ifp->if_bpf)
990 bpf_mtap(ifp->if_bpf, m0);
991 #endif
992
993 /*
994 * Fill in the transmit descriptor. The Rhine
995 * doesn't auto-pad, so we have to do this ourselves.
996 */
997 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
998 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
999 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1000 d->vr_ctl |=
1001 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1002 VR_TXCTL_LASTFRAG);
1003
1004 /*
1005 * If this is the first descriptor we're enqueuing,
1006 * don't give it to the Rhine yet. That could cause
1007 * a race condition. We'll do it below.
1008 */
1009 if (nexttx == firsttx)
1010 d->vr_status = 0;
1011 else
1012 d->vr_status = htole32(VR_TXSTAT_OWN);
1013
1014 VR_CDTXSYNC(sc, nexttx,
1015 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1016
1017 /* Advance the tx pointer. */
1018 sc->vr_txpending++;
1019 sc->vr_txlast = nexttx;
1020 }
1021
1022 if (sc->vr_txpending == VR_NTXDESC) {
1023 /* No more slots left; notify upper layer. */
1024 ifp->if_flags |= IFF_OACTIVE;
1025 }
1026
1027 if (sc->vr_txpending != opending) {
1028 /*
1029 * We enqueued packets. If the transmitter was idle,
1030 * reset the txdirty pointer.
1031 */
1032 if (opending == 0)
1033 sc->vr_txdirty = firsttx;
1034
1035 /*
1036 * Cause a transmit interrupt to happen on the
1037 * last packet we enqueued.
1038 */
1039 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1040 VR_CDTXSYNC(sc, sc->vr_txlast,
1041 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1042
1043 /*
1044 * The entire packet chain is set up. Give the
1045 * first descriptor to the Rhine now.
1046 */
1047 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1048 VR_CDTXSYNC(sc, firsttx,
1049 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051 /* Start the transmitter. */
1052 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1053
1054 /* Set the watchdog timer in case the chip flakes out. */
1055 ifp->if_timer = 5;
1056 }
1057 }
1058
1059 /*
1060 * Initialize the interface. Must be called at splnet.
1061 */
1062 static int
1063 vr_init(ifp)
1064 struct ifnet *ifp;
1065 {
1066 struct vr_softc *sc = ifp->if_softc;
1067 struct vr_desc *d;
1068 struct vr_descsoft *ds;
1069 int i, error = 0;
1070
1071 /* Cancel pending I/O. */
1072 vr_stop(ifp, 0);
1073
1074 /* Reset the Rhine to a known state. */
1075 vr_reset(sc);
1076
1077 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1078 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1079
1080 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1081 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1082
1083 /*
1084 * Initialize the transmit desciptor ring. txlast is initialized
1085 * to the end of the list so that it will wrap around to the first
1086 * descriptor when the first packet is transmitted.
1087 */
1088 for (i = 0; i < VR_NTXDESC; i++) {
1089 d = VR_CDTX(sc, i);
1090 memset(d, 0, sizeof(struct vr_desc));
1091 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1092 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1093 }
1094 sc->vr_txpending = 0;
1095 sc->vr_txdirty = 0;
1096 sc->vr_txlast = VR_NTXDESC - 1;
1097
1098 /*
1099 * Initialize the receive descriptor ring.
1100 */
1101 for (i = 0; i < VR_NRXDESC; i++) {
1102 ds = VR_DSRX(sc, i);
1103 if (ds->ds_mbuf == NULL) {
1104 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1105 printf("%s: unable to allocate or map rx "
1106 "buffer %d, error = %d\n",
1107 sc->vr_dev.dv_xname, i, error);
1108 /*
1109 * XXX Should attempt to run with fewer receive
1110 * XXX buffers instead of just failing.
1111 */
1112 vr_rxdrain(sc);
1113 goto out;
1114 }
1115 } else
1116 VR_INIT_RXDESC(sc, i);
1117 }
1118 sc->vr_rxptr = 0;
1119
1120 /* If we want promiscuous mode, set the allframes bit. */
1121 if (ifp->if_flags & IFF_PROMISC)
1122 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1123 else
1124 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1125
1126 /* Set capture broadcast bit to capture broadcast frames. */
1127 if (ifp->if_flags & IFF_BROADCAST)
1128 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1129 else
1130 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1131
1132 /* Program the multicast filter, if necessary. */
1133 vr_setmulti(sc);
1134
1135 /* Give the transmit and receive rings to the Rhine. */
1136 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1137 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1138
1139 /* Set current media. */
1140 mii_mediachg(&sc->vr_mii);
1141
1142 /* Enable receiver and transmitter. */
1143 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1144 VR_CMD_TX_ON|VR_CMD_RX_ON|
1145 VR_CMD_RX_GO);
1146
1147 /* Enable interrupts. */
1148 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1149 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1150
1151 ifp->if_flags |= IFF_RUNNING;
1152 ifp->if_flags &= ~IFF_OACTIVE;
1153
1154 /* Start one second timer. */
1155 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1156
1157 /* Attempt to start output on the interface. */
1158 vr_start(ifp);
1159
1160 out:
1161 if (error)
1162 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1163 return (error);
1164 }
1165
1166 /*
1167 * Set media options.
1168 */
1169 static int
1170 vr_ifmedia_upd(ifp)
1171 struct ifnet *ifp;
1172 {
1173 struct vr_softc *sc = ifp->if_softc;
1174
1175 if (ifp->if_flags & IFF_UP)
1176 mii_mediachg(&sc->vr_mii);
1177 return (0);
1178 }
1179
1180 /*
1181 * Report current media status.
1182 */
1183 static void
1184 vr_ifmedia_sts(ifp, ifmr)
1185 struct ifnet *ifp;
1186 struct ifmediareq *ifmr;
1187 {
1188 struct vr_softc *sc = ifp->if_softc;
1189
1190 mii_pollstat(&sc->vr_mii);
1191 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1192 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1193 }
1194
1195 static int
1196 vr_ioctl(ifp, command, data)
1197 struct ifnet *ifp;
1198 u_long command;
1199 caddr_t data;
1200 {
1201 struct vr_softc *sc = ifp->if_softc;
1202 struct ifreq *ifr = (struct ifreq *)data;
1203 int s, error = 0;
1204
1205 s = splnet();
1206
1207 switch (command) {
1208 case SIOCGIFMEDIA:
1209 case SIOCSIFMEDIA:
1210 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1211 break;
1212
1213 default:
1214 error = ether_ioctl(ifp, command, data);
1215 if (error == ENETRESET) {
1216 /*
1217 * Multicast list has changed; set the hardware filter
1218 * accordingly.
1219 */
1220 vr_setmulti(sc);
1221 error = 0;
1222 }
1223 break;
1224 }
1225
1226 splx(s);
1227 return (error);
1228 }
1229
1230 static void
1231 vr_watchdog(ifp)
1232 struct ifnet *ifp;
1233 {
1234 struct vr_softc *sc = ifp->if_softc;
1235
1236 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1237 ifp->if_oerrors++;
1238
1239 (void) vr_init(ifp);
1240 }
1241
1242 /*
1243 * One second timer, used to tick MII.
1244 */
1245 static void
1246 vr_tick(arg)
1247 void *arg;
1248 {
1249 struct vr_softc *sc = arg;
1250 int s;
1251
1252 s = splnet();
1253 mii_tick(&sc->vr_mii);
1254 splx(s);
1255
1256 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1257 }
1258
1259 /*
1260 * Drain the receive queue.
1261 */
1262 static void
1263 vr_rxdrain(sc)
1264 struct vr_softc *sc;
1265 {
1266 struct vr_descsoft *ds;
1267 int i;
1268
1269 for (i = 0; i < VR_NRXDESC; i++) {
1270 ds = VR_DSRX(sc, i);
1271 if (ds->ds_mbuf != NULL) {
1272 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1273 m_freem(ds->ds_mbuf);
1274 ds->ds_mbuf = NULL;
1275 }
1276 }
1277 }
1278
1279 /*
1280 * Stop the adapter and free any mbufs allocated to the
1281 * transmit lists.
1282 */
1283 static void
1284 vr_stop(ifp, disable)
1285 struct ifnet *ifp;
1286 int disable;
1287 {
1288 struct vr_softc *sc = ifp->if_softc;
1289 struct vr_descsoft *ds;
1290 int i;
1291
1292 /* Cancel one second timer. */
1293 callout_stop(&sc->vr_tick_ch);
1294
1295 /* Down the MII. */
1296 mii_down(&sc->vr_mii);
1297
1298 ifp = &sc->vr_ec.ec_if;
1299 ifp->if_timer = 0;
1300
1301 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1302 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1303 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1304 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1305 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1306
1307 /*
1308 * Release any queued transmit buffers.
1309 */
1310 for (i = 0; i < VR_NTXDESC; i++) {
1311 ds = VR_DSTX(sc, i);
1312 if (ds->ds_mbuf != NULL) {
1313 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1314 m_freem(ds->ds_mbuf);
1315 ds->ds_mbuf = NULL;
1316 }
1317 }
1318
1319 if (disable)
1320 vr_rxdrain(sc);
1321
1322 /*
1323 * Mark the interface down and cancel the watchdog timer.
1324 */
1325 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1326 ifp->if_timer = 0;
1327 }
1328
1329 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1330 static int vr_probe __P((struct device *, struct cfdata *, void *));
1331 static void vr_attach __P((struct device *, struct device *, void *));
1332 static void vr_shutdown __P((void *));
1333
1334 struct cfattach vr_ca = {
1335 sizeof (struct vr_softc), vr_probe, vr_attach
1336 };
1337
1338 static struct vr_type *
1339 vr_lookup(pa)
1340 struct pci_attach_args *pa;
1341 {
1342 struct vr_type *vrt;
1343
1344 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1345 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1346 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1347 return (vrt);
1348 }
1349 return (NULL);
1350 }
1351
1352 static int
1353 vr_probe(parent, match, aux)
1354 struct device *parent;
1355 struct cfdata *match;
1356 void *aux;
1357 {
1358 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1359
1360 if (vr_lookup(pa) != NULL)
1361 return (1);
1362
1363 return (0);
1364 }
1365
1366 /*
1367 * Stop all chip I/O so that the kernel's probe routines don't
1368 * get confused by errant DMAs when rebooting.
1369 */
1370 static void
1371 vr_shutdown(arg)
1372 void *arg;
1373 {
1374 struct vr_softc *sc = (struct vr_softc *)arg;
1375
1376 vr_stop(&sc->vr_ec.ec_if, 1);
1377 }
1378
1379 /*
1380 * Attach the interface. Allocate softc structures, do ifmedia
1381 * setup and ethernet/BPF attach.
1382 */
1383 static void
1384 vr_attach(parent, self, aux)
1385 struct device *parent;
1386 struct device *self;
1387 void *aux;
1388 {
1389 struct vr_softc *sc = (struct vr_softc *) self;
1390 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1391 bus_dma_segment_t seg;
1392 struct vr_type *vrt;
1393 u_int32_t command;
1394 struct ifnet *ifp;
1395 u_char eaddr[ETHER_ADDR_LEN];
1396 int i, rseg, error;
1397
1398 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1399 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1400
1401 callout_init(&sc->vr_tick_ch);
1402
1403 vrt = vr_lookup(pa);
1404 if (vrt == NULL) {
1405 printf("\n");
1406 panic("vr_attach: impossible");
1407 }
1408
1409 printf(": %s Ethernet\n", vrt->vr_name);
1410
1411 /*
1412 * Handle power management nonsense.
1413 */
1414
1415 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1416 if (command == 0x01) {
1417 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1418 if (command & VR_PSTATE_MASK) {
1419 u_int32_t iobase, membase, irq;
1420
1421 /* Save important PCI config data. */
1422 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1423 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1424 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1425
1426 /* Reset the power state. */
1427 printf("%s: chip is in D%d power mode "
1428 "-- setting to D0\n",
1429 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1430 command &= 0xFFFFFFFC;
1431 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1432
1433 /* Restore PCI config data. */
1434 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1435 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1436 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1437 }
1438 }
1439
1440 /* Make sure bus mastering is enabled. */
1441 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1442 command |= PCI_COMMAND_MASTER_ENABLE;
1443 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1444
1445 /*
1446 * Map control/status registers.
1447 */
1448 {
1449 bus_space_tag_t iot, memt;
1450 bus_space_handle_t ioh, memh;
1451 int ioh_valid, memh_valid;
1452 pci_intr_handle_t intrhandle;
1453 const char *intrstr;
1454
1455 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1456 PCI_MAPREG_TYPE_IO, 0,
1457 &iot, &ioh, NULL, NULL) == 0);
1458 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1459 PCI_MAPREG_TYPE_MEM |
1460 PCI_MAPREG_MEM_TYPE_32BIT,
1461 0, &memt, &memh, NULL, NULL) == 0);
1462 #if defined(VR_USEIOSPACE)
1463 if (ioh_valid) {
1464 sc->vr_bst = iot;
1465 sc->vr_bsh = ioh;
1466 } else if (memh_valid) {
1467 sc->vr_bst = memt;
1468 sc->vr_bsh = memh;
1469 }
1470 #else
1471 if (memh_valid) {
1472 sc->vr_bst = memt;
1473 sc->vr_bsh = memh;
1474 } else if (ioh_valid) {
1475 sc->vr_bst = iot;
1476 sc->vr_bsh = ioh;
1477 }
1478 #endif
1479 else {
1480 printf(": unable to map device registers\n");
1481 return;
1482 }
1483
1484 /* Allocate interrupt */
1485 if (pci_intr_map(pa, &intrhandle)) {
1486 printf("%s: couldn't map interrupt\n",
1487 sc->vr_dev.dv_xname);
1488 return;
1489 }
1490 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1491 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1492 vr_intr, sc);
1493 if (sc->vr_ih == NULL) {
1494 printf("%s: couldn't establish interrupt",
1495 sc->vr_dev.dv_xname);
1496 if (intrstr != NULL)
1497 printf(" at %s", intrstr);
1498 printf("\n");
1499 }
1500 printf("%s: interrupting at %s\n",
1501 sc->vr_dev.dv_xname, intrstr);
1502 }
1503
1504 /* Reset the adapter. */
1505 vr_reset(sc);
1506
1507 /*
1508 * Get station address. The way the Rhine chips work,
1509 * you're not allowed to directly access the EEPROM once
1510 * they've been programmed a special way. Consequently,
1511 * we need to read the node address from the PAR0 and PAR1
1512 * registers.
1513 */
1514 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1515 DELAY(200);
1516 for (i = 0; i < ETHER_ADDR_LEN; i++)
1517 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1518
1519 /*
1520 * A Rhine chip was detected. Inform the world.
1521 */
1522 printf("%s: Ethernet address: %s\n",
1523 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1524
1525 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1526
1527 sc->vr_dmat = pa->pa_dmat;
1528
1529 /*
1530 * Allocate the control data structures, and create and load
1531 * the DMA map for it.
1532 */
1533 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1534 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1535 0)) != 0) {
1536 printf("%s: unable to allocate control data, error = %d\n",
1537 sc->vr_dev.dv_xname, error);
1538 goto fail_0;
1539 }
1540
1541 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1542 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1543 BUS_DMA_COHERENT)) != 0) {
1544 printf("%s: unable to map control data, error = %d\n",
1545 sc->vr_dev.dv_xname, error);
1546 goto fail_1;
1547 }
1548
1549 if ((error = bus_dmamap_create(sc->vr_dmat,
1550 sizeof(struct vr_control_data), 1,
1551 sizeof(struct vr_control_data), 0, 0,
1552 &sc->vr_cddmamap)) != 0) {
1553 printf("%s: unable to create control data DMA map, "
1554 "error = %d\n", sc->vr_dev.dv_xname, error);
1555 goto fail_2;
1556 }
1557
1558 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1559 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1560 0)) != 0) {
1561 printf("%s: unable to load control data DMA map, error = %d\n",
1562 sc->vr_dev.dv_xname, error);
1563 goto fail_3;
1564 }
1565
1566 /*
1567 * Create the transmit buffer DMA maps.
1568 */
1569 for (i = 0; i < VR_NTXDESC; i++) {
1570 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1571 1, MCLBYTES, 0, 0,
1572 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1573 printf("%s: unable to create tx DMA map %d, "
1574 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1575 goto fail_4;
1576 }
1577 }
1578
1579 /*
1580 * Create the receive buffer DMA maps.
1581 */
1582 for (i = 0; i < VR_NRXDESC; i++) {
1583 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1584 MCLBYTES, 0, 0,
1585 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1586 printf("%s: unable to create rx DMA map %d, "
1587 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1588 goto fail_5;
1589 }
1590 VR_DSRX(sc, i)->ds_mbuf = NULL;
1591 }
1592
1593 ifp = &sc->vr_ec.ec_if;
1594 ifp->if_softc = sc;
1595 ifp->if_mtu = ETHERMTU;
1596 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1597 ifp->if_ioctl = vr_ioctl;
1598 ifp->if_start = vr_start;
1599 ifp->if_watchdog = vr_watchdog;
1600 ifp->if_init = vr_init;
1601 ifp->if_stop = vr_stop;
1602 IFQ_SET_READY(&ifp->if_snd);
1603
1604 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1605
1606 /*
1607 * Initialize MII/media info.
1608 */
1609 sc->vr_mii.mii_ifp = ifp;
1610 sc->vr_mii.mii_readreg = vr_mii_readreg;
1611 sc->vr_mii.mii_writereg = vr_mii_writereg;
1612 sc->vr_mii.mii_statchg = vr_mii_statchg;
1613 ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
1614 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1615 MII_OFFSET_ANY, 0);
1616 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1617 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1618 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1619 } else
1620 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1621
1622 /*
1623 * Call MI attach routines.
1624 */
1625 if_attach(ifp);
1626 ether_ifattach(ifp, sc->vr_enaddr);
1627
1628 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1629 if (sc->vr_ats == NULL)
1630 printf("%s: warning: couldn't establish shutdown hook\n",
1631 sc->vr_dev.dv_xname);
1632 return;
1633
1634 fail_5:
1635 for (i = 0; i < VR_NRXDESC; i++) {
1636 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1637 bus_dmamap_destroy(sc->vr_dmat,
1638 sc->vr_rxsoft[i].ds_dmamap);
1639 }
1640 fail_4:
1641 for (i = 0; i < VR_NTXDESC; i++) {
1642 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1643 bus_dmamap_destroy(sc->vr_dmat,
1644 sc->vr_txsoft[i].ds_dmamap);
1645 }
1646 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1647 fail_3:
1648 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1649 fail_2:
1650 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1651 sizeof(struct vr_control_data));
1652 fail_1:
1653 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1654 fail_0:
1655 return;
1656 }
1657