Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.58
      1 /*	$NetBSD: if_vr.c,v 1.58 2002/10/21 23:38:12 fair Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include <sys/cdefs.h>
    107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.58 2002/10/21 23:38:12 fair Exp $");
    108 
    109 #include <sys/param.h>
    110 #include <sys/systm.h>
    111 #include <sys/callout.h>
    112 #include <sys/sockio.h>
    113 #include <sys/mbuf.h>
    114 #include <sys/malloc.h>
    115 #include <sys/kernel.h>
    116 #include <sys/socket.h>
    117 #include <sys/device.h>
    118 
    119 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    120 
    121 #include <net/if.h>
    122 #include <net/if_arp.h>
    123 #include <net/if_dl.h>
    124 #include <net/if_media.h>
    125 #include <net/if_ether.h>
    126 
    127 #include "bpfilter.h"
    128 #if NBPFILTER > 0
    129 #include <net/bpf.h>
    130 #endif
    131 
    132 #include <machine/bus.h>
    133 #include <machine/intr.h>
    134 #include <machine/endian.h>
    135 
    136 #include <dev/mii/mii.h>
    137 #include <dev/mii/miivar.h>
    138 #include <dev/mii/mii_bitbang.h>
    139 
    140 #include <dev/pci/pcireg.h>
    141 #include <dev/pci/pcivar.h>
    142 #include <dev/pci/pcidevs.h>
    143 
    144 #include <dev/pci/if_vrreg.h>
    145 
    146 #define	VR_USEIOSPACE
    147 
    148 /*
    149  * Various supported device vendors/types and their names.
    150  */
    151 static struct vr_type {
    152 	pci_vendor_id_t		vr_vid;
    153 	pci_product_id_t	vr_did;
    154 	const char		*vr_name;
    155 } vr_devs[] = {
    156 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    157 		"VIA VT3043 (Rhine) 10/100" },
    158 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    159 		"VIA VT6102 (Rhine II) 10/100" },
    160 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    161 		"VIA VT86C100A (Rhine-II) 10/100" },
    162 	{ 0, 0, NULL }
    163 };
    164 
    165 /*
    166  * Transmit descriptor list size.
    167  */
    168 #define	VR_NTXDESC		64
    169 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    170 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    171 
    172 /*
    173  * Receive descriptor list size.
    174  */
    175 #define	VR_NRXDESC		64
    176 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    177 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    178 
    179 /*
    180  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    181  * them in a single clump that maps to a single DMA segment to make several
    182  * things easier.
    183  *
    184  * Note that since we always copy outgoing packets to aligned transmit
    185  * buffers, we can reduce the transmit descriptors to one per packet.
    186  */
    187 struct vr_control_data {
    188 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    189 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    190 };
    191 
    192 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    193 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    194 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    195 
    196 /*
    197  * Software state of transmit and receive descriptors.
    198  */
    199 struct vr_descsoft {
    200 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    201 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    202 };
    203 
    204 struct vr_softc {
    205 	struct device		vr_dev;		/* generic device glue */
    206 	void			*vr_ih;		/* interrupt cookie */
    207 	void			*vr_ats;	/* shutdown hook */
    208 	bus_space_tag_t		vr_bst;		/* bus space tag */
    209 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    210 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    211 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    212 	struct ethercom		vr_ec;		/* Ethernet common info */
    213 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    214 	struct mii_data		vr_mii;		/* MII/media info */
    215 
    216 	struct callout		vr_tick_ch;	/* tick callout */
    217 
    218 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    219 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    220 
    221 	/*
    222 	 * Software state for transmit and receive descriptors.
    223 	 */
    224 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    225 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    226 
    227 	/*
    228 	 * Control data structures.
    229 	 */
    230 	struct vr_control_data	*vr_control_data;
    231 
    232 	int	vr_txpending;		/* number of TX requests pending */
    233 	int	vr_txdirty;		/* first dirty TX descriptor */
    234 	int	vr_txlast;		/* last used TX descriptor */
    235 
    236 	int	vr_rxptr;		/* next ready RX descriptor */
    237 };
    238 
    239 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    240 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    241 
    242 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    243 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    244 
    245 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    246 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    247 
    248 #define	VR_CDTXSYNC(sc, x, ops)						\
    249 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    250 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    251 
    252 #define	VR_CDRXSYNC(sc, x, ops)						\
    253 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    254 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    255 
    256 /*
    257  * Note we rely on MCLBYTES being a power of two below.
    258  */
    259 #define	VR_INIT_RXDESC(sc, i)						\
    260 do {									\
    261 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    262 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    263 									\
    264 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    265 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    266 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    267 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    268 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    269 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    270 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    271 } while (0)
    272 
    273 /*
    274  * register space access macros
    275  */
    276 #define	CSR_WRITE_4(sc, reg, val)					\
    277 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    278 #define	CSR_WRITE_2(sc, reg, val)					\
    279 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    280 #define	CSR_WRITE_1(sc, reg, val)					\
    281 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    282 
    283 #define	CSR_READ_4(sc, reg)						\
    284 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    285 #define	CSR_READ_2(sc, reg)						\
    286 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    287 #define	CSR_READ_1(sc, reg)						\
    288 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    289 
    290 #define	VR_TIMEOUT		1000
    291 
    292 static int vr_add_rxbuf		__P((struct vr_softc *, int));
    293 
    294 static void vr_rxeof		__P((struct vr_softc *));
    295 static void vr_rxeoc		__P((struct vr_softc *));
    296 static void vr_txeof		__P((struct vr_softc *));
    297 static int vr_intr		__P((void *));
    298 static void vr_start		__P((struct ifnet *));
    299 static int vr_ioctl		__P((struct ifnet *, u_long, caddr_t));
    300 static int vr_init		__P((struct ifnet *));
    301 static void vr_stop		__P((struct ifnet *, int));
    302 static void vr_rxdrain		__P((struct vr_softc *));
    303 static void vr_watchdog		__P((struct ifnet *));
    304 static void vr_tick		__P((void *));
    305 
    306 static int vr_ifmedia_upd	__P((struct ifnet *));
    307 static void vr_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
    308 
    309 static int vr_mii_readreg	__P((struct device *, int, int));
    310 static void vr_mii_writereg	__P((struct device *, int, int, int));
    311 static void vr_mii_statchg	__P((struct device *));
    312 
    313 static void vr_setmulti		__P((struct vr_softc *));
    314 static void vr_reset		__P((struct vr_softc *));
    315 
    316 int	vr_copy_small = 0;
    317 
    318 #define	VR_SETBIT(sc, reg, x)				\
    319 	CSR_WRITE_1(sc, reg,				\
    320 		CSR_READ_1(sc, reg) | x)
    321 
    322 #define	VR_CLRBIT(sc, reg, x)				\
    323 	CSR_WRITE_1(sc, reg,				\
    324 		CSR_READ_1(sc, reg) & ~x)
    325 
    326 #define	VR_SETBIT16(sc, reg, x)				\
    327 	CSR_WRITE_2(sc, reg,				\
    328 		CSR_READ_2(sc, reg) | x)
    329 
    330 #define	VR_CLRBIT16(sc, reg, x)				\
    331 	CSR_WRITE_2(sc, reg,				\
    332 		CSR_READ_2(sc, reg) & ~x)
    333 
    334 #define	VR_SETBIT32(sc, reg, x)				\
    335 	CSR_WRITE_4(sc, reg,				\
    336 		CSR_READ_4(sc, reg) | x)
    337 
    338 #define	VR_CLRBIT32(sc, reg, x)				\
    339 	CSR_WRITE_4(sc, reg,				\
    340 		CSR_READ_4(sc, reg) & ~x)
    341 
    342 /*
    343  * MII bit-bang glue.
    344  */
    345 u_int32_t vr_mii_bitbang_read __P((struct device *));
    346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
    347 
    348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    349 	vr_mii_bitbang_read,
    350 	vr_mii_bitbang_write,
    351 	{
    352 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    353 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    354 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    355 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    356 		0,			/* MII_BIT_DIR_PHY_HOST */
    357 	}
    358 };
    359 
    360 u_int32_t
    361 vr_mii_bitbang_read(self)
    362 	struct device *self;
    363 {
    364 	struct vr_softc *sc = (void *) self;
    365 
    366 	return (CSR_READ_1(sc, VR_MIICMD));
    367 }
    368 
    369 void
    370 vr_mii_bitbang_write(self, val)
    371 	struct device *self;
    372 	u_int32_t val;
    373 {
    374 	struct vr_softc *sc = (void *) self;
    375 
    376 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    377 }
    378 
    379 /*
    380  * Read an PHY register through the MII.
    381  */
    382 static int
    383 vr_mii_readreg(self, phy, reg)
    384 	struct device *self;
    385 	int phy, reg;
    386 {
    387 	struct vr_softc *sc = (void *) self;
    388 
    389 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    390 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    391 }
    392 
    393 /*
    394  * Write to a PHY register through the MII.
    395  */
    396 static void
    397 vr_mii_writereg(self, phy, reg, val)
    398 	struct device *self;
    399 	int phy, reg, val;
    400 {
    401 	struct vr_softc *sc = (void *) self;
    402 
    403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    405 }
    406 
    407 static void
    408 vr_mii_statchg(self)
    409 	struct device *self;
    410 {
    411 	struct vr_softc *sc = (struct vr_softc *)self;
    412 
    413 	/*
    414 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    415 	 * register, we first have to put the transmit and/or receive logic
    416 	 * in the idle state.
    417 	 */
    418 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    419 
    420 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    421 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    422 	else
    423 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    424 
    425 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    426 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    427 }
    428 
    429 #define	vr_calchash(addr) \
    430 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    431 
    432 /*
    433  * Program the 64-bit multicast hash filter.
    434  */
    435 static void
    436 vr_setmulti(sc)
    437 	struct vr_softc *sc;
    438 {
    439 	struct ifnet *ifp;
    440 	int h = 0;
    441 	u_int32_t hashes[2] = { 0, 0 };
    442 	struct ether_multistep step;
    443 	struct ether_multi *enm;
    444 	int mcnt = 0;
    445 	u_int8_t rxfilt;
    446 
    447 	ifp = &sc->vr_ec.ec_if;
    448 
    449 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    450 
    451 	if (ifp->if_flags & IFF_PROMISC) {
    452 allmulti:
    453 		ifp->if_flags |= IFF_ALLMULTI;
    454 		rxfilt |= VR_RXCFG_RX_MULTI;
    455 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    456 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    457 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    458 		return;
    459 	}
    460 
    461 	/* first, zot all the existing hash bits */
    462 	CSR_WRITE_4(sc, VR_MAR0, 0);
    463 	CSR_WRITE_4(sc, VR_MAR1, 0);
    464 
    465 	/* now program new ones */
    466 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    467 	while (enm != NULL) {
    468 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    469 		    ETHER_ADDR_LEN) != 0)
    470 			goto allmulti;
    471 
    472 		h = vr_calchash(enm->enm_addrlo);
    473 
    474 		if (h < 32)
    475 			hashes[0] |= (1 << h);
    476 		else
    477 			hashes[1] |= (1 << (h - 32));
    478 		ETHER_NEXT_MULTI(step, enm);
    479 		mcnt++;
    480 	}
    481 
    482 	ifp->if_flags &= ~IFF_ALLMULTI;
    483 
    484 	if (mcnt)
    485 		rxfilt |= VR_RXCFG_RX_MULTI;
    486 	else
    487 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    488 
    489 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    490 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    491 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    492 }
    493 
    494 static void
    495 vr_reset(sc)
    496 	struct vr_softc *sc;
    497 {
    498 	int i;
    499 
    500 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    501 
    502 	for (i = 0; i < VR_TIMEOUT; i++) {
    503 		DELAY(10);
    504 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    505 			break;
    506 	}
    507 	if (i == VR_TIMEOUT)
    508 		printf("%s: reset never completed!\n",
    509 			sc->vr_dev.dv_xname);
    510 
    511 	/* Wait a little while for the chip to get its brains in order. */
    512 	DELAY(1000);
    513 }
    514 
    515 /*
    516  * Initialize an RX descriptor and attach an MBUF cluster.
    517  * Note: the length fields are only 11 bits wide, which means the
    518  * largest size we can specify is 2047. This is important because
    519  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    520  * overflow the field and make a mess.
    521  */
    522 static int
    523 vr_add_rxbuf(sc, i)
    524 	struct vr_softc *sc;
    525 	int i;
    526 {
    527 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    528 	struct mbuf *m_new;
    529 	int error;
    530 
    531 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    532 	if (m_new == NULL)
    533 		return (ENOBUFS);
    534 
    535 	MCLGET(m_new, M_DONTWAIT);
    536 	if ((m_new->m_flags & M_EXT) == 0) {
    537 		m_freem(m_new);
    538 		return (ENOBUFS);
    539 	}
    540 
    541 	if (ds->ds_mbuf != NULL)
    542 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    543 
    544 	ds->ds_mbuf = m_new;
    545 
    546 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    547 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    548 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    549 	if (error) {
    550 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    551 		    sc->vr_dev.dv_xname, i, error);
    552 		panic("vr_add_rxbuf");		/* XXX */
    553 	}
    554 
    555 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    556 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    557 
    558 	VR_INIT_RXDESC(sc, i);
    559 
    560 	return (0);
    561 }
    562 
    563 /*
    564  * A frame has been uploaded: pass the resulting mbuf chain up to
    565  * the higher level protocols.
    566  */
    567 static void
    568 vr_rxeof(sc)
    569 	struct vr_softc *sc;
    570 {
    571 	struct mbuf *m;
    572 	struct ifnet *ifp;
    573 	struct vr_desc *d;
    574 	struct vr_descsoft *ds;
    575 	int i, total_len;
    576 	u_int32_t rxstat;
    577 
    578 	ifp = &sc->vr_ec.ec_if;
    579 
    580 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    581 		d = VR_CDRX(sc, i);
    582 		ds = VR_DSRX(sc, i);
    583 
    584 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    585 
    586 		rxstat = le32toh(d->vr_status);
    587 
    588 		if (rxstat & VR_RXSTAT_OWN) {
    589 			/*
    590 			 * We have processed all of the receive buffers.
    591 			 */
    592 			break;
    593 		}
    594 
    595 		/*
    596 		 * If an error occurs, update stats, clear the
    597 		 * status word and leave the mbuf cluster in place:
    598 		 * it should simply get re-used next time this descriptor
    599 		 * comes up in the ring.
    600 		 */
    601 		if (rxstat & VR_RXSTAT_RXERR) {
    602 			const char *errstr;
    603 
    604 			ifp->if_ierrors++;
    605 			switch (rxstat & 0x000000FF) {
    606 			case VR_RXSTAT_CRCERR:
    607 				errstr = "crc error";
    608 				break;
    609 			case VR_RXSTAT_FRAMEALIGNERR:
    610 				errstr = "frame alignment error";
    611 				break;
    612 			case VR_RXSTAT_FIFOOFLOW:
    613 				errstr = "FIFO overflow";
    614 				break;
    615 			case VR_RXSTAT_GIANT:
    616 				errstr = "received giant packet";
    617 				break;
    618 			case VR_RXSTAT_RUNT:
    619 				errstr = "received runt packet";
    620 				break;
    621 			case VR_RXSTAT_BUSERR:
    622 				errstr = "system bus error";
    623 				break;
    624 			case VR_RXSTAT_BUFFERR:
    625 				errstr = "rx buffer error";
    626 				break;
    627 			default:
    628 				errstr = "unknown rx error";
    629 				break;
    630 			}
    631 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    632 			    errstr);
    633 
    634 			VR_INIT_RXDESC(sc, i);
    635 
    636 			continue;
    637 		}
    638 
    639 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    640 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    641 
    642 		/* No errors; receive the packet. */
    643 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    644 
    645 #ifdef __NO_STRICT_ALIGNMENT
    646 		/*
    647 		 * If the packet is small enough to fit in a
    648 		 * single header mbuf, allocate one and copy
    649 		 * the data into it.  This greatly reduces
    650 		 * memory consumption when we receive lots
    651 		 * of small packets.
    652 		 *
    653 		 * Otherwise, we add a new buffer to the receive
    654 		 * chain.  If this fails, we drop the packet and
    655 		 * recycle the old buffer.
    656 		 */
    657 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    658 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    659 			if (m == NULL)
    660 				goto dropit;
    661 			memcpy(mtod(m, caddr_t),
    662 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    663 			VR_INIT_RXDESC(sc, i);
    664 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    665 			    ds->ds_dmamap->dm_mapsize,
    666 			    BUS_DMASYNC_PREREAD);
    667 		} else {
    668 			m = ds->ds_mbuf;
    669 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    670  dropit:
    671 				ifp->if_ierrors++;
    672 				VR_INIT_RXDESC(sc, i);
    673 				bus_dmamap_sync(sc->vr_dmat,
    674 				    ds->ds_dmamap, 0,
    675 				    ds->ds_dmamap->dm_mapsize,
    676 				    BUS_DMASYNC_PREREAD);
    677 				continue;
    678 			}
    679 		}
    680 #else
    681 		/*
    682 		 * The Rhine's packet buffers must be 4-byte aligned.
    683 		 * But this means that the data after the Ethernet header
    684 		 * is misaligned.  We must allocate a new buffer and
    685 		 * copy the data, shifted forward 2 bytes.
    686 		 */
    687 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    688 		if (m == NULL) {
    689  dropit:
    690 			ifp->if_ierrors++;
    691 			VR_INIT_RXDESC(sc, i);
    692 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    693 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    694 			continue;
    695 		}
    696 		if (total_len > (MHLEN - 2)) {
    697 			MCLGET(m, M_DONTWAIT);
    698 			if ((m->m_flags & M_EXT) == 0) {
    699 				m_freem(m);
    700 				goto dropit;
    701 			}
    702 		}
    703 		m->m_data += 2;
    704 
    705 		/*
    706 		 * Note that we use clusters for incoming frames, so the
    707 		 * buffer is virtually contiguous.
    708 		 */
    709 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    710 		    total_len);
    711 
    712 		/* Allow the receive descriptor to continue using its mbuf. */
    713 		VR_INIT_RXDESC(sc, i);
    714 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    715 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    716 #endif /* __NO_STRICT_ALIGNMENT */
    717 
    718 		/*
    719 		 * The Rhine chip includes the FCS with every
    720 		 * received packet.
    721 		 */
    722 		m->m_flags |= M_HASFCS;
    723 
    724 		ifp->if_ipackets++;
    725 		m->m_pkthdr.rcvif = ifp;
    726 		m->m_pkthdr.len = m->m_len = total_len;
    727 #if NBPFILTER > 0
    728 		/*
    729 		 * Handle BPF listeners. Let the BPF user see the packet, but
    730 		 * don't pass it up to the ether_input() layer unless it's
    731 		 * a broadcast packet, multicast packet, matches our ethernet
    732 		 * address or the interface is in promiscuous mode.
    733 		 */
    734 		if (ifp->if_bpf)
    735 			bpf_mtap(ifp->if_bpf, m);
    736 #endif
    737 		/* Pass it on. */
    738 		(*ifp->if_input)(ifp, m);
    739 	}
    740 
    741 	/* Update the receive pointer. */
    742 	sc->vr_rxptr = i;
    743 }
    744 
    745 void
    746 vr_rxeoc(sc)
    747 	struct vr_softc *sc;
    748 {
    749 
    750 	vr_rxeof(sc);
    751 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    752 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    753 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    754 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    755 }
    756 
    757 /*
    758  * A frame was downloaded to the chip. It's safe for us to clean up
    759  * the list buffers.
    760  */
    761 static void
    762 vr_txeof(sc)
    763 	struct vr_softc *sc;
    764 {
    765 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    766 	struct vr_desc *d;
    767 	struct vr_descsoft *ds;
    768 	u_int32_t txstat;
    769 	int i;
    770 
    771 	ifp->if_flags &= ~IFF_OACTIVE;
    772 
    773 	/*
    774 	 * Go through our tx list and free mbufs for those
    775 	 * frames that have been transmitted.
    776 	 */
    777 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    778 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    779 		d = VR_CDTX(sc, i);
    780 		ds = VR_DSTX(sc, i);
    781 
    782 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    783 
    784 		txstat = le32toh(d->vr_status);
    785 		if (txstat & VR_TXSTAT_OWN)
    786 			break;
    787 
    788 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    789 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    790 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    791 		m_freem(ds->ds_mbuf);
    792 		ds->ds_mbuf = NULL;
    793 
    794 		if (txstat & VR_TXSTAT_ERRSUM) {
    795 			ifp->if_oerrors++;
    796 			if (txstat & VR_TXSTAT_DEFER)
    797 				ifp->if_collisions++;
    798 			if (txstat & VR_TXSTAT_LATECOLL)
    799 				ifp->if_collisions++;
    800 		}
    801 
    802 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    803 		ifp->if_opackets++;
    804 	}
    805 
    806 	/* Update the dirty transmit buffer pointer. */
    807 	sc->vr_txdirty = i;
    808 
    809 	/*
    810 	 * Cancel the watchdog timer if there are no pending
    811 	 * transmissions.
    812 	 */
    813 	if (sc->vr_txpending == 0)
    814 		ifp->if_timer = 0;
    815 }
    816 
    817 static int
    818 vr_intr(arg)
    819 	void *arg;
    820 {
    821 	struct vr_softc *sc;
    822 	struct ifnet *ifp;
    823 	u_int16_t status;
    824 	int handled = 0, dotx = 0;
    825 
    826 	sc = arg;
    827 	ifp = &sc->vr_ec.ec_if;
    828 
    829 	/* Suppress unwanted interrupts. */
    830 	if ((ifp->if_flags & IFF_UP) == 0) {
    831 		vr_stop(ifp, 1);
    832 		return (0);
    833 	}
    834 
    835 	/* Disable interrupts. */
    836 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    837 
    838 	for (;;) {
    839 		status = CSR_READ_2(sc, VR_ISR);
    840 		if (status)
    841 			CSR_WRITE_2(sc, VR_ISR, status);
    842 
    843 		if ((status & VR_INTRS) == 0)
    844 			break;
    845 
    846 		handled = 1;
    847 
    848 		if (status & VR_ISR_RX_OK)
    849 			vr_rxeof(sc);
    850 
    851 		if (status &
    852 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    853 		     VR_ISR_RX_DROPPED))
    854 			vr_rxeoc(sc);
    855 
    856 		if (status & VR_ISR_TX_OK) {
    857 			dotx = 1;
    858 			vr_txeof(sc);
    859 		}
    860 
    861 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    862 			if (status & VR_ISR_TX_UNDERRUN)
    863 				printf("%s: transmit underrun\n",
    864 				    sc->vr_dev.dv_xname);
    865 			if (status & VR_ISR_TX_ABRT)
    866 				printf("%s: transmit aborted\n",
    867 				    sc->vr_dev.dv_xname);
    868 			ifp->if_oerrors++;
    869 			dotx = 1;
    870 			vr_txeof(sc);
    871 			if (sc->vr_txpending) {
    872 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    873 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    874 			}
    875 			/*
    876 			 * Unfortunately many cards get stuck after
    877 			 * aborted transmits, so we reset them.
    878 			 */
    879 			if (status & VR_ISR_TX_ABRT) {
    880 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
    881 				dotx = 0;
    882 				(void) vr_init(ifp);
    883 			}
    884 		}
    885 
    886 		if (status & VR_ISR_BUSERR) {
    887 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    888 			/* vr_init() calls vr_start() */
    889 			dotx = 0;
    890 			(void) vr_init(ifp);
    891 		}
    892 	}
    893 
    894 	/* Re-enable interrupts. */
    895 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    896 
    897 	if (dotx)
    898 		vr_start(ifp);
    899 
    900 	return (handled);
    901 }
    902 
    903 /*
    904  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    905  * to the mbuf data regions directly in the transmit lists. We also save a
    906  * copy of the pointers since the transmit list fragment pointers are
    907  * physical addresses.
    908  */
    909 static void
    910 vr_start(ifp)
    911 	struct ifnet *ifp;
    912 {
    913 	struct vr_softc *sc = ifp->if_softc;
    914 	struct mbuf *m0, *m;
    915 	struct vr_desc *d;
    916 	struct vr_descsoft *ds;
    917 	int error, firsttx, nexttx, opending;
    918 
    919 	/*
    920 	 * Remember the previous txpending and the first transmit
    921 	 * descriptor we use.
    922 	 */
    923 	opending = sc->vr_txpending;
    924 	firsttx = VR_NEXTTX(sc->vr_txlast);
    925 
    926 	/*
    927 	 * Loop through the send queue, setting up transmit descriptors
    928 	 * until we drain the queue, or use up all available transmit
    929 	 * descriptors.
    930 	 */
    931 	while (sc->vr_txpending < VR_NTXDESC) {
    932 		/*
    933 		 * Grab a packet off the queue.
    934 		 */
    935 		IFQ_POLL(&ifp->if_snd, m0);
    936 		if (m0 == NULL)
    937 			break;
    938 		m = NULL;
    939 
    940 		/*
    941 		 * Get the next available transmit descriptor.
    942 		 */
    943 		nexttx = VR_NEXTTX(sc->vr_txlast);
    944 		d = VR_CDTX(sc, nexttx);
    945 		ds = VR_DSTX(sc, nexttx);
    946 
    947 		/*
    948 		 * Load the DMA map.  If this fails, the packet didn't
    949 		 * fit in one DMA segment, and we need to copy.  Note,
    950 		 * the packet must also be aligned.
    951 		 */
    952 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
    953 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    954 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    955 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    956 			if (m == NULL) {
    957 				printf("%s: unable to allocate Tx mbuf\n",
    958 				    sc->vr_dev.dv_xname);
    959 				break;
    960 			}
    961 			if (m0->m_pkthdr.len > MHLEN) {
    962 				MCLGET(m, M_DONTWAIT);
    963 				if ((m->m_flags & M_EXT) == 0) {
    964 					printf("%s: unable to allocate Tx "
    965 					    "cluster\n", sc->vr_dev.dv_xname);
    966 					m_freem(m);
    967 					break;
    968 				}
    969 			}
    970 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    971 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    972 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    973 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    974 			if (error) {
    975 				printf("%s: unable to load Tx buffer, "
    976 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    977 				break;
    978 			}
    979 		}
    980 
    981 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    982 		if (m != NULL) {
    983 			m_freem(m0);
    984 			m0 = m;
    985 		}
    986 
    987 		/* Sync the DMA map. */
    988 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    989 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    990 
    991 		/*
    992 		 * Store a pointer to the packet so we can free it later.
    993 		 */
    994 		ds->ds_mbuf = m0;
    995 
    996 #if NBPFILTER > 0
    997 		/*
    998 		 * If there's a BPF listener, bounce a copy of this frame
    999 		 * to him.
   1000 		 */
   1001 		if (ifp->if_bpf)
   1002 			bpf_mtap(ifp->if_bpf, m0);
   1003 #endif
   1004 
   1005 		/*
   1006 		 * Fill in the transmit descriptor.  The Rhine
   1007 		 * doesn't auto-pad, so we have to do this ourselves.
   1008 		 */
   1009 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1010 		d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
   1011 		    VR_MIN_FRAMELEN : m0->m_pkthdr.len);
   1012 		d->vr_ctl |=
   1013 		    htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
   1014 		    VR_TXCTL_LASTFRAG);
   1015 
   1016 		/*
   1017 		 * If this is the first descriptor we're enqueuing,
   1018 		 * don't give it to the Rhine yet.  That could cause
   1019 		 * a race condition.  We'll do it below.
   1020 		 */
   1021 		if (nexttx == firsttx)
   1022 			d->vr_status = 0;
   1023 		else
   1024 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1025 
   1026 		VR_CDTXSYNC(sc, nexttx,
   1027 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1028 
   1029 		/* Advance the tx pointer. */
   1030 		sc->vr_txpending++;
   1031 		sc->vr_txlast = nexttx;
   1032 	}
   1033 
   1034 	if (sc->vr_txpending == VR_NTXDESC) {
   1035 		/* No more slots left; notify upper layer. */
   1036 		ifp->if_flags |= IFF_OACTIVE;
   1037 	}
   1038 
   1039 	if (sc->vr_txpending != opending) {
   1040 		/*
   1041 		 * We enqueued packets.  If the transmitter was idle,
   1042 		 * reset the txdirty pointer.
   1043 		 */
   1044 		if (opending == 0)
   1045 			sc->vr_txdirty = firsttx;
   1046 
   1047 		/*
   1048 		 * Cause a transmit interrupt to happen on the
   1049 		 * last packet we enqueued.
   1050 		 */
   1051 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1052 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1053 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1054 
   1055 		/*
   1056 		 * The entire packet chain is set up.  Give the
   1057 		 * first descriptor to the Rhine now.
   1058 		 */
   1059 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1060 		VR_CDTXSYNC(sc, firsttx,
   1061 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1062 
   1063 		/* Start the transmitter. */
   1064 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
   1065 
   1066 		/* Set the watchdog timer in case the chip flakes out. */
   1067 		ifp->if_timer = 5;
   1068 	}
   1069 }
   1070 
   1071 /*
   1072  * Initialize the interface.  Must be called at splnet.
   1073  */
   1074 static int
   1075 vr_init(ifp)
   1076 	struct ifnet *ifp;
   1077 {
   1078 	struct vr_softc *sc = ifp->if_softc;
   1079 	struct vr_desc *d;
   1080 	struct vr_descsoft *ds;
   1081 	int i, error = 0;
   1082 
   1083 	/* Cancel pending I/O. */
   1084 	vr_stop(ifp, 0);
   1085 
   1086 	/* Reset the Rhine to a known state. */
   1087 	vr_reset(sc);
   1088 
   1089 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1090 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
   1091 
   1092 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1093 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1094 
   1095 	/*
   1096 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1097 	 * to the end of the list so that it will wrap around to the first
   1098 	 * descriptor when the first packet is transmitted.
   1099 	 */
   1100 	for (i = 0; i < VR_NTXDESC; i++) {
   1101 		d = VR_CDTX(sc, i);
   1102 		memset(d, 0, sizeof(struct vr_desc));
   1103 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1104 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1105 	}
   1106 	sc->vr_txpending = 0;
   1107 	sc->vr_txdirty = 0;
   1108 	sc->vr_txlast = VR_NTXDESC - 1;
   1109 
   1110 	/*
   1111 	 * Initialize the receive descriptor ring.
   1112 	 */
   1113 	for (i = 0; i < VR_NRXDESC; i++) {
   1114 		ds = VR_DSRX(sc, i);
   1115 		if (ds->ds_mbuf == NULL) {
   1116 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1117 				printf("%s: unable to allocate or map rx "
   1118 				    "buffer %d, error = %d\n",
   1119 				    sc->vr_dev.dv_xname, i, error);
   1120 				/*
   1121 				 * XXX Should attempt to run with fewer receive
   1122 				 * XXX buffers instead of just failing.
   1123 				 */
   1124 				vr_rxdrain(sc);
   1125 				goto out;
   1126 			}
   1127 		} else
   1128 			VR_INIT_RXDESC(sc, i);
   1129 	}
   1130 	sc->vr_rxptr = 0;
   1131 
   1132 	/* If we want promiscuous mode, set the allframes bit. */
   1133 	if (ifp->if_flags & IFF_PROMISC)
   1134 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1135 	else
   1136 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1137 
   1138 	/* Set capture broadcast bit to capture broadcast frames. */
   1139 	if (ifp->if_flags & IFF_BROADCAST)
   1140 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1141 	else
   1142 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1143 
   1144 	/* Program the multicast filter, if necessary. */
   1145 	vr_setmulti(sc);
   1146 
   1147 	/* Give the transmit and receive rings to the Rhine. */
   1148 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1149 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1150 
   1151 	/* Set current media. */
   1152 	mii_mediachg(&sc->vr_mii);
   1153 
   1154 	/* Enable receiver and transmitter. */
   1155 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1156 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1157 				    VR_CMD_RX_GO);
   1158 
   1159 	/* Enable interrupts. */
   1160 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1161 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1162 
   1163 	ifp->if_flags |= IFF_RUNNING;
   1164 	ifp->if_flags &= ~IFF_OACTIVE;
   1165 
   1166 	/* Start one second timer. */
   1167 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1168 
   1169 	/* Attempt to start output on the interface. */
   1170 	vr_start(ifp);
   1171 
   1172  out:
   1173 	if (error)
   1174 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1175 	return (error);
   1176 }
   1177 
   1178 /*
   1179  * Set media options.
   1180  */
   1181 static int
   1182 vr_ifmedia_upd(ifp)
   1183 	struct ifnet *ifp;
   1184 {
   1185 	struct vr_softc *sc = ifp->if_softc;
   1186 
   1187 	if (ifp->if_flags & IFF_UP)
   1188 		mii_mediachg(&sc->vr_mii);
   1189 	return (0);
   1190 }
   1191 
   1192 /*
   1193  * Report current media status.
   1194  */
   1195 static void
   1196 vr_ifmedia_sts(ifp, ifmr)
   1197 	struct ifnet *ifp;
   1198 	struct ifmediareq *ifmr;
   1199 {
   1200 	struct vr_softc *sc = ifp->if_softc;
   1201 
   1202 	mii_pollstat(&sc->vr_mii);
   1203 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1204 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1205 }
   1206 
   1207 static int
   1208 vr_ioctl(ifp, command, data)
   1209 	struct ifnet *ifp;
   1210 	u_long command;
   1211 	caddr_t data;
   1212 {
   1213 	struct vr_softc *sc = ifp->if_softc;
   1214 	struct ifreq *ifr = (struct ifreq *)data;
   1215 	int s, error = 0;
   1216 
   1217 	s = splnet();
   1218 
   1219 	switch (command) {
   1220 	case SIOCGIFMEDIA:
   1221 	case SIOCSIFMEDIA:
   1222 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1223 		break;
   1224 
   1225 	default:
   1226 		error = ether_ioctl(ifp, command, data);
   1227 		if (error == ENETRESET) {
   1228 			/*
   1229 			 * Multicast list has changed; set the hardware filter
   1230 			 * accordingly.
   1231 			 */
   1232 			vr_setmulti(sc);
   1233 			error = 0;
   1234 		}
   1235 		break;
   1236 	}
   1237 
   1238 	splx(s);
   1239 	return (error);
   1240 }
   1241 
   1242 static void
   1243 vr_watchdog(ifp)
   1244 	struct ifnet *ifp;
   1245 {
   1246 	struct vr_softc *sc = ifp->if_softc;
   1247 
   1248 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1249 	ifp->if_oerrors++;
   1250 
   1251 	(void) vr_init(ifp);
   1252 }
   1253 
   1254 /*
   1255  * One second timer, used to tick MII.
   1256  */
   1257 static void
   1258 vr_tick(arg)
   1259 	void *arg;
   1260 {
   1261 	struct vr_softc *sc = arg;
   1262 	int s;
   1263 
   1264 	s = splnet();
   1265 	mii_tick(&sc->vr_mii);
   1266 	splx(s);
   1267 
   1268 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1269 }
   1270 
   1271 /*
   1272  * Drain the receive queue.
   1273  */
   1274 static void
   1275 vr_rxdrain(sc)
   1276 	struct vr_softc *sc;
   1277 {
   1278 	struct vr_descsoft *ds;
   1279 	int i;
   1280 
   1281 	for (i = 0; i < VR_NRXDESC; i++) {
   1282 		ds = VR_DSRX(sc, i);
   1283 		if (ds->ds_mbuf != NULL) {
   1284 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1285 			m_freem(ds->ds_mbuf);
   1286 			ds->ds_mbuf = NULL;
   1287 		}
   1288 	}
   1289 }
   1290 
   1291 /*
   1292  * Stop the adapter and free any mbufs allocated to the
   1293  * transmit lists.
   1294  */
   1295 static void
   1296 vr_stop(ifp, disable)
   1297 	struct ifnet *ifp;
   1298 	int disable;
   1299 {
   1300 	struct vr_softc *sc = ifp->if_softc;
   1301 	struct vr_descsoft *ds;
   1302 	int i;
   1303 
   1304 	/* Cancel one second timer. */
   1305 	callout_stop(&sc->vr_tick_ch);
   1306 
   1307 	/* Down the MII. */
   1308 	mii_down(&sc->vr_mii);
   1309 
   1310 	ifp = &sc->vr_ec.ec_if;
   1311 	ifp->if_timer = 0;
   1312 
   1313 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1314 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1315 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1316 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1317 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1318 
   1319 	/*
   1320 	 * Release any queued transmit buffers.
   1321 	 */
   1322 	for (i = 0; i < VR_NTXDESC; i++) {
   1323 		ds = VR_DSTX(sc, i);
   1324 		if (ds->ds_mbuf != NULL) {
   1325 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1326 			m_freem(ds->ds_mbuf);
   1327 			ds->ds_mbuf = NULL;
   1328 		}
   1329 	}
   1330 
   1331 	if (disable)
   1332 		vr_rxdrain(sc);
   1333 
   1334 	/*
   1335 	 * Mark the interface down and cancel the watchdog timer.
   1336 	 */
   1337 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1338 	ifp->if_timer = 0;
   1339 }
   1340 
   1341 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
   1342 static int vr_probe __P((struct device *, struct cfdata *, void *));
   1343 static void vr_attach __P((struct device *, struct device *, void *));
   1344 static void vr_shutdown __P((void *));
   1345 
   1346 CFATTACH_DECL(vr, sizeof (struct vr_softc),
   1347     vr_probe, vr_attach, NULL, NULL);
   1348 
   1349 static struct vr_type *
   1350 vr_lookup(pa)
   1351 	struct pci_attach_args *pa;
   1352 {
   1353 	struct vr_type *vrt;
   1354 
   1355 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1356 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1357 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1358 			return (vrt);
   1359 	}
   1360 	return (NULL);
   1361 }
   1362 
   1363 static int
   1364 vr_probe(parent, match, aux)
   1365 	struct device *parent;
   1366 	struct cfdata *match;
   1367 	void *aux;
   1368 {
   1369 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1370 
   1371 	if (vr_lookup(pa) != NULL)
   1372 		return (1);
   1373 
   1374 	return (0);
   1375 }
   1376 
   1377 /*
   1378  * Stop all chip I/O so that the kernel's probe routines don't
   1379  * get confused by errant DMAs when rebooting.
   1380  */
   1381 static void
   1382 vr_shutdown(arg)
   1383 	void *arg;
   1384 {
   1385 	struct vr_softc *sc = (struct vr_softc *)arg;
   1386 
   1387 	vr_stop(&sc->vr_ec.ec_if, 1);
   1388 }
   1389 
   1390 /*
   1391  * Attach the interface. Allocate softc structures, do ifmedia
   1392  * setup and ethernet/BPF attach.
   1393  */
   1394 static void
   1395 vr_attach(parent, self, aux)
   1396 	struct device *parent;
   1397 	struct device *self;
   1398 	void *aux;
   1399 {
   1400 	struct vr_softc *sc = (struct vr_softc *) self;
   1401 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1402 	bus_dma_segment_t seg;
   1403 	struct vr_type *vrt;
   1404 	u_int32_t command;
   1405 	struct ifnet *ifp;
   1406 	u_char eaddr[ETHER_ADDR_LEN];
   1407 	int i, rseg, error;
   1408 
   1409 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1410 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1411 
   1412 	callout_init(&sc->vr_tick_ch);
   1413 
   1414 	vrt = vr_lookup(pa);
   1415 	if (vrt == NULL) {
   1416 		printf("\n");
   1417 		panic("vr_attach: impossible");
   1418 	}
   1419 
   1420 	printf(": %s Ethernet\n", vrt->vr_name);
   1421 
   1422 	/*
   1423 	 * Handle power management nonsense.
   1424 	 */
   1425 
   1426 	command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
   1427 	if (command == 0x01) {
   1428 		command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
   1429 		if (command & VR_PSTATE_MASK) {
   1430 			u_int32_t iobase, membase, irq;
   1431 
   1432 			/* Save important PCI config data. */
   1433 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1434 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1435 			irq = PCI_CONF_READ(VR_PCI_INTLINE);
   1436 
   1437 			/* Reset the power state. */
   1438 			printf("%s: chip is in D%d power mode "
   1439 				"-- setting to D0\n",
   1440 				sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
   1441 			command &= 0xFFFFFFFC;
   1442 			PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
   1443 
   1444 			/* Restore PCI config data. */
   1445 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1446 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1447 			PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
   1448 		}
   1449 	}
   1450 
   1451 	/* Make sure bus mastering is enabled. */
   1452 	command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1453 	command |= PCI_COMMAND_MASTER_ENABLE;
   1454 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
   1455 
   1456 	/*
   1457 	 * Map control/status registers.
   1458 	 */
   1459 	{
   1460 		bus_space_tag_t iot, memt;
   1461 		bus_space_handle_t ioh, memh;
   1462 		int ioh_valid, memh_valid;
   1463 		pci_intr_handle_t intrhandle;
   1464 		const char *intrstr;
   1465 
   1466 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1467 			PCI_MAPREG_TYPE_IO, 0,
   1468 			&iot, &ioh, NULL, NULL) == 0);
   1469 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1470 			PCI_MAPREG_TYPE_MEM |
   1471 			PCI_MAPREG_MEM_TYPE_32BIT,
   1472 			0, &memt, &memh, NULL, NULL) == 0);
   1473 #if defined(VR_USEIOSPACE)
   1474 		if (ioh_valid) {
   1475 			sc->vr_bst = iot;
   1476 			sc->vr_bsh = ioh;
   1477 		} else if (memh_valid) {
   1478 			sc->vr_bst = memt;
   1479 			sc->vr_bsh = memh;
   1480 		}
   1481 #else
   1482 		if (memh_valid) {
   1483 			sc->vr_bst = memt;
   1484 			sc->vr_bsh = memh;
   1485 		} else if (ioh_valid) {
   1486 			sc->vr_bst = iot;
   1487 			sc->vr_bsh = ioh;
   1488 		}
   1489 #endif
   1490 		else {
   1491 			printf(": unable to map device registers\n");
   1492 			return;
   1493 		}
   1494 
   1495 		/* Allocate interrupt */
   1496 		if (pci_intr_map(pa, &intrhandle)) {
   1497 			printf("%s: couldn't map interrupt\n",
   1498 				sc->vr_dev.dv_xname);
   1499 			return;
   1500 		}
   1501 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1502 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1503 						vr_intr, sc);
   1504 		if (sc->vr_ih == NULL) {
   1505 			printf("%s: couldn't establish interrupt",
   1506 				sc->vr_dev.dv_xname);
   1507 			if (intrstr != NULL)
   1508 				printf(" at %s", intrstr);
   1509 			printf("\n");
   1510 		}
   1511 		printf("%s: interrupting at %s\n",
   1512 			sc->vr_dev.dv_xname, intrstr);
   1513 	}
   1514 
   1515 	/* Reset the adapter. */
   1516 	vr_reset(sc);
   1517 
   1518 	/*
   1519 	 * Get station address. The way the Rhine chips work,
   1520 	 * you're not allowed to directly access the EEPROM once
   1521 	 * they've been programmed a special way. Consequently,
   1522 	 * we need to read the node address from the PAR0 and PAR1
   1523 	 * registers.
   1524 	 */
   1525 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1526 	DELAY(200);
   1527 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1528 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1529 
   1530 	/*
   1531 	 * A Rhine chip was detected. Inform the world.
   1532 	 */
   1533 	printf("%s: Ethernet address: %s\n",
   1534 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1535 
   1536 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1537 
   1538 	sc->vr_dmat = pa->pa_dmat;
   1539 
   1540 	/*
   1541 	 * Allocate the control data structures, and create and load
   1542 	 * the DMA map for it.
   1543 	 */
   1544 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1545 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1546 	    0)) != 0) {
   1547 		printf("%s: unable to allocate control data, error = %d\n",
   1548 		    sc->vr_dev.dv_xname, error);
   1549 		goto fail_0;
   1550 	}
   1551 
   1552 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1553 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1554 	    BUS_DMA_COHERENT)) != 0) {
   1555 		printf("%s: unable to map control data, error = %d\n",
   1556 		    sc->vr_dev.dv_xname, error);
   1557 		goto fail_1;
   1558 	}
   1559 
   1560 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1561 	    sizeof(struct vr_control_data), 1,
   1562 	    sizeof(struct vr_control_data), 0, 0,
   1563 	    &sc->vr_cddmamap)) != 0) {
   1564 		printf("%s: unable to create control data DMA map, "
   1565 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1566 		goto fail_2;
   1567 	}
   1568 
   1569 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1570 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1571 	    0)) != 0) {
   1572 		printf("%s: unable to load control data DMA map, error = %d\n",
   1573 		    sc->vr_dev.dv_xname, error);
   1574 		goto fail_3;
   1575 	}
   1576 
   1577 	/*
   1578 	 * Create the transmit buffer DMA maps.
   1579 	 */
   1580 	for (i = 0; i < VR_NTXDESC; i++) {
   1581 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1582 		    1, MCLBYTES, 0, 0,
   1583 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1584 			printf("%s: unable to create tx DMA map %d, "
   1585 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1586 			goto fail_4;
   1587 		}
   1588 	}
   1589 
   1590 	/*
   1591 	 * Create the receive buffer DMA maps.
   1592 	 */
   1593 	for (i = 0; i < VR_NRXDESC; i++) {
   1594 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1595 		    MCLBYTES, 0, 0,
   1596 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1597 			printf("%s: unable to create rx DMA map %d, "
   1598 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1599 			goto fail_5;
   1600 		}
   1601 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1602 	}
   1603 
   1604 	ifp = &sc->vr_ec.ec_if;
   1605 	ifp->if_softc = sc;
   1606 	ifp->if_mtu = ETHERMTU;
   1607 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1608 	ifp->if_ioctl = vr_ioctl;
   1609 	ifp->if_start = vr_start;
   1610 	ifp->if_watchdog = vr_watchdog;
   1611 	ifp->if_init = vr_init;
   1612 	ifp->if_stop = vr_stop;
   1613 	IFQ_SET_READY(&ifp->if_snd);
   1614 
   1615 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
   1616 
   1617 	/*
   1618 	 * Initialize MII/media info.
   1619 	 */
   1620 	sc->vr_mii.mii_ifp = ifp;
   1621 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1622 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1623 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1624 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
   1625 		vr_ifmedia_sts);
   1626 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1627 	    MII_OFFSET_ANY, 0);
   1628 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1629 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1630 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1631 	} else
   1632 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1633 
   1634 	/*
   1635 	 * Call MI attach routines.
   1636 	 */
   1637 	if_attach(ifp);
   1638 	ether_ifattach(ifp, sc->vr_enaddr);
   1639 
   1640 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1641 	if (sc->vr_ats == NULL)
   1642 		printf("%s: warning: couldn't establish shutdown hook\n",
   1643 			sc->vr_dev.dv_xname);
   1644 	return;
   1645 
   1646  fail_5:
   1647 	for (i = 0; i < VR_NRXDESC; i++) {
   1648 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1649 			bus_dmamap_destroy(sc->vr_dmat,
   1650 			    sc->vr_rxsoft[i].ds_dmamap);
   1651 	}
   1652  fail_4:
   1653 	for (i = 0; i < VR_NTXDESC; i++) {
   1654 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1655 			bus_dmamap_destroy(sc->vr_dmat,
   1656 			    sc->vr_txsoft[i].ds_dmamap);
   1657 	}
   1658 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1659  fail_3:
   1660 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1661  fail_2:
   1662 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1663 	    sizeof(struct vr_control_data));
   1664  fail_1:
   1665 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1666  fail_0:
   1667 	return;
   1668 }
   1669