if_vr.c revision 1.58 1 /* $NetBSD: if_vr.c,v 1.58 2002/10/21 23:38:12 fair Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.58 2002/10/21 23:38:12 fair Exp $");
108
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/callout.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 #include <sys/device.h>
118
119 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
120
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_ether.h>
126
127 #include "bpfilter.h"
128 #if NBPFILTER > 0
129 #include <net/bpf.h>
130 #endif
131
132 #include <machine/bus.h>
133 #include <machine/intr.h>
134 #include <machine/endian.h>
135
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 #include <dev/mii/mii_bitbang.h>
139
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 #include <dev/pci/pcidevs.h>
143
144 #include <dev/pci/if_vrreg.h>
145
146 #define VR_USEIOSPACE
147
148 /*
149 * Various supported device vendors/types and their names.
150 */
151 static struct vr_type {
152 pci_vendor_id_t vr_vid;
153 pci_product_id_t vr_did;
154 const char *vr_name;
155 } vr_devs[] = {
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
157 "VIA VT3043 (Rhine) 10/100" },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
159 "VIA VT6102 (Rhine II) 10/100" },
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
161 "VIA VT86C100A (Rhine-II) 10/100" },
162 { 0, 0, NULL }
163 };
164
165 /*
166 * Transmit descriptor list size.
167 */
168 #define VR_NTXDESC 64
169 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
170 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
171
172 /*
173 * Receive descriptor list size.
174 */
175 #define VR_NRXDESC 64
176 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
177 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
178
179 /*
180 * Control data structres that are DMA'd to the Rhine chip. We allocate
181 * them in a single clump that maps to a single DMA segment to make several
182 * things easier.
183 *
184 * Note that since we always copy outgoing packets to aligned transmit
185 * buffers, we can reduce the transmit descriptors to one per packet.
186 */
187 struct vr_control_data {
188 struct vr_desc vr_txdescs[VR_NTXDESC];
189 struct vr_desc vr_rxdescs[VR_NRXDESC];
190 };
191
192 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
193 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
194 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
195
196 /*
197 * Software state of transmit and receive descriptors.
198 */
199 struct vr_descsoft {
200 struct mbuf *ds_mbuf; /* head of mbuf chain */
201 bus_dmamap_t ds_dmamap; /* our DMA map */
202 };
203
204 struct vr_softc {
205 struct device vr_dev; /* generic device glue */
206 void *vr_ih; /* interrupt cookie */
207 void *vr_ats; /* shutdown hook */
208 bus_space_tag_t vr_bst; /* bus space tag */
209 bus_space_handle_t vr_bsh; /* bus space handle */
210 bus_dma_tag_t vr_dmat; /* bus DMA tag */
211 pci_chipset_tag_t vr_pc; /* PCI chipset info */
212 struct ethercom vr_ec; /* Ethernet common info */
213 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
214 struct mii_data vr_mii; /* MII/media info */
215
216 struct callout vr_tick_ch; /* tick callout */
217
218 bus_dmamap_t vr_cddmamap; /* control data DMA map */
219 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
220
221 /*
222 * Software state for transmit and receive descriptors.
223 */
224 struct vr_descsoft vr_txsoft[VR_NTXDESC];
225 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
226
227 /*
228 * Control data structures.
229 */
230 struct vr_control_data *vr_control_data;
231
232 int vr_txpending; /* number of TX requests pending */
233 int vr_txdirty; /* first dirty TX descriptor */
234 int vr_txlast; /* last used TX descriptor */
235
236 int vr_rxptr; /* next ready RX descriptor */
237 };
238
239 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
240 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
241
242 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
243 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
244
245 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
246 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
247
248 #define VR_CDTXSYNC(sc, x, ops) \
249 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
250 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
251
252 #define VR_CDRXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 /*
257 * Note we rely on MCLBYTES being a power of two below.
258 */
259 #define VR_INIT_RXDESC(sc, i) \
260 do { \
261 struct vr_desc *__d = VR_CDRX((sc), (i)); \
262 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
263 \
264 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
265 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
266 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
267 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
268 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
269 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
270 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 } while (0)
272
273 /*
274 * register space access macros
275 */
276 #define CSR_WRITE_4(sc, reg, val) \
277 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
278 #define CSR_WRITE_2(sc, reg, val) \
279 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define CSR_WRITE_1(sc, reg, val) \
281 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
282
283 #define CSR_READ_4(sc, reg) \
284 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
285 #define CSR_READ_2(sc, reg) \
286 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
287 #define CSR_READ_1(sc, reg) \
288 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
289
290 #define VR_TIMEOUT 1000
291
292 static int vr_add_rxbuf __P((struct vr_softc *, int));
293
294 static void vr_rxeof __P((struct vr_softc *));
295 static void vr_rxeoc __P((struct vr_softc *));
296 static void vr_txeof __P((struct vr_softc *));
297 static int vr_intr __P((void *));
298 static void vr_start __P((struct ifnet *));
299 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
300 static int vr_init __P((struct ifnet *));
301 static void vr_stop __P((struct ifnet *, int));
302 static void vr_rxdrain __P((struct vr_softc *));
303 static void vr_watchdog __P((struct ifnet *));
304 static void vr_tick __P((void *));
305
306 static int vr_ifmedia_upd __P((struct ifnet *));
307 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
308
309 static int vr_mii_readreg __P((struct device *, int, int));
310 static void vr_mii_writereg __P((struct device *, int, int, int));
311 static void vr_mii_statchg __P((struct device *));
312
313 static void vr_setmulti __P((struct vr_softc *));
314 static void vr_reset __P((struct vr_softc *));
315
316 int vr_copy_small = 0;
317
318 #define VR_SETBIT(sc, reg, x) \
319 CSR_WRITE_1(sc, reg, \
320 CSR_READ_1(sc, reg) | x)
321
322 #define VR_CLRBIT(sc, reg, x) \
323 CSR_WRITE_1(sc, reg, \
324 CSR_READ_1(sc, reg) & ~x)
325
326 #define VR_SETBIT16(sc, reg, x) \
327 CSR_WRITE_2(sc, reg, \
328 CSR_READ_2(sc, reg) | x)
329
330 #define VR_CLRBIT16(sc, reg, x) \
331 CSR_WRITE_2(sc, reg, \
332 CSR_READ_2(sc, reg) & ~x)
333
334 #define VR_SETBIT32(sc, reg, x) \
335 CSR_WRITE_4(sc, reg, \
336 CSR_READ_4(sc, reg) | x)
337
338 #define VR_CLRBIT32(sc, reg, x) \
339 CSR_WRITE_4(sc, reg, \
340 CSR_READ_4(sc, reg) & ~x)
341
342 /*
343 * MII bit-bang glue.
344 */
345 u_int32_t vr_mii_bitbang_read __P((struct device *));
346 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
347
348 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
349 vr_mii_bitbang_read,
350 vr_mii_bitbang_write,
351 {
352 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
353 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
354 VR_MIICMD_CLK, /* MII_BIT_MDC */
355 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
356 0, /* MII_BIT_DIR_PHY_HOST */
357 }
358 };
359
360 u_int32_t
361 vr_mii_bitbang_read(self)
362 struct device *self;
363 {
364 struct vr_softc *sc = (void *) self;
365
366 return (CSR_READ_1(sc, VR_MIICMD));
367 }
368
369 void
370 vr_mii_bitbang_write(self, val)
371 struct device *self;
372 u_int32_t val;
373 {
374 struct vr_softc *sc = (void *) self;
375
376 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
377 }
378
379 /*
380 * Read an PHY register through the MII.
381 */
382 static int
383 vr_mii_readreg(self, phy, reg)
384 struct device *self;
385 int phy, reg;
386 {
387 struct vr_softc *sc = (void *) self;
388
389 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
390 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
391 }
392
393 /*
394 * Write to a PHY register through the MII.
395 */
396 static void
397 vr_mii_writereg(self, phy, reg, val)
398 struct device *self;
399 int phy, reg, val;
400 {
401 struct vr_softc *sc = (void *) self;
402
403 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
405 }
406
407 static void
408 vr_mii_statchg(self)
409 struct device *self;
410 {
411 struct vr_softc *sc = (struct vr_softc *)self;
412
413 /*
414 * In order to fiddle with the 'full-duplex' bit in the netconfig
415 * register, we first have to put the transmit and/or receive logic
416 * in the idle state.
417 */
418 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
419
420 if (sc->vr_mii.mii_media_active & IFM_FDX)
421 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422 else
423 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424
425 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
427 }
428
429 #define vr_calchash(addr) \
430 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
431
432 /*
433 * Program the 64-bit multicast hash filter.
434 */
435 static void
436 vr_setmulti(sc)
437 struct vr_softc *sc;
438 {
439 struct ifnet *ifp;
440 int h = 0;
441 u_int32_t hashes[2] = { 0, 0 };
442 struct ether_multistep step;
443 struct ether_multi *enm;
444 int mcnt = 0;
445 u_int8_t rxfilt;
446
447 ifp = &sc->vr_ec.ec_if;
448
449 rxfilt = CSR_READ_1(sc, VR_RXCFG);
450
451 if (ifp->if_flags & IFF_PROMISC) {
452 allmulti:
453 ifp->if_flags |= IFF_ALLMULTI;
454 rxfilt |= VR_RXCFG_RX_MULTI;
455 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
456 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
457 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
458 return;
459 }
460
461 /* first, zot all the existing hash bits */
462 CSR_WRITE_4(sc, VR_MAR0, 0);
463 CSR_WRITE_4(sc, VR_MAR1, 0);
464
465 /* now program new ones */
466 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
467 while (enm != NULL) {
468 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
469 ETHER_ADDR_LEN) != 0)
470 goto allmulti;
471
472 h = vr_calchash(enm->enm_addrlo);
473
474 if (h < 32)
475 hashes[0] |= (1 << h);
476 else
477 hashes[1] |= (1 << (h - 32));
478 ETHER_NEXT_MULTI(step, enm);
479 mcnt++;
480 }
481
482 ifp->if_flags &= ~IFF_ALLMULTI;
483
484 if (mcnt)
485 rxfilt |= VR_RXCFG_RX_MULTI;
486 else
487 rxfilt &= ~VR_RXCFG_RX_MULTI;
488
489 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
490 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
491 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
492 }
493
494 static void
495 vr_reset(sc)
496 struct vr_softc *sc;
497 {
498 int i;
499
500 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
501
502 for (i = 0; i < VR_TIMEOUT; i++) {
503 DELAY(10);
504 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
505 break;
506 }
507 if (i == VR_TIMEOUT)
508 printf("%s: reset never completed!\n",
509 sc->vr_dev.dv_xname);
510
511 /* Wait a little while for the chip to get its brains in order. */
512 DELAY(1000);
513 }
514
515 /*
516 * Initialize an RX descriptor and attach an MBUF cluster.
517 * Note: the length fields are only 11 bits wide, which means the
518 * largest size we can specify is 2047. This is important because
519 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
520 * overflow the field and make a mess.
521 */
522 static int
523 vr_add_rxbuf(sc, i)
524 struct vr_softc *sc;
525 int i;
526 {
527 struct vr_descsoft *ds = VR_DSRX(sc, i);
528 struct mbuf *m_new;
529 int error;
530
531 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
532 if (m_new == NULL)
533 return (ENOBUFS);
534
535 MCLGET(m_new, M_DONTWAIT);
536 if ((m_new->m_flags & M_EXT) == 0) {
537 m_freem(m_new);
538 return (ENOBUFS);
539 }
540
541 if (ds->ds_mbuf != NULL)
542 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
543
544 ds->ds_mbuf = m_new;
545
546 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
547 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
548 BUS_DMA_READ|BUS_DMA_NOWAIT);
549 if (error) {
550 printf("%s: unable to load rx DMA map %d, error = %d\n",
551 sc->vr_dev.dv_xname, i, error);
552 panic("vr_add_rxbuf"); /* XXX */
553 }
554
555 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
556 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
557
558 VR_INIT_RXDESC(sc, i);
559
560 return (0);
561 }
562
563 /*
564 * A frame has been uploaded: pass the resulting mbuf chain up to
565 * the higher level protocols.
566 */
567 static void
568 vr_rxeof(sc)
569 struct vr_softc *sc;
570 {
571 struct mbuf *m;
572 struct ifnet *ifp;
573 struct vr_desc *d;
574 struct vr_descsoft *ds;
575 int i, total_len;
576 u_int32_t rxstat;
577
578 ifp = &sc->vr_ec.ec_if;
579
580 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
581 d = VR_CDRX(sc, i);
582 ds = VR_DSRX(sc, i);
583
584 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
585
586 rxstat = le32toh(d->vr_status);
587
588 if (rxstat & VR_RXSTAT_OWN) {
589 /*
590 * We have processed all of the receive buffers.
591 */
592 break;
593 }
594
595 /*
596 * If an error occurs, update stats, clear the
597 * status word and leave the mbuf cluster in place:
598 * it should simply get re-used next time this descriptor
599 * comes up in the ring.
600 */
601 if (rxstat & VR_RXSTAT_RXERR) {
602 const char *errstr;
603
604 ifp->if_ierrors++;
605 switch (rxstat & 0x000000FF) {
606 case VR_RXSTAT_CRCERR:
607 errstr = "crc error";
608 break;
609 case VR_RXSTAT_FRAMEALIGNERR:
610 errstr = "frame alignment error";
611 break;
612 case VR_RXSTAT_FIFOOFLOW:
613 errstr = "FIFO overflow";
614 break;
615 case VR_RXSTAT_GIANT:
616 errstr = "received giant packet";
617 break;
618 case VR_RXSTAT_RUNT:
619 errstr = "received runt packet";
620 break;
621 case VR_RXSTAT_BUSERR:
622 errstr = "system bus error";
623 break;
624 case VR_RXSTAT_BUFFERR:
625 errstr = "rx buffer error";
626 break;
627 default:
628 errstr = "unknown rx error";
629 break;
630 }
631 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
632 errstr);
633
634 VR_INIT_RXDESC(sc, i);
635
636 continue;
637 }
638
639 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
640 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
641
642 /* No errors; receive the packet. */
643 total_len = VR_RXBYTES(le32toh(d->vr_status));
644
645 #ifdef __NO_STRICT_ALIGNMENT
646 /*
647 * If the packet is small enough to fit in a
648 * single header mbuf, allocate one and copy
649 * the data into it. This greatly reduces
650 * memory consumption when we receive lots
651 * of small packets.
652 *
653 * Otherwise, we add a new buffer to the receive
654 * chain. If this fails, we drop the packet and
655 * recycle the old buffer.
656 */
657 if (vr_copy_small != 0 && total_len <= MHLEN) {
658 MGETHDR(m, M_DONTWAIT, MT_DATA);
659 if (m == NULL)
660 goto dropit;
661 memcpy(mtod(m, caddr_t),
662 mtod(ds->ds_mbuf, caddr_t), total_len);
663 VR_INIT_RXDESC(sc, i);
664 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize,
666 BUS_DMASYNC_PREREAD);
667 } else {
668 m = ds->ds_mbuf;
669 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
670 dropit:
671 ifp->if_ierrors++;
672 VR_INIT_RXDESC(sc, i);
673 bus_dmamap_sync(sc->vr_dmat,
674 ds->ds_dmamap, 0,
675 ds->ds_dmamap->dm_mapsize,
676 BUS_DMASYNC_PREREAD);
677 continue;
678 }
679 }
680 #else
681 /*
682 * The Rhine's packet buffers must be 4-byte aligned.
683 * But this means that the data after the Ethernet header
684 * is misaligned. We must allocate a new buffer and
685 * copy the data, shifted forward 2 bytes.
686 */
687 MGETHDR(m, M_DONTWAIT, MT_DATA);
688 if (m == NULL) {
689 dropit:
690 ifp->if_ierrors++;
691 VR_INIT_RXDESC(sc, i);
692 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
693 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
694 continue;
695 }
696 if (total_len > (MHLEN - 2)) {
697 MCLGET(m, M_DONTWAIT);
698 if ((m->m_flags & M_EXT) == 0) {
699 m_freem(m);
700 goto dropit;
701 }
702 }
703 m->m_data += 2;
704
705 /*
706 * Note that we use clusters for incoming frames, so the
707 * buffer is virtually contiguous.
708 */
709 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
710 total_len);
711
712 /* Allow the receive descriptor to continue using its mbuf. */
713 VR_INIT_RXDESC(sc, i);
714 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
715 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
716 #endif /* __NO_STRICT_ALIGNMENT */
717
718 /*
719 * The Rhine chip includes the FCS with every
720 * received packet.
721 */
722 m->m_flags |= M_HASFCS;
723
724 ifp->if_ipackets++;
725 m->m_pkthdr.rcvif = ifp;
726 m->m_pkthdr.len = m->m_len = total_len;
727 #if NBPFILTER > 0
728 /*
729 * Handle BPF listeners. Let the BPF user see the packet, but
730 * don't pass it up to the ether_input() layer unless it's
731 * a broadcast packet, multicast packet, matches our ethernet
732 * address or the interface is in promiscuous mode.
733 */
734 if (ifp->if_bpf)
735 bpf_mtap(ifp->if_bpf, m);
736 #endif
737 /* Pass it on. */
738 (*ifp->if_input)(ifp, m);
739 }
740
741 /* Update the receive pointer. */
742 sc->vr_rxptr = i;
743 }
744
745 void
746 vr_rxeoc(sc)
747 struct vr_softc *sc;
748 {
749
750 vr_rxeof(sc);
751 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
752 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
753 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
754 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
755 }
756
757 /*
758 * A frame was downloaded to the chip. It's safe for us to clean up
759 * the list buffers.
760 */
761 static void
762 vr_txeof(sc)
763 struct vr_softc *sc;
764 {
765 struct ifnet *ifp = &sc->vr_ec.ec_if;
766 struct vr_desc *d;
767 struct vr_descsoft *ds;
768 u_int32_t txstat;
769 int i;
770
771 ifp->if_flags &= ~IFF_OACTIVE;
772
773 /*
774 * Go through our tx list and free mbufs for those
775 * frames that have been transmitted.
776 */
777 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
778 i = VR_NEXTTX(i), sc->vr_txpending--) {
779 d = VR_CDTX(sc, i);
780 ds = VR_DSTX(sc, i);
781
782 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
783
784 txstat = le32toh(d->vr_status);
785 if (txstat & VR_TXSTAT_OWN)
786 break;
787
788 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
789 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
790 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
791 m_freem(ds->ds_mbuf);
792 ds->ds_mbuf = NULL;
793
794 if (txstat & VR_TXSTAT_ERRSUM) {
795 ifp->if_oerrors++;
796 if (txstat & VR_TXSTAT_DEFER)
797 ifp->if_collisions++;
798 if (txstat & VR_TXSTAT_LATECOLL)
799 ifp->if_collisions++;
800 }
801
802 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
803 ifp->if_opackets++;
804 }
805
806 /* Update the dirty transmit buffer pointer. */
807 sc->vr_txdirty = i;
808
809 /*
810 * Cancel the watchdog timer if there are no pending
811 * transmissions.
812 */
813 if (sc->vr_txpending == 0)
814 ifp->if_timer = 0;
815 }
816
817 static int
818 vr_intr(arg)
819 void *arg;
820 {
821 struct vr_softc *sc;
822 struct ifnet *ifp;
823 u_int16_t status;
824 int handled = 0, dotx = 0;
825
826 sc = arg;
827 ifp = &sc->vr_ec.ec_if;
828
829 /* Suppress unwanted interrupts. */
830 if ((ifp->if_flags & IFF_UP) == 0) {
831 vr_stop(ifp, 1);
832 return (0);
833 }
834
835 /* Disable interrupts. */
836 CSR_WRITE_2(sc, VR_IMR, 0x0000);
837
838 for (;;) {
839 status = CSR_READ_2(sc, VR_ISR);
840 if (status)
841 CSR_WRITE_2(sc, VR_ISR, status);
842
843 if ((status & VR_INTRS) == 0)
844 break;
845
846 handled = 1;
847
848 if (status & VR_ISR_RX_OK)
849 vr_rxeof(sc);
850
851 if (status &
852 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
853 VR_ISR_RX_DROPPED))
854 vr_rxeoc(sc);
855
856 if (status & VR_ISR_TX_OK) {
857 dotx = 1;
858 vr_txeof(sc);
859 }
860
861 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
862 if (status & VR_ISR_TX_UNDERRUN)
863 printf("%s: transmit underrun\n",
864 sc->vr_dev.dv_xname);
865 if (status & VR_ISR_TX_ABRT)
866 printf("%s: transmit aborted\n",
867 sc->vr_dev.dv_xname);
868 ifp->if_oerrors++;
869 dotx = 1;
870 vr_txeof(sc);
871 if (sc->vr_txpending) {
872 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
873 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
874 }
875 /*
876 * Unfortunately many cards get stuck after
877 * aborted transmits, so we reset them.
878 */
879 if (status & VR_ISR_TX_ABRT) {
880 printf("%s: restarting\n", sc->vr_dev.dv_xname);
881 dotx = 0;
882 (void) vr_init(ifp);
883 }
884 }
885
886 if (status & VR_ISR_BUSERR) {
887 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
888 /* vr_init() calls vr_start() */
889 dotx = 0;
890 (void) vr_init(ifp);
891 }
892 }
893
894 /* Re-enable interrupts. */
895 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
896
897 if (dotx)
898 vr_start(ifp);
899
900 return (handled);
901 }
902
903 /*
904 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
905 * to the mbuf data regions directly in the transmit lists. We also save a
906 * copy of the pointers since the transmit list fragment pointers are
907 * physical addresses.
908 */
909 static void
910 vr_start(ifp)
911 struct ifnet *ifp;
912 {
913 struct vr_softc *sc = ifp->if_softc;
914 struct mbuf *m0, *m;
915 struct vr_desc *d;
916 struct vr_descsoft *ds;
917 int error, firsttx, nexttx, opending;
918
919 /*
920 * Remember the previous txpending and the first transmit
921 * descriptor we use.
922 */
923 opending = sc->vr_txpending;
924 firsttx = VR_NEXTTX(sc->vr_txlast);
925
926 /*
927 * Loop through the send queue, setting up transmit descriptors
928 * until we drain the queue, or use up all available transmit
929 * descriptors.
930 */
931 while (sc->vr_txpending < VR_NTXDESC) {
932 /*
933 * Grab a packet off the queue.
934 */
935 IFQ_POLL(&ifp->if_snd, m0);
936 if (m0 == NULL)
937 break;
938 m = NULL;
939
940 /*
941 * Get the next available transmit descriptor.
942 */
943 nexttx = VR_NEXTTX(sc->vr_txlast);
944 d = VR_CDTX(sc, nexttx);
945 ds = VR_DSTX(sc, nexttx);
946
947 /*
948 * Load the DMA map. If this fails, the packet didn't
949 * fit in one DMA segment, and we need to copy. Note,
950 * the packet must also be aligned.
951 */
952 if ((mtod(m0, uintptr_t) & 3) != 0 ||
953 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
954 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
955 MGETHDR(m, M_DONTWAIT, MT_DATA);
956 if (m == NULL) {
957 printf("%s: unable to allocate Tx mbuf\n",
958 sc->vr_dev.dv_xname);
959 break;
960 }
961 if (m0->m_pkthdr.len > MHLEN) {
962 MCLGET(m, M_DONTWAIT);
963 if ((m->m_flags & M_EXT) == 0) {
964 printf("%s: unable to allocate Tx "
965 "cluster\n", sc->vr_dev.dv_xname);
966 m_freem(m);
967 break;
968 }
969 }
970 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
971 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
972 error = bus_dmamap_load_mbuf(sc->vr_dmat,
973 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
974 if (error) {
975 printf("%s: unable to load Tx buffer, "
976 "error = %d\n", sc->vr_dev.dv_xname, error);
977 break;
978 }
979 }
980
981 IFQ_DEQUEUE(&ifp->if_snd, m0);
982 if (m != NULL) {
983 m_freem(m0);
984 m0 = m;
985 }
986
987 /* Sync the DMA map. */
988 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
989 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
990
991 /*
992 * Store a pointer to the packet so we can free it later.
993 */
994 ds->ds_mbuf = m0;
995
996 #if NBPFILTER > 0
997 /*
998 * If there's a BPF listener, bounce a copy of this frame
999 * to him.
1000 */
1001 if (ifp->if_bpf)
1002 bpf_mtap(ifp->if_bpf, m0);
1003 #endif
1004
1005 /*
1006 * Fill in the transmit descriptor. The Rhine
1007 * doesn't auto-pad, so we have to do this ourselves.
1008 */
1009 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1010 d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
1011 VR_MIN_FRAMELEN : m0->m_pkthdr.len);
1012 d->vr_ctl |=
1013 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1014 VR_TXCTL_LASTFRAG);
1015
1016 /*
1017 * If this is the first descriptor we're enqueuing,
1018 * don't give it to the Rhine yet. That could cause
1019 * a race condition. We'll do it below.
1020 */
1021 if (nexttx == firsttx)
1022 d->vr_status = 0;
1023 else
1024 d->vr_status = htole32(VR_TXSTAT_OWN);
1025
1026 VR_CDTXSYNC(sc, nexttx,
1027 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1028
1029 /* Advance the tx pointer. */
1030 sc->vr_txpending++;
1031 sc->vr_txlast = nexttx;
1032 }
1033
1034 if (sc->vr_txpending == VR_NTXDESC) {
1035 /* No more slots left; notify upper layer. */
1036 ifp->if_flags |= IFF_OACTIVE;
1037 }
1038
1039 if (sc->vr_txpending != opending) {
1040 /*
1041 * We enqueued packets. If the transmitter was idle,
1042 * reset the txdirty pointer.
1043 */
1044 if (opending == 0)
1045 sc->vr_txdirty = firsttx;
1046
1047 /*
1048 * Cause a transmit interrupt to happen on the
1049 * last packet we enqueued.
1050 */
1051 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1052 VR_CDTXSYNC(sc, sc->vr_txlast,
1053 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054
1055 /*
1056 * The entire packet chain is set up. Give the
1057 * first descriptor to the Rhine now.
1058 */
1059 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1060 VR_CDTXSYNC(sc, firsttx,
1061 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1062
1063 /* Start the transmitter. */
1064 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1065
1066 /* Set the watchdog timer in case the chip flakes out. */
1067 ifp->if_timer = 5;
1068 }
1069 }
1070
1071 /*
1072 * Initialize the interface. Must be called at splnet.
1073 */
1074 static int
1075 vr_init(ifp)
1076 struct ifnet *ifp;
1077 {
1078 struct vr_softc *sc = ifp->if_softc;
1079 struct vr_desc *d;
1080 struct vr_descsoft *ds;
1081 int i, error = 0;
1082
1083 /* Cancel pending I/O. */
1084 vr_stop(ifp, 0);
1085
1086 /* Reset the Rhine to a known state. */
1087 vr_reset(sc);
1088
1089 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1090 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1091
1092 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1093 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1094
1095 /*
1096 * Initialize the transmit desciptor ring. txlast is initialized
1097 * to the end of the list so that it will wrap around to the first
1098 * descriptor when the first packet is transmitted.
1099 */
1100 for (i = 0; i < VR_NTXDESC; i++) {
1101 d = VR_CDTX(sc, i);
1102 memset(d, 0, sizeof(struct vr_desc));
1103 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1104 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 }
1106 sc->vr_txpending = 0;
1107 sc->vr_txdirty = 0;
1108 sc->vr_txlast = VR_NTXDESC - 1;
1109
1110 /*
1111 * Initialize the receive descriptor ring.
1112 */
1113 for (i = 0; i < VR_NRXDESC; i++) {
1114 ds = VR_DSRX(sc, i);
1115 if (ds->ds_mbuf == NULL) {
1116 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1117 printf("%s: unable to allocate or map rx "
1118 "buffer %d, error = %d\n",
1119 sc->vr_dev.dv_xname, i, error);
1120 /*
1121 * XXX Should attempt to run with fewer receive
1122 * XXX buffers instead of just failing.
1123 */
1124 vr_rxdrain(sc);
1125 goto out;
1126 }
1127 } else
1128 VR_INIT_RXDESC(sc, i);
1129 }
1130 sc->vr_rxptr = 0;
1131
1132 /* If we want promiscuous mode, set the allframes bit. */
1133 if (ifp->if_flags & IFF_PROMISC)
1134 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1135 else
1136 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1137
1138 /* Set capture broadcast bit to capture broadcast frames. */
1139 if (ifp->if_flags & IFF_BROADCAST)
1140 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1141 else
1142 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1143
1144 /* Program the multicast filter, if necessary. */
1145 vr_setmulti(sc);
1146
1147 /* Give the transmit and receive rings to the Rhine. */
1148 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1149 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1150
1151 /* Set current media. */
1152 mii_mediachg(&sc->vr_mii);
1153
1154 /* Enable receiver and transmitter. */
1155 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1156 VR_CMD_TX_ON|VR_CMD_RX_ON|
1157 VR_CMD_RX_GO);
1158
1159 /* Enable interrupts. */
1160 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1161 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1162
1163 ifp->if_flags |= IFF_RUNNING;
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165
1166 /* Start one second timer. */
1167 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1168
1169 /* Attempt to start output on the interface. */
1170 vr_start(ifp);
1171
1172 out:
1173 if (error)
1174 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1175 return (error);
1176 }
1177
1178 /*
1179 * Set media options.
1180 */
1181 static int
1182 vr_ifmedia_upd(ifp)
1183 struct ifnet *ifp;
1184 {
1185 struct vr_softc *sc = ifp->if_softc;
1186
1187 if (ifp->if_flags & IFF_UP)
1188 mii_mediachg(&sc->vr_mii);
1189 return (0);
1190 }
1191
1192 /*
1193 * Report current media status.
1194 */
1195 static void
1196 vr_ifmedia_sts(ifp, ifmr)
1197 struct ifnet *ifp;
1198 struct ifmediareq *ifmr;
1199 {
1200 struct vr_softc *sc = ifp->if_softc;
1201
1202 mii_pollstat(&sc->vr_mii);
1203 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1204 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1205 }
1206
1207 static int
1208 vr_ioctl(ifp, command, data)
1209 struct ifnet *ifp;
1210 u_long command;
1211 caddr_t data;
1212 {
1213 struct vr_softc *sc = ifp->if_softc;
1214 struct ifreq *ifr = (struct ifreq *)data;
1215 int s, error = 0;
1216
1217 s = splnet();
1218
1219 switch (command) {
1220 case SIOCGIFMEDIA:
1221 case SIOCSIFMEDIA:
1222 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1223 break;
1224
1225 default:
1226 error = ether_ioctl(ifp, command, data);
1227 if (error == ENETRESET) {
1228 /*
1229 * Multicast list has changed; set the hardware filter
1230 * accordingly.
1231 */
1232 vr_setmulti(sc);
1233 error = 0;
1234 }
1235 break;
1236 }
1237
1238 splx(s);
1239 return (error);
1240 }
1241
1242 static void
1243 vr_watchdog(ifp)
1244 struct ifnet *ifp;
1245 {
1246 struct vr_softc *sc = ifp->if_softc;
1247
1248 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1249 ifp->if_oerrors++;
1250
1251 (void) vr_init(ifp);
1252 }
1253
1254 /*
1255 * One second timer, used to tick MII.
1256 */
1257 static void
1258 vr_tick(arg)
1259 void *arg;
1260 {
1261 struct vr_softc *sc = arg;
1262 int s;
1263
1264 s = splnet();
1265 mii_tick(&sc->vr_mii);
1266 splx(s);
1267
1268 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1269 }
1270
1271 /*
1272 * Drain the receive queue.
1273 */
1274 static void
1275 vr_rxdrain(sc)
1276 struct vr_softc *sc;
1277 {
1278 struct vr_descsoft *ds;
1279 int i;
1280
1281 for (i = 0; i < VR_NRXDESC; i++) {
1282 ds = VR_DSRX(sc, i);
1283 if (ds->ds_mbuf != NULL) {
1284 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1285 m_freem(ds->ds_mbuf);
1286 ds->ds_mbuf = NULL;
1287 }
1288 }
1289 }
1290
1291 /*
1292 * Stop the adapter and free any mbufs allocated to the
1293 * transmit lists.
1294 */
1295 static void
1296 vr_stop(ifp, disable)
1297 struct ifnet *ifp;
1298 int disable;
1299 {
1300 struct vr_softc *sc = ifp->if_softc;
1301 struct vr_descsoft *ds;
1302 int i;
1303
1304 /* Cancel one second timer. */
1305 callout_stop(&sc->vr_tick_ch);
1306
1307 /* Down the MII. */
1308 mii_down(&sc->vr_mii);
1309
1310 ifp = &sc->vr_ec.ec_if;
1311 ifp->if_timer = 0;
1312
1313 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1314 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1315 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1316 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1317 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1318
1319 /*
1320 * Release any queued transmit buffers.
1321 */
1322 for (i = 0; i < VR_NTXDESC; i++) {
1323 ds = VR_DSTX(sc, i);
1324 if (ds->ds_mbuf != NULL) {
1325 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1326 m_freem(ds->ds_mbuf);
1327 ds->ds_mbuf = NULL;
1328 }
1329 }
1330
1331 if (disable)
1332 vr_rxdrain(sc);
1333
1334 /*
1335 * Mark the interface down and cancel the watchdog timer.
1336 */
1337 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1338 ifp->if_timer = 0;
1339 }
1340
1341 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1342 static int vr_probe __P((struct device *, struct cfdata *, void *));
1343 static void vr_attach __P((struct device *, struct device *, void *));
1344 static void vr_shutdown __P((void *));
1345
1346 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1347 vr_probe, vr_attach, NULL, NULL);
1348
1349 static struct vr_type *
1350 vr_lookup(pa)
1351 struct pci_attach_args *pa;
1352 {
1353 struct vr_type *vrt;
1354
1355 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1356 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1357 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1358 return (vrt);
1359 }
1360 return (NULL);
1361 }
1362
1363 static int
1364 vr_probe(parent, match, aux)
1365 struct device *parent;
1366 struct cfdata *match;
1367 void *aux;
1368 {
1369 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1370
1371 if (vr_lookup(pa) != NULL)
1372 return (1);
1373
1374 return (0);
1375 }
1376
1377 /*
1378 * Stop all chip I/O so that the kernel's probe routines don't
1379 * get confused by errant DMAs when rebooting.
1380 */
1381 static void
1382 vr_shutdown(arg)
1383 void *arg;
1384 {
1385 struct vr_softc *sc = (struct vr_softc *)arg;
1386
1387 vr_stop(&sc->vr_ec.ec_if, 1);
1388 }
1389
1390 /*
1391 * Attach the interface. Allocate softc structures, do ifmedia
1392 * setup and ethernet/BPF attach.
1393 */
1394 static void
1395 vr_attach(parent, self, aux)
1396 struct device *parent;
1397 struct device *self;
1398 void *aux;
1399 {
1400 struct vr_softc *sc = (struct vr_softc *) self;
1401 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1402 bus_dma_segment_t seg;
1403 struct vr_type *vrt;
1404 u_int32_t command;
1405 struct ifnet *ifp;
1406 u_char eaddr[ETHER_ADDR_LEN];
1407 int i, rseg, error;
1408
1409 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1410 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1411
1412 callout_init(&sc->vr_tick_ch);
1413
1414 vrt = vr_lookup(pa);
1415 if (vrt == NULL) {
1416 printf("\n");
1417 panic("vr_attach: impossible");
1418 }
1419
1420 printf(": %s Ethernet\n", vrt->vr_name);
1421
1422 /*
1423 * Handle power management nonsense.
1424 */
1425
1426 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1427 if (command == 0x01) {
1428 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1429 if (command & VR_PSTATE_MASK) {
1430 u_int32_t iobase, membase, irq;
1431
1432 /* Save important PCI config data. */
1433 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1434 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1435 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1436
1437 /* Reset the power state. */
1438 printf("%s: chip is in D%d power mode "
1439 "-- setting to D0\n",
1440 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1441 command &= 0xFFFFFFFC;
1442 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1443
1444 /* Restore PCI config data. */
1445 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1446 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1447 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1448 }
1449 }
1450
1451 /* Make sure bus mastering is enabled. */
1452 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1453 command |= PCI_COMMAND_MASTER_ENABLE;
1454 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1455
1456 /*
1457 * Map control/status registers.
1458 */
1459 {
1460 bus_space_tag_t iot, memt;
1461 bus_space_handle_t ioh, memh;
1462 int ioh_valid, memh_valid;
1463 pci_intr_handle_t intrhandle;
1464 const char *intrstr;
1465
1466 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1467 PCI_MAPREG_TYPE_IO, 0,
1468 &iot, &ioh, NULL, NULL) == 0);
1469 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1470 PCI_MAPREG_TYPE_MEM |
1471 PCI_MAPREG_MEM_TYPE_32BIT,
1472 0, &memt, &memh, NULL, NULL) == 0);
1473 #if defined(VR_USEIOSPACE)
1474 if (ioh_valid) {
1475 sc->vr_bst = iot;
1476 sc->vr_bsh = ioh;
1477 } else if (memh_valid) {
1478 sc->vr_bst = memt;
1479 sc->vr_bsh = memh;
1480 }
1481 #else
1482 if (memh_valid) {
1483 sc->vr_bst = memt;
1484 sc->vr_bsh = memh;
1485 } else if (ioh_valid) {
1486 sc->vr_bst = iot;
1487 sc->vr_bsh = ioh;
1488 }
1489 #endif
1490 else {
1491 printf(": unable to map device registers\n");
1492 return;
1493 }
1494
1495 /* Allocate interrupt */
1496 if (pci_intr_map(pa, &intrhandle)) {
1497 printf("%s: couldn't map interrupt\n",
1498 sc->vr_dev.dv_xname);
1499 return;
1500 }
1501 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1502 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1503 vr_intr, sc);
1504 if (sc->vr_ih == NULL) {
1505 printf("%s: couldn't establish interrupt",
1506 sc->vr_dev.dv_xname);
1507 if (intrstr != NULL)
1508 printf(" at %s", intrstr);
1509 printf("\n");
1510 }
1511 printf("%s: interrupting at %s\n",
1512 sc->vr_dev.dv_xname, intrstr);
1513 }
1514
1515 /* Reset the adapter. */
1516 vr_reset(sc);
1517
1518 /*
1519 * Get station address. The way the Rhine chips work,
1520 * you're not allowed to directly access the EEPROM once
1521 * they've been programmed a special way. Consequently,
1522 * we need to read the node address from the PAR0 and PAR1
1523 * registers.
1524 */
1525 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1526 DELAY(200);
1527 for (i = 0; i < ETHER_ADDR_LEN; i++)
1528 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1529
1530 /*
1531 * A Rhine chip was detected. Inform the world.
1532 */
1533 printf("%s: Ethernet address: %s\n",
1534 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1535
1536 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1537
1538 sc->vr_dmat = pa->pa_dmat;
1539
1540 /*
1541 * Allocate the control data structures, and create and load
1542 * the DMA map for it.
1543 */
1544 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1545 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1546 0)) != 0) {
1547 printf("%s: unable to allocate control data, error = %d\n",
1548 sc->vr_dev.dv_xname, error);
1549 goto fail_0;
1550 }
1551
1552 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1553 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1554 BUS_DMA_COHERENT)) != 0) {
1555 printf("%s: unable to map control data, error = %d\n",
1556 sc->vr_dev.dv_xname, error);
1557 goto fail_1;
1558 }
1559
1560 if ((error = bus_dmamap_create(sc->vr_dmat,
1561 sizeof(struct vr_control_data), 1,
1562 sizeof(struct vr_control_data), 0, 0,
1563 &sc->vr_cddmamap)) != 0) {
1564 printf("%s: unable to create control data DMA map, "
1565 "error = %d\n", sc->vr_dev.dv_xname, error);
1566 goto fail_2;
1567 }
1568
1569 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1570 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1571 0)) != 0) {
1572 printf("%s: unable to load control data DMA map, error = %d\n",
1573 sc->vr_dev.dv_xname, error);
1574 goto fail_3;
1575 }
1576
1577 /*
1578 * Create the transmit buffer DMA maps.
1579 */
1580 for (i = 0; i < VR_NTXDESC; i++) {
1581 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1582 1, MCLBYTES, 0, 0,
1583 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1584 printf("%s: unable to create tx DMA map %d, "
1585 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1586 goto fail_4;
1587 }
1588 }
1589
1590 /*
1591 * Create the receive buffer DMA maps.
1592 */
1593 for (i = 0; i < VR_NRXDESC; i++) {
1594 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1595 MCLBYTES, 0, 0,
1596 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1597 printf("%s: unable to create rx DMA map %d, "
1598 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1599 goto fail_5;
1600 }
1601 VR_DSRX(sc, i)->ds_mbuf = NULL;
1602 }
1603
1604 ifp = &sc->vr_ec.ec_if;
1605 ifp->if_softc = sc;
1606 ifp->if_mtu = ETHERMTU;
1607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1608 ifp->if_ioctl = vr_ioctl;
1609 ifp->if_start = vr_start;
1610 ifp->if_watchdog = vr_watchdog;
1611 ifp->if_init = vr_init;
1612 ifp->if_stop = vr_stop;
1613 IFQ_SET_READY(&ifp->if_snd);
1614
1615 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1616
1617 /*
1618 * Initialize MII/media info.
1619 */
1620 sc->vr_mii.mii_ifp = ifp;
1621 sc->vr_mii.mii_readreg = vr_mii_readreg;
1622 sc->vr_mii.mii_writereg = vr_mii_writereg;
1623 sc->vr_mii.mii_statchg = vr_mii_statchg;
1624 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1625 vr_ifmedia_sts);
1626 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1627 MII_OFFSET_ANY, 0);
1628 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1629 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1630 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1631 } else
1632 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1633
1634 /*
1635 * Call MI attach routines.
1636 */
1637 if_attach(ifp);
1638 ether_ifattach(ifp, sc->vr_enaddr);
1639
1640 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1641 if (sc->vr_ats == NULL)
1642 printf("%s: warning: couldn't establish shutdown hook\n",
1643 sc->vr_dev.dv_xname);
1644 return;
1645
1646 fail_5:
1647 for (i = 0; i < VR_NRXDESC; i++) {
1648 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1649 bus_dmamap_destroy(sc->vr_dmat,
1650 sc->vr_rxsoft[i].ds_dmamap);
1651 }
1652 fail_4:
1653 for (i = 0; i < VR_NTXDESC; i++) {
1654 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1655 bus_dmamap_destroy(sc->vr_dmat,
1656 sc->vr_txsoft[i].ds_dmamap);
1657 }
1658 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1659 fail_3:
1660 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1661 fail_2:
1662 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1663 sizeof(struct vr_control_data));
1664 fail_1:
1665 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1666 fail_0:
1667 return;
1668 }
1669