if_vr.c revision 1.60 1 /* $NetBSD: if_vr.c,v 1.60 2003/01/15 22:02:58 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.60 2003/01/15 22:02:58 bouyer Exp $");
108
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/callout.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 #include <sys/device.h>
118
119 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
120
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_ether.h>
126
127 #include "bpfilter.h"
128 #if NBPFILTER > 0
129 #include <net/bpf.h>
130 #endif
131
132 #include <machine/bus.h>
133 #include <machine/intr.h>
134 #include <machine/endian.h>
135
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 #include <dev/mii/mii_bitbang.h>
139
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 #include <dev/pci/pcidevs.h>
143
144 #include <dev/pci/if_vrreg.h>
145
146 #define VR_USEIOSPACE
147
148 /*
149 * Various supported device vendors/types and their names.
150 */
151 static struct vr_type {
152 pci_vendor_id_t vr_vid;
153 pci_product_id_t vr_did;
154 const char *vr_name;
155 } vr_devs[] = {
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
157 "VIA VT3043 (Rhine) 10/100" },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
159 "VIA VT6102 (Rhine II) 10/100" },
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
161 "VIA VT86C100A (Rhine-II) 10/100" },
162 { 0, 0, NULL }
163 };
164
165 /*
166 * Transmit descriptor list size.
167 */
168 #define VR_NTXDESC 64
169 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
170 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
171
172 /*
173 * Receive descriptor list size.
174 */
175 #define VR_NRXDESC 64
176 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
177 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
178
179 /*
180 * Control data structres that are DMA'd to the Rhine chip. We allocate
181 * them in a single clump that maps to a single DMA segment to make several
182 * things easier.
183 *
184 * Note that since we always copy outgoing packets to aligned transmit
185 * buffers, we can reduce the transmit descriptors to one per packet.
186 */
187 struct vr_control_data {
188 struct vr_desc vr_txdescs[VR_NTXDESC];
189 struct vr_desc vr_rxdescs[VR_NRXDESC];
190 };
191
192 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
193 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
194 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
195
196 /*
197 * Software state of transmit and receive descriptors.
198 */
199 struct vr_descsoft {
200 struct mbuf *ds_mbuf; /* head of mbuf chain */
201 bus_dmamap_t ds_dmamap; /* our DMA map */
202 };
203
204 struct vr_softc {
205 struct device vr_dev; /* generic device glue */
206 void *vr_ih; /* interrupt cookie */
207 void *vr_ats; /* shutdown hook */
208 bus_space_tag_t vr_bst; /* bus space tag */
209 bus_space_handle_t vr_bsh; /* bus space handle */
210 bus_dma_tag_t vr_dmat; /* bus DMA tag */
211 pci_chipset_tag_t vr_pc; /* PCI chipset info */
212 struct ethercom vr_ec; /* Ethernet common info */
213 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
214 struct mii_data vr_mii; /* MII/media info */
215
216 u_int8_t vr_revid; /* Rhine chip revision */
217
218 struct callout vr_tick_ch; /* tick callout */
219
220 bus_dmamap_t vr_cddmamap; /* control data DMA map */
221 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct vr_descsoft vr_txsoft[VR_NTXDESC];
227 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct vr_control_data *vr_control_data;
233
234 int vr_txpending; /* number of TX requests pending */
235 int vr_txdirty; /* first dirty TX descriptor */
236 int vr_txlast; /* last used TX descriptor */
237
238 int vr_rxptr; /* next ready RX descriptor */
239 };
240
241 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
242 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
243
244 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
245 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
246
247 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
248 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
249
250 #define VR_CDTXSYNC(sc, x, ops) \
251 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
252 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
253
254 #define VR_CDRXSYNC(sc, x, ops) \
255 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
257
258 /*
259 * Note we rely on MCLBYTES being a power of two below.
260 */
261 #define VR_INIT_RXDESC(sc, i) \
262 do { \
263 struct vr_desc *__d = VR_CDRX((sc), (i)); \
264 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
265 \
266 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
267 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
268 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
269 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
270 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
271 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
272 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
273 } while (0)
274
275 /*
276 * register space access macros
277 */
278 #define CSR_WRITE_4(sc, reg, val) \
279 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
280 #define CSR_WRITE_2(sc, reg, val) \
281 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_1(sc, reg, val) \
283 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
284
285 #define CSR_READ_4(sc, reg) \
286 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
287 #define CSR_READ_2(sc, reg) \
288 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_1(sc, reg) \
290 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
291
292 #define VR_TIMEOUT 1000
293
294 static int vr_add_rxbuf __P((struct vr_softc *, int));
295
296 static void vr_rxeof __P((struct vr_softc *));
297 static void vr_rxeoc __P((struct vr_softc *));
298 static void vr_txeof __P((struct vr_softc *));
299 static int vr_intr __P((void *));
300 static void vr_start __P((struct ifnet *));
301 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
302 static int vr_init __P((struct ifnet *));
303 static void vr_stop __P((struct ifnet *, int));
304 static void vr_rxdrain __P((struct vr_softc *));
305 static void vr_watchdog __P((struct ifnet *));
306 static void vr_tick __P((void *));
307
308 static int vr_ifmedia_upd __P((struct ifnet *));
309 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
310
311 static int vr_mii_readreg __P((struct device *, int, int));
312 static void vr_mii_writereg __P((struct device *, int, int, int));
313 static void vr_mii_statchg __P((struct device *));
314
315 static void vr_setmulti __P((struct vr_softc *));
316 static void vr_reset __P((struct vr_softc *));
317
318 int vr_copy_small = 0;
319
320 #define VR_SETBIT(sc, reg, x) \
321 CSR_WRITE_1(sc, reg, \
322 CSR_READ_1(sc, reg) | x)
323
324 #define VR_CLRBIT(sc, reg, x) \
325 CSR_WRITE_1(sc, reg, \
326 CSR_READ_1(sc, reg) & ~x)
327
328 #define VR_SETBIT16(sc, reg, x) \
329 CSR_WRITE_2(sc, reg, \
330 CSR_READ_2(sc, reg) | x)
331
332 #define VR_CLRBIT16(sc, reg, x) \
333 CSR_WRITE_2(sc, reg, \
334 CSR_READ_2(sc, reg) & ~x)
335
336 #define VR_SETBIT32(sc, reg, x) \
337 CSR_WRITE_4(sc, reg, \
338 CSR_READ_4(sc, reg) | x)
339
340 #define VR_CLRBIT32(sc, reg, x) \
341 CSR_WRITE_4(sc, reg, \
342 CSR_READ_4(sc, reg) & ~x)
343
344 /*
345 * MII bit-bang glue.
346 */
347 u_int32_t vr_mii_bitbang_read __P((struct device *));
348 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
349
350 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
351 vr_mii_bitbang_read,
352 vr_mii_bitbang_write,
353 {
354 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
355 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
356 VR_MIICMD_CLK, /* MII_BIT_MDC */
357 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
358 0, /* MII_BIT_DIR_PHY_HOST */
359 }
360 };
361
362 u_int32_t
363 vr_mii_bitbang_read(self)
364 struct device *self;
365 {
366 struct vr_softc *sc = (void *) self;
367
368 return (CSR_READ_1(sc, VR_MIICMD));
369 }
370
371 void
372 vr_mii_bitbang_write(self, val)
373 struct device *self;
374 u_int32_t val;
375 {
376 struct vr_softc *sc = (void *) self;
377
378 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
379 }
380
381 /*
382 * Read an PHY register through the MII.
383 */
384 static int
385 vr_mii_readreg(self, phy, reg)
386 struct device *self;
387 int phy, reg;
388 {
389 struct vr_softc *sc = (void *) self;
390
391 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
392 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
393 }
394
395 /*
396 * Write to a PHY register through the MII.
397 */
398 static void
399 vr_mii_writereg(self, phy, reg, val)
400 struct device *self;
401 int phy, reg, val;
402 {
403 struct vr_softc *sc = (void *) self;
404
405 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
406 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
407 }
408
409 static void
410 vr_mii_statchg(self)
411 struct device *self;
412 {
413 struct vr_softc *sc = (struct vr_softc *)self;
414
415 /*
416 * In order to fiddle with the 'full-duplex' bit in the netconfig
417 * register, we first have to put the transmit and/or receive logic
418 * in the idle state.
419 */
420 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
421
422 if (sc->vr_mii.mii_media_active & IFM_FDX)
423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
424 else
425 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426
427 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
428 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
429 }
430
431 #define vr_calchash(addr) \
432 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
433
434 /*
435 * Program the 64-bit multicast hash filter.
436 */
437 static void
438 vr_setmulti(sc)
439 struct vr_softc *sc;
440 {
441 struct ifnet *ifp;
442 int h = 0;
443 u_int32_t hashes[2] = { 0, 0 };
444 struct ether_multistep step;
445 struct ether_multi *enm;
446 int mcnt = 0;
447 u_int8_t rxfilt;
448
449 ifp = &sc->vr_ec.ec_if;
450
451 rxfilt = CSR_READ_1(sc, VR_RXCFG);
452
453 if (ifp->if_flags & IFF_PROMISC) {
454 allmulti:
455 ifp->if_flags |= IFF_ALLMULTI;
456 rxfilt |= VR_RXCFG_RX_MULTI;
457 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
458 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
459 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
460 return;
461 }
462
463 /* first, zot all the existing hash bits */
464 CSR_WRITE_4(sc, VR_MAR0, 0);
465 CSR_WRITE_4(sc, VR_MAR1, 0);
466
467 /* now program new ones */
468 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
469 while (enm != NULL) {
470 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
471 ETHER_ADDR_LEN) != 0)
472 goto allmulti;
473
474 h = vr_calchash(enm->enm_addrlo);
475
476 if (h < 32)
477 hashes[0] |= (1 << h);
478 else
479 hashes[1] |= (1 << (h - 32));
480 ETHER_NEXT_MULTI(step, enm);
481 mcnt++;
482 }
483
484 ifp->if_flags &= ~IFF_ALLMULTI;
485
486 if (mcnt)
487 rxfilt |= VR_RXCFG_RX_MULTI;
488 else
489 rxfilt &= ~VR_RXCFG_RX_MULTI;
490
491 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
492 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
493 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
494 }
495
496 static void
497 vr_reset(sc)
498 struct vr_softc *sc;
499 {
500 int i;
501
502 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
503
504 for (i = 0; i < VR_TIMEOUT; i++) {
505 DELAY(10);
506 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
507 break;
508 }
509 if (i == VR_TIMEOUT) {
510 if (sc->vr_revid < REV_ID_VT3065_A) {
511 printf("%s: reset never completed!\n",
512 sc->vr_dev.dv_xname);
513 } else {
514 /* Use newer force reset command */
515 printf("%s: using force reset command.\n",
516 sc->vr_dev.dv_xname);
517 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
518 }
519 }
520
521 /* Wait a little while for the chip to get its brains in order. */
522 DELAY(1000);
523 }
524
525 /*
526 * Initialize an RX descriptor and attach an MBUF cluster.
527 * Note: the length fields are only 11 bits wide, which means the
528 * largest size we can specify is 2047. This is important because
529 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
530 * overflow the field and make a mess.
531 */
532 static int
533 vr_add_rxbuf(sc, i)
534 struct vr_softc *sc;
535 int i;
536 {
537 struct vr_descsoft *ds = VR_DSRX(sc, i);
538 struct mbuf *m_new;
539 int error;
540
541 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
542 if (m_new == NULL)
543 return (ENOBUFS);
544
545 MCLGET(m_new, M_DONTWAIT);
546 if ((m_new->m_flags & M_EXT) == 0) {
547 m_freem(m_new);
548 return (ENOBUFS);
549 }
550
551 if (ds->ds_mbuf != NULL)
552 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
553
554 ds->ds_mbuf = m_new;
555
556 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
557 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
558 BUS_DMA_READ|BUS_DMA_NOWAIT);
559 if (error) {
560 printf("%s: unable to load rx DMA map %d, error = %d\n",
561 sc->vr_dev.dv_xname, i, error);
562 panic("vr_add_rxbuf"); /* XXX */
563 }
564
565 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
566 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
567
568 VR_INIT_RXDESC(sc, i);
569
570 return (0);
571 }
572
573 /*
574 * A frame has been uploaded: pass the resulting mbuf chain up to
575 * the higher level protocols.
576 */
577 static void
578 vr_rxeof(sc)
579 struct vr_softc *sc;
580 {
581 struct mbuf *m;
582 struct ifnet *ifp;
583 struct vr_desc *d;
584 struct vr_descsoft *ds;
585 int i, total_len;
586 u_int32_t rxstat;
587
588 ifp = &sc->vr_ec.ec_if;
589
590 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
591 d = VR_CDRX(sc, i);
592 ds = VR_DSRX(sc, i);
593
594 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
595
596 rxstat = le32toh(d->vr_status);
597
598 if (rxstat & VR_RXSTAT_OWN) {
599 /*
600 * We have processed all of the receive buffers.
601 */
602 break;
603 }
604
605 /*
606 * If an error occurs, update stats, clear the
607 * status word and leave the mbuf cluster in place:
608 * it should simply get re-used next time this descriptor
609 * comes up in the ring.
610 */
611 if (rxstat & VR_RXSTAT_RXERR) {
612 const char *errstr;
613
614 ifp->if_ierrors++;
615 switch (rxstat & 0x000000FF) {
616 case VR_RXSTAT_CRCERR:
617 errstr = "crc error";
618 break;
619 case VR_RXSTAT_FRAMEALIGNERR:
620 errstr = "frame alignment error";
621 break;
622 case VR_RXSTAT_FIFOOFLOW:
623 errstr = "FIFO overflow";
624 break;
625 case VR_RXSTAT_GIANT:
626 errstr = "received giant packet";
627 break;
628 case VR_RXSTAT_RUNT:
629 errstr = "received runt packet";
630 break;
631 case VR_RXSTAT_BUSERR:
632 errstr = "system bus error";
633 break;
634 case VR_RXSTAT_BUFFERR:
635 errstr = "rx buffer error";
636 break;
637 default:
638 errstr = "unknown rx error";
639 break;
640 }
641 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
642 errstr);
643
644 VR_INIT_RXDESC(sc, i);
645
646 continue;
647 }
648
649 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
650 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
651
652 /* No errors; receive the packet. */
653 total_len = VR_RXBYTES(le32toh(d->vr_status));
654
655 #ifdef __NO_STRICT_ALIGNMENT
656 /*
657 * If the packet is small enough to fit in a
658 * single header mbuf, allocate one and copy
659 * the data into it. This greatly reduces
660 * memory consumption when we receive lots
661 * of small packets.
662 *
663 * Otherwise, we add a new buffer to the receive
664 * chain. If this fails, we drop the packet and
665 * recycle the old buffer.
666 */
667 if (vr_copy_small != 0 && total_len <= MHLEN) {
668 MGETHDR(m, M_DONTWAIT, MT_DATA);
669 if (m == NULL)
670 goto dropit;
671 memcpy(mtod(m, caddr_t),
672 mtod(ds->ds_mbuf, caddr_t), total_len);
673 VR_INIT_RXDESC(sc, i);
674 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
675 ds->ds_dmamap->dm_mapsize,
676 BUS_DMASYNC_PREREAD);
677 } else {
678 m = ds->ds_mbuf;
679 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
680 dropit:
681 ifp->if_ierrors++;
682 VR_INIT_RXDESC(sc, i);
683 bus_dmamap_sync(sc->vr_dmat,
684 ds->ds_dmamap, 0,
685 ds->ds_dmamap->dm_mapsize,
686 BUS_DMASYNC_PREREAD);
687 continue;
688 }
689 }
690 #else
691 /*
692 * The Rhine's packet buffers must be 4-byte aligned.
693 * But this means that the data after the Ethernet header
694 * is misaligned. We must allocate a new buffer and
695 * copy the data, shifted forward 2 bytes.
696 */
697 MGETHDR(m, M_DONTWAIT, MT_DATA);
698 if (m == NULL) {
699 dropit:
700 ifp->if_ierrors++;
701 VR_INIT_RXDESC(sc, i);
702 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
703 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
704 continue;
705 }
706 if (total_len > (MHLEN - 2)) {
707 MCLGET(m, M_DONTWAIT);
708 if ((m->m_flags & M_EXT) == 0) {
709 m_freem(m);
710 goto dropit;
711 }
712 }
713 m->m_data += 2;
714
715 /*
716 * Note that we use clusters for incoming frames, so the
717 * buffer is virtually contiguous.
718 */
719 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
720 total_len);
721
722 /* Allow the receive descriptor to continue using its mbuf. */
723 VR_INIT_RXDESC(sc, i);
724 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
725 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
726 #endif /* __NO_STRICT_ALIGNMENT */
727
728 /*
729 * The Rhine chip includes the FCS with every
730 * received packet.
731 */
732 m->m_flags |= M_HASFCS;
733
734 ifp->if_ipackets++;
735 m->m_pkthdr.rcvif = ifp;
736 m->m_pkthdr.len = m->m_len = total_len;
737 #if NBPFILTER > 0
738 /*
739 * Handle BPF listeners. Let the BPF user see the packet, but
740 * don't pass it up to the ether_input() layer unless it's
741 * a broadcast packet, multicast packet, matches our ethernet
742 * address or the interface is in promiscuous mode.
743 */
744 if (ifp->if_bpf)
745 bpf_mtap(ifp->if_bpf, m);
746 #endif
747 /* Pass it on. */
748 (*ifp->if_input)(ifp, m);
749 }
750
751 /* Update the receive pointer. */
752 sc->vr_rxptr = i;
753 }
754
755 void
756 vr_rxeoc(sc)
757 struct vr_softc *sc;
758 {
759
760 vr_rxeof(sc);
761 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
762 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
763 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
764 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
765 }
766
767 /*
768 * A frame was downloaded to the chip. It's safe for us to clean up
769 * the list buffers.
770 */
771 static void
772 vr_txeof(sc)
773 struct vr_softc *sc;
774 {
775 struct ifnet *ifp = &sc->vr_ec.ec_if;
776 struct vr_desc *d;
777 struct vr_descsoft *ds;
778 u_int32_t txstat;
779 int i;
780
781 ifp->if_flags &= ~IFF_OACTIVE;
782
783 /*
784 * Go through our tx list and free mbufs for those
785 * frames that have been transmitted.
786 */
787 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
788 i = VR_NEXTTX(i), sc->vr_txpending--) {
789 d = VR_CDTX(sc, i);
790 ds = VR_DSTX(sc, i);
791
792 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
793
794 txstat = le32toh(d->vr_status);
795 if (txstat & VR_TXSTAT_OWN)
796 break;
797
798 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
799 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
800 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
801 m_freem(ds->ds_mbuf);
802 ds->ds_mbuf = NULL;
803
804 if (txstat & VR_TXSTAT_ERRSUM) {
805 ifp->if_oerrors++;
806 if (txstat & VR_TXSTAT_DEFER)
807 ifp->if_collisions++;
808 if (txstat & VR_TXSTAT_LATECOLL)
809 ifp->if_collisions++;
810 }
811
812 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
813 ifp->if_opackets++;
814 }
815
816 /* Update the dirty transmit buffer pointer. */
817 sc->vr_txdirty = i;
818
819 /*
820 * Cancel the watchdog timer if there are no pending
821 * transmissions.
822 */
823 if (sc->vr_txpending == 0)
824 ifp->if_timer = 0;
825 }
826
827 static int
828 vr_intr(arg)
829 void *arg;
830 {
831 struct vr_softc *sc;
832 struct ifnet *ifp;
833 u_int16_t status;
834 int handled = 0, dotx = 0;
835
836 sc = arg;
837 ifp = &sc->vr_ec.ec_if;
838
839 /* Suppress unwanted interrupts. */
840 if ((ifp->if_flags & IFF_UP) == 0) {
841 vr_stop(ifp, 1);
842 return (0);
843 }
844
845 /* Disable interrupts. */
846 CSR_WRITE_2(sc, VR_IMR, 0x0000);
847
848 for (;;) {
849 status = CSR_READ_2(sc, VR_ISR);
850 if (status)
851 CSR_WRITE_2(sc, VR_ISR, status);
852
853 if ((status & VR_INTRS) == 0)
854 break;
855
856 handled = 1;
857
858 if (status & VR_ISR_RX_OK)
859 vr_rxeof(sc);
860
861 if (status &
862 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
863 VR_ISR_RX_DROPPED))
864 vr_rxeoc(sc);
865
866 if (status & VR_ISR_TX_OK) {
867 dotx = 1;
868 vr_txeof(sc);
869 }
870
871 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
872 if (status & VR_ISR_TX_UNDERRUN)
873 printf("%s: transmit underrun\n",
874 sc->vr_dev.dv_xname);
875 if (status & VR_ISR_TX_ABRT)
876 printf("%s: transmit aborted\n",
877 sc->vr_dev.dv_xname);
878 ifp->if_oerrors++;
879 dotx = 1;
880 vr_txeof(sc);
881 if (sc->vr_txpending) {
882 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
883 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
884 }
885 /*
886 * Unfortunately many cards get stuck after
887 * aborted transmits, so we reset them.
888 */
889 if (status & VR_ISR_TX_ABRT) {
890 printf("%s: restarting\n", sc->vr_dev.dv_xname);
891 dotx = 0;
892 (void) vr_init(ifp);
893 }
894 }
895
896 if (status & VR_ISR_BUSERR) {
897 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
898 /* vr_init() calls vr_start() */
899 dotx = 0;
900 (void) vr_init(ifp);
901 }
902 }
903
904 /* Re-enable interrupts. */
905 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
906
907 if (dotx)
908 vr_start(ifp);
909
910 return (handled);
911 }
912
913 /*
914 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
915 * to the mbuf data regions directly in the transmit lists. We also save a
916 * copy of the pointers since the transmit list fragment pointers are
917 * physical addresses.
918 */
919 static void
920 vr_start(ifp)
921 struct ifnet *ifp;
922 {
923 struct vr_softc *sc = ifp->if_softc;
924 struct mbuf *m0, *m;
925 struct vr_desc *d;
926 struct vr_descsoft *ds;
927 int error, firsttx, nexttx, opending;
928
929 /*
930 * Remember the previous txpending and the first transmit
931 * descriptor we use.
932 */
933 opending = sc->vr_txpending;
934 firsttx = VR_NEXTTX(sc->vr_txlast);
935
936 /*
937 * Loop through the send queue, setting up transmit descriptors
938 * until we drain the queue, or use up all available transmit
939 * descriptors.
940 */
941 while (sc->vr_txpending < VR_NTXDESC) {
942 /*
943 * Grab a packet off the queue.
944 */
945 IFQ_POLL(&ifp->if_snd, m0);
946 if (m0 == NULL)
947 break;
948 m = NULL;
949
950 /*
951 * Get the next available transmit descriptor.
952 */
953 nexttx = VR_NEXTTX(sc->vr_txlast);
954 d = VR_CDTX(sc, nexttx);
955 ds = VR_DSTX(sc, nexttx);
956
957 /*
958 * Load the DMA map. If this fails, the packet didn't
959 * fit in one DMA segment, and we need to copy. Note,
960 * the packet must also be aligned.
961 * if the packet is too small, copy it too, so we're sure
962 * so have enouth room for the pad buffer.
963 */
964 if ((mtod(m0, uintptr_t) & 3) != 0 ||
965 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
966 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
967 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
968 MGETHDR(m, M_DONTWAIT, MT_DATA);
969 if (m == NULL) {
970 printf("%s: unable to allocate Tx mbuf\n",
971 sc->vr_dev.dv_xname);
972 break;
973 }
974 if (m0->m_pkthdr.len > MHLEN) {
975 MCLGET(m, M_DONTWAIT);
976 if ((m->m_flags & M_EXT) == 0) {
977 printf("%s: unable to allocate Tx "
978 "cluster\n", sc->vr_dev.dv_xname);
979 m_freem(m);
980 break;
981 }
982 }
983 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
984 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
985 /*
986 * The Rhine doesn't auto-pad, so we have to do this
987 * ourselves.
988 */
989 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
990 memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
991 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
992 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
993 }
994 error = bus_dmamap_load_mbuf(sc->vr_dmat,
995 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
996 if (error) {
997 printf("%s: unable to load Tx buffer, "
998 "error = %d\n", sc->vr_dev.dv_xname, error);
999 break;
1000 }
1001 }
1002
1003 IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 if (m != NULL) {
1005 m_freem(m0);
1006 m0 = m;
1007 }
1008
1009 /* Sync the DMA map. */
1010 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1011 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1012
1013 /*
1014 * Store a pointer to the packet so we can free it later.
1015 */
1016 ds->ds_mbuf = m0;
1017
1018 #if NBPFILTER > 0
1019 /*
1020 * If there's a BPF listener, bounce a copy of this frame
1021 * to him.
1022 */
1023 if (ifp->if_bpf)
1024 bpf_mtap(ifp->if_bpf, m0);
1025 #endif
1026
1027 /*
1028 * Fill in the transmit descriptor.
1029 */
1030 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1031 d->vr_ctl = htole32(m0->m_pkthdr.len);
1032 d->vr_ctl |=
1033 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1034 VR_TXCTL_LASTFRAG);
1035
1036 /*
1037 * If this is the first descriptor we're enqueuing,
1038 * don't give it to the Rhine yet. That could cause
1039 * a race condition. We'll do it below.
1040 */
1041 if (nexttx == firsttx)
1042 d->vr_status = 0;
1043 else
1044 d->vr_status = htole32(VR_TXSTAT_OWN);
1045
1046 VR_CDTXSYNC(sc, nexttx,
1047 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1048
1049 /* Advance the tx pointer. */
1050 sc->vr_txpending++;
1051 sc->vr_txlast = nexttx;
1052 }
1053
1054 if (sc->vr_txpending == VR_NTXDESC) {
1055 /* No more slots left; notify upper layer. */
1056 ifp->if_flags |= IFF_OACTIVE;
1057 }
1058
1059 if (sc->vr_txpending != opending) {
1060 /*
1061 * We enqueued packets. If the transmitter was idle,
1062 * reset the txdirty pointer.
1063 */
1064 if (opending == 0)
1065 sc->vr_txdirty = firsttx;
1066
1067 /*
1068 * Cause a transmit interrupt to happen on the
1069 * last packet we enqueued.
1070 */
1071 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1072 VR_CDTXSYNC(sc, sc->vr_txlast,
1073 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1074
1075 /*
1076 * The entire packet chain is set up. Give the
1077 * first descriptor to the Rhine now.
1078 */
1079 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1080 VR_CDTXSYNC(sc, firsttx,
1081 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082
1083 /* Start the transmitter. */
1084 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1085
1086 /* Set the watchdog timer in case the chip flakes out. */
1087 ifp->if_timer = 5;
1088 }
1089 }
1090
1091 /*
1092 * Initialize the interface. Must be called at splnet.
1093 */
1094 static int
1095 vr_init(ifp)
1096 struct ifnet *ifp;
1097 {
1098 struct vr_softc *sc = ifp->if_softc;
1099 struct vr_desc *d;
1100 struct vr_descsoft *ds;
1101 int i, error = 0;
1102
1103 /* Cancel pending I/O. */
1104 vr_stop(ifp, 0);
1105
1106 /* Reset the Rhine to a known state. */
1107 vr_reset(sc);
1108
1109 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1110 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1111
1112 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1113 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1114
1115 /*
1116 * Initialize the transmit desciptor ring. txlast is initialized
1117 * to the end of the list so that it will wrap around to the first
1118 * descriptor when the first packet is transmitted.
1119 */
1120 for (i = 0; i < VR_NTXDESC; i++) {
1121 d = VR_CDTX(sc, i);
1122 memset(d, 0, sizeof(struct vr_desc));
1123 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1124 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1125 }
1126 sc->vr_txpending = 0;
1127 sc->vr_txdirty = 0;
1128 sc->vr_txlast = VR_NTXDESC - 1;
1129
1130 /*
1131 * Initialize the receive descriptor ring.
1132 */
1133 for (i = 0; i < VR_NRXDESC; i++) {
1134 ds = VR_DSRX(sc, i);
1135 if (ds->ds_mbuf == NULL) {
1136 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1137 printf("%s: unable to allocate or map rx "
1138 "buffer %d, error = %d\n",
1139 sc->vr_dev.dv_xname, i, error);
1140 /*
1141 * XXX Should attempt to run with fewer receive
1142 * XXX buffers instead of just failing.
1143 */
1144 vr_rxdrain(sc);
1145 goto out;
1146 }
1147 } else
1148 VR_INIT_RXDESC(sc, i);
1149 }
1150 sc->vr_rxptr = 0;
1151
1152 /* If we want promiscuous mode, set the allframes bit. */
1153 if (ifp->if_flags & IFF_PROMISC)
1154 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1155 else
1156 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1157
1158 /* Set capture broadcast bit to capture broadcast frames. */
1159 if (ifp->if_flags & IFF_BROADCAST)
1160 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1161 else
1162 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1163
1164 /* Program the multicast filter, if necessary. */
1165 vr_setmulti(sc);
1166
1167 /* Give the transmit and receive rings to the Rhine. */
1168 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1169 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1170
1171 /* Set current media. */
1172 mii_mediachg(&sc->vr_mii);
1173
1174 /* Enable receiver and transmitter. */
1175 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1176 VR_CMD_TX_ON|VR_CMD_RX_ON|
1177 VR_CMD_RX_GO);
1178
1179 /* Enable interrupts. */
1180 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1181 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1182
1183 ifp->if_flags |= IFF_RUNNING;
1184 ifp->if_flags &= ~IFF_OACTIVE;
1185
1186 /* Start one second timer. */
1187 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1188
1189 /* Attempt to start output on the interface. */
1190 vr_start(ifp);
1191
1192 out:
1193 if (error)
1194 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1195 return (error);
1196 }
1197
1198 /*
1199 * Set media options.
1200 */
1201 static int
1202 vr_ifmedia_upd(ifp)
1203 struct ifnet *ifp;
1204 {
1205 struct vr_softc *sc = ifp->if_softc;
1206
1207 if (ifp->if_flags & IFF_UP)
1208 mii_mediachg(&sc->vr_mii);
1209 return (0);
1210 }
1211
1212 /*
1213 * Report current media status.
1214 */
1215 static void
1216 vr_ifmedia_sts(ifp, ifmr)
1217 struct ifnet *ifp;
1218 struct ifmediareq *ifmr;
1219 {
1220 struct vr_softc *sc = ifp->if_softc;
1221
1222 mii_pollstat(&sc->vr_mii);
1223 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1224 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1225 }
1226
1227 static int
1228 vr_ioctl(ifp, command, data)
1229 struct ifnet *ifp;
1230 u_long command;
1231 caddr_t data;
1232 {
1233 struct vr_softc *sc = ifp->if_softc;
1234 struct ifreq *ifr = (struct ifreq *)data;
1235 int s, error = 0;
1236
1237 s = splnet();
1238
1239 switch (command) {
1240 case SIOCGIFMEDIA:
1241 case SIOCSIFMEDIA:
1242 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1243 break;
1244
1245 default:
1246 error = ether_ioctl(ifp, command, data);
1247 if (error == ENETRESET) {
1248 /*
1249 * Multicast list has changed; set the hardware filter
1250 * accordingly.
1251 */
1252 vr_setmulti(sc);
1253 error = 0;
1254 }
1255 break;
1256 }
1257
1258 splx(s);
1259 return (error);
1260 }
1261
1262 static void
1263 vr_watchdog(ifp)
1264 struct ifnet *ifp;
1265 {
1266 struct vr_softc *sc = ifp->if_softc;
1267
1268 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1269 ifp->if_oerrors++;
1270
1271 (void) vr_init(ifp);
1272 }
1273
1274 /*
1275 * One second timer, used to tick MII.
1276 */
1277 static void
1278 vr_tick(arg)
1279 void *arg;
1280 {
1281 struct vr_softc *sc = arg;
1282 int s;
1283
1284 s = splnet();
1285 mii_tick(&sc->vr_mii);
1286 splx(s);
1287
1288 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1289 }
1290
1291 /*
1292 * Drain the receive queue.
1293 */
1294 static void
1295 vr_rxdrain(sc)
1296 struct vr_softc *sc;
1297 {
1298 struct vr_descsoft *ds;
1299 int i;
1300
1301 for (i = 0; i < VR_NRXDESC; i++) {
1302 ds = VR_DSRX(sc, i);
1303 if (ds->ds_mbuf != NULL) {
1304 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1305 m_freem(ds->ds_mbuf);
1306 ds->ds_mbuf = NULL;
1307 }
1308 }
1309 }
1310
1311 /*
1312 * Stop the adapter and free any mbufs allocated to the
1313 * transmit lists.
1314 */
1315 static void
1316 vr_stop(ifp, disable)
1317 struct ifnet *ifp;
1318 int disable;
1319 {
1320 struct vr_softc *sc = ifp->if_softc;
1321 struct vr_descsoft *ds;
1322 int i;
1323
1324 /* Cancel one second timer. */
1325 callout_stop(&sc->vr_tick_ch);
1326
1327 /* Down the MII. */
1328 mii_down(&sc->vr_mii);
1329
1330 ifp = &sc->vr_ec.ec_if;
1331 ifp->if_timer = 0;
1332
1333 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1334 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1335 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1336 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1337 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1338
1339 /*
1340 * Release any queued transmit buffers.
1341 */
1342 for (i = 0; i < VR_NTXDESC; i++) {
1343 ds = VR_DSTX(sc, i);
1344 if (ds->ds_mbuf != NULL) {
1345 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1346 m_freem(ds->ds_mbuf);
1347 ds->ds_mbuf = NULL;
1348 }
1349 }
1350
1351 if (disable)
1352 vr_rxdrain(sc);
1353
1354 /*
1355 * Mark the interface down and cancel the watchdog timer.
1356 */
1357 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1358 ifp->if_timer = 0;
1359 }
1360
1361 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1362 static int vr_probe __P((struct device *, struct cfdata *, void *));
1363 static void vr_attach __P((struct device *, struct device *, void *));
1364 static void vr_shutdown __P((void *));
1365
1366 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1367 vr_probe, vr_attach, NULL, NULL);
1368
1369 static struct vr_type *
1370 vr_lookup(pa)
1371 struct pci_attach_args *pa;
1372 {
1373 struct vr_type *vrt;
1374
1375 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1376 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1377 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1378 return (vrt);
1379 }
1380 return (NULL);
1381 }
1382
1383 static int
1384 vr_probe(parent, match, aux)
1385 struct device *parent;
1386 struct cfdata *match;
1387 void *aux;
1388 {
1389 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1390
1391 if (vr_lookup(pa) != NULL)
1392 return (1);
1393
1394 return (0);
1395 }
1396
1397 /*
1398 * Stop all chip I/O so that the kernel's probe routines don't
1399 * get confused by errant DMAs when rebooting.
1400 */
1401 static void
1402 vr_shutdown(arg)
1403 void *arg;
1404 {
1405 struct vr_softc *sc = (struct vr_softc *)arg;
1406
1407 vr_stop(&sc->vr_ec.ec_if, 1);
1408 }
1409
1410 /*
1411 * Attach the interface. Allocate softc structures, do ifmedia
1412 * setup and ethernet/BPF attach.
1413 */
1414 static void
1415 vr_attach(parent, self, aux)
1416 struct device *parent;
1417 struct device *self;
1418 void *aux;
1419 {
1420 struct vr_softc *sc = (struct vr_softc *) self;
1421 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1422 bus_dma_segment_t seg;
1423 struct vr_type *vrt;
1424 u_int32_t command;
1425 struct ifnet *ifp;
1426 u_char eaddr[ETHER_ADDR_LEN];
1427 int i, rseg, error;
1428
1429 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1430 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1431
1432 callout_init(&sc->vr_tick_ch);
1433
1434 vrt = vr_lookup(pa);
1435 if (vrt == NULL) {
1436 printf("\n");
1437 panic("vr_attach: impossible");
1438 }
1439
1440 printf(": %s Ethernet\n", vrt->vr_name);
1441
1442 /*
1443 * Handle power management nonsense.
1444 */
1445
1446 command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
1447 if (command == 0x01) {
1448 command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
1449 if (command & VR_PSTATE_MASK) {
1450 u_int32_t iobase, membase, irq;
1451
1452 /* Save important PCI config data. */
1453 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1454 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1455 irq = PCI_CONF_READ(VR_PCI_INTLINE);
1456
1457 /* Reset the power state. */
1458 printf("%s: chip is in D%d power mode "
1459 "-- setting to D0\n",
1460 sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
1461 command &= 0xFFFFFFFC;
1462 PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
1463
1464 /* Restore PCI config data. */
1465 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1466 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1467 PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
1468 }
1469 }
1470
1471 /* Make sure bus mastering is enabled. */
1472 command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1473 command |= PCI_COMMAND_MASTER_ENABLE;
1474 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
1475
1476 /* Get revision */
1477 sc->vr_revid = PCI_CONF_READ(VR_PCI_REVID) & 0x000000FF;
1478
1479 /*
1480 * Map control/status registers.
1481 */
1482 {
1483 bus_space_tag_t iot, memt;
1484 bus_space_handle_t ioh, memh;
1485 int ioh_valid, memh_valid;
1486 pci_intr_handle_t intrhandle;
1487 const char *intrstr;
1488
1489 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1490 PCI_MAPREG_TYPE_IO, 0,
1491 &iot, &ioh, NULL, NULL) == 0);
1492 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1493 PCI_MAPREG_TYPE_MEM |
1494 PCI_MAPREG_MEM_TYPE_32BIT,
1495 0, &memt, &memh, NULL, NULL) == 0);
1496 #if defined(VR_USEIOSPACE)
1497 if (ioh_valid) {
1498 sc->vr_bst = iot;
1499 sc->vr_bsh = ioh;
1500 } else if (memh_valid) {
1501 sc->vr_bst = memt;
1502 sc->vr_bsh = memh;
1503 }
1504 #else
1505 if (memh_valid) {
1506 sc->vr_bst = memt;
1507 sc->vr_bsh = memh;
1508 } else if (ioh_valid) {
1509 sc->vr_bst = iot;
1510 sc->vr_bsh = ioh;
1511 }
1512 #endif
1513 else {
1514 printf(": unable to map device registers\n");
1515 return;
1516 }
1517
1518 /* Allocate interrupt */
1519 if (pci_intr_map(pa, &intrhandle)) {
1520 printf("%s: couldn't map interrupt\n",
1521 sc->vr_dev.dv_xname);
1522 return;
1523 }
1524 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1525 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1526 vr_intr, sc);
1527 if (sc->vr_ih == NULL) {
1528 printf("%s: couldn't establish interrupt",
1529 sc->vr_dev.dv_xname);
1530 if (intrstr != NULL)
1531 printf(" at %s", intrstr);
1532 printf("\n");
1533 }
1534 printf("%s: interrupting at %s\n",
1535 sc->vr_dev.dv_xname, intrstr);
1536 }
1537
1538 /*
1539 * Windows may put the chip in suspend mode when it
1540 * shuts down. Be sure to kick it in the head to wake it
1541 * up again.
1542 */
1543 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1544
1545 /* Reset the adapter. */
1546 vr_reset(sc);
1547
1548 /*
1549 * Get station address. The way the Rhine chips work,
1550 * you're not allowed to directly access the EEPROM once
1551 * they've been programmed a special way. Consequently,
1552 * we need to read the node address from the PAR0 and PAR1
1553 * registers.
1554 */
1555 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1556 DELAY(200);
1557 for (i = 0; i < ETHER_ADDR_LEN; i++)
1558 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1559
1560 /*
1561 * A Rhine chip was detected. Inform the world.
1562 */
1563 printf("%s: Ethernet address: %s\n",
1564 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1565
1566 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1567
1568 sc->vr_dmat = pa->pa_dmat;
1569
1570 /*
1571 * Allocate the control data structures, and create and load
1572 * the DMA map for it.
1573 */
1574 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1575 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1576 0)) != 0) {
1577 printf("%s: unable to allocate control data, error = %d\n",
1578 sc->vr_dev.dv_xname, error);
1579 goto fail_0;
1580 }
1581
1582 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1583 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1584 BUS_DMA_COHERENT)) != 0) {
1585 printf("%s: unable to map control data, error = %d\n",
1586 sc->vr_dev.dv_xname, error);
1587 goto fail_1;
1588 }
1589
1590 if ((error = bus_dmamap_create(sc->vr_dmat,
1591 sizeof(struct vr_control_data), 1,
1592 sizeof(struct vr_control_data), 0, 0,
1593 &sc->vr_cddmamap)) != 0) {
1594 printf("%s: unable to create control data DMA map, "
1595 "error = %d\n", sc->vr_dev.dv_xname, error);
1596 goto fail_2;
1597 }
1598
1599 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1600 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1601 0)) != 0) {
1602 printf("%s: unable to load control data DMA map, error = %d\n",
1603 sc->vr_dev.dv_xname, error);
1604 goto fail_3;
1605 }
1606
1607 /*
1608 * Create the transmit buffer DMA maps.
1609 */
1610 for (i = 0; i < VR_NTXDESC; i++) {
1611 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1612 1, MCLBYTES, 0, 0,
1613 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1614 printf("%s: unable to create tx DMA map %d, "
1615 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1616 goto fail_4;
1617 }
1618 }
1619
1620 /*
1621 * Create the receive buffer DMA maps.
1622 */
1623 for (i = 0; i < VR_NRXDESC; i++) {
1624 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1625 MCLBYTES, 0, 0,
1626 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1627 printf("%s: unable to create rx DMA map %d, "
1628 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1629 goto fail_5;
1630 }
1631 VR_DSRX(sc, i)->ds_mbuf = NULL;
1632 }
1633
1634 ifp = &sc->vr_ec.ec_if;
1635 ifp->if_softc = sc;
1636 ifp->if_mtu = ETHERMTU;
1637 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1638 ifp->if_ioctl = vr_ioctl;
1639 ifp->if_start = vr_start;
1640 ifp->if_watchdog = vr_watchdog;
1641 ifp->if_init = vr_init;
1642 ifp->if_stop = vr_stop;
1643 IFQ_SET_READY(&ifp->if_snd);
1644
1645 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1646
1647 /*
1648 * Initialize MII/media info.
1649 */
1650 sc->vr_mii.mii_ifp = ifp;
1651 sc->vr_mii.mii_readreg = vr_mii_readreg;
1652 sc->vr_mii.mii_writereg = vr_mii_writereg;
1653 sc->vr_mii.mii_statchg = vr_mii_statchg;
1654 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1655 vr_ifmedia_sts);
1656 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1657 MII_OFFSET_ANY, 0);
1658 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1659 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1660 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1661 } else
1662 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1663
1664 /*
1665 * Call MI attach routines.
1666 */
1667 if_attach(ifp);
1668 ether_ifattach(ifp, sc->vr_enaddr);
1669
1670 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1671 if (sc->vr_ats == NULL)
1672 printf("%s: warning: couldn't establish shutdown hook\n",
1673 sc->vr_dev.dv_xname);
1674 return;
1675
1676 fail_5:
1677 for (i = 0; i < VR_NRXDESC; i++) {
1678 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1679 bus_dmamap_destroy(sc->vr_dmat,
1680 sc->vr_rxsoft[i].ds_dmamap);
1681 }
1682 fail_4:
1683 for (i = 0; i < VR_NTXDESC; i++) {
1684 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1685 bus_dmamap_destroy(sc->vr_dmat,
1686 sc->vr_txsoft[i].ds_dmamap);
1687 }
1688 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1689 fail_3:
1690 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1691 fail_2:
1692 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1693 sizeof(struct vr_control_data));
1694 fail_1:
1695 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1696 fail_0:
1697 return;
1698 }
1699