if_vr.c revision 1.63 1 /* $NetBSD: if_vr.c,v 1.63 2003/10/17 16:00:43 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.63 2003/10/17 16:00:43 tsutsui Exp $");
108
109 #include <sys/param.h>
110 #include <sys/systm.h>
111 #include <sys/callout.h>
112 #include <sys/sockio.h>
113 #include <sys/mbuf.h>
114 #include <sys/malloc.h>
115 #include <sys/kernel.h>
116 #include <sys/socket.h>
117 #include <sys/device.h>
118
119 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
120
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_ether.h>
126
127 #include "bpfilter.h"
128 #if NBPFILTER > 0
129 #include <net/bpf.h>
130 #endif
131
132 #include <machine/bus.h>
133 #include <machine/intr.h>
134 #include <machine/endian.h>
135
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 #include <dev/mii/mii_bitbang.h>
139
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 #include <dev/pci/pcidevs.h>
143
144 #include <dev/pci/if_vrreg.h>
145
146 #define VR_USEIOSPACE
147
148 /*
149 * Various supported device vendors/types and their names.
150 */
151 static struct vr_type {
152 pci_vendor_id_t vr_vid;
153 pci_product_id_t vr_did;
154 const char *vr_name;
155 } vr_devs[] = {
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
157 "VIA VT3043 (Rhine) 10/100" },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
159 "VIA VT6102 (Rhine II) 10/100" },
160 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
161 "VIA VT6105 (Rhine III) 10/100" },
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
163 "VIA VT86C100A (Rhine-II) 10/100" },
164 { 0, 0, NULL }
165 };
166
167 /*
168 * Transmit descriptor list size.
169 */
170 #define VR_NTXDESC 64
171 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
172 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
173
174 /*
175 * Receive descriptor list size.
176 */
177 #define VR_NRXDESC 64
178 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
179 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
180
181 /*
182 * Control data structres that are DMA'd to the Rhine chip. We allocate
183 * them in a single clump that maps to a single DMA segment to make several
184 * things easier.
185 *
186 * Note that since we always copy outgoing packets to aligned transmit
187 * buffers, we can reduce the transmit descriptors to one per packet.
188 */
189 struct vr_control_data {
190 struct vr_desc vr_txdescs[VR_NTXDESC];
191 struct vr_desc vr_rxdescs[VR_NRXDESC];
192 };
193
194 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
195 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
196 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
197
198 /*
199 * Software state of transmit and receive descriptors.
200 */
201 struct vr_descsoft {
202 struct mbuf *ds_mbuf; /* head of mbuf chain */
203 bus_dmamap_t ds_dmamap; /* our DMA map */
204 };
205
206 struct vr_softc {
207 struct device vr_dev; /* generic device glue */
208 void *vr_ih; /* interrupt cookie */
209 void *vr_ats; /* shutdown hook */
210 bus_space_tag_t vr_bst; /* bus space tag */
211 bus_space_handle_t vr_bsh; /* bus space handle */
212 bus_dma_tag_t vr_dmat; /* bus DMA tag */
213 pci_chipset_tag_t vr_pc; /* PCI chipset info */
214 struct ethercom vr_ec; /* Ethernet common info */
215 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
216 struct mii_data vr_mii; /* MII/media info */
217
218 u_int8_t vr_revid; /* Rhine chip revision */
219
220 struct callout vr_tick_ch; /* tick callout */
221
222 bus_dmamap_t vr_cddmamap; /* control data DMA map */
223 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
224
225 /*
226 * Software state for transmit and receive descriptors.
227 */
228 struct vr_descsoft vr_txsoft[VR_NTXDESC];
229 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
230
231 /*
232 * Control data structures.
233 */
234 struct vr_control_data *vr_control_data;
235
236 int vr_txpending; /* number of TX requests pending */
237 int vr_txdirty; /* first dirty TX descriptor */
238 int vr_txlast; /* last used TX descriptor */
239
240 int vr_rxptr; /* next ready RX descriptor */
241 };
242
243 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
244 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
245
246 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
247 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
248
249 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
250 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
251
252 #define VR_CDTXSYNC(sc, x, ops) \
253 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
254 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
255
256 #define VR_CDRXSYNC(sc, x, ops) \
257 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
258 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
259
260 /*
261 * Note we rely on MCLBYTES being a power of two below.
262 */
263 #define VR_INIT_RXDESC(sc, i) \
264 do { \
265 struct vr_desc *__d = VR_CDRX((sc), (i)); \
266 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
267 \
268 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
269 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
270 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
275 } while (0)
276
277 /*
278 * register space access macros
279 */
280 #define CSR_WRITE_4(sc, reg, val) \
281 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
282 #define CSR_WRITE_2(sc, reg, val) \
283 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_1(sc, reg, val) \
285 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
286
287 #define CSR_READ_4(sc, reg) \
288 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
289 #define CSR_READ_2(sc, reg) \
290 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_1(sc, reg) \
292 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
293
294 #define VR_TIMEOUT 1000
295
296 static int vr_add_rxbuf __P((struct vr_softc *, int));
297
298 static void vr_rxeof __P((struct vr_softc *));
299 static void vr_rxeoc __P((struct vr_softc *));
300 static void vr_txeof __P((struct vr_softc *));
301 static int vr_intr __P((void *));
302 static void vr_start __P((struct ifnet *));
303 static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
304 static int vr_init __P((struct ifnet *));
305 static void vr_stop __P((struct ifnet *, int));
306 static void vr_rxdrain __P((struct vr_softc *));
307 static void vr_watchdog __P((struct ifnet *));
308 static void vr_tick __P((void *));
309
310 static int vr_ifmedia_upd __P((struct ifnet *));
311 static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
312
313 static int vr_mii_readreg __P((struct device *, int, int));
314 static void vr_mii_writereg __P((struct device *, int, int, int));
315 static void vr_mii_statchg __P((struct device *));
316
317 static void vr_setmulti __P((struct vr_softc *));
318 static void vr_reset __P((struct vr_softc *));
319
320 int vr_copy_small = 0;
321
322 #define VR_SETBIT(sc, reg, x) \
323 CSR_WRITE_1(sc, reg, \
324 CSR_READ_1(sc, reg) | x)
325
326 #define VR_CLRBIT(sc, reg, x) \
327 CSR_WRITE_1(sc, reg, \
328 CSR_READ_1(sc, reg) & ~x)
329
330 #define VR_SETBIT16(sc, reg, x) \
331 CSR_WRITE_2(sc, reg, \
332 CSR_READ_2(sc, reg) | x)
333
334 #define VR_CLRBIT16(sc, reg, x) \
335 CSR_WRITE_2(sc, reg, \
336 CSR_READ_2(sc, reg) & ~x)
337
338 #define VR_SETBIT32(sc, reg, x) \
339 CSR_WRITE_4(sc, reg, \
340 CSR_READ_4(sc, reg) | x)
341
342 #define VR_CLRBIT32(sc, reg, x) \
343 CSR_WRITE_4(sc, reg, \
344 CSR_READ_4(sc, reg) & ~x)
345
346 /*
347 * MII bit-bang glue.
348 */
349 u_int32_t vr_mii_bitbang_read __P((struct device *));
350 void vr_mii_bitbang_write __P((struct device *, u_int32_t));
351
352 const struct mii_bitbang_ops vr_mii_bitbang_ops = {
353 vr_mii_bitbang_read,
354 vr_mii_bitbang_write,
355 {
356 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
357 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
358 VR_MIICMD_CLK, /* MII_BIT_MDC */
359 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
360 0, /* MII_BIT_DIR_PHY_HOST */
361 }
362 };
363
364 u_int32_t
365 vr_mii_bitbang_read(self)
366 struct device *self;
367 {
368 struct vr_softc *sc = (void *) self;
369
370 return (CSR_READ_1(sc, VR_MIICMD));
371 }
372
373 void
374 vr_mii_bitbang_write(self, val)
375 struct device *self;
376 u_int32_t val;
377 {
378 struct vr_softc *sc = (void *) self;
379
380 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
381 }
382
383 /*
384 * Read an PHY register through the MII.
385 */
386 static int
387 vr_mii_readreg(self, phy, reg)
388 struct device *self;
389 int phy, reg;
390 {
391 struct vr_softc *sc = (void *) self;
392
393 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
394 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
395 }
396
397 /*
398 * Write to a PHY register through the MII.
399 */
400 static void
401 vr_mii_writereg(self, phy, reg, val)
402 struct device *self;
403 int phy, reg, val;
404 {
405 struct vr_softc *sc = (void *) self;
406
407 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
408 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
409 }
410
411 static void
412 vr_mii_statchg(self)
413 struct device *self;
414 {
415 struct vr_softc *sc = (struct vr_softc *)self;
416
417 /*
418 * In order to fiddle with the 'full-duplex' bit in the netconfig
419 * register, we first have to put the transmit and/or receive logic
420 * in the idle state.
421 */
422 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
423
424 if (sc->vr_mii.mii_media_active & IFM_FDX)
425 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
426 else
427 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
428
429 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
430 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
431 }
432
433 #define vr_calchash(addr) \
434 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
435
436 /*
437 * Program the 64-bit multicast hash filter.
438 */
439 static void
440 vr_setmulti(sc)
441 struct vr_softc *sc;
442 {
443 struct ifnet *ifp;
444 int h = 0;
445 u_int32_t hashes[2] = { 0, 0 };
446 struct ether_multistep step;
447 struct ether_multi *enm;
448 int mcnt = 0;
449 u_int8_t rxfilt;
450
451 ifp = &sc->vr_ec.ec_if;
452
453 rxfilt = CSR_READ_1(sc, VR_RXCFG);
454
455 if (ifp->if_flags & IFF_PROMISC) {
456 allmulti:
457 ifp->if_flags |= IFF_ALLMULTI;
458 rxfilt |= VR_RXCFG_RX_MULTI;
459 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
460 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
461 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
462 return;
463 }
464
465 /* first, zot all the existing hash bits */
466 CSR_WRITE_4(sc, VR_MAR0, 0);
467 CSR_WRITE_4(sc, VR_MAR1, 0);
468
469 /* now program new ones */
470 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
471 while (enm != NULL) {
472 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
473 ETHER_ADDR_LEN) != 0)
474 goto allmulti;
475
476 h = vr_calchash(enm->enm_addrlo);
477
478 if (h < 32)
479 hashes[0] |= (1 << h);
480 else
481 hashes[1] |= (1 << (h - 32));
482 ETHER_NEXT_MULTI(step, enm);
483 mcnt++;
484 }
485
486 ifp->if_flags &= ~IFF_ALLMULTI;
487
488 if (mcnt)
489 rxfilt |= VR_RXCFG_RX_MULTI;
490 else
491 rxfilt &= ~VR_RXCFG_RX_MULTI;
492
493 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
494 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
495 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
496 }
497
498 static void
499 vr_reset(sc)
500 struct vr_softc *sc;
501 {
502 int i;
503
504 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
505
506 for (i = 0; i < VR_TIMEOUT; i++) {
507 DELAY(10);
508 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
509 break;
510 }
511 if (i == VR_TIMEOUT) {
512 if (sc->vr_revid < REV_ID_VT3065_A) {
513 printf("%s: reset never completed!\n",
514 sc->vr_dev.dv_xname);
515 } else {
516 /* Use newer force reset command */
517 printf("%s: using force reset command.\n",
518 sc->vr_dev.dv_xname);
519 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
520 }
521 }
522
523 /* Wait a little while for the chip to get its brains in order. */
524 DELAY(1000);
525 }
526
527 /*
528 * Initialize an RX descriptor and attach an MBUF cluster.
529 * Note: the length fields are only 11 bits wide, which means the
530 * largest size we can specify is 2047. This is important because
531 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
532 * overflow the field and make a mess.
533 */
534 static int
535 vr_add_rxbuf(sc, i)
536 struct vr_softc *sc;
537 int i;
538 {
539 struct vr_descsoft *ds = VR_DSRX(sc, i);
540 struct mbuf *m_new;
541 int error;
542
543 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
544 if (m_new == NULL)
545 return (ENOBUFS);
546
547 MCLGET(m_new, M_DONTWAIT);
548 if ((m_new->m_flags & M_EXT) == 0) {
549 m_freem(m_new);
550 return (ENOBUFS);
551 }
552
553 if (ds->ds_mbuf != NULL)
554 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
555
556 ds->ds_mbuf = m_new;
557
558 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
559 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
560 BUS_DMA_READ|BUS_DMA_NOWAIT);
561 if (error) {
562 printf("%s: unable to load rx DMA map %d, error = %d\n",
563 sc->vr_dev.dv_xname, i, error);
564 panic("vr_add_rxbuf"); /* XXX */
565 }
566
567 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
568 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
569
570 VR_INIT_RXDESC(sc, i);
571
572 return (0);
573 }
574
575 /*
576 * A frame has been uploaded: pass the resulting mbuf chain up to
577 * the higher level protocols.
578 */
579 static void
580 vr_rxeof(sc)
581 struct vr_softc *sc;
582 {
583 struct mbuf *m;
584 struct ifnet *ifp;
585 struct vr_desc *d;
586 struct vr_descsoft *ds;
587 int i, total_len;
588 u_int32_t rxstat;
589
590 ifp = &sc->vr_ec.ec_if;
591
592 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
593 d = VR_CDRX(sc, i);
594 ds = VR_DSRX(sc, i);
595
596 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
597
598 rxstat = le32toh(d->vr_status);
599
600 if (rxstat & VR_RXSTAT_OWN) {
601 /*
602 * We have processed all of the receive buffers.
603 */
604 break;
605 }
606
607 /*
608 * If an error occurs, update stats, clear the
609 * status word and leave the mbuf cluster in place:
610 * it should simply get re-used next time this descriptor
611 * comes up in the ring.
612 */
613 if (rxstat & VR_RXSTAT_RXERR) {
614 const char *errstr;
615
616 ifp->if_ierrors++;
617 switch (rxstat & 0x000000FF) {
618 case VR_RXSTAT_CRCERR:
619 errstr = "crc error";
620 break;
621 case VR_RXSTAT_FRAMEALIGNERR:
622 errstr = "frame alignment error";
623 break;
624 case VR_RXSTAT_FIFOOFLOW:
625 errstr = "FIFO overflow";
626 break;
627 case VR_RXSTAT_GIANT:
628 errstr = "received giant packet";
629 break;
630 case VR_RXSTAT_RUNT:
631 errstr = "received runt packet";
632 break;
633 case VR_RXSTAT_BUSERR:
634 errstr = "system bus error";
635 break;
636 case VR_RXSTAT_BUFFERR:
637 errstr = "rx buffer error";
638 break;
639 default:
640 errstr = "unknown rx error";
641 break;
642 }
643 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
644 errstr);
645
646 VR_INIT_RXDESC(sc, i);
647
648 continue;
649 }
650
651 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
652 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
653
654 /* No errors; receive the packet. */
655 total_len = VR_RXBYTES(le32toh(d->vr_status));
656
657 #ifdef __NO_STRICT_ALIGNMENT
658 /*
659 * If the packet is small enough to fit in a
660 * single header mbuf, allocate one and copy
661 * the data into it. This greatly reduces
662 * memory consumption when we receive lots
663 * of small packets.
664 *
665 * Otherwise, we add a new buffer to the receive
666 * chain. If this fails, we drop the packet and
667 * recycle the old buffer.
668 */
669 if (vr_copy_small != 0 && total_len <= MHLEN) {
670 MGETHDR(m, M_DONTWAIT, MT_DATA);
671 if (m == NULL)
672 goto dropit;
673 memcpy(mtod(m, caddr_t),
674 mtod(ds->ds_mbuf, caddr_t), total_len);
675 VR_INIT_RXDESC(sc, i);
676 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
677 ds->ds_dmamap->dm_mapsize,
678 BUS_DMASYNC_PREREAD);
679 } else {
680 m = ds->ds_mbuf;
681 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
682 dropit:
683 ifp->if_ierrors++;
684 VR_INIT_RXDESC(sc, i);
685 bus_dmamap_sync(sc->vr_dmat,
686 ds->ds_dmamap, 0,
687 ds->ds_dmamap->dm_mapsize,
688 BUS_DMASYNC_PREREAD);
689 continue;
690 }
691 }
692 #else
693 /*
694 * The Rhine's packet buffers must be 4-byte aligned.
695 * But this means that the data after the Ethernet header
696 * is misaligned. We must allocate a new buffer and
697 * copy the data, shifted forward 2 bytes.
698 */
699 MGETHDR(m, M_DONTWAIT, MT_DATA);
700 if (m == NULL) {
701 dropit:
702 ifp->if_ierrors++;
703 VR_INIT_RXDESC(sc, i);
704 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
706 continue;
707 }
708 if (total_len > (MHLEN - 2)) {
709 MCLGET(m, M_DONTWAIT);
710 if ((m->m_flags & M_EXT) == 0) {
711 m_freem(m);
712 goto dropit;
713 }
714 }
715 m->m_data += 2;
716
717 /*
718 * Note that we use clusters for incoming frames, so the
719 * buffer is virtually contiguous.
720 */
721 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
722 total_len);
723
724 /* Allow the receive descriptor to continue using its mbuf. */
725 VR_INIT_RXDESC(sc, i);
726 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
727 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
728 #endif /* __NO_STRICT_ALIGNMENT */
729
730 /*
731 * The Rhine chip includes the FCS with every
732 * received packet.
733 */
734 m->m_flags |= M_HASFCS;
735
736 ifp->if_ipackets++;
737 m->m_pkthdr.rcvif = ifp;
738 m->m_pkthdr.len = m->m_len = total_len;
739 #if NBPFILTER > 0
740 /*
741 * Handle BPF listeners. Let the BPF user see the packet, but
742 * don't pass it up to the ether_input() layer unless it's
743 * a broadcast packet, multicast packet, matches our ethernet
744 * address or the interface is in promiscuous mode.
745 */
746 if (ifp->if_bpf)
747 bpf_mtap(ifp->if_bpf, m);
748 #endif
749 /* Pass it on. */
750 (*ifp->if_input)(ifp, m);
751 }
752
753 /* Update the receive pointer. */
754 sc->vr_rxptr = i;
755 }
756
757 void
758 vr_rxeoc(sc)
759 struct vr_softc *sc;
760 {
761
762 vr_rxeof(sc);
763 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
764 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
765 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
766 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
767 }
768
769 /*
770 * A frame was downloaded to the chip. It's safe for us to clean up
771 * the list buffers.
772 */
773 static void
774 vr_txeof(sc)
775 struct vr_softc *sc;
776 {
777 struct ifnet *ifp = &sc->vr_ec.ec_if;
778 struct vr_desc *d;
779 struct vr_descsoft *ds;
780 u_int32_t txstat;
781 int i;
782
783 ifp->if_flags &= ~IFF_OACTIVE;
784
785 /*
786 * Go through our tx list and free mbufs for those
787 * frames that have been transmitted.
788 */
789 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
790 i = VR_NEXTTX(i), sc->vr_txpending--) {
791 d = VR_CDTX(sc, i);
792 ds = VR_DSTX(sc, i);
793
794 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
795
796 txstat = le32toh(d->vr_status);
797 if (txstat & VR_TXSTAT_OWN)
798 break;
799
800 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
801 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
802 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
803 m_freem(ds->ds_mbuf);
804 ds->ds_mbuf = NULL;
805
806 if (txstat & VR_TXSTAT_ERRSUM) {
807 ifp->if_oerrors++;
808 if (txstat & VR_TXSTAT_DEFER)
809 ifp->if_collisions++;
810 if (txstat & VR_TXSTAT_LATECOLL)
811 ifp->if_collisions++;
812 }
813
814 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
815 ifp->if_opackets++;
816 }
817
818 /* Update the dirty transmit buffer pointer. */
819 sc->vr_txdirty = i;
820
821 /*
822 * Cancel the watchdog timer if there are no pending
823 * transmissions.
824 */
825 if (sc->vr_txpending == 0)
826 ifp->if_timer = 0;
827 }
828
829 static int
830 vr_intr(arg)
831 void *arg;
832 {
833 struct vr_softc *sc;
834 struct ifnet *ifp;
835 u_int16_t status;
836 int handled = 0, dotx = 0;
837
838 sc = arg;
839 ifp = &sc->vr_ec.ec_if;
840
841 /* Suppress unwanted interrupts. */
842 if ((ifp->if_flags & IFF_UP) == 0) {
843 vr_stop(ifp, 1);
844 return (0);
845 }
846
847 /* Disable interrupts. */
848 CSR_WRITE_2(sc, VR_IMR, 0x0000);
849
850 for (;;) {
851 status = CSR_READ_2(sc, VR_ISR);
852 if (status)
853 CSR_WRITE_2(sc, VR_ISR, status);
854
855 if ((status & VR_INTRS) == 0)
856 break;
857
858 handled = 1;
859
860 if (status & VR_ISR_RX_OK)
861 vr_rxeof(sc);
862
863 if (status &
864 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
865 VR_ISR_RX_DROPPED))
866 vr_rxeoc(sc);
867
868 if (status & VR_ISR_TX_OK) {
869 dotx = 1;
870 vr_txeof(sc);
871 }
872
873 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
874 if (status & VR_ISR_TX_UNDERRUN)
875 printf("%s: transmit underrun\n",
876 sc->vr_dev.dv_xname);
877 if (status & VR_ISR_TX_ABRT)
878 printf("%s: transmit aborted\n",
879 sc->vr_dev.dv_xname);
880 ifp->if_oerrors++;
881 dotx = 1;
882 vr_txeof(sc);
883 if (sc->vr_txpending) {
884 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
885 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
886 }
887 /*
888 * Unfortunately many cards get stuck after
889 * aborted transmits, so we reset them.
890 */
891 if (status & VR_ISR_TX_ABRT) {
892 printf("%s: restarting\n", sc->vr_dev.dv_xname);
893 dotx = 0;
894 (void) vr_init(ifp);
895 }
896 }
897
898 if (status & VR_ISR_BUSERR) {
899 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
900 /* vr_init() calls vr_start() */
901 dotx = 0;
902 (void) vr_init(ifp);
903 }
904 }
905
906 /* Re-enable interrupts. */
907 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
908
909 if (dotx)
910 vr_start(ifp);
911
912 return (handled);
913 }
914
915 /*
916 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
917 * to the mbuf data regions directly in the transmit lists. We also save a
918 * copy of the pointers since the transmit list fragment pointers are
919 * physical addresses.
920 */
921 static void
922 vr_start(ifp)
923 struct ifnet *ifp;
924 {
925 struct vr_softc *sc = ifp->if_softc;
926 struct mbuf *m0, *m;
927 struct vr_desc *d;
928 struct vr_descsoft *ds;
929 int error, firsttx, nexttx, opending;
930
931 /*
932 * Remember the previous txpending and the first transmit
933 * descriptor we use.
934 */
935 opending = sc->vr_txpending;
936 firsttx = VR_NEXTTX(sc->vr_txlast);
937
938 /*
939 * Loop through the send queue, setting up transmit descriptors
940 * until we drain the queue, or use up all available transmit
941 * descriptors.
942 */
943 while (sc->vr_txpending < VR_NTXDESC) {
944 /*
945 * Grab a packet off the queue.
946 */
947 IFQ_POLL(&ifp->if_snd, m0);
948 if (m0 == NULL)
949 break;
950 m = NULL;
951
952 /*
953 * Get the next available transmit descriptor.
954 */
955 nexttx = VR_NEXTTX(sc->vr_txlast);
956 d = VR_CDTX(sc, nexttx);
957 ds = VR_DSTX(sc, nexttx);
958
959 /*
960 * Load the DMA map. If this fails, the packet didn't
961 * fit in one DMA segment, and we need to copy. Note,
962 * the packet must also be aligned.
963 * if the packet is too small, copy it too, so we're sure
964 * so have enouth room for the pad buffer.
965 */
966 if ((mtod(m0, uintptr_t) & 3) != 0 ||
967 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
968 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
969 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
970 MGETHDR(m, M_DONTWAIT, MT_DATA);
971 if (m == NULL) {
972 printf("%s: unable to allocate Tx mbuf\n",
973 sc->vr_dev.dv_xname);
974 break;
975 }
976 if (m0->m_pkthdr.len > MHLEN) {
977 MCLGET(m, M_DONTWAIT);
978 if ((m->m_flags & M_EXT) == 0) {
979 printf("%s: unable to allocate Tx "
980 "cluster\n", sc->vr_dev.dv_xname);
981 m_freem(m);
982 break;
983 }
984 }
985 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
986 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
987 /*
988 * The Rhine doesn't auto-pad, so we have to do this
989 * ourselves.
990 */
991 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
992 memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
993 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
994 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
995 }
996 error = bus_dmamap_load_mbuf(sc->vr_dmat,
997 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
998 if (error) {
999 printf("%s: unable to load Tx buffer, "
1000 "error = %d\n", sc->vr_dev.dv_xname, error);
1001 break;
1002 }
1003 }
1004
1005 IFQ_DEQUEUE(&ifp->if_snd, m0);
1006 if (m != NULL) {
1007 m_freem(m0);
1008 m0 = m;
1009 }
1010
1011 /* Sync the DMA map. */
1012 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1013 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1014
1015 /*
1016 * Store a pointer to the packet so we can free it later.
1017 */
1018 ds->ds_mbuf = m0;
1019
1020 #if NBPFILTER > 0
1021 /*
1022 * If there's a BPF listener, bounce a copy of this frame
1023 * to him.
1024 */
1025 if (ifp->if_bpf)
1026 bpf_mtap(ifp->if_bpf, m0);
1027 #endif
1028
1029 /*
1030 * Fill in the transmit descriptor.
1031 */
1032 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1033 d->vr_ctl = htole32(m0->m_pkthdr.len);
1034 d->vr_ctl |=
1035 htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
1036 VR_TXCTL_LASTFRAG);
1037
1038 /*
1039 * If this is the first descriptor we're enqueuing,
1040 * don't give it to the Rhine yet. That could cause
1041 * a race condition. We'll do it below.
1042 */
1043 if (nexttx == firsttx)
1044 d->vr_status = 0;
1045 else
1046 d->vr_status = htole32(VR_TXSTAT_OWN);
1047
1048 VR_CDTXSYNC(sc, nexttx,
1049 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051 /* Advance the tx pointer. */
1052 sc->vr_txpending++;
1053 sc->vr_txlast = nexttx;
1054 }
1055
1056 if (sc->vr_txpending == VR_NTXDESC) {
1057 /* No more slots left; notify upper layer. */
1058 ifp->if_flags |= IFF_OACTIVE;
1059 }
1060
1061 if (sc->vr_txpending != opending) {
1062 /*
1063 * We enqueued packets. If the transmitter was idle,
1064 * reset the txdirty pointer.
1065 */
1066 if (opending == 0)
1067 sc->vr_txdirty = firsttx;
1068
1069 /*
1070 * Cause a transmit interrupt to happen on the
1071 * last packet we enqueued.
1072 */
1073 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1074 VR_CDTXSYNC(sc, sc->vr_txlast,
1075 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076
1077 /*
1078 * The entire packet chain is set up. Give the
1079 * first descriptor to the Rhine now.
1080 */
1081 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1082 VR_CDTXSYNC(sc, firsttx,
1083 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1084
1085 /* Start the transmitter. */
1086 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
1087
1088 /* Set the watchdog timer in case the chip flakes out. */
1089 ifp->if_timer = 5;
1090 }
1091 }
1092
1093 /*
1094 * Initialize the interface. Must be called at splnet.
1095 */
1096 static int
1097 vr_init(ifp)
1098 struct ifnet *ifp;
1099 {
1100 struct vr_softc *sc = ifp->if_softc;
1101 struct vr_desc *d;
1102 struct vr_descsoft *ds;
1103 int i, error = 0;
1104
1105 /* Cancel pending I/O. */
1106 vr_stop(ifp, 0);
1107
1108 /* Reset the Rhine to a known state. */
1109 vr_reset(sc);
1110
1111 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1112 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
1113
1114 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1115 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1116
1117 /*
1118 * Initialize the transmit desciptor ring. txlast is initialized
1119 * to the end of the list so that it will wrap around to the first
1120 * descriptor when the first packet is transmitted.
1121 */
1122 for (i = 0; i < VR_NTXDESC; i++) {
1123 d = VR_CDTX(sc, i);
1124 memset(d, 0, sizeof(struct vr_desc));
1125 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1126 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127 }
1128 sc->vr_txpending = 0;
1129 sc->vr_txdirty = 0;
1130 sc->vr_txlast = VR_NTXDESC - 1;
1131
1132 /*
1133 * Initialize the receive descriptor ring.
1134 */
1135 for (i = 0; i < VR_NRXDESC; i++) {
1136 ds = VR_DSRX(sc, i);
1137 if (ds->ds_mbuf == NULL) {
1138 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1139 printf("%s: unable to allocate or map rx "
1140 "buffer %d, error = %d\n",
1141 sc->vr_dev.dv_xname, i, error);
1142 /*
1143 * XXX Should attempt to run with fewer receive
1144 * XXX buffers instead of just failing.
1145 */
1146 vr_rxdrain(sc);
1147 goto out;
1148 }
1149 } else
1150 VR_INIT_RXDESC(sc, i);
1151 }
1152 sc->vr_rxptr = 0;
1153
1154 /* If we want promiscuous mode, set the allframes bit. */
1155 if (ifp->if_flags & IFF_PROMISC)
1156 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1157 else
1158 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1159
1160 /* Set capture broadcast bit to capture broadcast frames. */
1161 if (ifp->if_flags & IFF_BROADCAST)
1162 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1163 else
1164 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1165
1166 /* Program the multicast filter, if necessary. */
1167 vr_setmulti(sc);
1168
1169 /* Give the transmit and receive rings to the Rhine. */
1170 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1171 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1172
1173 /* Set current media. */
1174 mii_mediachg(&sc->vr_mii);
1175
1176 /* Enable receiver and transmitter. */
1177 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1178 VR_CMD_TX_ON|VR_CMD_RX_ON|
1179 VR_CMD_RX_GO);
1180
1181 /* Enable interrupts. */
1182 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1183 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1184
1185 ifp->if_flags |= IFF_RUNNING;
1186 ifp->if_flags &= ~IFF_OACTIVE;
1187
1188 /* Start one second timer. */
1189 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1190
1191 /* Attempt to start output on the interface. */
1192 vr_start(ifp);
1193
1194 out:
1195 if (error)
1196 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1197 return (error);
1198 }
1199
1200 /*
1201 * Set media options.
1202 */
1203 static int
1204 vr_ifmedia_upd(ifp)
1205 struct ifnet *ifp;
1206 {
1207 struct vr_softc *sc = ifp->if_softc;
1208
1209 if (ifp->if_flags & IFF_UP)
1210 mii_mediachg(&sc->vr_mii);
1211 return (0);
1212 }
1213
1214 /*
1215 * Report current media status.
1216 */
1217 static void
1218 vr_ifmedia_sts(ifp, ifmr)
1219 struct ifnet *ifp;
1220 struct ifmediareq *ifmr;
1221 {
1222 struct vr_softc *sc = ifp->if_softc;
1223
1224 mii_pollstat(&sc->vr_mii);
1225 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1226 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1227 }
1228
1229 static int
1230 vr_ioctl(ifp, command, data)
1231 struct ifnet *ifp;
1232 u_long command;
1233 caddr_t data;
1234 {
1235 struct vr_softc *sc = ifp->if_softc;
1236 struct ifreq *ifr = (struct ifreq *)data;
1237 int s, error = 0;
1238
1239 s = splnet();
1240
1241 switch (command) {
1242 case SIOCGIFMEDIA:
1243 case SIOCSIFMEDIA:
1244 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1245 break;
1246
1247 default:
1248 error = ether_ioctl(ifp, command, data);
1249 if (error == ENETRESET) {
1250 /*
1251 * Multicast list has changed; set the hardware filter
1252 * accordingly.
1253 */
1254 vr_setmulti(sc);
1255 error = 0;
1256 }
1257 break;
1258 }
1259
1260 splx(s);
1261 return (error);
1262 }
1263
1264 static void
1265 vr_watchdog(ifp)
1266 struct ifnet *ifp;
1267 {
1268 struct vr_softc *sc = ifp->if_softc;
1269
1270 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1271 ifp->if_oerrors++;
1272
1273 (void) vr_init(ifp);
1274 }
1275
1276 /*
1277 * One second timer, used to tick MII.
1278 */
1279 static void
1280 vr_tick(arg)
1281 void *arg;
1282 {
1283 struct vr_softc *sc = arg;
1284 int s;
1285
1286 s = splnet();
1287 mii_tick(&sc->vr_mii);
1288 splx(s);
1289
1290 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1291 }
1292
1293 /*
1294 * Drain the receive queue.
1295 */
1296 static void
1297 vr_rxdrain(sc)
1298 struct vr_softc *sc;
1299 {
1300 struct vr_descsoft *ds;
1301 int i;
1302
1303 for (i = 0; i < VR_NRXDESC; i++) {
1304 ds = VR_DSRX(sc, i);
1305 if (ds->ds_mbuf != NULL) {
1306 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1307 m_freem(ds->ds_mbuf);
1308 ds->ds_mbuf = NULL;
1309 }
1310 }
1311 }
1312
1313 /*
1314 * Stop the adapter and free any mbufs allocated to the
1315 * transmit lists.
1316 */
1317 static void
1318 vr_stop(ifp, disable)
1319 struct ifnet *ifp;
1320 int disable;
1321 {
1322 struct vr_softc *sc = ifp->if_softc;
1323 struct vr_descsoft *ds;
1324 int i;
1325
1326 /* Cancel one second timer. */
1327 callout_stop(&sc->vr_tick_ch);
1328
1329 /* Down the MII. */
1330 mii_down(&sc->vr_mii);
1331
1332 ifp = &sc->vr_ec.ec_if;
1333 ifp->if_timer = 0;
1334
1335 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1336 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1337 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1338 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1339 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1340
1341 /*
1342 * Release any queued transmit buffers.
1343 */
1344 for (i = 0; i < VR_NTXDESC; i++) {
1345 ds = VR_DSTX(sc, i);
1346 if (ds->ds_mbuf != NULL) {
1347 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1348 m_freem(ds->ds_mbuf);
1349 ds->ds_mbuf = NULL;
1350 }
1351 }
1352
1353 if (disable)
1354 vr_rxdrain(sc);
1355
1356 /*
1357 * Mark the interface down and cancel the watchdog timer.
1358 */
1359 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1360 ifp->if_timer = 0;
1361 }
1362
1363 static struct vr_type *vr_lookup __P((struct pci_attach_args *));
1364 static int vr_probe __P((struct device *, struct cfdata *, void *));
1365 static void vr_attach __P((struct device *, struct device *, void *));
1366 static void vr_shutdown __P((void *));
1367
1368 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1369 vr_probe, vr_attach, NULL, NULL);
1370
1371 static struct vr_type *
1372 vr_lookup(pa)
1373 struct pci_attach_args *pa;
1374 {
1375 struct vr_type *vrt;
1376
1377 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1378 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1379 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1380 return (vrt);
1381 }
1382 return (NULL);
1383 }
1384
1385 static int
1386 vr_probe(parent, match, aux)
1387 struct device *parent;
1388 struct cfdata *match;
1389 void *aux;
1390 {
1391 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1392
1393 if (vr_lookup(pa) != NULL)
1394 return (1);
1395
1396 return (0);
1397 }
1398
1399 /*
1400 * Stop all chip I/O so that the kernel's probe routines don't
1401 * get confused by errant DMAs when rebooting.
1402 */
1403 static void
1404 vr_shutdown(arg)
1405 void *arg;
1406 {
1407 struct vr_softc *sc = (struct vr_softc *)arg;
1408
1409 vr_stop(&sc->vr_ec.ec_if, 1);
1410 }
1411
1412 /*
1413 * Attach the interface. Allocate softc structures, do ifmedia
1414 * setup and ethernet/BPF attach.
1415 */
1416 static void
1417 vr_attach(parent, self, aux)
1418 struct device *parent;
1419 struct device *self;
1420 void *aux;
1421 {
1422 struct vr_softc *sc = (struct vr_softc *) self;
1423 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1424 bus_dma_segment_t seg;
1425 struct vr_type *vrt;
1426 u_int32_t pmreg, reg;
1427 struct ifnet *ifp;
1428 u_char eaddr[ETHER_ADDR_LEN];
1429 int i, rseg, error;
1430
1431 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1432 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1433
1434 callout_init(&sc->vr_tick_ch);
1435
1436 vrt = vr_lookup(pa);
1437 if (vrt == NULL) {
1438 printf("\n");
1439 panic("vr_attach: impossible");
1440 }
1441
1442 printf(": %s Ethernet\n", vrt->vr_name);
1443
1444 /*
1445 * Handle power management nonsense.
1446 */
1447
1448 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1449 PCI_CAP_PWRMGMT, &pmreg, 0)) {
1450 reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
1451 if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
1452 u_int32_t iobase, membase, irq;
1453
1454 /* Save important PCI config data. */
1455 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1456 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1457 irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1458
1459 /* Reset the power state. */
1460 printf("%s: chip is in D%d power mode "
1461 "-- setting to D0\n",
1462 sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
1463 reg = (reg & ~PCI_PMCSR_STATE_MASK) |
1464 PCI_PMCSR_STATE_D0;
1465 PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
1466
1467 /* Restore PCI config data. */
1468 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1469 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1470 PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
1471 }
1472 }
1473
1474 /* Make sure bus mastering is enabled. */
1475 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1476 reg |= PCI_COMMAND_MASTER_ENABLE;
1477 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1478
1479 /* Get revision */
1480 sc->vr_revid = PCI_REVISION(pa->pa_class);
1481
1482 /*
1483 * Map control/status registers.
1484 */
1485 {
1486 bus_space_tag_t iot, memt;
1487 bus_space_handle_t ioh, memh;
1488 int ioh_valid, memh_valid;
1489 pci_intr_handle_t intrhandle;
1490 const char *intrstr;
1491
1492 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1493 PCI_MAPREG_TYPE_IO, 0,
1494 &iot, &ioh, NULL, NULL) == 0);
1495 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1496 PCI_MAPREG_TYPE_MEM |
1497 PCI_MAPREG_MEM_TYPE_32BIT,
1498 0, &memt, &memh, NULL, NULL) == 0);
1499 #if defined(VR_USEIOSPACE)
1500 if (ioh_valid) {
1501 sc->vr_bst = iot;
1502 sc->vr_bsh = ioh;
1503 } else if (memh_valid) {
1504 sc->vr_bst = memt;
1505 sc->vr_bsh = memh;
1506 }
1507 #else
1508 if (memh_valid) {
1509 sc->vr_bst = memt;
1510 sc->vr_bsh = memh;
1511 } else if (ioh_valid) {
1512 sc->vr_bst = iot;
1513 sc->vr_bsh = ioh;
1514 }
1515 #endif
1516 else {
1517 printf(": unable to map device registers\n");
1518 return;
1519 }
1520
1521 /* Allocate interrupt */
1522 if (pci_intr_map(pa, &intrhandle)) {
1523 printf("%s: couldn't map interrupt\n",
1524 sc->vr_dev.dv_xname);
1525 return;
1526 }
1527 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1528 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1529 vr_intr, sc);
1530 if (sc->vr_ih == NULL) {
1531 printf("%s: couldn't establish interrupt",
1532 sc->vr_dev.dv_xname);
1533 if (intrstr != NULL)
1534 printf(" at %s", intrstr);
1535 printf("\n");
1536 }
1537 printf("%s: interrupting at %s\n",
1538 sc->vr_dev.dv_xname, intrstr);
1539 }
1540
1541 /*
1542 * Windows may put the chip in suspend mode when it
1543 * shuts down. Be sure to kick it in the head to wake it
1544 * up again.
1545 */
1546 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1547
1548 /* Reset the adapter. */
1549 vr_reset(sc);
1550
1551 /*
1552 * Get station address. The way the Rhine chips work,
1553 * you're not allowed to directly access the EEPROM once
1554 * they've been programmed a special way. Consequently,
1555 * we need to read the node address from the PAR0 and PAR1
1556 * registers.
1557 */
1558 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1559 DELAY(200);
1560 for (i = 0; i < ETHER_ADDR_LEN; i++)
1561 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1562
1563 /*
1564 * A Rhine chip was detected. Inform the world.
1565 */
1566 printf("%s: Ethernet address: %s\n",
1567 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1568
1569 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1570
1571 sc->vr_dmat = pa->pa_dmat;
1572
1573 /*
1574 * Allocate the control data structures, and create and load
1575 * the DMA map for it.
1576 */
1577 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1578 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1579 0)) != 0) {
1580 printf("%s: unable to allocate control data, error = %d\n",
1581 sc->vr_dev.dv_xname, error);
1582 goto fail_0;
1583 }
1584
1585 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1586 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1587 BUS_DMA_COHERENT)) != 0) {
1588 printf("%s: unable to map control data, error = %d\n",
1589 sc->vr_dev.dv_xname, error);
1590 goto fail_1;
1591 }
1592
1593 if ((error = bus_dmamap_create(sc->vr_dmat,
1594 sizeof(struct vr_control_data), 1,
1595 sizeof(struct vr_control_data), 0, 0,
1596 &sc->vr_cddmamap)) != 0) {
1597 printf("%s: unable to create control data DMA map, "
1598 "error = %d\n", sc->vr_dev.dv_xname, error);
1599 goto fail_2;
1600 }
1601
1602 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1603 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1604 0)) != 0) {
1605 printf("%s: unable to load control data DMA map, error = %d\n",
1606 sc->vr_dev.dv_xname, error);
1607 goto fail_3;
1608 }
1609
1610 /*
1611 * Create the transmit buffer DMA maps.
1612 */
1613 for (i = 0; i < VR_NTXDESC; i++) {
1614 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1615 1, MCLBYTES, 0, 0,
1616 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1617 printf("%s: unable to create tx DMA map %d, "
1618 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1619 goto fail_4;
1620 }
1621 }
1622
1623 /*
1624 * Create the receive buffer DMA maps.
1625 */
1626 for (i = 0; i < VR_NRXDESC; i++) {
1627 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1628 MCLBYTES, 0, 0,
1629 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1630 printf("%s: unable to create rx DMA map %d, "
1631 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1632 goto fail_5;
1633 }
1634 VR_DSRX(sc, i)->ds_mbuf = NULL;
1635 }
1636
1637 ifp = &sc->vr_ec.ec_if;
1638 ifp->if_softc = sc;
1639 ifp->if_mtu = ETHERMTU;
1640 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 ifp->if_ioctl = vr_ioctl;
1642 ifp->if_start = vr_start;
1643 ifp->if_watchdog = vr_watchdog;
1644 ifp->if_init = vr_init;
1645 ifp->if_stop = vr_stop;
1646 IFQ_SET_READY(&ifp->if_snd);
1647
1648 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1649
1650 /*
1651 * Initialize MII/media info.
1652 */
1653 sc->vr_mii.mii_ifp = ifp;
1654 sc->vr_mii.mii_readreg = vr_mii_readreg;
1655 sc->vr_mii.mii_writereg = vr_mii_writereg;
1656 sc->vr_mii.mii_statchg = vr_mii_statchg;
1657 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1658 vr_ifmedia_sts);
1659 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1660 MII_OFFSET_ANY, MIIF_FORCEANEG);
1661 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1662 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1663 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1664 } else
1665 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1666
1667 /*
1668 * Call MI attach routines.
1669 */
1670 if_attach(ifp);
1671 ether_ifattach(ifp, sc->vr_enaddr);
1672
1673 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1674 if (sc->vr_ats == NULL)
1675 printf("%s: warning: couldn't establish shutdown hook\n",
1676 sc->vr_dev.dv_xname);
1677 return;
1678
1679 fail_5:
1680 for (i = 0; i < VR_NRXDESC; i++) {
1681 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1682 bus_dmamap_destroy(sc->vr_dmat,
1683 sc->vr_rxsoft[i].ds_dmamap);
1684 }
1685 fail_4:
1686 for (i = 0; i < VR_NTXDESC; i++) {
1687 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1688 bus_dmamap_destroy(sc->vr_dmat,
1689 sc->vr_txsoft[i].ds_dmamap);
1690 }
1691 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1692 fail_3:
1693 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1694 fail_2:
1695 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1696 sizeof(struct vr_control_data));
1697 fail_1:
1698 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1699 fail_0:
1700 return;
1701 }
1702