if_vr.c revision 1.70 1 /* $NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $");
108
109 #include "rnd.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124
125 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137
138 #include <machine/bus.h>
139 #include <machine/intr.h>
140 #include <machine/endian.h>
141
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/pci/if_vrreg.h>
151
152 #define VR_USEIOSPACE
153
154 /*
155 * Various supported device vendors/types and their names.
156 */
157 static struct vr_type {
158 pci_vendor_id_t vr_vid;
159 pci_product_id_t vr_did;
160 const char *vr_name;
161 } vr_devs[] = {
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 "VIA VT3043 (Rhine) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 "VIA VT6102 (Rhine II) 10/100" },
166 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 "VIA VT6105 (Rhine III) 10/100" },
168 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 "VIA VT86C100A (Rhine-II) 10/100" },
170 { 0, 0, NULL }
171 };
172
173 /*
174 * Transmit descriptor list size.
175 */
176 #define VR_NTXDESC 64
177 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
178 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
179
180 /*
181 * Receive descriptor list size.
182 */
183 #define VR_NRXDESC 64
184 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
185 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
186
187 /*
188 * Control data structres that are DMA'd to the Rhine chip. We allocate
189 * them in a single clump that maps to a single DMA segment to make several
190 * things easier.
191 *
192 * Note that since we always copy outgoing packets to aligned transmit
193 * buffers, we can reduce the transmit descriptors to one per packet.
194 */
195 struct vr_control_data {
196 struct vr_desc vr_txdescs[VR_NTXDESC];
197 struct vr_desc vr_rxdescs[VR_NRXDESC];
198 };
199
200 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
201 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
202 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
203
204 /*
205 * Software state of transmit and receive descriptors.
206 */
207 struct vr_descsoft {
208 struct mbuf *ds_mbuf; /* head of mbuf chain */
209 bus_dmamap_t ds_dmamap; /* our DMA map */
210 };
211
212 struct vr_softc {
213 struct device vr_dev; /* generic device glue */
214 void *vr_ih; /* interrupt cookie */
215 void *vr_ats; /* shutdown hook */
216 bus_space_tag_t vr_bst; /* bus space tag */
217 bus_space_handle_t vr_bsh; /* bus space handle */
218 bus_dma_tag_t vr_dmat; /* bus DMA tag */
219 pci_chipset_tag_t vr_pc; /* PCI chipset info */
220 struct ethercom vr_ec; /* Ethernet common info */
221 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
222 struct mii_data vr_mii; /* MII/media info */
223
224 u_int8_t vr_revid; /* Rhine chip revision */
225
226 struct callout vr_tick_ch; /* tick callout */
227
228 bus_dmamap_t vr_cddmamap; /* control data DMA map */
229 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
230
231 /*
232 * Software state for transmit and receive descriptors.
233 */
234 struct vr_descsoft vr_txsoft[VR_NTXDESC];
235 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
236
237 /*
238 * Control data structures.
239 */
240 struct vr_control_data *vr_control_data;
241
242 int vr_txpending; /* number of TX requests pending */
243 int vr_txdirty; /* first dirty TX descriptor */
244 int vr_txlast; /* last used TX descriptor */
245
246 int vr_rxptr; /* next ready RX descriptor */
247
248 #if NRND > 0
249 rndsource_element_t rnd_source; /* random source */
250 #endif
251 };
252
253 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
254 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
255
256 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
257 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
258
259 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
260 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
261
262 #define VR_CDTXSYNC(sc, x, ops) \
263 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
264 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
265
266 #define VR_CDRXSYNC(sc, x, ops) \
267 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
268 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
269
270 /*
271 * Note we rely on MCLBYTES being a power of two below.
272 */
273 #define VR_INIT_RXDESC(sc, i) \
274 do { \
275 struct vr_desc *__d = VR_CDRX((sc), (i)); \
276 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
277 \
278 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
279 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
280 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
281 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
282 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
283 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
284 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
285 } while (/* CONSTCOND */ 0)
286
287 /*
288 * register space access macros
289 */
290 #define CSR_WRITE_4(sc, reg, val) \
291 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
292 #define CSR_WRITE_2(sc, reg, val) \
293 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
294 #define CSR_WRITE_1(sc, reg, val) \
295 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
296
297 #define CSR_READ_4(sc, reg) \
298 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
299 #define CSR_READ_2(sc, reg) \
300 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
301 #define CSR_READ_1(sc, reg) \
302 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
303
304 #define VR_TIMEOUT 1000
305
306 static int vr_add_rxbuf(struct vr_softc *, int);
307
308 static void vr_rxeof(struct vr_softc *);
309 static void vr_rxeoc(struct vr_softc *);
310 static void vr_txeof(struct vr_softc *);
311 static int vr_intr(void *);
312 static void vr_start(struct ifnet *);
313 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
314 static int vr_init(struct ifnet *);
315 static void vr_stop(struct ifnet *, int);
316 static void vr_rxdrain(struct vr_softc *);
317 static void vr_watchdog(struct ifnet *);
318 static void vr_tick(void *);
319
320 static int vr_ifmedia_upd(struct ifnet *);
321 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
322
323 static int vr_mii_readreg(struct device *, int, int);
324 static void vr_mii_writereg(struct device *, int, int, int);
325 static void vr_mii_statchg(struct device *);
326
327 static void vr_setmulti(struct vr_softc *);
328 static void vr_reset(struct vr_softc *);
329
330 int vr_copy_small = 0;
331
332 #define VR_SETBIT(sc, reg, x) \
333 CSR_WRITE_1(sc, reg, \
334 CSR_READ_1(sc, reg) | (x))
335
336 #define VR_CLRBIT(sc, reg, x) \
337 CSR_WRITE_1(sc, reg, \
338 CSR_READ_1(sc, reg) & ~(x))
339
340 #define VR_SETBIT16(sc, reg, x) \
341 CSR_WRITE_2(sc, reg, \
342 CSR_READ_2(sc, reg) | (x))
343
344 #define VR_CLRBIT16(sc, reg, x) \
345 CSR_WRITE_2(sc, reg, \
346 CSR_READ_2(sc, reg) & ~(x))
347
348 #define VR_SETBIT32(sc, reg, x) \
349 CSR_WRITE_4(sc, reg, \
350 CSR_READ_4(sc, reg) | (x))
351
352 #define VR_CLRBIT32(sc, reg, x) \
353 CSR_WRITE_4(sc, reg, \
354 CSR_READ_4(sc, reg) & ~(x))
355
356 /*
357 * MII bit-bang glue.
358 */
359 static u_int32_t vr_mii_bitbang_read(struct device *);
360 static void vr_mii_bitbang_write(struct device *, u_int32_t);
361
362 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
363 vr_mii_bitbang_read,
364 vr_mii_bitbang_write,
365 {
366 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
367 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
368 VR_MIICMD_CLK, /* MII_BIT_MDC */
369 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
370 0, /* MII_BIT_DIR_PHY_HOST */
371 }
372 };
373
374 static u_int32_t
375 vr_mii_bitbang_read(struct device *self)
376 {
377 struct vr_softc *sc = (void *) self;
378
379 return (CSR_READ_1(sc, VR_MIICMD));
380 }
381
382 static void
383 vr_mii_bitbang_write(struct device *self, u_int32_t val)
384 {
385 struct vr_softc *sc = (void *) self;
386
387 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
388 }
389
390 /*
391 * Read an PHY register through the MII.
392 */
393 static int
394 vr_mii_readreg(struct device *self, int phy, int reg)
395 {
396 struct vr_softc *sc = (void *) self;
397
398 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
399 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
400 }
401
402 /*
403 * Write to a PHY register through the MII.
404 */
405 static void
406 vr_mii_writereg(struct device *self, int phy, int reg, int val)
407 {
408 struct vr_softc *sc = (void *) self;
409
410 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
411 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
412 }
413
414 static void
415 vr_mii_statchg(struct device *self)
416 {
417 struct vr_softc *sc = (struct vr_softc *)self;
418
419 /*
420 * In order to fiddle with the 'full-duplex' bit in the netconfig
421 * register, we first have to put the transmit and/or receive logic
422 * in the idle state.
423 */
424 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
425
426 if (sc->vr_mii.mii_media_active & IFM_FDX)
427 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
428 else
429 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
430
431 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
432 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
433 }
434
435 #define vr_calchash(addr) \
436 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
437
438 /*
439 * Program the 64-bit multicast hash filter.
440 */
441 static void
442 vr_setmulti(struct vr_softc *sc)
443 {
444 struct ifnet *ifp;
445 int h = 0;
446 u_int32_t hashes[2] = { 0, 0 };
447 struct ether_multistep step;
448 struct ether_multi *enm;
449 int mcnt = 0;
450 u_int8_t rxfilt;
451
452 ifp = &sc->vr_ec.ec_if;
453
454 rxfilt = CSR_READ_1(sc, VR_RXCFG);
455
456 if (ifp->if_flags & IFF_PROMISC) {
457 allmulti:
458 ifp->if_flags |= IFF_ALLMULTI;
459 rxfilt |= VR_RXCFG_RX_MULTI;
460 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
461 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
462 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
463 return;
464 }
465
466 /* first, zot all the existing hash bits */
467 CSR_WRITE_4(sc, VR_MAR0, 0);
468 CSR_WRITE_4(sc, VR_MAR1, 0);
469
470 /* now program new ones */
471 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
472 while (enm != NULL) {
473 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
474 ETHER_ADDR_LEN) != 0)
475 goto allmulti;
476
477 h = vr_calchash(enm->enm_addrlo);
478
479 if (h < 32)
480 hashes[0] |= (1 << h);
481 else
482 hashes[1] |= (1 << (h - 32));
483 ETHER_NEXT_MULTI(step, enm);
484 mcnt++;
485 }
486
487 ifp->if_flags &= ~IFF_ALLMULTI;
488
489 if (mcnt)
490 rxfilt |= VR_RXCFG_RX_MULTI;
491 else
492 rxfilt &= ~VR_RXCFG_RX_MULTI;
493
494 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
495 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
496 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
497 }
498
499 static void
500 vr_reset(struct vr_softc *sc)
501 {
502 int i;
503
504 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
505
506 for (i = 0; i < VR_TIMEOUT; i++) {
507 DELAY(10);
508 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
509 break;
510 }
511 if (i == VR_TIMEOUT) {
512 if (sc->vr_revid < REV_ID_VT3065_A) {
513 printf("%s: reset never completed!\n",
514 sc->vr_dev.dv_xname);
515 } else {
516 /* Use newer force reset command */
517 printf("%s: using force reset command.\n",
518 sc->vr_dev.dv_xname);
519 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
520 }
521 }
522
523 /* Wait a little while for the chip to get its brains in order. */
524 DELAY(1000);
525 }
526
527 /*
528 * Initialize an RX descriptor and attach an MBUF cluster.
529 * Note: the length fields are only 11 bits wide, which means the
530 * largest size we can specify is 2047. This is important because
531 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
532 * overflow the field and make a mess.
533 */
534 static int
535 vr_add_rxbuf(struct vr_softc *sc, int i)
536 {
537 struct vr_descsoft *ds = VR_DSRX(sc, i);
538 struct mbuf *m_new;
539 int error;
540
541 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
542 if (m_new == NULL)
543 return (ENOBUFS);
544
545 MCLGET(m_new, M_DONTWAIT);
546 if ((m_new->m_flags & M_EXT) == 0) {
547 m_freem(m_new);
548 return (ENOBUFS);
549 }
550
551 if (ds->ds_mbuf != NULL)
552 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
553
554 ds->ds_mbuf = m_new;
555
556 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
557 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
558 BUS_DMA_READ|BUS_DMA_NOWAIT);
559 if (error) {
560 printf("%s: unable to load rx DMA map %d, error = %d\n",
561 sc->vr_dev.dv_xname, i, error);
562 panic("vr_add_rxbuf"); /* XXX */
563 }
564
565 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
566 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
567
568 VR_INIT_RXDESC(sc, i);
569
570 return (0);
571 }
572
573 /*
574 * A frame has been uploaded: pass the resulting mbuf chain up to
575 * the higher level protocols.
576 */
577 static void
578 vr_rxeof(struct vr_softc *sc)
579 {
580 struct mbuf *m;
581 struct ifnet *ifp;
582 struct vr_desc *d;
583 struct vr_descsoft *ds;
584 int i, total_len;
585 u_int32_t rxstat;
586
587 ifp = &sc->vr_ec.ec_if;
588
589 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
590 d = VR_CDRX(sc, i);
591 ds = VR_DSRX(sc, i);
592
593 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
594
595 rxstat = le32toh(d->vr_status);
596
597 if (rxstat & VR_RXSTAT_OWN) {
598 /*
599 * We have processed all of the receive buffers.
600 */
601 break;
602 }
603
604 /*
605 * If an error occurs, update stats, clear the
606 * status word and leave the mbuf cluster in place:
607 * it should simply get re-used next time this descriptor
608 * comes up in the ring.
609 */
610 if (rxstat & VR_RXSTAT_RXERR) {
611 const char *errstr;
612
613 ifp->if_ierrors++;
614 switch (rxstat & 0x000000FF) {
615 case VR_RXSTAT_CRCERR:
616 errstr = "crc error";
617 break;
618 case VR_RXSTAT_FRAMEALIGNERR:
619 errstr = "frame alignment error";
620 break;
621 case VR_RXSTAT_FIFOOFLOW:
622 errstr = "FIFO overflow";
623 break;
624 case VR_RXSTAT_GIANT:
625 errstr = "received giant packet";
626 break;
627 case VR_RXSTAT_RUNT:
628 errstr = "received runt packet";
629 break;
630 case VR_RXSTAT_BUSERR:
631 errstr = "system bus error";
632 break;
633 case VR_RXSTAT_BUFFERR:
634 errstr = "rx buffer error";
635 break;
636 default:
637 errstr = "unknown rx error";
638 break;
639 }
640 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
641 errstr);
642
643 VR_INIT_RXDESC(sc, i);
644
645 continue;
646 }
647
648 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
649 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
650
651 /* No errors; receive the packet. */
652 total_len = VR_RXBYTES(le32toh(d->vr_status));
653
654 #ifdef __NO_STRICT_ALIGNMENT
655 /*
656 * If the packet is small enough to fit in a
657 * single header mbuf, allocate one and copy
658 * the data into it. This greatly reduces
659 * memory consumption when we receive lots
660 * of small packets.
661 *
662 * Otherwise, we add a new buffer to the receive
663 * chain. If this fails, we drop the packet and
664 * recycle the old buffer.
665 */
666 if (vr_copy_small != 0 && total_len <= MHLEN) {
667 MGETHDR(m, M_DONTWAIT, MT_DATA);
668 if (m == NULL)
669 goto dropit;
670 memcpy(mtod(m, caddr_t),
671 mtod(ds->ds_mbuf, caddr_t), total_len);
672 VR_INIT_RXDESC(sc, i);
673 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
674 ds->ds_dmamap->dm_mapsize,
675 BUS_DMASYNC_PREREAD);
676 } else {
677 m = ds->ds_mbuf;
678 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
679 dropit:
680 ifp->if_ierrors++;
681 VR_INIT_RXDESC(sc, i);
682 bus_dmamap_sync(sc->vr_dmat,
683 ds->ds_dmamap, 0,
684 ds->ds_dmamap->dm_mapsize,
685 BUS_DMASYNC_PREREAD);
686 continue;
687 }
688 }
689 #else
690 /*
691 * The Rhine's packet buffers must be 4-byte aligned.
692 * But this means that the data after the Ethernet header
693 * is misaligned. We must allocate a new buffer and
694 * copy the data, shifted forward 2 bytes.
695 */
696 MGETHDR(m, M_DONTWAIT, MT_DATA);
697 if (m == NULL) {
698 dropit:
699 ifp->if_ierrors++;
700 VR_INIT_RXDESC(sc, i);
701 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
702 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
703 continue;
704 }
705 if (total_len > (MHLEN - 2)) {
706 MCLGET(m, M_DONTWAIT);
707 if ((m->m_flags & M_EXT) == 0) {
708 m_freem(m);
709 goto dropit;
710 }
711 }
712 m->m_data += 2;
713
714 /*
715 * Note that we use clusters for incoming frames, so the
716 * buffer is virtually contiguous.
717 */
718 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
719 total_len);
720
721 /* Allow the receive descriptor to continue using its mbuf. */
722 VR_INIT_RXDESC(sc, i);
723 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
724 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
725 #endif /* __NO_STRICT_ALIGNMENT */
726
727 /*
728 * The Rhine chip includes the FCS with every
729 * received packet.
730 */
731 m->m_flags |= M_HASFCS;
732
733 ifp->if_ipackets++;
734 m->m_pkthdr.rcvif = ifp;
735 m->m_pkthdr.len = m->m_len = total_len;
736 #if NBPFILTER > 0
737 /*
738 * Handle BPF listeners. Let the BPF user see the packet, but
739 * don't pass it up to the ether_input() layer unless it's
740 * a broadcast packet, multicast packet, matches our ethernet
741 * address or the interface is in promiscuous mode.
742 */
743 if (ifp->if_bpf)
744 bpf_mtap(ifp->if_bpf, m);
745 #endif
746 /* Pass it on. */
747 (*ifp->if_input)(ifp, m);
748 }
749
750 /* Update the receive pointer. */
751 sc->vr_rxptr = i;
752 }
753
754 void
755 vr_rxeoc(struct vr_softc *sc)
756 {
757
758 vr_rxeof(sc);
759 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
760 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
761 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
762 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
763 }
764
765 /*
766 * A frame was downloaded to the chip. It's safe for us to clean up
767 * the list buffers.
768 */
769 static void
770 vr_txeof(struct vr_softc *sc)
771 {
772 struct ifnet *ifp = &sc->vr_ec.ec_if;
773 struct vr_desc *d;
774 struct vr_descsoft *ds;
775 u_int32_t txstat;
776 int i;
777
778 ifp->if_flags &= ~IFF_OACTIVE;
779
780 /*
781 * Go through our tx list and free mbufs for those
782 * frames that have been transmitted.
783 */
784 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
785 i = VR_NEXTTX(i), sc->vr_txpending--) {
786 d = VR_CDTX(sc, i);
787 ds = VR_DSTX(sc, i);
788
789 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
790
791 txstat = le32toh(d->vr_status);
792 if (txstat & VR_TXSTAT_OWN)
793 break;
794
795 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
796 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
797 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
798 m_freem(ds->ds_mbuf);
799 ds->ds_mbuf = NULL;
800
801 if (txstat & VR_TXSTAT_ERRSUM) {
802 ifp->if_oerrors++;
803 if (txstat & VR_TXSTAT_DEFER)
804 ifp->if_collisions++;
805 if (txstat & VR_TXSTAT_LATECOLL)
806 ifp->if_collisions++;
807 }
808
809 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
810 ifp->if_opackets++;
811 }
812
813 /* Update the dirty transmit buffer pointer. */
814 sc->vr_txdirty = i;
815
816 /*
817 * Cancel the watchdog timer if there are no pending
818 * transmissions.
819 */
820 if (sc->vr_txpending == 0)
821 ifp->if_timer = 0;
822 }
823
824 static int
825 vr_intr(void *arg)
826 {
827 struct vr_softc *sc;
828 struct ifnet *ifp;
829 u_int16_t status;
830 int handled = 0, dotx = 0;
831
832 sc = arg;
833 ifp = &sc->vr_ec.ec_if;
834
835 /* Suppress unwanted interrupts. */
836 if ((ifp->if_flags & IFF_UP) == 0) {
837 vr_stop(ifp, 1);
838 return (0);
839 }
840
841 /* Disable interrupts. */
842 CSR_WRITE_2(sc, VR_IMR, 0x0000);
843
844 for (;;) {
845 status = CSR_READ_2(sc, VR_ISR);
846 if (status)
847 CSR_WRITE_2(sc, VR_ISR, status);
848
849 if ((status & VR_INTRS) == 0)
850 break;
851
852 handled = 1;
853
854 #if NRND > 0
855 if (RND_ENABLED(&sc->rnd_source))
856 rnd_add_uint32(&sc->rnd_source, status);
857 #endif
858
859 if (status & VR_ISR_RX_OK)
860 vr_rxeof(sc);
861
862 if (status &
863 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
864 VR_ISR_RX_DROPPED))
865 vr_rxeoc(sc);
866
867 if (status & VR_ISR_TX_OK) {
868 dotx = 1;
869 vr_txeof(sc);
870 }
871
872 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
873 if (status & VR_ISR_TX_UNDERRUN)
874 printf("%s: transmit underrun\n",
875 sc->vr_dev.dv_xname);
876 if (status & VR_ISR_TX_ABRT)
877 printf("%s: transmit aborted\n",
878 sc->vr_dev.dv_xname);
879 ifp->if_oerrors++;
880 dotx = 1;
881 vr_txeof(sc);
882 if (sc->vr_txpending) {
883 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
884 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
885 }
886 /*
887 * Unfortunately many cards get stuck after
888 * aborted transmits, so we reset them.
889 */
890 if (status & VR_ISR_TX_ABRT) {
891 printf("%s: restarting\n", sc->vr_dev.dv_xname);
892 dotx = 0;
893 (void) vr_init(ifp);
894 }
895 }
896
897 if (status & VR_ISR_BUSERR) {
898 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
899 /* vr_init() calls vr_start() */
900 dotx = 0;
901 (void) vr_init(ifp);
902 }
903 }
904
905 /* Re-enable interrupts. */
906 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
907
908 if (dotx)
909 vr_start(ifp);
910
911 return (handled);
912 }
913
914 /*
915 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
916 * to the mbuf data regions directly in the transmit lists. We also save a
917 * copy of the pointers since the transmit list fragment pointers are
918 * physical addresses.
919 */
920 static void
921 vr_start(struct ifnet *ifp)
922 {
923 struct vr_softc *sc = ifp->if_softc;
924 struct mbuf *m0, *m;
925 struct vr_desc *d;
926 struct vr_descsoft *ds;
927 int error, firsttx, nexttx, opending;
928
929 /*
930 * Remember the previous txpending and the first transmit
931 * descriptor we use.
932 */
933 opending = sc->vr_txpending;
934 firsttx = VR_NEXTTX(sc->vr_txlast);
935
936 /*
937 * Loop through the send queue, setting up transmit descriptors
938 * until we drain the queue, or use up all available transmit
939 * descriptors.
940 */
941 while (sc->vr_txpending < VR_NTXDESC) {
942 /*
943 * Grab a packet off the queue.
944 */
945 IFQ_POLL(&ifp->if_snd, m0);
946 if (m0 == NULL)
947 break;
948 m = NULL;
949
950 /*
951 * Get the next available transmit descriptor.
952 */
953 nexttx = VR_NEXTTX(sc->vr_txlast);
954 d = VR_CDTX(sc, nexttx);
955 ds = VR_DSTX(sc, nexttx);
956
957 /*
958 * Load the DMA map. If this fails, the packet didn't
959 * fit in one DMA segment, and we need to copy. Note,
960 * the packet must also be aligned.
961 * if the packet is too small, copy it too, so we're sure
962 * so have enouth room for the pad buffer.
963 */
964 if ((mtod(m0, uintptr_t) & 3) != 0 ||
965 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
966 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
967 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
968 MGETHDR(m, M_DONTWAIT, MT_DATA);
969 if (m == NULL) {
970 printf("%s: unable to allocate Tx mbuf\n",
971 sc->vr_dev.dv_xname);
972 break;
973 }
974 if (m0->m_pkthdr.len > MHLEN) {
975 MCLGET(m, M_DONTWAIT);
976 if ((m->m_flags & M_EXT) == 0) {
977 printf("%s: unable to allocate Tx "
978 "cluster\n", sc->vr_dev.dv_xname);
979 m_freem(m);
980 break;
981 }
982 }
983 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
984 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
985 /*
986 * The Rhine doesn't auto-pad, so we have to do this
987 * ourselves.
988 */
989 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
990 memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
991 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
992 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
993 }
994 error = bus_dmamap_load_mbuf(sc->vr_dmat,
995 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
996 if (error) {
997 printf("%s: unable to load Tx buffer, "
998 "error = %d\n", sc->vr_dev.dv_xname, error);
999 break;
1000 }
1001 }
1002
1003 IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 if (m != NULL) {
1005 m_freem(m0);
1006 m0 = m;
1007 }
1008
1009 /* Sync the DMA map. */
1010 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1011 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1012
1013 /*
1014 * Store a pointer to the packet so we can free it later.
1015 */
1016 ds->ds_mbuf = m0;
1017
1018 #if NBPFILTER > 0
1019 /*
1020 * If there's a BPF listener, bounce a copy of this frame
1021 * to him.
1022 */
1023 if (ifp->if_bpf)
1024 bpf_mtap(ifp->if_bpf, m0);
1025 #endif
1026
1027 /*
1028 * Fill in the transmit descriptor.
1029 */
1030 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1031 d->vr_ctl = htole32(m0->m_pkthdr.len);
1032 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1033
1034 /*
1035 * If this is the first descriptor we're enqueuing,
1036 * don't give it to the Rhine yet. That could cause
1037 * a race condition. We'll do it below.
1038 */
1039 if (nexttx == firsttx)
1040 d->vr_status = 0;
1041 else
1042 d->vr_status = htole32(VR_TXSTAT_OWN);
1043
1044 VR_CDTXSYNC(sc, nexttx,
1045 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046
1047 /* Advance the tx pointer. */
1048 sc->vr_txpending++;
1049 sc->vr_txlast = nexttx;
1050 }
1051
1052 if (sc->vr_txpending == VR_NTXDESC) {
1053 /* No more slots left; notify upper layer. */
1054 ifp->if_flags |= IFF_OACTIVE;
1055 }
1056
1057 if (sc->vr_txpending != opending) {
1058 /*
1059 * We enqueued packets. If the transmitter was idle,
1060 * reset the txdirty pointer.
1061 */
1062 if (opending == 0)
1063 sc->vr_txdirty = firsttx;
1064
1065 /*
1066 * Cause a transmit interrupt to happen on the
1067 * last packet we enqueued.
1068 */
1069 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1070 VR_CDTXSYNC(sc, sc->vr_txlast,
1071 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072
1073 /*
1074 * The entire packet chain is set up. Give the
1075 * first descriptor to the Rhine now.
1076 */
1077 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1078 VR_CDTXSYNC(sc, firsttx,
1079 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1080
1081 /* Start the transmitter. */
1082 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1083
1084 /* Set the watchdog timer in case the chip flakes out. */
1085 ifp->if_timer = 5;
1086 }
1087 }
1088
1089 /*
1090 * Initialize the interface. Must be called at splnet.
1091 */
1092 static int
1093 vr_init(struct ifnet *ifp)
1094 {
1095 struct vr_softc *sc = ifp->if_softc;
1096 struct vr_desc *d;
1097 struct vr_descsoft *ds;
1098 int i, error = 0;
1099
1100 /* Cancel pending I/O. */
1101 vr_stop(ifp, 0);
1102
1103 /* Reset the Rhine to a known state. */
1104 vr_reset(sc);
1105
1106 /* set DMA length in BCR0 and BCR1 */
1107 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1108 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1109
1110 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1111 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1112
1113 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1114 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1115
1116 /* set DMA threshold length in RXCFG and TXCFG */
1117 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1118 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1119
1120 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1121 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1122
1123 /*
1124 * Initialize the transmit desciptor ring. txlast is initialized
1125 * to the end of the list so that it will wrap around to the first
1126 * descriptor when the first packet is transmitted.
1127 */
1128 for (i = 0; i < VR_NTXDESC; i++) {
1129 d = VR_CDTX(sc, i);
1130 memset(d, 0, sizeof(struct vr_desc));
1131 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1132 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1133 }
1134 sc->vr_txpending = 0;
1135 sc->vr_txdirty = 0;
1136 sc->vr_txlast = VR_NTXDESC - 1;
1137
1138 /*
1139 * Initialize the receive descriptor ring.
1140 */
1141 for (i = 0; i < VR_NRXDESC; i++) {
1142 ds = VR_DSRX(sc, i);
1143 if (ds->ds_mbuf == NULL) {
1144 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1145 printf("%s: unable to allocate or map rx "
1146 "buffer %d, error = %d\n",
1147 sc->vr_dev.dv_xname, i, error);
1148 /*
1149 * XXX Should attempt to run with fewer receive
1150 * XXX buffers instead of just failing.
1151 */
1152 vr_rxdrain(sc);
1153 goto out;
1154 }
1155 } else
1156 VR_INIT_RXDESC(sc, i);
1157 }
1158 sc->vr_rxptr = 0;
1159
1160 /* If we want promiscuous mode, set the allframes bit. */
1161 if (ifp->if_flags & IFF_PROMISC)
1162 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1163 else
1164 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1165
1166 /* Set capture broadcast bit to capture broadcast frames. */
1167 if (ifp->if_flags & IFF_BROADCAST)
1168 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1169 else
1170 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1171
1172 /* Program the multicast filter, if necessary. */
1173 vr_setmulti(sc);
1174
1175 /* Give the transmit and receive rings to the Rhine. */
1176 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1177 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1178
1179 /* Set current media. */
1180 mii_mediachg(&sc->vr_mii);
1181
1182 /* Enable receiver and transmitter. */
1183 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1184 VR_CMD_TX_ON|VR_CMD_RX_ON|
1185 VR_CMD_RX_GO);
1186
1187 /* Enable interrupts. */
1188 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1189 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1190
1191 ifp->if_flags |= IFF_RUNNING;
1192 ifp->if_flags &= ~IFF_OACTIVE;
1193
1194 /* Start one second timer. */
1195 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1196
1197 /* Attempt to start output on the interface. */
1198 vr_start(ifp);
1199
1200 out:
1201 if (error)
1202 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1203 return (error);
1204 }
1205
1206 /*
1207 * Set media options.
1208 */
1209 static int
1210 vr_ifmedia_upd(struct ifnet *ifp)
1211 {
1212 struct vr_softc *sc = ifp->if_softc;
1213
1214 if (ifp->if_flags & IFF_UP)
1215 mii_mediachg(&sc->vr_mii);
1216 return (0);
1217 }
1218
1219 /*
1220 * Report current media status.
1221 */
1222 static void
1223 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1224 {
1225 struct vr_softc *sc = ifp->if_softc;
1226
1227 mii_pollstat(&sc->vr_mii);
1228 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1229 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1230 }
1231
1232 static int
1233 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1234 {
1235 struct vr_softc *sc = ifp->if_softc;
1236 struct ifreq *ifr = (struct ifreq *)data;
1237 int s, error = 0;
1238
1239 s = splnet();
1240
1241 switch (command) {
1242 case SIOCGIFMEDIA:
1243 case SIOCSIFMEDIA:
1244 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1245 break;
1246
1247 default:
1248 error = ether_ioctl(ifp, command, data);
1249 if (error == ENETRESET) {
1250 /*
1251 * Multicast list has changed; set the hardware filter
1252 * accordingly.
1253 */
1254 if (ifp->if_flags & IFF_RUNNING)
1255 vr_setmulti(sc);
1256 error = 0;
1257 }
1258 break;
1259 }
1260
1261 splx(s);
1262 return (error);
1263 }
1264
1265 static void
1266 vr_watchdog(struct ifnet *ifp)
1267 {
1268 struct vr_softc *sc = ifp->if_softc;
1269
1270 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1271 ifp->if_oerrors++;
1272
1273 (void) vr_init(ifp);
1274 }
1275
1276 /*
1277 * One second timer, used to tick MII.
1278 */
1279 static void
1280 vr_tick(void *arg)
1281 {
1282 struct vr_softc *sc = arg;
1283 int s;
1284
1285 s = splnet();
1286 mii_tick(&sc->vr_mii);
1287 splx(s);
1288
1289 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1290 }
1291
1292 /*
1293 * Drain the receive queue.
1294 */
1295 static void
1296 vr_rxdrain(struct vr_softc *sc)
1297 {
1298 struct vr_descsoft *ds;
1299 int i;
1300
1301 for (i = 0; i < VR_NRXDESC; i++) {
1302 ds = VR_DSRX(sc, i);
1303 if (ds->ds_mbuf != NULL) {
1304 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1305 m_freem(ds->ds_mbuf);
1306 ds->ds_mbuf = NULL;
1307 }
1308 }
1309 }
1310
1311 /*
1312 * Stop the adapter and free any mbufs allocated to the
1313 * transmit lists.
1314 */
1315 static void
1316 vr_stop(struct ifnet *ifp, int disable)
1317 {
1318 struct vr_softc *sc = ifp->if_softc;
1319 struct vr_descsoft *ds;
1320 int i;
1321
1322 /* Cancel one second timer. */
1323 callout_stop(&sc->vr_tick_ch);
1324
1325 /* Down the MII. */
1326 mii_down(&sc->vr_mii);
1327
1328 ifp = &sc->vr_ec.ec_if;
1329 ifp->if_timer = 0;
1330
1331 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1332 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1333 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1334 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1335 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1336
1337 /*
1338 * Release any queued transmit buffers.
1339 */
1340 for (i = 0; i < VR_NTXDESC; i++) {
1341 ds = VR_DSTX(sc, i);
1342 if (ds->ds_mbuf != NULL) {
1343 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1344 m_freem(ds->ds_mbuf);
1345 ds->ds_mbuf = NULL;
1346 }
1347 }
1348
1349 if (disable)
1350 vr_rxdrain(sc);
1351
1352 /*
1353 * Mark the interface down and cancel the watchdog timer.
1354 */
1355 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1356 ifp->if_timer = 0;
1357 }
1358
1359 static int vr_probe(struct device *, struct cfdata *, void *);
1360 static void vr_attach(struct device *, struct device *, void *);
1361 static void vr_shutdown(void *);
1362
1363 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1364 vr_probe, vr_attach, NULL, NULL);
1365
1366 static struct vr_type *
1367 vr_lookup(struct pci_attach_args *pa)
1368 {
1369 struct vr_type *vrt;
1370
1371 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1372 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1373 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1374 return (vrt);
1375 }
1376 return (NULL);
1377 }
1378
1379 static int
1380 vr_probe(struct device *parent, struct cfdata *match, void *aux)
1381 {
1382 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1383
1384 if (vr_lookup(pa) != NULL)
1385 return (1);
1386
1387 return (0);
1388 }
1389
1390 /*
1391 * Stop all chip I/O so that the kernel's probe routines don't
1392 * get confused by errant DMAs when rebooting.
1393 */
1394 static void
1395 vr_shutdown(void *arg)
1396 {
1397 struct vr_softc *sc = (struct vr_softc *)arg;
1398
1399 vr_stop(&sc->vr_ec.ec_if, 1);
1400 }
1401
1402 /*
1403 * Attach the interface. Allocate softc structures, do ifmedia
1404 * setup and ethernet/BPF attach.
1405 */
1406 static void
1407 vr_attach(struct device *parent, struct device *self, void *aux)
1408 {
1409 struct vr_softc *sc = (struct vr_softc *) self;
1410 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1411 bus_dma_segment_t seg;
1412 struct vr_type *vrt;
1413 u_int32_t pmreg, reg;
1414 struct ifnet *ifp;
1415 u_char eaddr[ETHER_ADDR_LEN];
1416 int i, rseg, error;
1417
1418 #define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
1419 #define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
1420
1421 callout_init(&sc->vr_tick_ch);
1422
1423 vrt = vr_lookup(pa);
1424 if (vrt == NULL) {
1425 printf("\n");
1426 panic("vr_attach: impossible");
1427 }
1428
1429 printf(": %s Ethernet\n", vrt->vr_name);
1430
1431 /*
1432 * Handle power management nonsense.
1433 */
1434
1435 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
1436 PCI_CAP_PWRMGMT, &pmreg, 0)) {
1437 reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
1438 if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
1439 u_int32_t iobase, membase, irq;
1440
1441 /* Save important PCI config data. */
1442 iobase = PCI_CONF_READ(VR_PCI_LOIO);
1443 membase = PCI_CONF_READ(VR_PCI_LOMEM);
1444 irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1445
1446 /* Reset the power state. */
1447 printf("%s: chip is in D%d power mode "
1448 "-- setting to D0\n",
1449 sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
1450 reg = (reg & ~PCI_PMCSR_STATE_MASK) |
1451 PCI_PMCSR_STATE_D0;
1452 PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
1453
1454 /* Restore PCI config data. */
1455 PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
1456 PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
1457 PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
1458 }
1459 }
1460
1461 /* Make sure bus mastering is enabled. */
1462 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1463 reg |= PCI_COMMAND_MASTER_ENABLE;
1464 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1465
1466 /* Get revision */
1467 sc->vr_revid = PCI_REVISION(pa->pa_class);
1468
1469 /*
1470 * Map control/status registers.
1471 */
1472 {
1473 bus_space_tag_t iot, memt;
1474 bus_space_handle_t ioh, memh;
1475 int ioh_valid, memh_valid;
1476 pci_intr_handle_t intrhandle;
1477 const char *intrstr;
1478
1479 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1480 PCI_MAPREG_TYPE_IO, 0,
1481 &iot, &ioh, NULL, NULL) == 0);
1482 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1483 PCI_MAPREG_TYPE_MEM |
1484 PCI_MAPREG_MEM_TYPE_32BIT,
1485 0, &memt, &memh, NULL, NULL) == 0);
1486 #if defined(VR_USEIOSPACE)
1487 if (ioh_valid) {
1488 sc->vr_bst = iot;
1489 sc->vr_bsh = ioh;
1490 } else if (memh_valid) {
1491 sc->vr_bst = memt;
1492 sc->vr_bsh = memh;
1493 }
1494 #else
1495 if (memh_valid) {
1496 sc->vr_bst = memt;
1497 sc->vr_bsh = memh;
1498 } else if (ioh_valid) {
1499 sc->vr_bst = iot;
1500 sc->vr_bsh = ioh;
1501 }
1502 #endif
1503 else {
1504 printf(": unable to map device registers\n");
1505 return;
1506 }
1507
1508 /* Allocate interrupt */
1509 if (pci_intr_map(pa, &intrhandle)) {
1510 printf("%s: couldn't map interrupt\n",
1511 sc->vr_dev.dv_xname);
1512 return;
1513 }
1514 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1515 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1516 vr_intr, sc);
1517 if (sc->vr_ih == NULL) {
1518 printf("%s: couldn't establish interrupt",
1519 sc->vr_dev.dv_xname);
1520 if (intrstr != NULL)
1521 printf(" at %s", intrstr);
1522 printf("\n");
1523 }
1524 printf("%s: interrupting at %s\n",
1525 sc->vr_dev.dv_xname, intrstr);
1526 }
1527
1528 /*
1529 * Windows may put the chip in suspend mode when it
1530 * shuts down. Be sure to kick it in the head to wake it
1531 * up again.
1532 */
1533 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1534
1535 /* Reset the adapter. */
1536 vr_reset(sc);
1537
1538 /*
1539 * Get station address. The way the Rhine chips work,
1540 * you're not allowed to directly access the EEPROM once
1541 * they've been programmed a special way. Consequently,
1542 * we need to read the node address from the PAR0 and PAR1
1543 * registers.
1544 *
1545 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1546 * of the *whole* EEPROM, not just the MAC address. This is
1547 * pretty pointless since the chip does this automatically
1548 * at powerup/reset.
1549 * I suspect the same thing applies to the other Rhine
1550 * variants, but in the absence of a data sheet for those
1551 * (and the lack of anyone else noticing the problems this
1552 * causes) I'm going to retain the old behaviour for the
1553 * other parts.
1554 */
1555 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1556 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
1557 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1558 DELAY(200);
1559 }
1560 for (i = 0; i < ETHER_ADDR_LEN; i++)
1561 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1562
1563 /*
1564 * A Rhine chip was detected. Inform the world.
1565 */
1566 printf("%s: Ethernet address: %s\n",
1567 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1568
1569 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1570
1571 sc->vr_dmat = pa->pa_dmat;
1572
1573 /*
1574 * Allocate the control data structures, and create and load
1575 * the DMA map for it.
1576 */
1577 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1578 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1579 0)) != 0) {
1580 printf("%s: unable to allocate control data, error = %d\n",
1581 sc->vr_dev.dv_xname, error);
1582 goto fail_0;
1583 }
1584
1585 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1586 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1587 BUS_DMA_COHERENT)) != 0) {
1588 printf("%s: unable to map control data, error = %d\n",
1589 sc->vr_dev.dv_xname, error);
1590 goto fail_1;
1591 }
1592
1593 if ((error = bus_dmamap_create(sc->vr_dmat,
1594 sizeof(struct vr_control_data), 1,
1595 sizeof(struct vr_control_data), 0, 0,
1596 &sc->vr_cddmamap)) != 0) {
1597 printf("%s: unable to create control data DMA map, "
1598 "error = %d\n", sc->vr_dev.dv_xname, error);
1599 goto fail_2;
1600 }
1601
1602 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1603 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1604 0)) != 0) {
1605 printf("%s: unable to load control data DMA map, error = %d\n",
1606 sc->vr_dev.dv_xname, error);
1607 goto fail_3;
1608 }
1609
1610 /*
1611 * Create the transmit buffer DMA maps.
1612 */
1613 for (i = 0; i < VR_NTXDESC; i++) {
1614 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1615 1, MCLBYTES, 0, 0,
1616 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1617 printf("%s: unable to create tx DMA map %d, "
1618 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1619 goto fail_4;
1620 }
1621 }
1622
1623 /*
1624 * Create the receive buffer DMA maps.
1625 */
1626 for (i = 0; i < VR_NRXDESC; i++) {
1627 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1628 MCLBYTES, 0, 0,
1629 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1630 printf("%s: unable to create rx DMA map %d, "
1631 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1632 goto fail_5;
1633 }
1634 VR_DSRX(sc, i)->ds_mbuf = NULL;
1635 }
1636
1637 ifp = &sc->vr_ec.ec_if;
1638 ifp->if_softc = sc;
1639 ifp->if_mtu = ETHERMTU;
1640 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 ifp->if_ioctl = vr_ioctl;
1642 ifp->if_start = vr_start;
1643 ifp->if_watchdog = vr_watchdog;
1644 ifp->if_init = vr_init;
1645 ifp->if_stop = vr_stop;
1646 IFQ_SET_READY(&ifp->if_snd);
1647
1648 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1649
1650 /*
1651 * Initialize MII/media info.
1652 */
1653 sc->vr_mii.mii_ifp = ifp;
1654 sc->vr_mii.mii_readreg = vr_mii_readreg;
1655 sc->vr_mii.mii_writereg = vr_mii_writereg;
1656 sc->vr_mii.mii_statchg = vr_mii_statchg;
1657 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1658 vr_ifmedia_sts);
1659 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1660 MII_OFFSET_ANY, MIIF_FORCEANEG);
1661 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1662 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1663 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1664 } else
1665 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1666
1667 /*
1668 * Call MI attach routines.
1669 */
1670 if_attach(ifp);
1671 ether_ifattach(ifp, sc->vr_enaddr);
1672 #if NRND > 0
1673 rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1674 RND_TYPE_NET, 0);
1675 #endif
1676
1677 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1678 if (sc->vr_ats == NULL)
1679 printf("%s: warning: couldn't establish shutdown hook\n",
1680 sc->vr_dev.dv_xname);
1681 return;
1682
1683 fail_5:
1684 for (i = 0; i < VR_NRXDESC; i++) {
1685 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1686 bus_dmamap_destroy(sc->vr_dmat,
1687 sc->vr_rxsoft[i].ds_dmamap);
1688 }
1689 fail_4:
1690 for (i = 0; i < VR_NTXDESC; i++) {
1691 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1692 bus_dmamap_destroy(sc->vr_dmat,
1693 sc->vr_txsoft[i].ds_dmamap);
1694 }
1695 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1696 fail_3:
1697 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1698 fail_2:
1699 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1700 sizeof(struct vr_control_data));
1701 fail_1:
1702 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1703 fail_0:
1704 return;
1705 }
1706