Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.70
      1 /*	$NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include <sys/cdefs.h>
    107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.70 2004/10/30 18:09:22 thorpej Exp $");
    108 
    109 #include "rnd.h"
    110 
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/callout.h>
    114 #include <sys/sockio.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/malloc.h>
    117 #include <sys/kernel.h>
    118 #include <sys/socket.h>
    119 #include <sys/device.h>
    120 
    121 #if NRND > 0
    122 #include <sys/rnd.h>
    123 #endif
    124 
    125 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    126 
    127 #include <net/if.h>
    128 #include <net/if_arp.h>
    129 #include <net/if_dl.h>
    130 #include <net/if_media.h>
    131 #include <net/if_ether.h>
    132 
    133 #include "bpfilter.h"
    134 #if NBPFILTER > 0
    135 #include <net/bpf.h>
    136 #endif
    137 
    138 #include <machine/bus.h>
    139 #include <machine/intr.h>
    140 #include <machine/endian.h>
    141 
    142 #include <dev/mii/mii.h>
    143 #include <dev/mii/miivar.h>
    144 #include <dev/mii/mii_bitbang.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/pci/if_vrreg.h>
    151 
    152 #define	VR_USEIOSPACE
    153 
    154 /*
    155  * Various supported device vendors/types and their names.
    156  */
    157 static struct vr_type {
    158 	pci_vendor_id_t		vr_vid;
    159 	pci_product_id_t	vr_did;
    160 	const char		*vr_name;
    161 } vr_devs[] = {
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    163 		"VIA VT3043 (Rhine) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    165 		"VIA VT6102 (Rhine II) 10/100" },
    166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
    167 		"VIA VT6105 (Rhine III) 10/100" },
    168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    169 		"VIA VT86C100A (Rhine-II) 10/100" },
    170 	{ 0, 0, NULL }
    171 };
    172 
    173 /*
    174  * Transmit descriptor list size.
    175  */
    176 #define	VR_NTXDESC		64
    177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    179 
    180 /*
    181  * Receive descriptor list size.
    182  */
    183 #define	VR_NRXDESC		64
    184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    186 
    187 /*
    188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    189  * them in a single clump that maps to a single DMA segment to make several
    190  * things easier.
    191  *
    192  * Note that since we always copy outgoing packets to aligned transmit
    193  * buffers, we can reduce the transmit descriptors to one per packet.
    194  */
    195 struct vr_control_data {
    196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    198 };
    199 
    200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    203 
    204 /*
    205  * Software state of transmit and receive descriptors.
    206  */
    207 struct vr_descsoft {
    208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    210 };
    211 
    212 struct vr_softc {
    213 	struct device		vr_dev;		/* generic device glue */
    214 	void			*vr_ih;		/* interrupt cookie */
    215 	void			*vr_ats;	/* shutdown hook */
    216 	bus_space_tag_t		vr_bst;		/* bus space tag */
    217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    220 	struct ethercom		vr_ec;		/* Ethernet common info */
    221 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    222 	struct mii_data		vr_mii;		/* MII/media info */
    223 
    224 	u_int8_t		vr_revid;	/* Rhine chip revision */
    225 
    226 	struct callout		vr_tick_ch;	/* tick callout */
    227 
    228 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    229 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    230 
    231 	/*
    232 	 * Software state for transmit and receive descriptors.
    233 	 */
    234 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    235 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    236 
    237 	/*
    238 	 * Control data structures.
    239 	 */
    240 	struct vr_control_data	*vr_control_data;
    241 
    242 	int	vr_txpending;		/* number of TX requests pending */
    243 	int	vr_txdirty;		/* first dirty TX descriptor */
    244 	int	vr_txlast;		/* last used TX descriptor */
    245 
    246 	int	vr_rxptr;		/* next ready RX descriptor */
    247 
    248 #if NRND > 0
    249 	rndsource_element_t rnd_source;	/* random source */
    250 #endif
    251 };
    252 
    253 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    254 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    255 
    256 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    257 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    258 
    259 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    260 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    261 
    262 #define	VR_CDTXSYNC(sc, x, ops)						\
    263 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    264 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    265 
    266 #define	VR_CDRXSYNC(sc, x, ops)						\
    267 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    268 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    269 
    270 /*
    271  * Note we rely on MCLBYTES being a power of two below.
    272  */
    273 #define	VR_INIT_RXDESC(sc, i)						\
    274 do {									\
    275 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    276 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    277 									\
    278 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    279 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    280 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    281 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    282 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    283 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    284 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    285 } while (/* CONSTCOND */ 0)
    286 
    287 /*
    288  * register space access macros
    289  */
    290 #define	CSR_WRITE_4(sc, reg, val)					\
    291 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    292 #define	CSR_WRITE_2(sc, reg, val)					\
    293 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    294 #define	CSR_WRITE_1(sc, reg, val)					\
    295 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    296 
    297 #define	CSR_READ_4(sc, reg)						\
    298 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    299 #define	CSR_READ_2(sc, reg)						\
    300 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    301 #define	CSR_READ_1(sc, reg)						\
    302 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    303 
    304 #define	VR_TIMEOUT		1000
    305 
    306 static int	vr_add_rxbuf(struct vr_softc *, int);
    307 
    308 static void	vr_rxeof(struct vr_softc *);
    309 static void	vr_rxeoc(struct vr_softc *);
    310 static void	vr_txeof(struct vr_softc *);
    311 static int	vr_intr(void *);
    312 static void	vr_start(struct ifnet *);
    313 static int	vr_ioctl(struct ifnet *, u_long, caddr_t);
    314 static int	vr_init(struct ifnet *);
    315 static void	vr_stop(struct ifnet *, int);
    316 static void	vr_rxdrain(struct vr_softc *);
    317 static void	vr_watchdog(struct ifnet *);
    318 static void	vr_tick(void *);
    319 
    320 static int	vr_ifmedia_upd(struct ifnet *);
    321 static void	vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    322 
    323 static int	vr_mii_readreg(struct device *, int, int);
    324 static void	vr_mii_writereg(struct device *, int, int, int);
    325 static void	vr_mii_statchg(struct device *);
    326 
    327 static void	vr_setmulti(struct vr_softc *);
    328 static void	vr_reset(struct vr_softc *);
    329 
    330 int	vr_copy_small = 0;
    331 
    332 #define	VR_SETBIT(sc, reg, x)				\
    333 	CSR_WRITE_1(sc, reg,				\
    334 	    CSR_READ_1(sc, reg) | (x))
    335 
    336 #define	VR_CLRBIT(sc, reg, x)				\
    337 	CSR_WRITE_1(sc, reg,				\
    338 	    CSR_READ_1(sc, reg) & ~(x))
    339 
    340 #define	VR_SETBIT16(sc, reg, x)				\
    341 	CSR_WRITE_2(sc, reg,				\
    342 	    CSR_READ_2(sc, reg) | (x))
    343 
    344 #define	VR_CLRBIT16(sc, reg, x)				\
    345 	CSR_WRITE_2(sc, reg,				\
    346 	    CSR_READ_2(sc, reg) & ~(x))
    347 
    348 #define	VR_SETBIT32(sc, reg, x)				\
    349 	CSR_WRITE_4(sc, reg,				\
    350 	    CSR_READ_4(sc, reg) | (x))
    351 
    352 #define	VR_CLRBIT32(sc, reg, x)				\
    353 	CSR_WRITE_4(sc, reg,				\
    354 	    CSR_READ_4(sc, reg) & ~(x))
    355 
    356 /*
    357  * MII bit-bang glue.
    358  */
    359 static u_int32_t vr_mii_bitbang_read(struct device *);
    360 static void	vr_mii_bitbang_write(struct device *, u_int32_t);
    361 
    362 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    363 	vr_mii_bitbang_read,
    364 	vr_mii_bitbang_write,
    365 	{
    366 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    367 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    368 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    369 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    370 		0,			/* MII_BIT_DIR_PHY_HOST */
    371 	}
    372 };
    373 
    374 static u_int32_t
    375 vr_mii_bitbang_read(struct device *self)
    376 {
    377 	struct vr_softc *sc = (void *) self;
    378 
    379 	return (CSR_READ_1(sc, VR_MIICMD));
    380 }
    381 
    382 static void
    383 vr_mii_bitbang_write(struct device *self, u_int32_t val)
    384 {
    385 	struct vr_softc *sc = (void *) self;
    386 
    387 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    388 }
    389 
    390 /*
    391  * Read an PHY register through the MII.
    392  */
    393 static int
    394 vr_mii_readreg(struct device *self, int phy, int reg)
    395 {
    396 	struct vr_softc *sc = (void *) self;
    397 
    398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    399 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    400 }
    401 
    402 /*
    403  * Write to a PHY register through the MII.
    404  */
    405 static void
    406 vr_mii_writereg(struct device *self, int phy, int reg, int val)
    407 {
    408 	struct vr_softc *sc = (void *) self;
    409 
    410 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    411 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    412 }
    413 
    414 static void
    415 vr_mii_statchg(struct device *self)
    416 {
    417 	struct vr_softc *sc = (struct vr_softc *)self;
    418 
    419 	/*
    420 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    421 	 * register, we first have to put the transmit and/or receive logic
    422 	 * in the idle state.
    423 	 */
    424 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    425 
    426 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    428 	else
    429 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    430 
    431 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    432 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    433 }
    434 
    435 #define	vr_calchash(addr) \
    436 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    437 
    438 /*
    439  * Program the 64-bit multicast hash filter.
    440  */
    441 static void
    442 vr_setmulti(struct vr_softc *sc)
    443 {
    444 	struct ifnet *ifp;
    445 	int h = 0;
    446 	u_int32_t hashes[2] = { 0, 0 };
    447 	struct ether_multistep step;
    448 	struct ether_multi *enm;
    449 	int mcnt = 0;
    450 	u_int8_t rxfilt;
    451 
    452 	ifp = &sc->vr_ec.ec_if;
    453 
    454 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    455 
    456 	if (ifp->if_flags & IFF_PROMISC) {
    457 allmulti:
    458 		ifp->if_flags |= IFF_ALLMULTI;
    459 		rxfilt |= VR_RXCFG_RX_MULTI;
    460 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    461 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    462 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    463 		return;
    464 	}
    465 
    466 	/* first, zot all the existing hash bits */
    467 	CSR_WRITE_4(sc, VR_MAR0, 0);
    468 	CSR_WRITE_4(sc, VR_MAR1, 0);
    469 
    470 	/* now program new ones */
    471 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    472 	while (enm != NULL) {
    473 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    474 		    ETHER_ADDR_LEN) != 0)
    475 			goto allmulti;
    476 
    477 		h = vr_calchash(enm->enm_addrlo);
    478 
    479 		if (h < 32)
    480 			hashes[0] |= (1 << h);
    481 		else
    482 			hashes[1] |= (1 << (h - 32));
    483 		ETHER_NEXT_MULTI(step, enm);
    484 		mcnt++;
    485 	}
    486 
    487 	ifp->if_flags &= ~IFF_ALLMULTI;
    488 
    489 	if (mcnt)
    490 		rxfilt |= VR_RXCFG_RX_MULTI;
    491 	else
    492 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    493 
    494 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    495 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    496 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    497 }
    498 
    499 static void
    500 vr_reset(struct vr_softc *sc)
    501 {
    502 	int i;
    503 
    504 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    505 
    506 	for (i = 0; i < VR_TIMEOUT; i++) {
    507 		DELAY(10);
    508 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    509 			break;
    510 	}
    511 	if (i == VR_TIMEOUT) {
    512 		if (sc->vr_revid < REV_ID_VT3065_A) {
    513 			printf("%s: reset never completed!\n",
    514 			    sc->vr_dev.dv_xname);
    515 		} else {
    516 			/* Use newer force reset command */
    517 			printf("%s: using force reset command.\n",
    518 			    sc->vr_dev.dv_xname);
    519 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    520 		}
    521 	}
    522 
    523 	/* Wait a little while for the chip to get its brains in order. */
    524 	DELAY(1000);
    525 }
    526 
    527 /*
    528  * Initialize an RX descriptor and attach an MBUF cluster.
    529  * Note: the length fields are only 11 bits wide, which means the
    530  * largest size we can specify is 2047. This is important because
    531  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    532  * overflow the field and make a mess.
    533  */
    534 static int
    535 vr_add_rxbuf(struct vr_softc *sc, int i)
    536 {
    537 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    538 	struct mbuf *m_new;
    539 	int error;
    540 
    541 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    542 	if (m_new == NULL)
    543 		return (ENOBUFS);
    544 
    545 	MCLGET(m_new, M_DONTWAIT);
    546 	if ((m_new->m_flags & M_EXT) == 0) {
    547 		m_freem(m_new);
    548 		return (ENOBUFS);
    549 	}
    550 
    551 	if (ds->ds_mbuf != NULL)
    552 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    553 
    554 	ds->ds_mbuf = m_new;
    555 
    556 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    557 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    558 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    559 	if (error) {
    560 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    561 		    sc->vr_dev.dv_xname, i, error);
    562 		panic("vr_add_rxbuf");		/* XXX */
    563 	}
    564 
    565 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    566 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    567 
    568 	VR_INIT_RXDESC(sc, i);
    569 
    570 	return (0);
    571 }
    572 
    573 /*
    574  * A frame has been uploaded: pass the resulting mbuf chain up to
    575  * the higher level protocols.
    576  */
    577 static void
    578 vr_rxeof(struct vr_softc *sc)
    579 {
    580 	struct mbuf *m;
    581 	struct ifnet *ifp;
    582 	struct vr_desc *d;
    583 	struct vr_descsoft *ds;
    584 	int i, total_len;
    585 	u_int32_t rxstat;
    586 
    587 	ifp = &sc->vr_ec.ec_if;
    588 
    589 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    590 		d = VR_CDRX(sc, i);
    591 		ds = VR_DSRX(sc, i);
    592 
    593 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    594 
    595 		rxstat = le32toh(d->vr_status);
    596 
    597 		if (rxstat & VR_RXSTAT_OWN) {
    598 			/*
    599 			 * We have processed all of the receive buffers.
    600 			 */
    601 			break;
    602 		}
    603 
    604 		/*
    605 		 * If an error occurs, update stats, clear the
    606 		 * status word and leave the mbuf cluster in place:
    607 		 * it should simply get re-used next time this descriptor
    608 		 * comes up in the ring.
    609 		 */
    610 		if (rxstat & VR_RXSTAT_RXERR) {
    611 			const char *errstr;
    612 
    613 			ifp->if_ierrors++;
    614 			switch (rxstat & 0x000000FF) {
    615 			case VR_RXSTAT_CRCERR:
    616 				errstr = "crc error";
    617 				break;
    618 			case VR_RXSTAT_FRAMEALIGNERR:
    619 				errstr = "frame alignment error";
    620 				break;
    621 			case VR_RXSTAT_FIFOOFLOW:
    622 				errstr = "FIFO overflow";
    623 				break;
    624 			case VR_RXSTAT_GIANT:
    625 				errstr = "received giant packet";
    626 				break;
    627 			case VR_RXSTAT_RUNT:
    628 				errstr = "received runt packet";
    629 				break;
    630 			case VR_RXSTAT_BUSERR:
    631 				errstr = "system bus error";
    632 				break;
    633 			case VR_RXSTAT_BUFFERR:
    634 				errstr = "rx buffer error";
    635 				break;
    636 			default:
    637 				errstr = "unknown rx error";
    638 				break;
    639 			}
    640 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    641 			    errstr);
    642 
    643 			VR_INIT_RXDESC(sc, i);
    644 
    645 			continue;
    646 		}
    647 
    648 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    649 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    650 
    651 		/* No errors; receive the packet. */
    652 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    653 
    654 #ifdef __NO_STRICT_ALIGNMENT
    655 		/*
    656 		 * If the packet is small enough to fit in a
    657 		 * single header mbuf, allocate one and copy
    658 		 * the data into it.  This greatly reduces
    659 		 * memory consumption when we receive lots
    660 		 * of small packets.
    661 		 *
    662 		 * Otherwise, we add a new buffer to the receive
    663 		 * chain.  If this fails, we drop the packet and
    664 		 * recycle the old buffer.
    665 		 */
    666 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    667 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    668 			if (m == NULL)
    669 				goto dropit;
    670 			memcpy(mtod(m, caddr_t),
    671 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    672 			VR_INIT_RXDESC(sc, i);
    673 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    674 			    ds->ds_dmamap->dm_mapsize,
    675 			    BUS_DMASYNC_PREREAD);
    676 		} else {
    677 			m = ds->ds_mbuf;
    678 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    679  dropit:
    680 				ifp->if_ierrors++;
    681 				VR_INIT_RXDESC(sc, i);
    682 				bus_dmamap_sync(sc->vr_dmat,
    683 				    ds->ds_dmamap, 0,
    684 				    ds->ds_dmamap->dm_mapsize,
    685 				    BUS_DMASYNC_PREREAD);
    686 				continue;
    687 			}
    688 		}
    689 #else
    690 		/*
    691 		 * The Rhine's packet buffers must be 4-byte aligned.
    692 		 * But this means that the data after the Ethernet header
    693 		 * is misaligned.  We must allocate a new buffer and
    694 		 * copy the data, shifted forward 2 bytes.
    695 		 */
    696 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    697 		if (m == NULL) {
    698  dropit:
    699 			ifp->if_ierrors++;
    700 			VR_INIT_RXDESC(sc, i);
    701 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    702 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    703 			continue;
    704 		}
    705 		if (total_len > (MHLEN - 2)) {
    706 			MCLGET(m, M_DONTWAIT);
    707 			if ((m->m_flags & M_EXT) == 0) {
    708 				m_freem(m);
    709 				goto dropit;
    710 			}
    711 		}
    712 		m->m_data += 2;
    713 
    714 		/*
    715 		 * Note that we use clusters for incoming frames, so the
    716 		 * buffer is virtually contiguous.
    717 		 */
    718 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    719 		    total_len);
    720 
    721 		/* Allow the receive descriptor to continue using its mbuf. */
    722 		VR_INIT_RXDESC(sc, i);
    723 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    724 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    725 #endif /* __NO_STRICT_ALIGNMENT */
    726 
    727 		/*
    728 		 * The Rhine chip includes the FCS with every
    729 		 * received packet.
    730 		 */
    731 		m->m_flags |= M_HASFCS;
    732 
    733 		ifp->if_ipackets++;
    734 		m->m_pkthdr.rcvif = ifp;
    735 		m->m_pkthdr.len = m->m_len = total_len;
    736 #if NBPFILTER > 0
    737 		/*
    738 		 * Handle BPF listeners. Let the BPF user see the packet, but
    739 		 * don't pass it up to the ether_input() layer unless it's
    740 		 * a broadcast packet, multicast packet, matches our ethernet
    741 		 * address or the interface is in promiscuous mode.
    742 		 */
    743 		if (ifp->if_bpf)
    744 			bpf_mtap(ifp->if_bpf, m);
    745 #endif
    746 		/* Pass it on. */
    747 		(*ifp->if_input)(ifp, m);
    748 	}
    749 
    750 	/* Update the receive pointer. */
    751 	sc->vr_rxptr = i;
    752 }
    753 
    754 void
    755 vr_rxeoc(struct vr_softc *sc)
    756 {
    757 
    758 	vr_rxeof(sc);
    759 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    760 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    761 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    762 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    763 }
    764 
    765 /*
    766  * A frame was downloaded to the chip. It's safe for us to clean up
    767  * the list buffers.
    768  */
    769 static void
    770 vr_txeof(struct vr_softc *sc)
    771 {
    772 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    773 	struct vr_desc *d;
    774 	struct vr_descsoft *ds;
    775 	u_int32_t txstat;
    776 	int i;
    777 
    778 	ifp->if_flags &= ~IFF_OACTIVE;
    779 
    780 	/*
    781 	 * Go through our tx list and free mbufs for those
    782 	 * frames that have been transmitted.
    783 	 */
    784 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    785 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    786 		d = VR_CDTX(sc, i);
    787 		ds = VR_DSTX(sc, i);
    788 
    789 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    790 
    791 		txstat = le32toh(d->vr_status);
    792 		if (txstat & VR_TXSTAT_OWN)
    793 			break;
    794 
    795 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    796 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    797 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    798 		m_freem(ds->ds_mbuf);
    799 		ds->ds_mbuf = NULL;
    800 
    801 		if (txstat & VR_TXSTAT_ERRSUM) {
    802 			ifp->if_oerrors++;
    803 			if (txstat & VR_TXSTAT_DEFER)
    804 				ifp->if_collisions++;
    805 			if (txstat & VR_TXSTAT_LATECOLL)
    806 				ifp->if_collisions++;
    807 		}
    808 
    809 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    810 		ifp->if_opackets++;
    811 	}
    812 
    813 	/* Update the dirty transmit buffer pointer. */
    814 	sc->vr_txdirty = i;
    815 
    816 	/*
    817 	 * Cancel the watchdog timer if there are no pending
    818 	 * transmissions.
    819 	 */
    820 	if (sc->vr_txpending == 0)
    821 		ifp->if_timer = 0;
    822 }
    823 
    824 static int
    825 vr_intr(void *arg)
    826 {
    827 	struct vr_softc *sc;
    828 	struct ifnet *ifp;
    829 	u_int16_t status;
    830 	int handled = 0, dotx = 0;
    831 
    832 	sc = arg;
    833 	ifp = &sc->vr_ec.ec_if;
    834 
    835 	/* Suppress unwanted interrupts. */
    836 	if ((ifp->if_flags & IFF_UP) == 0) {
    837 		vr_stop(ifp, 1);
    838 		return (0);
    839 	}
    840 
    841 	/* Disable interrupts. */
    842 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    843 
    844 	for (;;) {
    845 		status = CSR_READ_2(sc, VR_ISR);
    846 		if (status)
    847 			CSR_WRITE_2(sc, VR_ISR, status);
    848 
    849 		if ((status & VR_INTRS) == 0)
    850 			break;
    851 
    852 		handled = 1;
    853 
    854 #if NRND > 0
    855 		if (RND_ENABLED(&sc->rnd_source))
    856 			rnd_add_uint32(&sc->rnd_source, status);
    857 #endif
    858 
    859 		if (status & VR_ISR_RX_OK)
    860 			vr_rxeof(sc);
    861 
    862 		if (status &
    863 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    864 		     VR_ISR_RX_DROPPED))
    865 			vr_rxeoc(sc);
    866 
    867 		if (status & VR_ISR_TX_OK) {
    868 			dotx = 1;
    869 			vr_txeof(sc);
    870 		}
    871 
    872 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    873 			if (status & VR_ISR_TX_UNDERRUN)
    874 				printf("%s: transmit underrun\n",
    875 				    sc->vr_dev.dv_xname);
    876 			if (status & VR_ISR_TX_ABRT)
    877 				printf("%s: transmit aborted\n",
    878 				    sc->vr_dev.dv_xname);
    879 			ifp->if_oerrors++;
    880 			dotx = 1;
    881 			vr_txeof(sc);
    882 			if (sc->vr_txpending) {
    883 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    884 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    885 			}
    886 			/*
    887 			 * Unfortunately many cards get stuck after
    888 			 * aborted transmits, so we reset them.
    889 			 */
    890 			if (status & VR_ISR_TX_ABRT) {
    891 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
    892 				dotx = 0;
    893 				(void) vr_init(ifp);
    894 			}
    895 		}
    896 
    897 		if (status & VR_ISR_BUSERR) {
    898 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    899 			/* vr_init() calls vr_start() */
    900 			dotx = 0;
    901 			(void) vr_init(ifp);
    902 		}
    903 	}
    904 
    905 	/* Re-enable interrupts. */
    906 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    907 
    908 	if (dotx)
    909 		vr_start(ifp);
    910 
    911 	return (handled);
    912 }
    913 
    914 /*
    915  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    916  * to the mbuf data regions directly in the transmit lists. We also save a
    917  * copy of the pointers since the transmit list fragment pointers are
    918  * physical addresses.
    919  */
    920 static void
    921 vr_start(struct ifnet *ifp)
    922 {
    923 	struct vr_softc *sc = ifp->if_softc;
    924 	struct mbuf *m0, *m;
    925 	struct vr_desc *d;
    926 	struct vr_descsoft *ds;
    927 	int error, firsttx, nexttx, opending;
    928 
    929 	/*
    930 	 * Remember the previous txpending and the first transmit
    931 	 * descriptor we use.
    932 	 */
    933 	opending = sc->vr_txpending;
    934 	firsttx = VR_NEXTTX(sc->vr_txlast);
    935 
    936 	/*
    937 	 * Loop through the send queue, setting up transmit descriptors
    938 	 * until we drain the queue, or use up all available transmit
    939 	 * descriptors.
    940 	 */
    941 	while (sc->vr_txpending < VR_NTXDESC) {
    942 		/*
    943 		 * Grab a packet off the queue.
    944 		 */
    945 		IFQ_POLL(&ifp->if_snd, m0);
    946 		if (m0 == NULL)
    947 			break;
    948 		m = NULL;
    949 
    950 		/*
    951 		 * Get the next available transmit descriptor.
    952 		 */
    953 		nexttx = VR_NEXTTX(sc->vr_txlast);
    954 		d = VR_CDTX(sc, nexttx);
    955 		ds = VR_DSTX(sc, nexttx);
    956 
    957 		/*
    958 		 * Load the DMA map.  If this fails, the packet didn't
    959 		 * fit in one DMA segment, and we need to copy.  Note,
    960 		 * the packet must also be aligned.
    961 		 * if the packet is too small, copy it too, so we're sure
    962 		 * so have enouth room for the pad buffer.
    963 		 */
    964 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
    965 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
    966 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
    967 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    968 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    969 			if (m == NULL) {
    970 				printf("%s: unable to allocate Tx mbuf\n",
    971 				    sc->vr_dev.dv_xname);
    972 				break;
    973 			}
    974 			if (m0->m_pkthdr.len > MHLEN) {
    975 				MCLGET(m, M_DONTWAIT);
    976 				if ((m->m_flags & M_EXT) == 0) {
    977 					printf("%s: unable to allocate Tx "
    978 					    "cluster\n", sc->vr_dev.dv_xname);
    979 					m_freem(m);
    980 					break;
    981 				}
    982 			}
    983 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    984 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    985 			/*
    986 			 * The Rhine doesn't auto-pad, so we have to do this
    987 			 * ourselves.
    988 			 */
    989 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
    990 				memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
    991 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
    992 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
    993 			}
    994 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
    995 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    996 			if (error) {
    997 				printf("%s: unable to load Tx buffer, "
    998 				    "error = %d\n", sc->vr_dev.dv_xname, error);
    999 				break;
   1000 			}
   1001 		}
   1002 
   1003 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1004 		if (m != NULL) {
   1005 			m_freem(m0);
   1006 			m0 = m;
   1007 		}
   1008 
   1009 		/* Sync the DMA map. */
   1010 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1011 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1012 
   1013 		/*
   1014 		 * Store a pointer to the packet so we can free it later.
   1015 		 */
   1016 		ds->ds_mbuf = m0;
   1017 
   1018 #if NBPFILTER > 0
   1019 		/*
   1020 		 * If there's a BPF listener, bounce a copy of this frame
   1021 		 * to him.
   1022 		 */
   1023 		if (ifp->if_bpf)
   1024 			bpf_mtap(ifp->if_bpf, m0);
   1025 #endif
   1026 
   1027 		/*
   1028 		 * Fill in the transmit descriptor.
   1029 		 */
   1030 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1031 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1032 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1033 
   1034 		/*
   1035 		 * If this is the first descriptor we're enqueuing,
   1036 		 * don't give it to the Rhine yet.  That could cause
   1037 		 * a race condition.  We'll do it below.
   1038 		 */
   1039 		if (nexttx == firsttx)
   1040 			d->vr_status = 0;
   1041 		else
   1042 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1043 
   1044 		VR_CDTXSYNC(sc, nexttx,
   1045 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1046 
   1047 		/* Advance the tx pointer. */
   1048 		sc->vr_txpending++;
   1049 		sc->vr_txlast = nexttx;
   1050 	}
   1051 
   1052 	if (sc->vr_txpending == VR_NTXDESC) {
   1053 		/* No more slots left; notify upper layer. */
   1054 		ifp->if_flags |= IFF_OACTIVE;
   1055 	}
   1056 
   1057 	if (sc->vr_txpending != opending) {
   1058 		/*
   1059 		 * We enqueued packets.  If the transmitter was idle,
   1060 		 * reset the txdirty pointer.
   1061 		 */
   1062 		if (opending == 0)
   1063 			sc->vr_txdirty = firsttx;
   1064 
   1065 		/*
   1066 		 * Cause a transmit interrupt to happen on the
   1067 		 * last packet we enqueued.
   1068 		 */
   1069 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1070 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1071 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1072 
   1073 		/*
   1074 		 * The entire packet chain is set up.  Give the
   1075 		 * first descriptor to the Rhine now.
   1076 		 */
   1077 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1078 		VR_CDTXSYNC(sc, firsttx,
   1079 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1080 
   1081 		/* Start the transmitter. */
   1082 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1083 
   1084 		/* Set the watchdog timer in case the chip flakes out. */
   1085 		ifp->if_timer = 5;
   1086 	}
   1087 }
   1088 
   1089 /*
   1090  * Initialize the interface.  Must be called at splnet.
   1091  */
   1092 static int
   1093 vr_init(struct ifnet *ifp)
   1094 {
   1095 	struct vr_softc *sc = ifp->if_softc;
   1096 	struct vr_desc *d;
   1097 	struct vr_descsoft *ds;
   1098 	int i, error = 0;
   1099 
   1100 	/* Cancel pending I/O. */
   1101 	vr_stop(ifp, 0);
   1102 
   1103 	/* Reset the Rhine to a known state. */
   1104 	vr_reset(sc);
   1105 
   1106 	/* set DMA length in BCR0 and BCR1 */
   1107 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1108 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1109 
   1110 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1111 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1112 
   1113 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1114 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1115 
   1116 	/* set DMA threshold length in RXCFG and TXCFG */
   1117 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1118 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1119 
   1120 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1121 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1122 
   1123 	/*
   1124 	 * Initialize the transmit desciptor ring.  txlast is initialized
   1125 	 * to the end of the list so that it will wrap around to the first
   1126 	 * descriptor when the first packet is transmitted.
   1127 	 */
   1128 	for (i = 0; i < VR_NTXDESC; i++) {
   1129 		d = VR_CDTX(sc, i);
   1130 		memset(d, 0, sizeof(struct vr_desc));
   1131 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1132 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1133 	}
   1134 	sc->vr_txpending = 0;
   1135 	sc->vr_txdirty = 0;
   1136 	sc->vr_txlast = VR_NTXDESC - 1;
   1137 
   1138 	/*
   1139 	 * Initialize the receive descriptor ring.
   1140 	 */
   1141 	for (i = 0; i < VR_NRXDESC; i++) {
   1142 		ds = VR_DSRX(sc, i);
   1143 		if (ds->ds_mbuf == NULL) {
   1144 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1145 				printf("%s: unable to allocate or map rx "
   1146 				    "buffer %d, error = %d\n",
   1147 				    sc->vr_dev.dv_xname, i, error);
   1148 				/*
   1149 				 * XXX Should attempt to run with fewer receive
   1150 				 * XXX buffers instead of just failing.
   1151 				 */
   1152 				vr_rxdrain(sc);
   1153 				goto out;
   1154 			}
   1155 		} else
   1156 			VR_INIT_RXDESC(sc, i);
   1157 	}
   1158 	sc->vr_rxptr = 0;
   1159 
   1160 	/* If we want promiscuous mode, set the allframes bit. */
   1161 	if (ifp->if_flags & IFF_PROMISC)
   1162 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1163 	else
   1164 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1165 
   1166 	/* Set capture broadcast bit to capture broadcast frames. */
   1167 	if (ifp->if_flags & IFF_BROADCAST)
   1168 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1169 	else
   1170 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1171 
   1172 	/* Program the multicast filter, if necessary. */
   1173 	vr_setmulti(sc);
   1174 
   1175 	/* Give the transmit and receive rings to the Rhine. */
   1176 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1177 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1178 
   1179 	/* Set current media. */
   1180 	mii_mediachg(&sc->vr_mii);
   1181 
   1182 	/* Enable receiver and transmitter. */
   1183 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1184 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1185 				    VR_CMD_RX_GO);
   1186 
   1187 	/* Enable interrupts. */
   1188 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1189 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1190 
   1191 	ifp->if_flags |= IFF_RUNNING;
   1192 	ifp->if_flags &= ~IFF_OACTIVE;
   1193 
   1194 	/* Start one second timer. */
   1195 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1196 
   1197 	/* Attempt to start output on the interface. */
   1198 	vr_start(ifp);
   1199 
   1200  out:
   1201 	if (error)
   1202 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1203 	return (error);
   1204 }
   1205 
   1206 /*
   1207  * Set media options.
   1208  */
   1209 static int
   1210 vr_ifmedia_upd(struct ifnet *ifp)
   1211 {
   1212 	struct vr_softc *sc = ifp->if_softc;
   1213 
   1214 	if (ifp->if_flags & IFF_UP)
   1215 		mii_mediachg(&sc->vr_mii);
   1216 	return (0);
   1217 }
   1218 
   1219 /*
   1220  * Report current media status.
   1221  */
   1222 static void
   1223 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1224 {
   1225 	struct vr_softc *sc = ifp->if_softc;
   1226 
   1227 	mii_pollstat(&sc->vr_mii);
   1228 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1229 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1230 }
   1231 
   1232 static int
   1233 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1234 {
   1235 	struct vr_softc *sc = ifp->if_softc;
   1236 	struct ifreq *ifr = (struct ifreq *)data;
   1237 	int s, error = 0;
   1238 
   1239 	s = splnet();
   1240 
   1241 	switch (command) {
   1242 	case SIOCGIFMEDIA:
   1243 	case SIOCSIFMEDIA:
   1244 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1245 		break;
   1246 
   1247 	default:
   1248 		error = ether_ioctl(ifp, command, data);
   1249 		if (error == ENETRESET) {
   1250 			/*
   1251 			 * Multicast list has changed; set the hardware filter
   1252 			 * accordingly.
   1253 			 */
   1254 			if (ifp->if_flags & IFF_RUNNING)
   1255 				vr_setmulti(sc);
   1256 			error = 0;
   1257 		}
   1258 		break;
   1259 	}
   1260 
   1261 	splx(s);
   1262 	return (error);
   1263 }
   1264 
   1265 static void
   1266 vr_watchdog(struct ifnet *ifp)
   1267 {
   1268 	struct vr_softc *sc = ifp->if_softc;
   1269 
   1270 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1271 	ifp->if_oerrors++;
   1272 
   1273 	(void) vr_init(ifp);
   1274 }
   1275 
   1276 /*
   1277  * One second timer, used to tick MII.
   1278  */
   1279 static void
   1280 vr_tick(void *arg)
   1281 {
   1282 	struct vr_softc *sc = arg;
   1283 	int s;
   1284 
   1285 	s = splnet();
   1286 	mii_tick(&sc->vr_mii);
   1287 	splx(s);
   1288 
   1289 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1290 }
   1291 
   1292 /*
   1293  * Drain the receive queue.
   1294  */
   1295 static void
   1296 vr_rxdrain(struct vr_softc *sc)
   1297 {
   1298 	struct vr_descsoft *ds;
   1299 	int i;
   1300 
   1301 	for (i = 0; i < VR_NRXDESC; i++) {
   1302 		ds = VR_DSRX(sc, i);
   1303 		if (ds->ds_mbuf != NULL) {
   1304 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1305 			m_freem(ds->ds_mbuf);
   1306 			ds->ds_mbuf = NULL;
   1307 		}
   1308 	}
   1309 }
   1310 
   1311 /*
   1312  * Stop the adapter and free any mbufs allocated to the
   1313  * transmit lists.
   1314  */
   1315 static void
   1316 vr_stop(struct ifnet *ifp, int disable)
   1317 {
   1318 	struct vr_softc *sc = ifp->if_softc;
   1319 	struct vr_descsoft *ds;
   1320 	int i;
   1321 
   1322 	/* Cancel one second timer. */
   1323 	callout_stop(&sc->vr_tick_ch);
   1324 
   1325 	/* Down the MII. */
   1326 	mii_down(&sc->vr_mii);
   1327 
   1328 	ifp = &sc->vr_ec.ec_if;
   1329 	ifp->if_timer = 0;
   1330 
   1331 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1332 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1333 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1334 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1335 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1336 
   1337 	/*
   1338 	 * Release any queued transmit buffers.
   1339 	 */
   1340 	for (i = 0; i < VR_NTXDESC; i++) {
   1341 		ds = VR_DSTX(sc, i);
   1342 		if (ds->ds_mbuf != NULL) {
   1343 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1344 			m_freem(ds->ds_mbuf);
   1345 			ds->ds_mbuf = NULL;
   1346 		}
   1347 	}
   1348 
   1349 	if (disable)
   1350 		vr_rxdrain(sc);
   1351 
   1352 	/*
   1353 	 * Mark the interface down and cancel the watchdog timer.
   1354 	 */
   1355 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1356 	ifp->if_timer = 0;
   1357 }
   1358 
   1359 static int	vr_probe(struct device *, struct cfdata *, void *);
   1360 static void	vr_attach(struct device *, struct device *, void *);
   1361 static void	vr_shutdown(void *);
   1362 
   1363 CFATTACH_DECL(vr, sizeof (struct vr_softc),
   1364     vr_probe, vr_attach, NULL, NULL);
   1365 
   1366 static struct vr_type *
   1367 vr_lookup(struct pci_attach_args *pa)
   1368 {
   1369 	struct vr_type *vrt;
   1370 
   1371 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1372 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1373 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1374 			return (vrt);
   1375 	}
   1376 	return (NULL);
   1377 }
   1378 
   1379 static int
   1380 vr_probe(struct device *parent, struct cfdata *match, void *aux)
   1381 {
   1382 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1383 
   1384 	if (vr_lookup(pa) != NULL)
   1385 		return (1);
   1386 
   1387 	return (0);
   1388 }
   1389 
   1390 /*
   1391  * Stop all chip I/O so that the kernel's probe routines don't
   1392  * get confused by errant DMAs when rebooting.
   1393  */
   1394 static void
   1395 vr_shutdown(void *arg)
   1396 {
   1397 	struct vr_softc *sc = (struct vr_softc *)arg;
   1398 
   1399 	vr_stop(&sc->vr_ec.ec_if, 1);
   1400 }
   1401 
   1402 /*
   1403  * Attach the interface. Allocate softc structures, do ifmedia
   1404  * setup and ethernet/BPF attach.
   1405  */
   1406 static void
   1407 vr_attach(struct device *parent, struct device *self, void *aux)
   1408 {
   1409 	struct vr_softc *sc = (struct vr_softc *) self;
   1410 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1411 	bus_dma_segment_t seg;
   1412 	struct vr_type *vrt;
   1413 	u_int32_t pmreg, reg;
   1414 	struct ifnet *ifp;
   1415 	u_char eaddr[ETHER_ADDR_LEN];
   1416 	int i, rseg, error;
   1417 
   1418 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1419 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1420 
   1421 	callout_init(&sc->vr_tick_ch);
   1422 
   1423 	vrt = vr_lookup(pa);
   1424 	if (vrt == NULL) {
   1425 		printf("\n");
   1426 		panic("vr_attach: impossible");
   1427 	}
   1428 
   1429 	printf(": %s Ethernet\n", vrt->vr_name);
   1430 
   1431 	/*
   1432 	 * Handle power management nonsense.
   1433 	 */
   1434 
   1435 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1436 	    PCI_CAP_PWRMGMT, &pmreg, 0)) {
   1437 		reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
   1438 		if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
   1439 			u_int32_t iobase, membase, irq;
   1440 
   1441 			/* Save important PCI config data. */
   1442 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1443 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1444 			irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1445 
   1446 			/* Reset the power state. */
   1447 			printf("%s: chip is in D%d power mode "
   1448 			    "-- setting to D0\n",
   1449 			    sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
   1450 			reg = (reg & ~PCI_PMCSR_STATE_MASK) |
   1451 			    PCI_PMCSR_STATE_D0;
   1452 			PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
   1453 
   1454 			/* Restore PCI config data. */
   1455 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1456 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1457 			PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
   1458 		}
   1459 	}
   1460 
   1461 	/* Make sure bus mastering is enabled. */
   1462 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1463 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1464 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1465 
   1466 	/* Get revision */
   1467 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1468 
   1469 	/*
   1470 	 * Map control/status registers.
   1471 	 */
   1472 	{
   1473 		bus_space_tag_t iot, memt;
   1474 		bus_space_handle_t ioh, memh;
   1475 		int ioh_valid, memh_valid;
   1476 		pci_intr_handle_t intrhandle;
   1477 		const char *intrstr;
   1478 
   1479 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1480 			PCI_MAPREG_TYPE_IO, 0,
   1481 			&iot, &ioh, NULL, NULL) == 0);
   1482 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1483 			PCI_MAPREG_TYPE_MEM |
   1484 			PCI_MAPREG_MEM_TYPE_32BIT,
   1485 			0, &memt, &memh, NULL, NULL) == 0);
   1486 #if defined(VR_USEIOSPACE)
   1487 		if (ioh_valid) {
   1488 			sc->vr_bst = iot;
   1489 			sc->vr_bsh = ioh;
   1490 		} else if (memh_valid) {
   1491 			sc->vr_bst = memt;
   1492 			sc->vr_bsh = memh;
   1493 		}
   1494 #else
   1495 		if (memh_valid) {
   1496 			sc->vr_bst = memt;
   1497 			sc->vr_bsh = memh;
   1498 		} else if (ioh_valid) {
   1499 			sc->vr_bst = iot;
   1500 			sc->vr_bsh = ioh;
   1501 		}
   1502 #endif
   1503 		else {
   1504 			printf(": unable to map device registers\n");
   1505 			return;
   1506 		}
   1507 
   1508 		/* Allocate interrupt */
   1509 		if (pci_intr_map(pa, &intrhandle)) {
   1510 			printf("%s: couldn't map interrupt\n",
   1511 				sc->vr_dev.dv_xname);
   1512 			return;
   1513 		}
   1514 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1515 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1516 						vr_intr, sc);
   1517 		if (sc->vr_ih == NULL) {
   1518 			printf("%s: couldn't establish interrupt",
   1519 				sc->vr_dev.dv_xname);
   1520 			if (intrstr != NULL)
   1521 				printf(" at %s", intrstr);
   1522 			printf("\n");
   1523 		}
   1524 		printf("%s: interrupting at %s\n",
   1525 			sc->vr_dev.dv_xname, intrstr);
   1526 	}
   1527 
   1528 	/*
   1529 	 * Windows may put the chip in suspend mode when it
   1530 	 * shuts down. Be sure to kick it in the head to wake it
   1531 	 * up again.
   1532 	 */
   1533 	VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1534 
   1535 	/* Reset the adapter. */
   1536 	vr_reset(sc);
   1537 
   1538 	/*
   1539 	 * Get station address. The way the Rhine chips work,
   1540 	 * you're not allowed to directly access the EEPROM once
   1541 	 * they've been programmed a special way. Consequently,
   1542 	 * we need to read the node address from the PAR0 and PAR1
   1543 	 * registers.
   1544 	 *
   1545 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1546 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1547 	 *         pretty pointless since the chip does this automatically
   1548 	 *         at powerup/reset.
   1549 	 *         I suspect the same thing applies to the other Rhine
   1550 	 *         variants, but in the absence of a data sheet for those
   1551 	 *         (and the lack of anyone else noticing the problems this
   1552 	 *         causes) I'm going to retain the old behaviour for the
   1553 	 *         other parts.
   1554 	 */
   1555 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1556 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
   1557 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1558 		DELAY(200);
   1559 	}
   1560 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1561 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1562 
   1563 	/*
   1564 	 * A Rhine chip was detected. Inform the world.
   1565 	 */
   1566 	printf("%s: Ethernet address: %s\n",
   1567 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1568 
   1569 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1570 
   1571 	sc->vr_dmat = pa->pa_dmat;
   1572 
   1573 	/*
   1574 	 * Allocate the control data structures, and create and load
   1575 	 * the DMA map for it.
   1576 	 */
   1577 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1578 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1579 	    0)) != 0) {
   1580 		printf("%s: unable to allocate control data, error = %d\n",
   1581 		    sc->vr_dev.dv_xname, error);
   1582 		goto fail_0;
   1583 	}
   1584 
   1585 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1586 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1587 	    BUS_DMA_COHERENT)) != 0) {
   1588 		printf("%s: unable to map control data, error = %d\n",
   1589 		    sc->vr_dev.dv_xname, error);
   1590 		goto fail_1;
   1591 	}
   1592 
   1593 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1594 	    sizeof(struct vr_control_data), 1,
   1595 	    sizeof(struct vr_control_data), 0, 0,
   1596 	    &sc->vr_cddmamap)) != 0) {
   1597 		printf("%s: unable to create control data DMA map, "
   1598 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1599 		goto fail_2;
   1600 	}
   1601 
   1602 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1603 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1604 	    0)) != 0) {
   1605 		printf("%s: unable to load control data DMA map, error = %d\n",
   1606 		    sc->vr_dev.dv_xname, error);
   1607 		goto fail_3;
   1608 	}
   1609 
   1610 	/*
   1611 	 * Create the transmit buffer DMA maps.
   1612 	 */
   1613 	for (i = 0; i < VR_NTXDESC; i++) {
   1614 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1615 		    1, MCLBYTES, 0, 0,
   1616 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1617 			printf("%s: unable to create tx DMA map %d, "
   1618 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1619 			goto fail_4;
   1620 		}
   1621 	}
   1622 
   1623 	/*
   1624 	 * Create the receive buffer DMA maps.
   1625 	 */
   1626 	for (i = 0; i < VR_NRXDESC; i++) {
   1627 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1628 		    MCLBYTES, 0, 0,
   1629 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1630 			printf("%s: unable to create rx DMA map %d, "
   1631 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1632 			goto fail_5;
   1633 		}
   1634 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1635 	}
   1636 
   1637 	ifp = &sc->vr_ec.ec_if;
   1638 	ifp->if_softc = sc;
   1639 	ifp->if_mtu = ETHERMTU;
   1640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1641 	ifp->if_ioctl = vr_ioctl;
   1642 	ifp->if_start = vr_start;
   1643 	ifp->if_watchdog = vr_watchdog;
   1644 	ifp->if_init = vr_init;
   1645 	ifp->if_stop = vr_stop;
   1646 	IFQ_SET_READY(&ifp->if_snd);
   1647 
   1648 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
   1649 
   1650 	/*
   1651 	 * Initialize MII/media info.
   1652 	 */
   1653 	sc->vr_mii.mii_ifp = ifp;
   1654 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1655 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1656 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1657 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
   1658 		vr_ifmedia_sts);
   1659 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1660 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1661 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1662 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1663 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1664 	} else
   1665 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1666 
   1667 	/*
   1668 	 * Call MI attach routines.
   1669 	 */
   1670 	if_attach(ifp);
   1671 	ether_ifattach(ifp, sc->vr_enaddr);
   1672 #if NRND > 0
   1673 	rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
   1674 	    RND_TYPE_NET, 0);
   1675 #endif
   1676 
   1677 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1678 	if (sc->vr_ats == NULL)
   1679 		printf("%s: warning: couldn't establish shutdown hook\n",
   1680 			sc->vr_dev.dv_xname);
   1681 	return;
   1682 
   1683  fail_5:
   1684 	for (i = 0; i < VR_NRXDESC; i++) {
   1685 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1686 			bus_dmamap_destroy(sc->vr_dmat,
   1687 			    sc->vr_rxsoft[i].ds_dmamap);
   1688 	}
   1689  fail_4:
   1690 	for (i = 0; i < VR_NTXDESC; i++) {
   1691 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1692 			bus_dmamap_destroy(sc->vr_dmat,
   1693 			    sc->vr_txsoft[i].ds_dmamap);
   1694 	}
   1695 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1696  fail_3:
   1697 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1698  fail_2:
   1699 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1700 	    sizeof(struct vr_control_data));
   1701  fail_1:
   1702 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1703  fail_0:
   1704 	return;
   1705 }
   1706