Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.74
      1 /*	$NetBSD: if_vr.c,v 1.74 2005/01/30 17:36:49 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1997, 1998
     42  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by Bill Paul.
     55  * 4. Neither the name of the author nor the names of any co-contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     69  * THE POSSIBILITY OF SUCH DAMAGE.
     70  *
     71  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     72  */
     73 
     74 /*
     75  * VIA Rhine fast ethernet PCI NIC driver
     76  *
     77  * Supports various network adapters based on the VIA Rhine
     78  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     79  * Datasheets are available at http://www.via.com.tw.
     80  *
     81  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     82  * Electrical Engineering Department
     83  * Columbia University, New York City
     84  */
     85 
     86 /*
     87  * The VIA Rhine controllers are similar in some respects to the
     88  * the DEC tulip chips, except less complicated. The controller
     89  * uses an MII bus and an external physical layer interface. The
     90  * receiver has a one entry perfect filter and a 64-bit hash table
     91  * multicast filter. Transmit and receive descriptors are similar
     92  * to the tulip.
     93  *
     94  * The Rhine has a serious flaw in its transmit DMA mechanism:
     95  * transmit buffers must be longword aligned. Unfortunately,
     96  * the kernel doesn't guarantee that mbufs will be filled in starting
     97  * at longword boundaries, so we have to do a buffer copy before
     98  * transmission.
     99  *
    100  * Apparently, the receive DMA mechanism also has the same flaw.  This
    101  * means that on systems with struct alignment requirements, incoming
    102  * frames must be copied to a new buffer which shifts the data forward
    103  * 2 bytes so that the payload is aligned on a 4-byte boundary.
    104  */
    105 
    106 #include <sys/cdefs.h>
    107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.74 2005/01/30 17:36:49 thorpej Exp $");
    108 
    109 #include "rnd.h"
    110 
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/callout.h>
    114 #include <sys/sockio.h>
    115 #include <sys/mbuf.h>
    116 #include <sys/malloc.h>
    117 #include <sys/kernel.h>
    118 #include <sys/socket.h>
    119 #include <sys/device.h>
    120 
    121 #if NRND > 0
    122 #include <sys/rnd.h>
    123 #endif
    124 
    125 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    126 
    127 #include <net/if.h>
    128 #include <net/if_arp.h>
    129 #include <net/if_dl.h>
    130 #include <net/if_media.h>
    131 #include <net/if_ether.h>
    132 
    133 #include "bpfilter.h"
    134 #if NBPFILTER > 0
    135 #include <net/bpf.h>
    136 #endif
    137 
    138 #include <machine/bus.h>
    139 #include <machine/intr.h>
    140 #include <machine/endian.h>
    141 
    142 #include <dev/mii/mii.h>
    143 #include <dev/mii/miivar.h>
    144 #include <dev/mii/mii_bitbang.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/pci/if_vrreg.h>
    151 
    152 #define	VR_USEIOSPACE
    153 
    154 /*
    155  * Various supported device vendors/types and their names.
    156  */
    157 static struct vr_type {
    158 	pci_vendor_id_t		vr_vid;
    159 	pci_product_id_t	vr_did;
    160 	const char		*vr_name;
    161 } vr_devs[] = {
    162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
    163 		"VIA VT3043 (Rhine) 10/100" },
    164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
    165 		"VIA VT6102 (Rhine II) 10/100" },
    166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
    167 		"VIA VT6105 (Rhine III) 10/100" },
    168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
    169 		"VIA VT86C100A (Rhine-II) 10/100" },
    170 	{ 0, 0, NULL }
    171 };
    172 
    173 /*
    174  * Transmit descriptor list size.
    175  */
    176 #define	VR_NTXDESC		64
    177 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    178 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    179 
    180 /*
    181  * Receive descriptor list size.
    182  */
    183 #define	VR_NRXDESC		64
    184 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    185 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    186 
    187 /*
    188  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    189  * them in a single clump that maps to a single DMA segment to make several
    190  * things easier.
    191  *
    192  * Note that since we always copy outgoing packets to aligned transmit
    193  * buffers, we can reduce the transmit descriptors to one per packet.
    194  */
    195 struct vr_control_data {
    196 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    197 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    198 };
    199 
    200 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    201 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    202 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    203 
    204 /*
    205  * Software state of transmit and receive descriptors.
    206  */
    207 struct vr_descsoft {
    208 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    209 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    210 };
    211 
    212 struct vr_softc {
    213 	struct device		vr_dev;		/* generic device glue */
    214 	void			*vr_ih;		/* interrupt cookie */
    215 	void			*vr_ats;	/* shutdown hook */
    216 	bus_space_tag_t		vr_bst;		/* bus space tag */
    217 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    218 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    219 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    220 	struct ethercom		vr_ec;		/* Ethernet common info */
    221 	u_int8_t 		vr_enaddr[ETHER_ADDR_LEN];
    222 	struct mii_data		vr_mii;		/* MII/media info */
    223 
    224 	u_int8_t		vr_revid;	/* Rhine chip revision */
    225 
    226 	struct callout		vr_tick_ch;	/* tick callout */
    227 
    228 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    229 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    230 
    231 	/*
    232 	 * Software state for transmit and receive descriptors.
    233 	 */
    234 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    235 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    236 
    237 	/*
    238 	 * Control data structures.
    239 	 */
    240 	struct vr_control_data	*vr_control_data;
    241 
    242 	int	vr_txpending;		/* number of TX requests pending */
    243 	int	vr_txdirty;		/* first dirty TX descriptor */
    244 	int	vr_txlast;		/* last used TX descriptor */
    245 
    246 	int	vr_rxptr;		/* next ready RX descriptor */
    247 
    248 #if NRND > 0
    249 	rndsource_element_t rnd_source;	/* random source */
    250 #endif
    251 };
    252 
    253 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    254 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    255 
    256 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    257 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    258 
    259 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    260 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    261 
    262 #define	VR_CDTXSYNC(sc, x, ops)						\
    263 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    264 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    265 
    266 #define	VR_CDRXSYNC(sc, x, ops)						\
    267 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    268 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    269 
    270 /*
    271  * Note we rely on MCLBYTES being a power of two below.
    272  */
    273 #define	VR_INIT_RXDESC(sc, i)						\
    274 do {									\
    275 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    276 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    277 									\
    278 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    279 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    280 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    281 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    282 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    283 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    284 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    285 } while (/* CONSTCOND */ 0)
    286 
    287 /*
    288  * register space access macros
    289  */
    290 #define	CSR_WRITE_4(sc, reg, val)					\
    291 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    292 #define	CSR_WRITE_2(sc, reg, val)					\
    293 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    294 #define	CSR_WRITE_1(sc, reg, val)					\
    295 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    296 
    297 #define	CSR_READ_4(sc, reg)						\
    298 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    299 #define	CSR_READ_2(sc, reg)						\
    300 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    301 #define	CSR_READ_1(sc, reg)						\
    302 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    303 
    304 #define	VR_TIMEOUT		1000
    305 
    306 static int	vr_add_rxbuf(struct vr_softc *, int);
    307 
    308 static void	vr_rxeof(struct vr_softc *);
    309 static void	vr_rxeoc(struct vr_softc *);
    310 static void	vr_txeof(struct vr_softc *);
    311 static int	vr_intr(void *);
    312 static void	vr_start(struct ifnet *);
    313 static int	vr_ioctl(struct ifnet *, u_long, caddr_t);
    314 static int	vr_init(struct ifnet *);
    315 static void	vr_stop(struct ifnet *, int);
    316 static void	vr_rxdrain(struct vr_softc *);
    317 static void	vr_watchdog(struct ifnet *);
    318 static void	vr_tick(void *);
    319 
    320 static int	vr_ifmedia_upd(struct ifnet *);
    321 static void	vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    322 
    323 static int	vr_mii_readreg(struct device *, int, int);
    324 static void	vr_mii_writereg(struct device *, int, int, int);
    325 static void	vr_mii_statchg(struct device *);
    326 
    327 static void	vr_setmulti(struct vr_softc *);
    328 static void	vr_reset(struct vr_softc *);
    329 
    330 int	vr_copy_small = 0;
    331 
    332 #define	VR_SETBIT(sc, reg, x)				\
    333 	CSR_WRITE_1(sc, reg,				\
    334 	    CSR_READ_1(sc, reg) | (x))
    335 
    336 #define	VR_CLRBIT(sc, reg, x)				\
    337 	CSR_WRITE_1(sc, reg,				\
    338 	    CSR_READ_1(sc, reg) & ~(x))
    339 
    340 #define	VR_SETBIT16(sc, reg, x)				\
    341 	CSR_WRITE_2(sc, reg,				\
    342 	    CSR_READ_2(sc, reg) | (x))
    343 
    344 #define	VR_CLRBIT16(sc, reg, x)				\
    345 	CSR_WRITE_2(sc, reg,				\
    346 	    CSR_READ_2(sc, reg) & ~(x))
    347 
    348 #define	VR_SETBIT32(sc, reg, x)				\
    349 	CSR_WRITE_4(sc, reg,				\
    350 	    CSR_READ_4(sc, reg) | (x))
    351 
    352 #define	VR_CLRBIT32(sc, reg, x)				\
    353 	CSR_WRITE_4(sc, reg,				\
    354 	    CSR_READ_4(sc, reg) & ~(x))
    355 
    356 /*
    357  * MII bit-bang glue.
    358  */
    359 static u_int32_t vr_mii_bitbang_read(struct device *);
    360 static void	vr_mii_bitbang_write(struct device *, u_int32_t);
    361 
    362 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    363 	vr_mii_bitbang_read,
    364 	vr_mii_bitbang_write,
    365 	{
    366 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    367 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    368 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    369 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    370 		0,			/* MII_BIT_DIR_PHY_HOST */
    371 	}
    372 };
    373 
    374 static u_int32_t
    375 vr_mii_bitbang_read(struct device *self)
    376 {
    377 	struct vr_softc *sc = (void *) self;
    378 
    379 	return (CSR_READ_1(sc, VR_MIICMD));
    380 }
    381 
    382 static void
    383 vr_mii_bitbang_write(struct device *self, u_int32_t val)
    384 {
    385 	struct vr_softc *sc = (void *) self;
    386 
    387 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    388 }
    389 
    390 /*
    391  * Read an PHY register through the MII.
    392  */
    393 static int
    394 vr_mii_readreg(struct device *self, int phy, int reg)
    395 {
    396 	struct vr_softc *sc = (void *) self;
    397 
    398 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    399 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    400 }
    401 
    402 /*
    403  * Write to a PHY register through the MII.
    404  */
    405 static void
    406 vr_mii_writereg(struct device *self, int phy, int reg, int val)
    407 {
    408 	struct vr_softc *sc = (void *) self;
    409 
    410 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    411 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    412 }
    413 
    414 static void
    415 vr_mii_statchg(struct device *self)
    416 {
    417 	struct vr_softc *sc = (struct vr_softc *)self;
    418 
    419 	/*
    420 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    421 	 * register, we first have to put the transmit and/or receive logic
    422 	 * in the idle state.
    423 	 */
    424 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    425 
    426 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    427 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    428 	else
    429 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    430 
    431 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    432 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    433 }
    434 
    435 #define	vr_calchash(addr) \
    436 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    437 
    438 /*
    439  * Program the 64-bit multicast hash filter.
    440  */
    441 static void
    442 vr_setmulti(struct vr_softc *sc)
    443 {
    444 	struct ifnet *ifp;
    445 	int h = 0;
    446 	u_int32_t hashes[2] = { 0, 0 };
    447 	struct ether_multistep step;
    448 	struct ether_multi *enm;
    449 	int mcnt = 0;
    450 	u_int8_t rxfilt;
    451 
    452 	ifp = &sc->vr_ec.ec_if;
    453 
    454 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    455 
    456 	if (ifp->if_flags & IFF_PROMISC) {
    457 allmulti:
    458 		ifp->if_flags |= IFF_ALLMULTI;
    459 		rxfilt |= VR_RXCFG_RX_MULTI;
    460 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    461 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    462 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    463 		return;
    464 	}
    465 
    466 	/* first, zot all the existing hash bits */
    467 	CSR_WRITE_4(sc, VR_MAR0, 0);
    468 	CSR_WRITE_4(sc, VR_MAR1, 0);
    469 
    470 	/* now program new ones */
    471 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    472 	while (enm != NULL) {
    473 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    474 		    ETHER_ADDR_LEN) != 0)
    475 			goto allmulti;
    476 
    477 		h = vr_calchash(enm->enm_addrlo);
    478 
    479 		if (h < 32)
    480 			hashes[0] |= (1 << h);
    481 		else
    482 			hashes[1] |= (1 << (h - 32));
    483 		ETHER_NEXT_MULTI(step, enm);
    484 		mcnt++;
    485 	}
    486 
    487 	ifp->if_flags &= ~IFF_ALLMULTI;
    488 
    489 	if (mcnt)
    490 		rxfilt |= VR_RXCFG_RX_MULTI;
    491 	else
    492 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    493 
    494 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    495 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    496 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    497 }
    498 
    499 static void
    500 vr_reset(struct vr_softc *sc)
    501 {
    502 	int i;
    503 
    504 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    505 
    506 	for (i = 0; i < VR_TIMEOUT; i++) {
    507 		DELAY(10);
    508 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    509 			break;
    510 	}
    511 	if (i == VR_TIMEOUT) {
    512 		if (sc->vr_revid < REV_ID_VT3065_A) {
    513 			printf("%s: reset never completed!\n",
    514 			    sc->vr_dev.dv_xname);
    515 		} else {
    516 			/* Use newer force reset command */
    517 			printf("%s: using force reset command.\n",
    518 			    sc->vr_dev.dv_xname);
    519 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    520 		}
    521 	}
    522 
    523 	/* Wait a little while for the chip to get its brains in order. */
    524 	DELAY(1000);
    525 }
    526 
    527 /*
    528  * Initialize an RX descriptor and attach an MBUF cluster.
    529  * Note: the length fields are only 11 bits wide, which means the
    530  * largest size we can specify is 2047. This is important because
    531  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    532  * overflow the field and make a mess.
    533  */
    534 static int
    535 vr_add_rxbuf(struct vr_softc *sc, int i)
    536 {
    537 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    538 	struct mbuf *m_new;
    539 	int error;
    540 
    541 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    542 	if (m_new == NULL)
    543 		return (ENOBUFS);
    544 
    545 	MCLGET(m_new, M_DONTWAIT);
    546 	if ((m_new->m_flags & M_EXT) == 0) {
    547 		m_freem(m_new);
    548 		return (ENOBUFS);
    549 	}
    550 
    551 	if (ds->ds_mbuf != NULL)
    552 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    553 
    554 	ds->ds_mbuf = m_new;
    555 
    556 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    557 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    558 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    559 	if (error) {
    560 		printf("%s: unable to load rx DMA map %d, error = %d\n",
    561 		    sc->vr_dev.dv_xname, i, error);
    562 		panic("vr_add_rxbuf");		/* XXX */
    563 	}
    564 
    565 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    566 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    567 
    568 	VR_INIT_RXDESC(sc, i);
    569 
    570 	return (0);
    571 }
    572 
    573 /*
    574  * A frame has been uploaded: pass the resulting mbuf chain up to
    575  * the higher level protocols.
    576  */
    577 static void
    578 vr_rxeof(struct vr_softc *sc)
    579 {
    580 	struct mbuf *m;
    581 	struct ifnet *ifp;
    582 	struct vr_desc *d;
    583 	struct vr_descsoft *ds;
    584 	int i, total_len;
    585 	u_int32_t rxstat;
    586 
    587 	ifp = &sc->vr_ec.ec_if;
    588 
    589 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    590 		d = VR_CDRX(sc, i);
    591 		ds = VR_DSRX(sc, i);
    592 
    593 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    594 
    595 		rxstat = le32toh(d->vr_status);
    596 
    597 		if (rxstat & VR_RXSTAT_OWN) {
    598 			/*
    599 			 * We have processed all of the receive buffers.
    600 			 */
    601 			break;
    602 		}
    603 
    604 		/*
    605 		 * If an error occurs, update stats, clear the
    606 		 * status word and leave the mbuf cluster in place:
    607 		 * it should simply get re-used next time this descriptor
    608 		 * comes up in the ring.
    609 		 */
    610 		if (rxstat & VR_RXSTAT_RXERR) {
    611 			const char *errstr;
    612 
    613 			ifp->if_ierrors++;
    614 			switch (rxstat & 0x000000FF) {
    615 			case VR_RXSTAT_CRCERR:
    616 				errstr = "crc error";
    617 				break;
    618 			case VR_RXSTAT_FRAMEALIGNERR:
    619 				errstr = "frame alignment error";
    620 				break;
    621 			case VR_RXSTAT_FIFOOFLOW:
    622 				errstr = "FIFO overflow";
    623 				break;
    624 			case VR_RXSTAT_GIANT:
    625 				errstr = "received giant packet";
    626 				break;
    627 			case VR_RXSTAT_RUNT:
    628 				errstr = "received runt packet";
    629 				break;
    630 			case VR_RXSTAT_BUSERR:
    631 				errstr = "system bus error";
    632 				break;
    633 			case VR_RXSTAT_BUFFERR:
    634 				errstr = "rx buffer error";
    635 				break;
    636 			default:
    637 				errstr = "unknown rx error";
    638 				break;
    639 			}
    640 			printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
    641 			    errstr);
    642 
    643 			VR_INIT_RXDESC(sc, i);
    644 
    645 			continue;
    646 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
    647 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
    648 			/*
    649 			 * This driver expects to receive whole packets every
    650 			 * time.  In case we receive a fragment that is not
    651 			 * a complete packet, we discard it.
    652 			 */
    653 			ifp->if_ierrors++;
    654 
    655 			printf("%s: receive error: incomplete frame; "
    656 			       "size = %d, status = 0x%x\n",
    657 			       sc->vr_dev.dv_xname,
    658 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
    659 
    660 			VR_INIT_RXDESC(sc, i);
    661 
    662 			continue;
    663 		}
    664 
    665 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    666 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    667 
    668 		/* No errors; receive the packet. */
    669 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    670 #ifdef DIAGNOSTIC
    671 		if (total_len == 0) {
    672 			/*
    673 			 * If we receive a zero-length packet, we probably
    674 			 * missed to handle an error condition above.
    675 			 * Discard it to avoid a later crash.
    676 			 */
    677 			ifp->if_ierrors++;
    678 
    679 			printf("%s: receive error: zero-length packet; "
    680 			       "status = 0x%x\n",
    681 			       sc->vr_dev.dv_xname, rxstat);
    682 
    683 			VR_INIT_RXDESC(sc, i);
    684 
    685 			continue;
    686 		}
    687 #endif
    688 
    689 		/*
    690 		 * The Rhine chip includes the CRC with every packet.
    691 		 * Trim it off here.
    692 		 */
    693 		total_len -= ETHER_CRC_LEN;
    694 
    695 #ifdef __NO_STRICT_ALIGNMENT
    696 		/*
    697 		 * If the packet is small enough to fit in a
    698 		 * single header mbuf, allocate one and copy
    699 		 * the data into it.  This greatly reduces
    700 		 * memory consumption when we receive lots
    701 		 * of small packets.
    702 		 *
    703 		 * Otherwise, we add a new buffer to the receive
    704 		 * chain.  If this fails, we drop the packet and
    705 		 * recycle the old buffer.
    706 		 */
    707 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    708 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    709 			if (m == NULL)
    710 				goto dropit;
    711 			memcpy(mtod(m, caddr_t),
    712 			    mtod(ds->ds_mbuf, caddr_t), total_len);
    713 			VR_INIT_RXDESC(sc, i);
    714 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    715 			    ds->ds_dmamap->dm_mapsize,
    716 			    BUS_DMASYNC_PREREAD);
    717 		} else {
    718 			m = ds->ds_mbuf;
    719 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    720  dropit:
    721 				ifp->if_ierrors++;
    722 				VR_INIT_RXDESC(sc, i);
    723 				bus_dmamap_sync(sc->vr_dmat,
    724 				    ds->ds_dmamap, 0,
    725 				    ds->ds_dmamap->dm_mapsize,
    726 				    BUS_DMASYNC_PREREAD);
    727 				continue;
    728 			}
    729 		}
    730 #else
    731 		/*
    732 		 * The Rhine's packet buffers must be 4-byte aligned.
    733 		 * But this means that the data after the Ethernet header
    734 		 * is misaligned.  We must allocate a new buffer and
    735 		 * copy the data, shifted forward 2 bytes.
    736 		 */
    737 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    738 		if (m == NULL) {
    739  dropit:
    740 			ifp->if_ierrors++;
    741 			VR_INIT_RXDESC(sc, i);
    742 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    743 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    744 			continue;
    745 		}
    746 		if (total_len > (MHLEN - 2)) {
    747 			MCLGET(m, M_DONTWAIT);
    748 			if ((m->m_flags & M_EXT) == 0) {
    749 				m_freem(m);
    750 				goto dropit;
    751 			}
    752 		}
    753 		m->m_data += 2;
    754 
    755 		/*
    756 		 * Note that we use clusters for incoming frames, so the
    757 		 * buffer is virtually contiguous.
    758 		 */
    759 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
    760 		    total_len);
    761 
    762 		/* Allow the receive descriptor to continue using its mbuf. */
    763 		VR_INIT_RXDESC(sc, i);
    764 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    765 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    766 #endif /* __NO_STRICT_ALIGNMENT */
    767 
    768 		ifp->if_ipackets++;
    769 		m->m_pkthdr.rcvif = ifp;
    770 		m->m_pkthdr.len = m->m_len = total_len;
    771 #if NBPFILTER > 0
    772 		/*
    773 		 * Handle BPF listeners. Let the BPF user see the packet, but
    774 		 * don't pass it up to the ether_input() layer unless it's
    775 		 * a broadcast packet, multicast packet, matches our ethernet
    776 		 * address or the interface is in promiscuous mode.
    777 		 */
    778 		if (ifp->if_bpf)
    779 			bpf_mtap(ifp->if_bpf, m);
    780 #endif
    781 		/* Pass it on. */
    782 		(*ifp->if_input)(ifp, m);
    783 	}
    784 
    785 	/* Update the receive pointer. */
    786 	sc->vr_rxptr = i;
    787 }
    788 
    789 void
    790 vr_rxeoc(struct vr_softc *sc)
    791 {
    792 
    793 	vr_rxeof(sc);
    794 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    795 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    796 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    797 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    798 }
    799 
    800 /*
    801  * A frame was downloaded to the chip. It's safe for us to clean up
    802  * the list buffers.
    803  */
    804 static void
    805 vr_txeof(struct vr_softc *sc)
    806 {
    807 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    808 	struct vr_desc *d;
    809 	struct vr_descsoft *ds;
    810 	u_int32_t txstat;
    811 	int i;
    812 
    813 	ifp->if_flags &= ~IFF_OACTIVE;
    814 
    815 	/*
    816 	 * Go through our tx list and free mbufs for those
    817 	 * frames that have been transmitted.
    818 	 */
    819 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    820 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    821 		d = VR_CDTX(sc, i);
    822 		ds = VR_DSTX(sc, i);
    823 
    824 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    825 
    826 		txstat = le32toh(d->vr_status);
    827 		if (txstat & VR_TXSTAT_OWN)
    828 			break;
    829 
    830 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    831 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    832 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    833 		m_freem(ds->ds_mbuf);
    834 		ds->ds_mbuf = NULL;
    835 
    836 		if (txstat & VR_TXSTAT_ERRSUM) {
    837 			ifp->if_oerrors++;
    838 			if (txstat & VR_TXSTAT_DEFER)
    839 				ifp->if_collisions++;
    840 			if (txstat & VR_TXSTAT_LATECOLL)
    841 				ifp->if_collisions++;
    842 		}
    843 
    844 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    845 		ifp->if_opackets++;
    846 	}
    847 
    848 	/* Update the dirty transmit buffer pointer. */
    849 	sc->vr_txdirty = i;
    850 
    851 	/*
    852 	 * Cancel the watchdog timer if there are no pending
    853 	 * transmissions.
    854 	 */
    855 	if (sc->vr_txpending == 0)
    856 		ifp->if_timer = 0;
    857 }
    858 
    859 static int
    860 vr_intr(void *arg)
    861 {
    862 	struct vr_softc *sc;
    863 	struct ifnet *ifp;
    864 	u_int16_t status;
    865 	int handled = 0, dotx = 0;
    866 
    867 	sc = arg;
    868 	ifp = &sc->vr_ec.ec_if;
    869 
    870 	/* Suppress unwanted interrupts. */
    871 	if ((ifp->if_flags & IFF_UP) == 0) {
    872 		vr_stop(ifp, 1);
    873 		return (0);
    874 	}
    875 
    876 	/* Disable interrupts. */
    877 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    878 
    879 	for (;;) {
    880 		status = CSR_READ_2(sc, VR_ISR);
    881 		if (status)
    882 			CSR_WRITE_2(sc, VR_ISR, status);
    883 
    884 		if ((status & VR_INTRS) == 0)
    885 			break;
    886 
    887 		handled = 1;
    888 
    889 #if NRND > 0
    890 		if (RND_ENABLED(&sc->rnd_source))
    891 			rnd_add_uint32(&sc->rnd_source, status);
    892 #endif
    893 
    894 		if (status & VR_ISR_RX_OK)
    895 			vr_rxeof(sc);
    896 
    897 		if (status &
    898 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
    899 		     VR_ISR_RX_DROPPED))
    900 			vr_rxeoc(sc);
    901 
    902 		if (status & VR_ISR_TX_OK) {
    903 			dotx = 1;
    904 			vr_txeof(sc);
    905 		}
    906 
    907 		if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
    908 			if (status & VR_ISR_TX_UNDERRUN)
    909 				printf("%s: transmit underrun\n",
    910 				    sc->vr_dev.dv_xname);
    911 			if (status & VR_ISR_TX_ABRT)
    912 				printf("%s: transmit aborted\n",
    913 				    sc->vr_dev.dv_xname);
    914 			ifp->if_oerrors++;
    915 			dotx = 1;
    916 			vr_txeof(sc);
    917 			if (sc->vr_txpending) {
    918 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    919 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    920 			}
    921 			/*
    922 			 * Unfortunately many cards get stuck after
    923 			 * aborted transmits, so we reset them.
    924 			 */
    925 			if (status & VR_ISR_TX_ABRT) {
    926 				printf("%s: restarting\n", sc->vr_dev.dv_xname);
    927 				dotx = 0;
    928 				(void) vr_init(ifp);
    929 			}
    930 		}
    931 
    932 		if (status & VR_ISR_BUSERR) {
    933 			printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
    934 			/* vr_init() calls vr_start() */
    935 			dotx = 0;
    936 			(void) vr_init(ifp);
    937 		}
    938 	}
    939 
    940 	/* Re-enable interrupts. */
    941 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    942 
    943 	if (dotx)
    944 		vr_start(ifp);
    945 
    946 	return (handled);
    947 }
    948 
    949 /*
    950  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    951  * to the mbuf data regions directly in the transmit lists. We also save a
    952  * copy of the pointers since the transmit list fragment pointers are
    953  * physical addresses.
    954  */
    955 static void
    956 vr_start(struct ifnet *ifp)
    957 {
    958 	struct vr_softc *sc = ifp->if_softc;
    959 	struct mbuf *m0, *m;
    960 	struct vr_desc *d;
    961 	struct vr_descsoft *ds;
    962 	int error, firsttx, nexttx, opending;
    963 
    964 	/*
    965 	 * Remember the previous txpending and the first transmit
    966 	 * descriptor we use.
    967 	 */
    968 	opending = sc->vr_txpending;
    969 	firsttx = VR_NEXTTX(sc->vr_txlast);
    970 
    971 	/*
    972 	 * Loop through the send queue, setting up transmit descriptors
    973 	 * until we drain the queue, or use up all available transmit
    974 	 * descriptors.
    975 	 */
    976 	while (sc->vr_txpending < VR_NTXDESC) {
    977 		/*
    978 		 * Grab a packet off the queue.
    979 		 */
    980 		IFQ_POLL(&ifp->if_snd, m0);
    981 		if (m0 == NULL)
    982 			break;
    983 		m = NULL;
    984 
    985 		/*
    986 		 * Get the next available transmit descriptor.
    987 		 */
    988 		nexttx = VR_NEXTTX(sc->vr_txlast);
    989 		d = VR_CDTX(sc, nexttx);
    990 		ds = VR_DSTX(sc, nexttx);
    991 
    992 		/*
    993 		 * Load the DMA map.  If this fails, the packet didn't
    994 		 * fit in one DMA segment, and we need to copy.  Note,
    995 		 * the packet must also be aligned.
    996 		 * if the packet is too small, copy it too, so we're sure
    997 		 * we have enough room for the pad buffer.
    998 		 */
    999 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
   1000 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
   1001 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1002 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1003 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1004 			if (m == NULL) {
   1005 				printf("%s: unable to allocate Tx mbuf\n",
   1006 				    sc->vr_dev.dv_xname);
   1007 				break;
   1008 			}
   1009 			if (m0->m_pkthdr.len > MHLEN) {
   1010 				MCLGET(m, M_DONTWAIT);
   1011 				if ((m->m_flags & M_EXT) == 0) {
   1012 					printf("%s: unable to allocate Tx "
   1013 					    "cluster\n", sc->vr_dev.dv_xname);
   1014 					m_freem(m);
   1015 					break;
   1016 				}
   1017 			}
   1018 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1019 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1020 			/*
   1021 			 * The Rhine doesn't auto-pad, so we have to do this
   1022 			 * ourselves.
   1023 			 */
   1024 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
   1025 				memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
   1026 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
   1027 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
   1028 			}
   1029 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1030 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1031 			if (error) {
   1032 				m_freem(m);
   1033 				printf("%s: unable to load Tx buffer, "
   1034 				    "error = %d\n", sc->vr_dev.dv_xname, error);
   1035 				break;
   1036 			}
   1037 		}
   1038 
   1039 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1040 		if (m != NULL) {
   1041 			m_freem(m0);
   1042 			m0 = m;
   1043 		}
   1044 
   1045 		/* Sync the DMA map. */
   1046 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1047 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1048 
   1049 		/*
   1050 		 * Store a pointer to the packet so we can free it later.
   1051 		 */
   1052 		ds->ds_mbuf = m0;
   1053 
   1054 #if NBPFILTER > 0
   1055 		/*
   1056 		 * If there's a BPF listener, bounce a copy of this frame
   1057 		 * to him.
   1058 		 */
   1059 		if (ifp->if_bpf)
   1060 			bpf_mtap(ifp->if_bpf, m0);
   1061 #endif
   1062 
   1063 		/*
   1064 		 * Fill in the transmit descriptor.
   1065 		 */
   1066 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1067 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1068 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1069 
   1070 		/*
   1071 		 * If this is the first descriptor we're enqueuing,
   1072 		 * don't give it to the Rhine yet.  That could cause
   1073 		 * a race condition.  We'll do it below.
   1074 		 */
   1075 		if (nexttx == firsttx)
   1076 			d->vr_status = 0;
   1077 		else
   1078 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1079 
   1080 		VR_CDTXSYNC(sc, nexttx,
   1081 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1082 
   1083 		/* Advance the tx pointer. */
   1084 		sc->vr_txpending++;
   1085 		sc->vr_txlast = nexttx;
   1086 	}
   1087 
   1088 	if (sc->vr_txpending == VR_NTXDESC) {
   1089 		/* No more slots left; notify upper layer. */
   1090 		ifp->if_flags |= IFF_OACTIVE;
   1091 	}
   1092 
   1093 	if (sc->vr_txpending != opending) {
   1094 		/*
   1095 		 * We enqueued packets.  If the transmitter was idle,
   1096 		 * reset the txdirty pointer.
   1097 		 */
   1098 		if (opending == 0)
   1099 			sc->vr_txdirty = firsttx;
   1100 
   1101 		/*
   1102 		 * Cause a transmit interrupt to happen on the
   1103 		 * last packet we enqueued.
   1104 		 */
   1105 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1106 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1107 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1108 
   1109 		/*
   1110 		 * The entire packet chain is set up.  Give the
   1111 		 * first descriptor to the Rhine now.
   1112 		 */
   1113 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1114 		VR_CDTXSYNC(sc, firsttx,
   1115 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1116 
   1117 		/* Start the transmitter. */
   1118 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1119 
   1120 		/* Set the watchdog timer in case the chip flakes out. */
   1121 		ifp->if_timer = 5;
   1122 	}
   1123 }
   1124 
   1125 /*
   1126  * Initialize the interface.  Must be called at splnet.
   1127  */
   1128 static int
   1129 vr_init(struct ifnet *ifp)
   1130 {
   1131 	struct vr_softc *sc = ifp->if_softc;
   1132 	struct vr_desc *d;
   1133 	struct vr_descsoft *ds;
   1134 	int i, error = 0;
   1135 
   1136 	/* Cancel pending I/O. */
   1137 	vr_stop(ifp, 0);
   1138 
   1139 	/* Reset the Rhine to a known state. */
   1140 	vr_reset(sc);
   1141 
   1142 	/* set DMA length in BCR0 and BCR1 */
   1143 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1144 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1145 
   1146 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1147 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1148 
   1149 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1150 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1151 
   1152 	/* set DMA threshold length in RXCFG and TXCFG */
   1153 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1154 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1155 
   1156 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1157 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1158 
   1159 	/*
   1160 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1161 	 * to the end of the list so that it will wrap around to the first
   1162 	 * descriptor when the first packet is transmitted.
   1163 	 */
   1164 	for (i = 0; i < VR_NTXDESC; i++) {
   1165 		d = VR_CDTX(sc, i);
   1166 		memset(d, 0, sizeof(struct vr_desc));
   1167 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1168 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1169 	}
   1170 	sc->vr_txpending = 0;
   1171 	sc->vr_txdirty = 0;
   1172 	sc->vr_txlast = VR_NTXDESC - 1;
   1173 
   1174 	/*
   1175 	 * Initialize the receive descriptor ring.
   1176 	 */
   1177 	for (i = 0; i < VR_NRXDESC; i++) {
   1178 		ds = VR_DSRX(sc, i);
   1179 		if (ds->ds_mbuf == NULL) {
   1180 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1181 				printf("%s: unable to allocate or map rx "
   1182 				    "buffer %d, error = %d\n",
   1183 				    sc->vr_dev.dv_xname, i, error);
   1184 				/*
   1185 				 * XXX Should attempt to run with fewer receive
   1186 				 * XXX buffers instead of just failing.
   1187 				 */
   1188 				vr_rxdrain(sc);
   1189 				goto out;
   1190 			}
   1191 		} else
   1192 			VR_INIT_RXDESC(sc, i);
   1193 	}
   1194 	sc->vr_rxptr = 0;
   1195 
   1196 	/* If we want promiscuous mode, set the allframes bit. */
   1197 	if (ifp->if_flags & IFF_PROMISC)
   1198 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1199 	else
   1200 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1201 
   1202 	/* Set capture broadcast bit to capture broadcast frames. */
   1203 	if (ifp->if_flags & IFF_BROADCAST)
   1204 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1205 	else
   1206 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1207 
   1208 	/* Program the multicast filter, if necessary. */
   1209 	vr_setmulti(sc);
   1210 
   1211 	/* Give the transmit and receive rings to the Rhine. */
   1212 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1213 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1214 
   1215 	/* Set current media. */
   1216 	mii_mediachg(&sc->vr_mii);
   1217 
   1218 	/* Enable receiver and transmitter. */
   1219 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1220 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1221 				    VR_CMD_RX_GO);
   1222 
   1223 	/* Enable interrupts. */
   1224 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1225 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1226 
   1227 	ifp->if_flags |= IFF_RUNNING;
   1228 	ifp->if_flags &= ~IFF_OACTIVE;
   1229 
   1230 	/* Start one second timer. */
   1231 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1232 
   1233 	/* Attempt to start output on the interface. */
   1234 	vr_start(ifp);
   1235 
   1236  out:
   1237 	if (error)
   1238 		printf("%s: interface not running\n", sc->vr_dev.dv_xname);
   1239 	return (error);
   1240 }
   1241 
   1242 /*
   1243  * Set media options.
   1244  */
   1245 static int
   1246 vr_ifmedia_upd(struct ifnet *ifp)
   1247 {
   1248 	struct vr_softc *sc = ifp->if_softc;
   1249 
   1250 	if (ifp->if_flags & IFF_UP)
   1251 		mii_mediachg(&sc->vr_mii);
   1252 	return (0);
   1253 }
   1254 
   1255 /*
   1256  * Report current media status.
   1257  */
   1258 static void
   1259 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1260 {
   1261 	struct vr_softc *sc = ifp->if_softc;
   1262 
   1263 	mii_pollstat(&sc->vr_mii);
   1264 	ifmr->ifm_status = sc->vr_mii.mii_media_status;
   1265 	ifmr->ifm_active = sc->vr_mii.mii_media_active;
   1266 }
   1267 
   1268 static int
   1269 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1270 {
   1271 	struct vr_softc *sc = ifp->if_softc;
   1272 	struct ifreq *ifr = (struct ifreq *)data;
   1273 	int s, error = 0;
   1274 
   1275 	s = splnet();
   1276 
   1277 	switch (command) {
   1278 	case SIOCGIFMEDIA:
   1279 	case SIOCSIFMEDIA:
   1280 		error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
   1281 		break;
   1282 
   1283 	default:
   1284 		error = ether_ioctl(ifp, command, data);
   1285 		if (error == ENETRESET) {
   1286 			/*
   1287 			 * Multicast list has changed; set the hardware filter
   1288 			 * accordingly.
   1289 			 */
   1290 			if (ifp->if_flags & IFF_RUNNING)
   1291 				vr_setmulti(sc);
   1292 			error = 0;
   1293 		}
   1294 		break;
   1295 	}
   1296 
   1297 	splx(s);
   1298 	return (error);
   1299 }
   1300 
   1301 static void
   1302 vr_watchdog(struct ifnet *ifp)
   1303 {
   1304 	struct vr_softc *sc = ifp->if_softc;
   1305 
   1306 	printf("%s: device timeout\n", sc->vr_dev.dv_xname);
   1307 	ifp->if_oerrors++;
   1308 
   1309 	(void) vr_init(ifp);
   1310 }
   1311 
   1312 /*
   1313  * One second timer, used to tick MII.
   1314  */
   1315 static void
   1316 vr_tick(void *arg)
   1317 {
   1318 	struct vr_softc *sc = arg;
   1319 	int s;
   1320 
   1321 	s = splnet();
   1322 	mii_tick(&sc->vr_mii);
   1323 	splx(s);
   1324 
   1325 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1326 }
   1327 
   1328 /*
   1329  * Drain the receive queue.
   1330  */
   1331 static void
   1332 vr_rxdrain(struct vr_softc *sc)
   1333 {
   1334 	struct vr_descsoft *ds;
   1335 	int i;
   1336 
   1337 	for (i = 0; i < VR_NRXDESC; i++) {
   1338 		ds = VR_DSRX(sc, i);
   1339 		if (ds->ds_mbuf != NULL) {
   1340 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1341 			m_freem(ds->ds_mbuf);
   1342 			ds->ds_mbuf = NULL;
   1343 		}
   1344 	}
   1345 }
   1346 
   1347 /*
   1348  * Stop the adapter and free any mbufs allocated to the
   1349  * transmit lists.
   1350  */
   1351 static void
   1352 vr_stop(struct ifnet *ifp, int disable)
   1353 {
   1354 	struct vr_softc *sc = ifp->if_softc;
   1355 	struct vr_descsoft *ds;
   1356 	int i;
   1357 
   1358 	/* Cancel one second timer. */
   1359 	callout_stop(&sc->vr_tick_ch);
   1360 
   1361 	/* Down the MII. */
   1362 	mii_down(&sc->vr_mii);
   1363 
   1364 	ifp = &sc->vr_ec.ec_if;
   1365 	ifp->if_timer = 0;
   1366 
   1367 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1368 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1369 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1370 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1371 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1372 
   1373 	/*
   1374 	 * Release any queued transmit buffers.
   1375 	 */
   1376 	for (i = 0; i < VR_NTXDESC; i++) {
   1377 		ds = VR_DSTX(sc, i);
   1378 		if (ds->ds_mbuf != NULL) {
   1379 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1380 			m_freem(ds->ds_mbuf);
   1381 			ds->ds_mbuf = NULL;
   1382 		}
   1383 	}
   1384 
   1385 	if (disable)
   1386 		vr_rxdrain(sc);
   1387 
   1388 	/*
   1389 	 * Mark the interface down and cancel the watchdog timer.
   1390 	 */
   1391 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1392 	ifp->if_timer = 0;
   1393 }
   1394 
   1395 static int	vr_probe(struct device *, struct cfdata *, void *);
   1396 static void	vr_attach(struct device *, struct device *, void *);
   1397 static void	vr_shutdown(void *);
   1398 
   1399 CFATTACH_DECL(vr, sizeof (struct vr_softc),
   1400     vr_probe, vr_attach, NULL, NULL);
   1401 
   1402 static struct vr_type *
   1403 vr_lookup(struct pci_attach_args *pa)
   1404 {
   1405 	struct vr_type *vrt;
   1406 
   1407 	for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
   1408 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1409 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1410 			return (vrt);
   1411 	}
   1412 	return (NULL);
   1413 }
   1414 
   1415 static int
   1416 vr_probe(struct device *parent, struct cfdata *match, void *aux)
   1417 {
   1418 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1419 
   1420 	if (vr_lookup(pa) != NULL)
   1421 		return (1);
   1422 
   1423 	return (0);
   1424 }
   1425 
   1426 /*
   1427  * Stop all chip I/O so that the kernel's probe routines don't
   1428  * get confused by errant DMAs when rebooting.
   1429  */
   1430 static void
   1431 vr_shutdown(void *arg)
   1432 {
   1433 	struct vr_softc *sc = (struct vr_softc *)arg;
   1434 
   1435 	vr_stop(&sc->vr_ec.ec_if, 1);
   1436 }
   1437 
   1438 /*
   1439  * Attach the interface. Allocate softc structures, do ifmedia
   1440  * setup and ethernet/BPF attach.
   1441  */
   1442 static void
   1443 vr_attach(struct device *parent, struct device *self, void *aux)
   1444 {
   1445 	struct vr_softc *sc = (struct vr_softc *) self;
   1446 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1447 	bus_dma_segment_t seg;
   1448 	struct vr_type *vrt;
   1449 	u_int32_t pmreg, reg;
   1450 	struct ifnet *ifp;
   1451 	u_char eaddr[ETHER_ADDR_LEN];
   1452 	int i, rseg, error;
   1453 
   1454 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
   1455 #define	PCI_CONF_READ(r)	pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
   1456 
   1457 	callout_init(&sc->vr_tick_ch);
   1458 
   1459 	vrt = vr_lookup(pa);
   1460 	if (vrt == NULL) {
   1461 		printf("\n");
   1462 		panic("vr_attach: impossible");
   1463 	}
   1464 
   1465 	printf(": %s Ethernet\n", vrt->vr_name);
   1466 
   1467 	/*
   1468 	 * Handle power management nonsense.
   1469 	 */
   1470 
   1471 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
   1472 	    PCI_CAP_PWRMGMT, &pmreg, 0)) {
   1473 		reg = PCI_CONF_READ(pmreg + PCI_PMCSR);
   1474 		if ((reg & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_STATE_D0) {
   1475 			u_int32_t iobase, membase, irq;
   1476 
   1477 			/* Save important PCI config data. */
   1478 			iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1479 			membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1480 			irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1481 
   1482 			/* Reset the power state. */
   1483 			printf("%s: chip is in D%d power mode "
   1484 			    "-- setting to D0\n",
   1485 			    sc->vr_dev.dv_xname, reg & PCI_PMCSR_STATE_MASK);
   1486 			reg = (reg & ~PCI_PMCSR_STATE_MASK) |
   1487 			    PCI_PMCSR_STATE_D0;
   1488 			PCI_CONF_WRITE(pmreg + PCI_PMCSR, reg);
   1489 
   1490 			/* Restore PCI config data. */
   1491 			PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
   1492 			PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
   1493 			PCI_CONF_WRITE(PCI_INTERRUPT_REG, irq);
   1494 		}
   1495 	}
   1496 
   1497 	/* Make sure bus mastering is enabled. */
   1498 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1499 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1500 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1501 
   1502 	/* Get revision */
   1503 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1504 
   1505 	/*
   1506 	 * Map control/status registers.
   1507 	 */
   1508 	{
   1509 		bus_space_tag_t iot, memt;
   1510 		bus_space_handle_t ioh, memh;
   1511 		int ioh_valid, memh_valid;
   1512 		pci_intr_handle_t intrhandle;
   1513 		const char *intrstr;
   1514 
   1515 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1516 			PCI_MAPREG_TYPE_IO, 0,
   1517 			&iot, &ioh, NULL, NULL) == 0);
   1518 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1519 			PCI_MAPREG_TYPE_MEM |
   1520 			PCI_MAPREG_MEM_TYPE_32BIT,
   1521 			0, &memt, &memh, NULL, NULL) == 0);
   1522 #if defined(VR_USEIOSPACE)
   1523 		if (ioh_valid) {
   1524 			sc->vr_bst = iot;
   1525 			sc->vr_bsh = ioh;
   1526 		} else if (memh_valid) {
   1527 			sc->vr_bst = memt;
   1528 			sc->vr_bsh = memh;
   1529 		}
   1530 #else
   1531 		if (memh_valid) {
   1532 			sc->vr_bst = memt;
   1533 			sc->vr_bsh = memh;
   1534 		} else if (ioh_valid) {
   1535 			sc->vr_bst = iot;
   1536 			sc->vr_bsh = ioh;
   1537 		}
   1538 #endif
   1539 		else {
   1540 			printf(": unable to map device registers\n");
   1541 			return;
   1542 		}
   1543 
   1544 		/* Allocate interrupt */
   1545 		if (pci_intr_map(pa, &intrhandle)) {
   1546 			printf("%s: couldn't map interrupt\n",
   1547 				sc->vr_dev.dv_xname);
   1548 			return;
   1549 		}
   1550 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1551 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1552 						vr_intr, sc);
   1553 		if (sc->vr_ih == NULL) {
   1554 			printf("%s: couldn't establish interrupt",
   1555 				sc->vr_dev.dv_xname);
   1556 			if (intrstr != NULL)
   1557 				printf(" at %s", intrstr);
   1558 			printf("\n");
   1559 		}
   1560 		printf("%s: interrupting at %s\n",
   1561 			sc->vr_dev.dv_xname, intrstr);
   1562 	}
   1563 
   1564 	/*
   1565 	 * Windows may put the chip in suspend mode when it
   1566 	 * shuts down. Be sure to kick it in the head to wake it
   1567 	 * up again.
   1568 	 */
   1569 	VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1570 
   1571 	/* Reset the adapter. */
   1572 	vr_reset(sc);
   1573 
   1574 	/*
   1575 	 * Get station address. The way the Rhine chips work,
   1576 	 * you're not allowed to directly access the EEPROM once
   1577 	 * they've been programmed a special way. Consequently,
   1578 	 * we need to read the node address from the PAR0 and PAR1
   1579 	 * registers.
   1580 	 *
   1581 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1582 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1583 	 *         pretty pointless since the chip does this automatically
   1584 	 *         at powerup/reset.
   1585 	 *         I suspect the same thing applies to the other Rhine
   1586 	 *         variants, but in the absence of a data sheet for those
   1587 	 *         (and the lack of anyone else noticing the problems this
   1588 	 *         causes) I'm going to retain the old behaviour for the
   1589 	 *         other parts.
   1590 	 */
   1591 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1592 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102) {
   1593 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1594 		DELAY(200);
   1595 	}
   1596 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1597 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1598 
   1599 	/*
   1600 	 * A Rhine chip was detected. Inform the world.
   1601 	 */
   1602 	printf("%s: Ethernet address: %s\n",
   1603 		sc->vr_dev.dv_xname, ether_sprintf(eaddr));
   1604 
   1605 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1606 
   1607 	sc->vr_dmat = pa->pa_dmat;
   1608 
   1609 	/*
   1610 	 * Allocate the control data structures, and create and load
   1611 	 * the DMA map for it.
   1612 	 */
   1613 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1614 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1615 	    0)) != 0) {
   1616 		printf("%s: unable to allocate control data, error = %d\n",
   1617 		    sc->vr_dev.dv_xname, error);
   1618 		goto fail_0;
   1619 	}
   1620 
   1621 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1622 	    sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
   1623 	    BUS_DMA_COHERENT)) != 0) {
   1624 		printf("%s: unable to map control data, error = %d\n",
   1625 		    sc->vr_dev.dv_xname, error);
   1626 		goto fail_1;
   1627 	}
   1628 
   1629 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1630 	    sizeof(struct vr_control_data), 1,
   1631 	    sizeof(struct vr_control_data), 0, 0,
   1632 	    &sc->vr_cddmamap)) != 0) {
   1633 		printf("%s: unable to create control data DMA map, "
   1634 		    "error = %d\n", sc->vr_dev.dv_xname, error);
   1635 		goto fail_2;
   1636 	}
   1637 
   1638 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1639 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1640 	    0)) != 0) {
   1641 		printf("%s: unable to load control data DMA map, error = %d\n",
   1642 		    sc->vr_dev.dv_xname, error);
   1643 		goto fail_3;
   1644 	}
   1645 
   1646 	/*
   1647 	 * Create the transmit buffer DMA maps.
   1648 	 */
   1649 	for (i = 0; i < VR_NTXDESC; i++) {
   1650 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1651 		    1, MCLBYTES, 0, 0,
   1652 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1653 			printf("%s: unable to create tx DMA map %d, "
   1654 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1655 			goto fail_4;
   1656 		}
   1657 	}
   1658 
   1659 	/*
   1660 	 * Create the receive buffer DMA maps.
   1661 	 */
   1662 	for (i = 0; i < VR_NRXDESC; i++) {
   1663 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1664 		    MCLBYTES, 0, 0,
   1665 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1666 			printf("%s: unable to create rx DMA map %d, "
   1667 			    "error = %d\n", sc->vr_dev.dv_xname, i, error);
   1668 			goto fail_5;
   1669 		}
   1670 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1671 	}
   1672 
   1673 	ifp = &sc->vr_ec.ec_if;
   1674 	ifp->if_softc = sc;
   1675 	ifp->if_mtu = ETHERMTU;
   1676 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1677 	ifp->if_ioctl = vr_ioctl;
   1678 	ifp->if_start = vr_start;
   1679 	ifp->if_watchdog = vr_watchdog;
   1680 	ifp->if_init = vr_init;
   1681 	ifp->if_stop = vr_stop;
   1682 	IFQ_SET_READY(&ifp->if_snd);
   1683 
   1684 	strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
   1685 
   1686 	/*
   1687 	 * Initialize MII/media info.
   1688 	 */
   1689 	sc->vr_mii.mii_ifp = ifp;
   1690 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1691 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1692 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1693 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
   1694 		vr_ifmedia_sts);
   1695 	mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1696 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1697 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1698 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1699 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1700 	} else
   1701 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1702 
   1703 	/*
   1704 	 * Call MI attach routines.
   1705 	 */
   1706 	if_attach(ifp);
   1707 	ether_ifattach(ifp, sc->vr_enaddr);
   1708 #if NRND > 0
   1709 	rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
   1710 	    RND_TYPE_NET, 0);
   1711 #endif
   1712 
   1713 	sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
   1714 	if (sc->vr_ats == NULL)
   1715 		printf("%s: warning: couldn't establish shutdown hook\n",
   1716 			sc->vr_dev.dv_xname);
   1717 	return;
   1718 
   1719  fail_5:
   1720 	for (i = 0; i < VR_NRXDESC; i++) {
   1721 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1722 			bus_dmamap_destroy(sc->vr_dmat,
   1723 			    sc->vr_rxsoft[i].ds_dmamap);
   1724 	}
   1725  fail_4:
   1726 	for (i = 0; i < VR_NTXDESC; i++) {
   1727 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1728 			bus_dmamap_destroy(sc->vr_dmat,
   1729 			    sc->vr_txsoft[i].ds_dmamap);
   1730 	}
   1731 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1732  fail_3:
   1733 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1734  fail_2:
   1735 	bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
   1736 	    sizeof(struct vr_control_data));
   1737  fail_1:
   1738 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1739  fail_0:
   1740 	return;
   1741 }
   1742