if_vr.c revision 1.78 1 /* $NetBSD: if_vr.c,v 1.78 2006/10/20 10:31:06 scw Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.78 2006/10/20 10:31:06 scw Exp $");
108
109 #include "rnd.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124
125 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137
138 #include <machine/bus.h>
139 #include <machine/intr.h>
140 #include <machine/endian.h>
141
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/pci/if_vrreg.h>
151
152 #define VR_USEIOSPACE
153
154 /*
155 * Various supported device vendors/types and their names.
156 */
157 static struct vr_type {
158 pci_vendor_id_t vr_vid;
159 pci_product_id_t vr_did;
160 const char *vr_name;
161 } vr_devs[] = {
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 "VIA VT3043 (Rhine) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 "VIA VT6102 (Rhine II) 10/100" },
166 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 "VIA VT6105 (Rhine III) 10/100" },
168 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
169 "VIA VT86C100A (Rhine-II) 10/100" },
170 { 0, 0, NULL }
171 };
172
173 /*
174 * Transmit descriptor list size.
175 */
176 #define VR_NTXDESC 64
177 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
178 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
179
180 /*
181 * Receive descriptor list size.
182 */
183 #define VR_NRXDESC 64
184 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
185 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
186
187 /*
188 * Control data structres that are DMA'd to the Rhine chip. We allocate
189 * them in a single clump that maps to a single DMA segment to make several
190 * things easier.
191 *
192 * Note that since we always copy outgoing packets to aligned transmit
193 * buffers, we can reduce the transmit descriptors to one per packet.
194 */
195 struct vr_control_data {
196 struct vr_desc vr_txdescs[VR_NTXDESC];
197 struct vr_desc vr_rxdescs[VR_NRXDESC];
198 };
199
200 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
201 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
202 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
203
204 /*
205 * Software state of transmit and receive descriptors.
206 */
207 struct vr_descsoft {
208 struct mbuf *ds_mbuf; /* head of mbuf chain */
209 bus_dmamap_t ds_dmamap; /* our DMA map */
210 };
211
212 struct vr_softc {
213 struct device vr_dev; /* generic device glue */
214 void *vr_ih; /* interrupt cookie */
215 void *vr_ats; /* shutdown hook */
216 bus_space_tag_t vr_bst; /* bus space tag */
217 bus_space_handle_t vr_bsh; /* bus space handle */
218 bus_dma_tag_t vr_dmat; /* bus DMA tag */
219 pci_chipset_tag_t vr_pc; /* PCI chipset info */
220 pcitag_t vr_tag; /* PCI tag */
221 struct ethercom vr_ec; /* Ethernet common info */
222 u_int8_t vr_enaddr[ETHER_ADDR_LEN];
223 struct mii_data vr_mii; /* MII/media info */
224
225 u_int8_t vr_revid; /* Rhine chip revision */
226
227 struct callout vr_tick_ch; /* tick callout */
228
229 bus_dmamap_t vr_cddmamap; /* control data DMA map */
230 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
231
232 /*
233 * Software state for transmit and receive descriptors.
234 */
235 struct vr_descsoft vr_txsoft[VR_NTXDESC];
236 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
237
238 /*
239 * Control data structures.
240 */
241 struct vr_control_data *vr_control_data;
242
243 int vr_txpending; /* number of TX requests pending */
244 int vr_txdirty; /* first dirty TX descriptor */
245 int vr_txlast; /* last used TX descriptor */
246
247 int vr_rxptr; /* next ready RX descriptor */
248
249 u_int32_t vr_save_iobase;
250 u_int32_t vr_save_membase;
251 u_int32_t vr_save_irq;
252
253 #if NRND > 0
254 rndsource_element_t rnd_source; /* random source */
255 #endif
256 };
257
258 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
259 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
260
261 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
262 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
263
264 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
265 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
266
267 #define VR_CDTXSYNC(sc, x, ops) \
268 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
269 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
270
271 #define VR_CDRXSYNC(sc, x, ops) \
272 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
273 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
274
275 /*
276 * Note we rely on MCLBYTES being a power of two below.
277 */
278 #define VR_INIT_RXDESC(sc, i) \
279 do { \
280 struct vr_desc *__d = VR_CDRX((sc), (i)); \
281 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
282 \
283 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
284 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
285 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
286 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
287 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
288 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
289 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (/* CONSTCOND */ 0)
291
292 /*
293 * register space access macros
294 */
295 #define CSR_WRITE_4(sc, reg, val) \
296 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
297 #define CSR_WRITE_2(sc, reg, val) \
298 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
299 #define CSR_WRITE_1(sc, reg, val) \
300 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
301
302 #define CSR_READ_4(sc, reg) \
303 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
304 #define CSR_READ_2(sc, reg) \
305 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
306 #define CSR_READ_1(sc, reg) \
307 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
308
309 #define VR_TIMEOUT 1000
310
311 static int vr_add_rxbuf(struct vr_softc *, int);
312
313 static void vr_rxeof(struct vr_softc *);
314 static void vr_rxeoc(struct vr_softc *);
315 static void vr_txeof(struct vr_softc *);
316 static int vr_intr(void *);
317 static void vr_start(struct ifnet *);
318 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
319 static int vr_init(struct ifnet *);
320 static void vr_stop(struct ifnet *, int);
321 static void vr_rxdrain(struct vr_softc *);
322 static void vr_watchdog(struct ifnet *);
323 static void vr_tick(void *);
324
325 static int vr_ifmedia_upd(struct ifnet *);
326 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
327
328 static int vr_mii_readreg(struct device *, int, int);
329 static void vr_mii_writereg(struct device *, int, int, int);
330 static void vr_mii_statchg(struct device *);
331
332 static void vr_setmulti(struct vr_softc *);
333 static void vr_reset(struct vr_softc *);
334 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, void *, pcireg_t);
335
336 int vr_copy_small = 0;
337
338 #define VR_SETBIT(sc, reg, x) \
339 CSR_WRITE_1(sc, reg, \
340 CSR_READ_1(sc, reg) | (x))
341
342 #define VR_CLRBIT(sc, reg, x) \
343 CSR_WRITE_1(sc, reg, \
344 CSR_READ_1(sc, reg) & ~(x))
345
346 #define VR_SETBIT16(sc, reg, x) \
347 CSR_WRITE_2(sc, reg, \
348 CSR_READ_2(sc, reg) | (x))
349
350 #define VR_CLRBIT16(sc, reg, x) \
351 CSR_WRITE_2(sc, reg, \
352 CSR_READ_2(sc, reg) & ~(x))
353
354 #define VR_SETBIT32(sc, reg, x) \
355 CSR_WRITE_4(sc, reg, \
356 CSR_READ_4(sc, reg) | (x))
357
358 #define VR_CLRBIT32(sc, reg, x) \
359 CSR_WRITE_4(sc, reg, \
360 CSR_READ_4(sc, reg) & ~(x))
361
362 /*
363 * MII bit-bang glue.
364 */
365 static u_int32_t vr_mii_bitbang_read(struct device *);
366 static void vr_mii_bitbang_write(struct device *, u_int32_t);
367
368 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
369 vr_mii_bitbang_read,
370 vr_mii_bitbang_write,
371 {
372 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
373 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
374 VR_MIICMD_CLK, /* MII_BIT_MDC */
375 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
376 0, /* MII_BIT_DIR_PHY_HOST */
377 }
378 };
379
380 static u_int32_t
381 vr_mii_bitbang_read(struct device *self)
382 {
383 struct vr_softc *sc = (void *) self;
384
385 return (CSR_READ_1(sc, VR_MIICMD));
386 }
387
388 static void
389 vr_mii_bitbang_write(struct device *self, u_int32_t val)
390 {
391 struct vr_softc *sc = (void *) self;
392
393 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
394 }
395
396 /*
397 * Read an PHY register through the MII.
398 */
399 static int
400 vr_mii_readreg(struct device *self, int phy, int reg)
401 {
402 struct vr_softc *sc = (void *) self;
403
404 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
405 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
406 }
407
408 /*
409 * Write to a PHY register through the MII.
410 */
411 static void
412 vr_mii_writereg(struct device *self, int phy, int reg, int val)
413 {
414 struct vr_softc *sc = (void *) self;
415
416 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
417 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
418 }
419
420 static void
421 vr_mii_statchg(struct device *self)
422 {
423 struct vr_softc *sc = (struct vr_softc *)self;
424
425 /*
426 * In order to fiddle with the 'full-duplex' bit in the netconfig
427 * register, we first have to put the transmit and/or receive logic
428 * in the idle state.
429 */
430 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
431
432 if (sc->vr_mii.mii_media_active & IFM_FDX)
433 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
434 else
435 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
436
437 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
438 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
439 }
440
441 #define vr_calchash(addr) \
442 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
443
444 /*
445 * Program the 64-bit multicast hash filter.
446 */
447 static void
448 vr_setmulti(struct vr_softc *sc)
449 {
450 struct ifnet *ifp;
451 int h = 0;
452 u_int32_t hashes[2] = { 0, 0 };
453 struct ether_multistep step;
454 struct ether_multi *enm;
455 int mcnt = 0;
456 u_int8_t rxfilt;
457
458 ifp = &sc->vr_ec.ec_if;
459
460 rxfilt = CSR_READ_1(sc, VR_RXCFG);
461
462 if (ifp->if_flags & IFF_PROMISC) {
463 allmulti:
464 ifp->if_flags |= IFF_ALLMULTI;
465 rxfilt |= VR_RXCFG_RX_MULTI;
466 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
467 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
468 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
469 return;
470 }
471
472 /* first, zot all the existing hash bits */
473 CSR_WRITE_4(sc, VR_MAR0, 0);
474 CSR_WRITE_4(sc, VR_MAR1, 0);
475
476 /* now program new ones */
477 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
478 while (enm != NULL) {
479 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
480 ETHER_ADDR_LEN) != 0)
481 goto allmulti;
482
483 h = vr_calchash(enm->enm_addrlo);
484
485 if (h < 32)
486 hashes[0] |= (1 << h);
487 else
488 hashes[1] |= (1 << (h - 32));
489 ETHER_NEXT_MULTI(step, enm);
490 mcnt++;
491 }
492
493 ifp->if_flags &= ~IFF_ALLMULTI;
494
495 if (mcnt)
496 rxfilt |= VR_RXCFG_RX_MULTI;
497 else
498 rxfilt &= ~VR_RXCFG_RX_MULTI;
499
500 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
501 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
502 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
503 }
504
505 static void
506 vr_reset(struct vr_softc *sc)
507 {
508 int i;
509
510 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
511
512 for (i = 0; i < VR_TIMEOUT; i++) {
513 DELAY(10);
514 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
515 break;
516 }
517 if (i == VR_TIMEOUT) {
518 if (sc->vr_revid < REV_ID_VT3065_A) {
519 printf("%s: reset never completed!\n",
520 sc->vr_dev.dv_xname);
521 } else {
522 /* Use newer force reset command */
523 printf("%s: using force reset command.\n",
524 sc->vr_dev.dv_xname);
525 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
526 }
527 }
528
529 /* Wait a little while for the chip to get its brains in order. */
530 DELAY(1000);
531 }
532
533 /*
534 * Initialize an RX descriptor and attach an MBUF cluster.
535 * Note: the length fields are only 11 bits wide, which means the
536 * largest size we can specify is 2047. This is important because
537 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
538 * overflow the field and make a mess.
539 */
540 static int
541 vr_add_rxbuf(struct vr_softc *sc, int i)
542 {
543 struct vr_descsoft *ds = VR_DSRX(sc, i);
544 struct mbuf *m_new;
545 int error;
546
547 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
548 if (m_new == NULL)
549 return (ENOBUFS);
550
551 MCLGET(m_new, M_DONTWAIT);
552 if ((m_new->m_flags & M_EXT) == 0) {
553 m_freem(m_new);
554 return (ENOBUFS);
555 }
556
557 if (ds->ds_mbuf != NULL)
558 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
559
560 ds->ds_mbuf = m_new;
561
562 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
563 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
564 BUS_DMA_READ|BUS_DMA_NOWAIT);
565 if (error) {
566 printf("%s: unable to load rx DMA map %d, error = %d\n",
567 sc->vr_dev.dv_xname, i, error);
568 panic("vr_add_rxbuf"); /* XXX */
569 }
570
571 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
572 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
573
574 VR_INIT_RXDESC(sc, i);
575
576 return (0);
577 }
578
579 /*
580 * A frame has been uploaded: pass the resulting mbuf chain up to
581 * the higher level protocols.
582 */
583 static void
584 vr_rxeof(struct vr_softc *sc)
585 {
586 struct mbuf *m;
587 struct ifnet *ifp;
588 struct vr_desc *d;
589 struct vr_descsoft *ds;
590 int i, total_len;
591 u_int32_t rxstat;
592
593 ifp = &sc->vr_ec.ec_if;
594
595 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
596 d = VR_CDRX(sc, i);
597 ds = VR_DSRX(sc, i);
598
599 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
600
601 rxstat = le32toh(d->vr_status);
602
603 if (rxstat & VR_RXSTAT_OWN) {
604 /*
605 * We have processed all of the receive buffers.
606 */
607 break;
608 }
609
610 /*
611 * If an error occurs, update stats, clear the
612 * status word and leave the mbuf cluster in place:
613 * it should simply get re-used next time this descriptor
614 * comes up in the ring.
615 */
616 if (rxstat & VR_RXSTAT_RXERR) {
617 const char *errstr;
618
619 ifp->if_ierrors++;
620 switch (rxstat & 0x000000FF) {
621 case VR_RXSTAT_CRCERR:
622 errstr = "crc error";
623 break;
624 case VR_RXSTAT_FRAMEALIGNERR:
625 errstr = "frame alignment error";
626 break;
627 case VR_RXSTAT_FIFOOFLOW:
628 errstr = "FIFO overflow";
629 break;
630 case VR_RXSTAT_GIANT:
631 errstr = "received giant packet";
632 break;
633 case VR_RXSTAT_RUNT:
634 errstr = "received runt packet";
635 break;
636 case VR_RXSTAT_BUSERR:
637 errstr = "system bus error";
638 break;
639 case VR_RXSTAT_BUFFERR:
640 errstr = "rx buffer error";
641 break;
642 default:
643 errstr = "unknown rx error";
644 break;
645 }
646 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
647 errstr);
648
649 VR_INIT_RXDESC(sc, i);
650
651 continue;
652 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
653 !(rxstat & VR_RXSTAT_LASTFRAG)) {
654 /*
655 * This driver expects to receive whole packets every
656 * time. In case we receive a fragment that is not
657 * a complete packet, we discard it.
658 */
659 ifp->if_ierrors++;
660
661 printf("%s: receive error: incomplete frame; "
662 "size = %d, status = 0x%x\n",
663 sc->vr_dev.dv_xname,
664 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
665
666 VR_INIT_RXDESC(sc, i);
667
668 continue;
669 }
670
671 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
672 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
673
674 /* No errors; receive the packet. */
675 total_len = VR_RXBYTES(le32toh(d->vr_status));
676 #ifdef DIAGNOSTIC
677 if (total_len == 0) {
678 /*
679 * If we receive a zero-length packet, we probably
680 * missed to handle an error condition above.
681 * Discard it to avoid a later crash.
682 */
683 ifp->if_ierrors++;
684
685 printf("%s: receive error: zero-length packet; "
686 "status = 0x%x\n",
687 sc->vr_dev.dv_xname, rxstat);
688
689 VR_INIT_RXDESC(sc, i);
690
691 continue;
692 }
693 #endif
694
695 /*
696 * The Rhine chip includes the CRC with every packet.
697 * Trim it off here.
698 */
699 total_len -= ETHER_CRC_LEN;
700
701 #ifdef __NO_STRICT_ALIGNMENT
702 /*
703 * If the packet is small enough to fit in a
704 * single header mbuf, allocate one and copy
705 * the data into it. This greatly reduces
706 * memory consumption when we receive lots
707 * of small packets.
708 *
709 * Otherwise, we add a new buffer to the receive
710 * chain. If this fails, we drop the packet and
711 * recycle the old buffer.
712 */
713 if (vr_copy_small != 0 && total_len <= MHLEN) {
714 MGETHDR(m, M_DONTWAIT, MT_DATA);
715 if (m == NULL)
716 goto dropit;
717 memcpy(mtod(m, caddr_t),
718 mtod(ds->ds_mbuf, caddr_t), total_len);
719 VR_INIT_RXDESC(sc, i);
720 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
721 ds->ds_dmamap->dm_mapsize,
722 BUS_DMASYNC_PREREAD);
723 } else {
724 m = ds->ds_mbuf;
725 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
726 dropit:
727 ifp->if_ierrors++;
728 VR_INIT_RXDESC(sc, i);
729 bus_dmamap_sync(sc->vr_dmat,
730 ds->ds_dmamap, 0,
731 ds->ds_dmamap->dm_mapsize,
732 BUS_DMASYNC_PREREAD);
733 continue;
734 }
735 }
736 #else
737 /*
738 * The Rhine's packet buffers must be 4-byte aligned.
739 * But this means that the data after the Ethernet header
740 * is misaligned. We must allocate a new buffer and
741 * copy the data, shifted forward 2 bytes.
742 */
743 MGETHDR(m, M_DONTWAIT, MT_DATA);
744 if (m == NULL) {
745 dropit:
746 ifp->if_ierrors++;
747 VR_INIT_RXDESC(sc, i);
748 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
749 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
750 continue;
751 }
752 if (total_len > (MHLEN - 2)) {
753 MCLGET(m, M_DONTWAIT);
754 if ((m->m_flags & M_EXT) == 0) {
755 m_freem(m);
756 goto dropit;
757 }
758 }
759 m->m_data += 2;
760
761 /*
762 * Note that we use clusters for incoming frames, so the
763 * buffer is virtually contiguous.
764 */
765 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
766 total_len);
767
768 /* Allow the receive descriptor to continue using its mbuf. */
769 VR_INIT_RXDESC(sc, i);
770 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
771 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
772 #endif /* __NO_STRICT_ALIGNMENT */
773
774 ifp->if_ipackets++;
775 m->m_pkthdr.rcvif = ifp;
776 m->m_pkthdr.len = m->m_len = total_len;
777 #if NBPFILTER > 0
778 /*
779 * Handle BPF listeners. Let the BPF user see the packet, but
780 * don't pass it up to the ether_input() layer unless it's
781 * a broadcast packet, multicast packet, matches our ethernet
782 * address or the interface is in promiscuous mode.
783 */
784 if (ifp->if_bpf)
785 bpf_mtap(ifp->if_bpf, m);
786 #endif
787 /* Pass it on. */
788 (*ifp->if_input)(ifp, m);
789 }
790
791 /* Update the receive pointer. */
792 sc->vr_rxptr = i;
793 }
794
795 void
796 vr_rxeoc(struct vr_softc *sc)
797 {
798
799 vr_rxeof(sc);
800 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
801 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
802 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
803 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
804 }
805
806 /*
807 * A frame was downloaded to the chip. It's safe for us to clean up
808 * the list buffers.
809 */
810 static void
811 vr_txeof(struct vr_softc *sc)
812 {
813 struct ifnet *ifp = &sc->vr_ec.ec_if;
814 struct vr_desc *d;
815 struct vr_descsoft *ds;
816 u_int32_t txstat;
817 int i;
818
819 ifp->if_flags &= ~IFF_OACTIVE;
820
821 /*
822 * Go through our tx list and free mbufs for those
823 * frames that have been transmitted.
824 */
825 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
826 i = VR_NEXTTX(i), sc->vr_txpending--) {
827 d = VR_CDTX(sc, i);
828 ds = VR_DSTX(sc, i);
829
830 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
831
832 txstat = le32toh(d->vr_status);
833 if (txstat & VR_TXSTAT_OWN)
834 break;
835
836 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
837 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
838 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
839 m_freem(ds->ds_mbuf);
840 ds->ds_mbuf = NULL;
841
842 if (txstat & VR_TXSTAT_ERRSUM) {
843 ifp->if_oerrors++;
844 if (txstat & VR_TXSTAT_DEFER)
845 ifp->if_collisions++;
846 if (txstat & VR_TXSTAT_LATECOLL)
847 ifp->if_collisions++;
848 }
849
850 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
851 ifp->if_opackets++;
852 }
853
854 /* Update the dirty transmit buffer pointer. */
855 sc->vr_txdirty = i;
856
857 /*
858 * Cancel the watchdog timer if there are no pending
859 * transmissions.
860 */
861 if (sc->vr_txpending == 0)
862 ifp->if_timer = 0;
863 }
864
865 static int
866 vr_intr(void *arg)
867 {
868 struct vr_softc *sc;
869 struct ifnet *ifp;
870 u_int16_t status;
871 int handled = 0, dotx = 0;
872
873 sc = arg;
874 ifp = &sc->vr_ec.ec_if;
875
876 /* Suppress unwanted interrupts. */
877 if ((ifp->if_flags & IFF_UP) == 0) {
878 vr_stop(ifp, 1);
879 return (0);
880 }
881
882 /* Disable interrupts. */
883 CSR_WRITE_2(sc, VR_IMR, 0x0000);
884
885 for (;;) {
886 status = CSR_READ_2(sc, VR_ISR);
887 if (status)
888 CSR_WRITE_2(sc, VR_ISR, status);
889
890 if ((status & VR_INTRS) == 0)
891 break;
892
893 handled = 1;
894
895 #if NRND > 0
896 if (RND_ENABLED(&sc->rnd_source))
897 rnd_add_uint32(&sc->rnd_source, status);
898 #endif
899
900 if (status & VR_ISR_RX_OK)
901 vr_rxeof(sc);
902
903 if (status &
904 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
905 VR_ISR_RX_DROPPED))
906 vr_rxeoc(sc);
907
908 if (status & VR_ISR_TX_OK) {
909 dotx = 1;
910 vr_txeof(sc);
911 }
912
913 if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
914 if (status & VR_ISR_TX_UNDERRUN)
915 printf("%s: transmit underrun\n",
916 sc->vr_dev.dv_xname);
917 if (status & VR_ISR_TX_ABRT)
918 printf("%s: transmit aborted\n",
919 sc->vr_dev.dv_xname);
920 ifp->if_oerrors++;
921 dotx = 1;
922 vr_txeof(sc);
923 if (sc->vr_txpending) {
924 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
925 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
926 }
927 /*
928 * Unfortunately many cards get stuck after
929 * aborted transmits, so we reset them.
930 */
931 if (status & VR_ISR_TX_ABRT) {
932 printf("%s: restarting\n", sc->vr_dev.dv_xname);
933 dotx = 0;
934 (void) vr_init(ifp);
935 }
936 }
937
938 if (status & VR_ISR_BUSERR) {
939 printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
940 /* vr_init() calls vr_start() */
941 dotx = 0;
942 (void) vr_init(ifp);
943 }
944 }
945
946 /* Re-enable interrupts. */
947 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
948
949 if (dotx)
950 vr_start(ifp);
951
952 return (handled);
953 }
954
955 /*
956 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
957 * to the mbuf data regions directly in the transmit lists. We also save a
958 * copy of the pointers since the transmit list fragment pointers are
959 * physical addresses.
960 */
961 static void
962 vr_start(struct ifnet *ifp)
963 {
964 struct vr_softc *sc = ifp->if_softc;
965 struct mbuf *m0, *m;
966 struct vr_desc *d;
967 struct vr_descsoft *ds;
968 int error, firsttx, nexttx, opending;
969
970 /*
971 * Remember the previous txpending and the first transmit
972 * descriptor we use.
973 */
974 opending = sc->vr_txpending;
975 firsttx = VR_NEXTTX(sc->vr_txlast);
976
977 /*
978 * Loop through the send queue, setting up transmit descriptors
979 * until we drain the queue, or use up all available transmit
980 * descriptors.
981 */
982 while (sc->vr_txpending < VR_NTXDESC) {
983 /*
984 * Grab a packet off the queue.
985 */
986 IFQ_POLL(&ifp->if_snd, m0);
987 if (m0 == NULL)
988 break;
989 m = NULL;
990
991 /*
992 * Get the next available transmit descriptor.
993 */
994 nexttx = VR_NEXTTX(sc->vr_txlast);
995 d = VR_CDTX(sc, nexttx);
996 ds = VR_DSTX(sc, nexttx);
997
998 /*
999 * Load the DMA map. If this fails, the packet didn't
1000 * fit in one DMA segment, and we need to copy. Note,
1001 * the packet must also be aligned.
1002 * if the packet is too small, copy it too, so we're sure
1003 * we have enough room for the pad buffer.
1004 */
1005 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1006 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1007 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1008 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1009 MGETHDR(m, M_DONTWAIT, MT_DATA);
1010 if (m == NULL) {
1011 printf("%s: unable to allocate Tx mbuf\n",
1012 sc->vr_dev.dv_xname);
1013 break;
1014 }
1015 if (m0->m_pkthdr.len > MHLEN) {
1016 MCLGET(m, M_DONTWAIT);
1017 if ((m->m_flags & M_EXT) == 0) {
1018 printf("%s: unable to allocate Tx "
1019 "cluster\n", sc->vr_dev.dv_xname);
1020 m_freem(m);
1021 break;
1022 }
1023 }
1024 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1025 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1026 /*
1027 * The Rhine doesn't auto-pad, so we have to do this
1028 * ourselves.
1029 */
1030 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1031 memset(mtod(m, caddr_t) + m0->m_pkthdr.len,
1032 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1033 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1034 }
1035 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1036 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1037 if (error) {
1038 m_freem(m);
1039 printf("%s: unable to load Tx buffer, "
1040 "error = %d\n", sc->vr_dev.dv_xname, error);
1041 break;
1042 }
1043 }
1044
1045 IFQ_DEQUEUE(&ifp->if_snd, m0);
1046 if (m != NULL) {
1047 m_freem(m0);
1048 m0 = m;
1049 }
1050
1051 /* Sync the DMA map. */
1052 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1053 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1054
1055 /*
1056 * Store a pointer to the packet so we can free it later.
1057 */
1058 ds->ds_mbuf = m0;
1059
1060 #if NBPFILTER > 0
1061 /*
1062 * If there's a BPF listener, bounce a copy of this frame
1063 * to him.
1064 */
1065 if (ifp->if_bpf)
1066 bpf_mtap(ifp->if_bpf, m0);
1067 #endif
1068
1069 /*
1070 * Fill in the transmit descriptor.
1071 */
1072 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1073 d->vr_ctl = htole32(m0->m_pkthdr.len);
1074 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1075
1076 /*
1077 * If this is the first descriptor we're enqueuing,
1078 * don't give it to the Rhine yet. That could cause
1079 * a race condition. We'll do it below.
1080 */
1081 if (nexttx == firsttx)
1082 d->vr_status = 0;
1083 else
1084 d->vr_status = htole32(VR_TXSTAT_OWN);
1085
1086 VR_CDTXSYNC(sc, nexttx,
1087 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1088
1089 /* Advance the tx pointer. */
1090 sc->vr_txpending++;
1091 sc->vr_txlast = nexttx;
1092 }
1093
1094 if (sc->vr_txpending == VR_NTXDESC) {
1095 /* No more slots left; notify upper layer. */
1096 ifp->if_flags |= IFF_OACTIVE;
1097 }
1098
1099 if (sc->vr_txpending != opending) {
1100 /*
1101 * We enqueued packets. If the transmitter was idle,
1102 * reset the txdirty pointer.
1103 */
1104 if (opending == 0)
1105 sc->vr_txdirty = firsttx;
1106
1107 /*
1108 * Cause a transmit interrupt to happen on the
1109 * last packet we enqueued.
1110 */
1111 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1112 VR_CDTXSYNC(sc, sc->vr_txlast,
1113 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1114
1115 /*
1116 * The entire packet chain is set up. Give the
1117 * first descriptor to the Rhine now.
1118 */
1119 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1120 VR_CDTXSYNC(sc, firsttx,
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122
1123 /* Start the transmitter. */
1124 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1125
1126 /* Set the watchdog timer in case the chip flakes out. */
1127 ifp->if_timer = 5;
1128 }
1129 }
1130
1131 /*
1132 * Initialize the interface. Must be called at splnet.
1133 */
1134 static int
1135 vr_init(struct ifnet *ifp)
1136 {
1137 struct vr_softc *sc = ifp->if_softc;
1138 struct vr_desc *d;
1139 struct vr_descsoft *ds;
1140 int i, error = 0;
1141
1142 /* Cancel pending I/O. */
1143 vr_stop(ifp, 0);
1144
1145 /* Reset the Rhine to a known state. */
1146 vr_reset(sc);
1147
1148 /* set DMA length in BCR0 and BCR1 */
1149 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1150 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1151
1152 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1153 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1154
1155 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1156 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1157
1158 /* set DMA threshold length in RXCFG and TXCFG */
1159 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1160 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1161
1162 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1163 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1164
1165 /*
1166 * Initialize the transmit descriptor ring. txlast is initialized
1167 * to the end of the list so that it will wrap around to the first
1168 * descriptor when the first packet is transmitted.
1169 */
1170 for (i = 0; i < VR_NTXDESC; i++) {
1171 d = VR_CDTX(sc, i);
1172 memset(d, 0, sizeof(struct vr_desc));
1173 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1174 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1175 }
1176 sc->vr_txpending = 0;
1177 sc->vr_txdirty = 0;
1178 sc->vr_txlast = VR_NTXDESC - 1;
1179
1180 /*
1181 * Initialize the receive descriptor ring.
1182 */
1183 for (i = 0; i < VR_NRXDESC; i++) {
1184 ds = VR_DSRX(sc, i);
1185 if (ds->ds_mbuf == NULL) {
1186 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1187 printf("%s: unable to allocate or map rx "
1188 "buffer %d, error = %d\n",
1189 sc->vr_dev.dv_xname, i, error);
1190 /*
1191 * XXX Should attempt to run with fewer receive
1192 * XXX buffers instead of just failing.
1193 */
1194 vr_rxdrain(sc);
1195 goto out;
1196 }
1197 } else
1198 VR_INIT_RXDESC(sc, i);
1199 }
1200 sc->vr_rxptr = 0;
1201
1202 /* If we want promiscuous mode, set the allframes bit. */
1203 if (ifp->if_flags & IFF_PROMISC)
1204 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1205 else
1206 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1207
1208 /* Set capture broadcast bit to capture broadcast frames. */
1209 if (ifp->if_flags & IFF_BROADCAST)
1210 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1211 else
1212 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1213
1214 /* Program the multicast filter, if necessary. */
1215 vr_setmulti(sc);
1216
1217 /* Give the transmit and receive rings to the Rhine. */
1218 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1219 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1220
1221 /* Set current media. */
1222 mii_mediachg(&sc->vr_mii);
1223
1224 /* Enable receiver and transmitter. */
1225 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1226 VR_CMD_TX_ON|VR_CMD_RX_ON|
1227 VR_CMD_RX_GO);
1228
1229 /* Enable interrupts. */
1230 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1231 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1232
1233 ifp->if_flags |= IFF_RUNNING;
1234 ifp->if_flags &= ~IFF_OACTIVE;
1235
1236 /* Start one second timer. */
1237 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1238
1239 /* Attempt to start output on the interface. */
1240 vr_start(ifp);
1241
1242 out:
1243 if (error)
1244 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1245 return (error);
1246 }
1247
1248 /*
1249 * Set media options.
1250 */
1251 static int
1252 vr_ifmedia_upd(struct ifnet *ifp)
1253 {
1254 struct vr_softc *sc = ifp->if_softc;
1255
1256 if (ifp->if_flags & IFF_UP)
1257 mii_mediachg(&sc->vr_mii);
1258 return (0);
1259 }
1260
1261 /*
1262 * Report current media status.
1263 */
1264 static void
1265 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1266 {
1267 struct vr_softc *sc = ifp->if_softc;
1268
1269 mii_pollstat(&sc->vr_mii);
1270 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1271 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1272 }
1273
1274 static int
1275 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1276 {
1277 struct vr_softc *sc = ifp->if_softc;
1278 struct ifreq *ifr = (struct ifreq *)data;
1279 int s, error = 0;
1280
1281 s = splnet();
1282
1283 switch (command) {
1284 case SIOCGIFMEDIA:
1285 case SIOCSIFMEDIA:
1286 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1287 break;
1288
1289 default:
1290 error = ether_ioctl(ifp, command, data);
1291 if (error == ENETRESET) {
1292 /*
1293 * Multicast list has changed; set the hardware filter
1294 * accordingly.
1295 */
1296 if (ifp->if_flags & IFF_RUNNING)
1297 vr_setmulti(sc);
1298 error = 0;
1299 }
1300 break;
1301 }
1302
1303 splx(s);
1304 return (error);
1305 }
1306
1307 static void
1308 vr_watchdog(struct ifnet *ifp)
1309 {
1310 struct vr_softc *sc = ifp->if_softc;
1311
1312 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1313 ifp->if_oerrors++;
1314
1315 (void) vr_init(ifp);
1316 }
1317
1318 /*
1319 * One second timer, used to tick MII.
1320 */
1321 static void
1322 vr_tick(void *arg)
1323 {
1324 struct vr_softc *sc = arg;
1325 int s;
1326
1327 s = splnet();
1328 mii_tick(&sc->vr_mii);
1329 splx(s);
1330
1331 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1332 }
1333
1334 /*
1335 * Drain the receive queue.
1336 */
1337 static void
1338 vr_rxdrain(struct vr_softc *sc)
1339 {
1340 struct vr_descsoft *ds;
1341 int i;
1342
1343 for (i = 0; i < VR_NRXDESC; i++) {
1344 ds = VR_DSRX(sc, i);
1345 if (ds->ds_mbuf != NULL) {
1346 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1347 m_freem(ds->ds_mbuf);
1348 ds->ds_mbuf = NULL;
1349 }
1350 }
1351 }
1352
1353 /*
1354 * Stop the adapter and free any mbufs allocated to the
1355 * transmit lists.
1356 */
1357 static void
1358 vr_stop(struct ifnet *ifp, int disable)
1359 {
1360 struct vr_softc *sc = ifp->if_softc;
1361 struct vr_descsoft *ds;
1362 int i;
1363
1364 /* Cancel one second timer. */
1365 callout_stop(&sc->vr_tick_ch);
1366
1367 /* Down the MII. */
1368 mii_down(&sc->vr_mii);
1369
1370 ifp = &sc->vr_ec.ec_if;
1371 ifp->if_timer = 0;
1372
1373 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1374 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1375 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1376 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1377 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1378
1379 /*
1380 * Release any queued transmit buffers.
1381 */
1382 for (i = 0; i < VR_NTXDESC; i++) {
1383 ds = VR_DSTX(sc, i);
1384 if (ds->ds_mbuf != NULL) {
1385 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1386 m_freem(ds->ds_mbuf);
1387 ds->ds_mbuf = NULL;
1388 }
1389 }
1390
1391 if (disable)
1392 vr_rxdrain(sc);
1393
1394 /*
1395 * Mark the interface down and cancel the watchdog timer.
1396 */
1397 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1398 ifp->if_timer = 0;
1399 }
1400
1401 static int vr_probe(struct device *, struct cfdata *, void *);
1402 static void vr_attach(struct device *, struct device *, void *);
1403 static void vr_shutdown(void *);
1404
1405 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1406 vr_probe, vr_attach, NULL, NULL);
1407
1408 static struct vr_type *
1409 vr_lookup(struct pci_attach_args *pa)
1410 {
1411 struct vr_type *vrt;
1412
1413 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1414 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1415 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1416 return (vrt);
1417 }
1418 return (NULL);
1419 }
1420
1421 static int
1422 vr_probe(struct device *parent __unused, struct cfdata *match __unused,
1423 void *aux)
1424 {
1425 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1426
1427 if (vr_lookup(pa) != NULL)
1428 return (1);
1429
1430 return (0);
1431 }
1432
1433 /*
1434 * Stop all chip I/O so that the kernel's probe routines don't
1435 * get confused by errant DMAs when rebooting.
1436 */
1437 static void
1438 vr_shutdown(void *arg)
1439 {
1440 struct vr_softc *sc = (struct vr_softc *)arg;
1441
1442 vr_stop(&sc->vr_ec.ec_if, 1);
1443 }
1444
1445 /*
1446 * Attach the interface. Allocate softc structures, do ifmedia
1447 * setup and ethernet/BPF attach.
1448 */
1449 static void
1450 vr_attach(struct device *parent __unused, struct device *self, void *aux)
1451 {
1452 struct vr_softc *sc = (struct vr_softc *) self;
1453 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1454 bus_dma_segment_t seg;
1455 struct vr_type *vrt;
1456 u_int32_t reg;
1457 struct ifnet *ifp;
1458 u_char eaddr[ETHER_ADDR_LEN], mac;
1459 int i, rseg, error;
1460
1461 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1462 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1463
1464 sc->vr_pc = pa->pa_pc;
1465 sc->vr_tag = pa->pa_tag;
1466 callout_init(&sc->vr_tick_ch);
1467
1468 vrt = vr_lookup(pa);
1469 if (vrt == NULL) {
1470 printf("\n");
1471 panic("vr_attach: impossible");
1472 }
1473
1474 printf(": %s Ethernet\n", vrt->vr_name);
1475
1476 /*
1477 * Handle power management nonsense.
1478 */
1479
1480 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1481 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1482 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1483
1484 /* power up chip */
1485 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1486 vr_restore_state)) && error != EOPNOTSUPP) {
1487 aprint_error("%s: cannot activate %d\n", sc->vr_dev.dv_xname,
1488 error);
1489 return;
1490 }
1491
1492 /* Make sure bus mastering is enabled. */
1493 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1494 reg |= PCI_COMMAND_MASTER_ENABLE;
1495 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1496
1497 /* Get revision */
1498 sc->vr_revid = PCI_REVISION(pa->pa_class);
1499
1500 /*
1501 * Map control/status registers.
1502 */
1503 {
1504 bus_space_tag_t iot, memt;
1505 bus_space_handle_t ioh, memh;
1506 int ioh_valid, memh_valid;
1507 pci_intr_handle_t intrhandle;
1508 const char *intrstr;
1509
1510 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1511 PCI_MAPREG_TYPE_IO, 0,
1512 &iot, &ioh, NULL, NULL) == 0);
1513 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1514 PCI_MAPREG_TYPE_MEM |
1515 PCI_MAPREG_MEM_TYPE_32BIT,
1516 0, &memt, &memh, NULL, NULL) == 0);
1517 #if defined(VR_USEIOSPACE)
1518 if (ioh_valid) {
1519 sc->vr_bst = iot;
1520 sc->vr_bsh = ioh;
1521 } else if (memh_valid) {
1522 sc->vr_bst = memt;
1523 sc->vr_bsh = memh;
1524 }
1525 #else
1526 if (memh_valid) {
1527 sc->vr_bst = memt;
1528 sc->vr_bsh = memh;
1529 } else if (ioh_valid) {
1530 sc->vr_bst = iot;
1531 sc->vr_bsh = ioh;
1532 }
1533 #endif
1534 else {
1535 printf(": unable to map device registers\n");
1536 return;
1537 }
1538
1539 /* Allocate interrupt */
1540 if (pci_intr_map(pa, &intrhandle)) {
1541 printf("%s: couldn't map interrupt\n",
1542 sc->vr_dev.dv_xname);
1543 return;
1544 }
1545 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1546 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1547 vr_intr, sc);
1548 if (sc->vr_ih == NULL) {
1549 printf("%s: couldn't establish interrupt",
1550 sc->vr_dev.dv_xname);
1551 if (intrstr != NULL)
1552 printf(" at %s", intrstr);
1553 printf("\n");
1554 }
1555 printf("%s: interrupting at %s\n",
1556 sc->vr_dev.dv_xname, intrstr);
1557 }
1558
1559 /*
1560 * Windows may put the chip in suspend mode when it
1561 * shuts down. Be sure to kick it in the head to wake it
1562 * up again.
1563 */
1564 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1565
1566 /* Reset the adapter. */
1567 vr_reset(sc);
1568
1569 /*
1570 * Get station address. The way the Rhine chips work,
1571 * you're not allowed to directly access the EEPROM once
1572 * they've been programmed a special way. Consequently,
1573 * we need to read the node address from the PAR0 and PAR1
1574 * registers.
1575 *
1576 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1577 * of the *whole* EEPROM, not just the MAC address. This is
1578 * pretty pointless since the chip does this automatically
1579 * at powerup/reset.
1580 * I suspect the same thing applies to the other Rhine
1581 * variants, but in the absence of a data sheet for those
1582 * (and the lack of anyone else noticing the problems this
1583 * causes) I'm going to retain the old behaviour for the
1584 * other parts.
1585 * In some cases, the chip really does startup without having
1586 * read the EEPROM (kern/34812). To handle this case, we force
1587 * a reload if we see an all-zeroes MAC address.
1588 */
1589 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1590 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1591
1592 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1593 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1594 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1595 DELAY(200);
1596 for (i = 0; i < ETHER_ADDR_LEN; i++)
1597 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1598 }
1599
1600 /*
1601 * A Rhine chip was detected. Inform the world.
1602 */
1603 printf("%s: Ethernet address: %s\n",
1604 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1605
1606 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1607
1608 sc->vr_dmat = pa->pa_dmat;
1609
1610 /*
1611 * Allocate the control data structures, and create and load
1612 * the DMA map for it.
1613 */
1614 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1615 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1616 0)) != 0) {
1617 printf("%s: unable to allocate control data, error = %d\n",
1618 sc->vr_dev.dv_xname, error);
1619 goto fail_0;
1620 }
1621
1622 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1623 sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
1624 BUS_DMA_COHERENT)) != 0) {
1625 printf("%s: unable to map control data, error = %d\n",
1626 sc->vr_dev.dv_xname, error);
1627 goto fail_1;
1628 }
1629
1630 if ((error = bus_dmamap_create(sc->vr_dmat,
1631 sizeof(struct vr_control_data), 1,
1632 sizeof(struct vr_control_data), 0, 0,
1633 &sc->vr_cddmamap)) != 0) {
1634 printf("%s: unable to create control data DMA map, "
1635 "error = %d\n", sc->vr_dev.dv_xname, error);
1636 goto fail_2;
1637 }
1638
1639 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1640 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1641 0)) != 0) {
1642 printf("%s: unable to load control data DMA map, error = %d\n",
1643 sc->vr_dev.dv_xname, error);
1644 goto fail_3;
1645 }
1646
1647 /*
1648 * Create the transmit buffer DMA maps.
1649 */
1650 for (i = 0; i < VR_NTXDESC; i++) {
1651 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1652 1, MCLBYTES, 0, 0,
1653 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1654 printf("%s: unable to create tx DMA map %d, "
1655 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1656 goto fail_4;
1657 }
1658 }
1659
1660 /*
1661 * Create the receive buffer DMA maps.
1662 */
1663 for (i = 0; i < VR_NRXDESC; i++) {
1664 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1665 MCLBYTES, 0, 0,
1666 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1667 printf("%s: unable to create rx DMA map %d, "
1668 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1669 goto fail_5;
1670 }
1671 VR_DSRX(sc, i)->ds_mbuf = NULL;
1672 }
1673
1674 ifp = &sc->vr_ec.ec_if;
1675 ifp->if_softc = sc;
1676 ifp->if_mtu = ETHERMTU;
1677 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1678 ifp->if_ioctl = vr_ioctl;
1679 ifp->if_start = vr_start;
1680 ifp->if_watchdog = vr_watchdog;
1681 ifp->if_init = vr_init;
1682 ifp->if_stop = vr_stop;
1683 IFQ_SET_READY(&ifp->if_snd);
1684
1685 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1686
1687 /*
1688 * Initialize MII/media info.
1689 */
1690 sc->vr_mii.mii_ifp = ifp;
1691 sc->vr_mii.mii_readreg = vr_mii_readreg;
1692 sc->vr_mii.mii_writereg = vr_mii_writereg;
1693 sc->vr_mii.mii_statchg = vr_mii_statchg;
1694 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1695 vr_ifmedia_sts);
1696 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1697 MII_OFFSET_ANY, MIIF_FORCEANEG);
1698 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1699 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1700 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1701 } else
1702 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1703
1704 /*
1705 * Call MI attach routines.
1706 */
1707 if_attach(ifp);
1708 ether_ifattach(ifp, sc->vr_enaddr);
1709 #if NRND > 0
1710 rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1711 RND_TYPE_NET, 0);
1712 #endif
1713
1714 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1715 if (sc->vr_ats == NULL)
1716 printf("%s: warning: couldn't establish shutdown hook\n",
1717 sc->vr_dev.dv_xname);
1718 return;
1719
1720 fail_5:
1721 for (i = 0; i < VR_NRXDESC; i++) {
1722 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1723 bus_dmamap_destroy(sc->vr_dmat,
1724 sc->vr_rxsoft[i].ds_dmamap);
1725 }
1726 fail_4:
1727 for (i = 0; i < VR_NTXDESC; i++) {
1728 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1729 bus_dmamap_destroy(sc->vr_dmat,
1730 sc->vr_txsoft[i].ds_dmamap);
1731 }
1732 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1733 fail_3:
1734 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1735 fail_2:
1736 bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
1737 sizeof(struct vr_control_data));
1738 fail_1:
1739 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1740 fail_0:
1741 return;
1742 }
1743
1744 static int
1745 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, void *ssc, pcireg_t state)
1746 {
1747 struct vr_softc *sc = ssc;
1748 int error;
1749
1750 if (state == PCI_PMCSR_STATE_D0)
1751 return 0;
1752 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1753 return error;
1754
1755 /* Restore PCI config data. */
1756 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1757 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1758 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1759 return 0;
1760 }
1761