if_vr.c revision 1.88 1 /* $NetBSD: if_vr.c,v 1.88 2007/10/19 12:00:49 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.88 2007/10/19 12:00:49 ad Exp $");
108
109 #include "rnd.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124
125 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137
138 #include <sys/bus.h>
139 #include <sys/intr.h>
140 #include <machine/endian.h>
141
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/pci/if_vrreg.h>
151
152 #define VR_USEIOSPACE
153
154 /*
155 * Various supported device vendors/types and their names.
156 */
157 static struct vr_type {
158 pci_vendor_id_t vr_vid;
159 pci_product_id_t vr_did;
160 const char *vr_name;
161 } vr_devs[] = {
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 "VIA VT3043 (Rhine) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 "VIA VT6102 (Rhine II) 10/100" },
166 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 "VIA VT6105 (Rhine III) 10/100" },
168 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M,
169 "VIA VT6105M (Rhine III) 10/100" },
170 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
171 "VIA VT86C100A (Rhine-II) 10/100" },
172 { 0, 0, NULL }
173 };
174
175 /*
176 * Transmit descriptor list size.
177 */
178 #define VR_NTXDESC 64
179 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
180 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
181
182 /*
183 * Receive descriptor list size.
184 */
185 #define VR_NRXDESC 64
186 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
187 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
188
189 /*
190 * Control data structres that are DMA'd to the Rhine chip. We allocate
191 * them in a single clump that maps to a single DMA segment to make several
192 * things easier.
193 *
194 * Note that since we always copy outgoing packets to aligned transmit
195 * buffers, we can reduce the transmit descriptors to one per packet.
196 */
197 struct vr_control_data {
198 struct vr_desc vr_txdescs[VR_NTXDESC];
199 struct vr_desc vr_rxdescs[VR_NRXDESC];
200 };
201
202 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
203 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
204 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
205
206 /*
207 * Software state of transmit and receive descriptors.
208 */
209 struct vr_descsoft {
210 struct mbuf *ds_mbuf; /* head of mbuf chain */
211 bus_dmamap_t ds_dmamap; /* our DMA map */
212 };
213
214 struct vr_softc {
215 struct device vr_dev; /* generic device glue */
216 void *vr_ih; /* interrupt cookie */
217 void *vr_ats; /* shutdown hook */
218 bus_space_tag_t vr_bst; /* bus space tag */
219 bus_space_handle_t vr_bsh; /* bus space handle */
220 bus_dma_tag_t vr_dmat; /* bus DMA tag */
221 pci_chipset_tag_t vr_pc; /* PCI chipset info */
222 pcitag_t vr_tag; /* PCI tag */
223 struct ethercom vr_ec; /* Ethernet common info */
224 uint8_t vr_enaddr[ETHER_ADDR_LEN];
225 struct mii_data vr_mii; /* MII/media info */
226
227 uint8_t vr_revid; /* Rhine chip revision */
228
229 callout_t vr_tick_ch; /* tick callout */
230
231 bus_dmamap_t vr_cddmamap; /* control data DMA map */
232 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
233
234 /*
235 * Software state for transmit and receive descriptors.
236 */
237 struct vr_descsoft vr_txsoft[VR_NTXDESC];
238 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
239
240 /*
241 * Control data structures.
242 */
243 struct vr_control_data *vr_control_data;
244
245 int vr_txpending; /* number of TX requests pending */
246 int vr_txdirty; /* first dirty TX descriptor */
247 int vr_txlast; /* last used TX descriptor */
248
249 int vr_rxptr; /* next ready RX descriptor */
250
251 uint32_t vr_save_iobase;
252 uint32_t vr_save_membase;
253 uint32_t vr_save_irq;
254
255 #if NRND > 0
256 rndsource_element_t rnd_source; /* random source */
257 #endif
258 };
259
260 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
261 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
262
263 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
264 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
265
266 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
267 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
268
269 #define VR_CDTXSYNC(sc, x, ops) \
270 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
271 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
272
273 #define VR_CDRXSYNC(sc, x, ops) \
274 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
275 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
276
277 /*
278 * Note we rely on MCLBYTES being a power of two below.
279 */
280 #define VR_INIT_RXDESC(sc, i) \
281 do { \
282 struct vr_desc *__d = VR_CDRX((sc), (i)); \
283 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
284 \
285 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
286 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
287 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
288 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
289 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
290 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
291 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
292 } while (/* CONSTCOND */ 0)
293
294 /*
295 * register space access macros
296 */
297 #define CSR_WRITE_4(sc, reg, val) \
298 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
299 #define CSR_WRITE_2(sc, reg, val) \
300 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
301 #define CSR_WRITE_1(sc, reg, val) \
302 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
303
304 #define CSR_READ_4(sc, reg) \
305 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
306 #define CSR_READ_2(sc, reg) \
307 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
308 #define CSR_READ_1(sc, reg) \
309 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
310
311 #define VR_TIMEOUT 1000
312
313 static int vr_add_rxbuf(struct vr_softc *, int);
314
315 static void vr_rxeof(struct vr_softc *);
316 static void vr_rxeoc(struct vr_softc *);
317 static void vr_txeof(struct vr_softc *);
318 static int vr_intr(void *);
319 static void vr_start(struct ifnet *);
320 static int vr_ioctl(struct ifnet *, u_long, void *);
321 static int vr_init(struct ifnet *);
322 static void vr_stop(struct ifnet *, int);
323 static void vr_rxdrain(struct vr_softc *);
324 static void vr_watchdog(struct ifnet *);
325 static void vr_tick(void *);
326
327 static int vr_ifmedia_upd(struct ifnet *);
328 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
329
330 static int vr_mii_readreg(struct device *, int, int);
331 static void vr_mii_writereg(struct device *, int, int, int);
332 static void vr_mii_statchg(struct device *);
333
334 static void vr_setmulti(struct vr_softc *);
335 static void vr_reset(struct vr_softc *);
336 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, void *, pcireg_t);
337
338 int vr_copy_small = 0;
339
340 #define VR_SETBIT(sc, reg, x) \
341 CSR_WRITE_1(sc, reg, \
342 CSR_READ_1(sc, reg) | (x))
343
344 #define VR_CLRBIT(sc, reg, x) \
345 CSR_WRITE_1(sc, reg, \
346 CSR_READ_1(sc, reg) & ~(x))
347
348 #define VR_SETBIT16(sc, reg, x) \
349 CSR_WRITE_2(sc, reg, \
350 CSR_READ_2(sc, reg) | (x))
351
352 #define VR_CLRBIT16(sc, reg, x) \
353 CSR_WRITE_2(sc, reg, \
354 CSR_READ_2(sc, reg) & ~(x))
355
356 #define VR_SETBIT32(sc, reg, x) \
357 CSR_WRITE_4(sc, reg, \
358 CSR_READ_4(sc, reg) | (x))
359
360 #define VR_CLRBIT32(sc, reg, x) \
361 CSR_WRITE_4(sc, reg, \
362 CSR_READ_4(sc, reg) & ~(x))
363
364 /*
365 * MII bit-bang glue.
366 */
367 static uint32_t vr_mii_bitbang_read(struct device *);
368 static void vr_mii_bitbang_write(struct device *, uint32_t);
369
370 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
371 vr_mii_bitbang_read,
372 vr_mii_bitbang_write,
373 {
374 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
375 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
376 VR_MIICMD_CLK, /* MII_BIT_MDC */
377 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
378 0, /* MII_BIT_DIR_PHY_HOST */
379 }
380 };
381
382 static uint32_t
383 vr_mii_bitbang_read(struct device *self)
384 {
385 struct vr_softc *sc = (void *) self;
386
387 return (CSR_READ_1(sc, VR_MIICMD));
388 }
389
390 static void
391 vr_mii_bitbang_write(struct device *self, uint32_t val)
392 {
393 struct vr_softc *sc = (void *) self;
394
395 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
396 }
397
398 /*
399 * Read an PHY register through the MII.
400 */
401 static int
402 vr_mii_readreg(struct device *self, int phy, int reg)
403 {
404 struct vr_softc *sc = (void *) self;
405
406 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
407 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
408 }
409
410 /*
411 * Write to a PHY register through the MII.
412 */
413 static void
414 vr_mii_writereg(struct device *self, int phy, int reg, int val)
415 {
416 struct vr_softc *sc = (void *) self;
417
418 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
419 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
420 }
421
422 static void
423 vr_mii_statchg(struct device *self)
424 {
425 struct vr_softc *sc = (struct vr_softc *)self;
426
427 /*
428 * In order to fiddle with the 'full-duplex' bit in the netconfig
429 * register, we first have to put the transmit and/or receive logic
430 * in the idle state.
431 */
432 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
433
434 if (sc->vr_mii.mii_media_active & IFM_FDX)
435 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
436 else
437 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
438
439 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
440 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
441 }
442
443 #define vr_calchash(addr) \
444 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
445
446 /*
447 * Program the 64-bit multicast hash filter.
448 */
449 static void
450 vr_setmulti(struct vr_softc *sc)
451 {
452 struct ifnet *ifp;
453 int h = 0;
454 uint32_t hashes[2] = { 0, 0 };
455 struct ether_multistep step;
456 struct ether_multi *enm;
457 int mcnt = 0;
458 uint8_t rxfilt;
459
460 ifp = &sc->vr_ec.ec_if;
461
462 rxfilt = CSR_READ_1(sc, VR_RXCFG);
463
464 if (ifp->if_flags & IFF_PROMISC) {
465 allmulti:
466 ifp->if_flags |= IFF_ALLMULTI;
467 rxfilt |= VR_RXCFG_RX_MULTI;
468 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
469 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
470 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
471 return;
472 }
473
474 /* first, zot all the existing hash bits */
475 CSR_WRITE_4(sc, VR_MAR0, 0);
476 CSR_WRITE_4(sc, VR_MAR1, 0);
477
478 /* now program new ones */
479 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
480 while (enm != NULL) {
481 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
482 ETHER_ADDR_LEN) != 0)
483 goto allmulti;
484
485 h = vr_calchash(enm->enm_addrlo);
486
487 if (h < 32)
488 hashes[0] |= (1 << h);
489 else
490 hashes[1] |= (1 << (h - 32));
491 ETHER_NEXT_MULTI(step, enm);
492 mcnt++;
493 }
494
495 ifp->if_flags &= ~IFF_ALLMULTI;
496
497 if (mcnt)
498 rxfilt |= VR_RXCFG_RX_MULTI;
499 else
500 rxfilt &= ~VR_RXCFG_RX_MULTI;
501
502 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
503 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
504 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
505 }
506
507 static void
508 vr_reset(struct vr_softc *sc)
509 {
510 int i;
511
512 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
513
514 for (i = 0; i < VR_TIMEOUT; i++) {
515 DELAY(10);
516 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
517 break;
518 }
519 if (i == VR_TIMEOUT) {
520 if (sc->vr_revid < REV_ID_VT3065_A) {
521 printf("%s: reset never completed!\n",
522 sc->vr_dev.dv_xname);
523 } else {
524 /* Use newer force reset command */
525 printf("%s: using force reset command.\n",
526 sc->vr_dev.dv_xname);
527 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
528 }
529 }
530
531 /* Wait a little while for the chip to get its brains in order. */
532 DELAY(1000);
533 }
534
535 /*
536 * Initialize an RX descriptor and attach an MBUF cluster.
537 * Note: the length fields are only 11 bits wide, which means the
538 * largest size we can specify is 2047. This is important because
539 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
540 * overflow the field and make a mess.
541 */
542 static int
543 vr_add_rxbuf(struct vr_softc *sc, int i)
544 {
545 struct vr_descsoft *ds = VR_DSRX(sc, i);
546 struct mbuf *m_new;
547 int error;
548
549 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
550 if (m_new == NULL)
551 return (ENOBUFS);
552
553 MCLGET(m_new, M_DONTWAIT);
554 if ((m_new->m_flags & M_EXT) == 0) {
555 m_freem(m_new);
556 return (ENOBUFS);
557 }
558
559 if (ds->ds_mbuf != NULL)
560 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
561
562 ds->ds_mbuf = m_new;
563
564 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
565 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
566 BUS_DMA_READ|BUS_DMA_NOWAIT);
567 if (error) {
568 printf("%s: unable to load rx DMA map %d, error = %d\n",
569 sc->vr_dev.dv_xname, i, error);
570 panic("vr_add_rxbuf"); /* XXX */
571 }
572
573 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
574 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
575
576 VR_INIT_RXDESC(sc, i);
577
578 return (0);
579 }
580
581 /*
582 * A frame has been uploaded: pass the resulting mbuf chain up to
583 * the higher level protocols.
584 */
585 static void
586 vr_rxeof(struct vr_softc *sc)
587 {
588 struct mbuf *m;
589 struct ifnet *ifp;
590 struct vr_desc *d;
591 struct vr_descsoft *ds;
592 int i, total_len;
593 uint32_t rxstat;
594
595 ifp = &sc->vr_ec.ec_if;
596
597 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
598 d = VR_CDRX(sc, i);
599 ds = VR_DSRX(sc, i);
600
601 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
602
603 rxstat = le32toh(d->vr_status);
604
605 if (rxstat & VR_RXSTAT_OWN) {
606 /*
607 * We have processed all of the receive buffers.
608 */
609 break;
610 }
611
612 /*
613 * If an error occurs, update stats, clear the
614 * status word and leave the mbuf cluster in place:
615 * it should simply get re-used next time this descriptor
616 * comes up in the ring.
617 */
618 if (rxstat & VR_RXSTAT_RXERR) {
619 const char *errstr;
620
621 ifp->if_ierrors++;
622 switch (rxstat & 0x000000FF) {
623 case VR_RXSTAT_CRCERR:
624 errstr = "crc error";
625 break;
626 case VR_RXSTAT_FRAMEALIGNERR:
627 errstr = "frame alignment error";
628 break;
629 case VR_RXSTAT_FIFOOFLOW:
630 errstr = "FIFO overflow";
631 break;
632 case VR_RXSTAT_GIANT:
633 errstr = "received giant packet";
634 break;
635 case VR_RXSTAT_RUNT:
636 errstr = "received runt packet";
637 break;
638 case VR_RXSTAT_BUSERR:
639 errstr = "system bus error";
640 break;
641 case VR_RXSTAT_BUFFERR:
642 errstr = "rx buffer error";
643 break;
644 default:
645 errstr = "unknown rx error";
646 break;
647 }
648 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
649 errstr);
650
651 VR_INIT_RXDESC(sc, i);
652
653 continue;
654 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
655 !(rxstat & VR_RXSTAT_LASTFRAG)) {
656 /*
657 * This driver expects to receive whole packets every
658 * time. In case we receive a fragment that is not
659 * a complete packet, we discard it.
660 */
661 ifp->if_ierrors++;
662
663 printf("%s: receive error: incomplete frame; "
664 "size = %d, status = 0x%x\n",
665 sc->vr_dev.dv_xname,
666 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
667
668 VR_INIT_RXDESC(sc, i);
669
670 continue;
671 }
672
673 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
674 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
675
676 /* No errors; receive the packet. */
677 total_len = VR_RXBYTES(le32toh(d->vr_status));
678 #ifdef DIAGNOSTIC
679 if (total_len == 0) {
680 /*
681 * If we receive a zero-length packet, we probably
682 * missed to handle an error condition above.
683 * Discard it to avoid a later crash.
684 */
685 ifp->if_ierrors++;
686
687 printf("%s: receive error: zero-length packet; "
688 "status = 0x%x\n",
689 sc->vr_dev.dv_xname, rxstat);
690
691 VR_INIT_RXDESC(sc, i);
692
693 continue;
694 }
695 #endif
696
697 /*
698 * The Rhine chip includes the CRC with every packet.
699 * Trim it off here.
700 */
701 total_len -= ETHER_CRC_LEN;
702
703 #ifdef __NO_STRICT_ALIGNMENT
704 /*
705 * If the packet is small enough to fit in a
706 * single header mbuf, allocate one and copy
707 * the data into it. This greatly reduces
708 * memory consumption when we receive lots
709 * of small packets.
710 *
711 * Otherwise, we add a new buffer to the receive
712 * chain. If this fails, we drop the packet and
713 * recycle the old buffer.
714 */
715 if (vr_copy_small != 0 && total_len <= MHLEN) {
716 MGETHDR(m, M_DONTWAIT, MT_DATA);
717 if (m == NULL)
718 goto dropit;
719 memcpy(mtod(m, void *),
720 mtod(ds->ds_mbuf, void *), total_len);
721 VR_INIT_RXDESC(sc, i);
722 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
723 ds->ds_dmamap->dm_mapsize,
724 BUS_DMASYNC_PREREAD);
725 } else {
726 m = ds->ds_mbuf;
727 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
728 dropit:
729 ifp->if_ierrors++;
730 VR_INIT_RXDESC(sc, i);
731 bus_dmamap_sync(sc->vr_dmat,
732 ds->ds_dmamap, 0,
733 ds->ds_dmamap->dm_mapsize,
734 BUS_DMASYNC_PREREAD);
735 continue;
736 }
737 }
738 #else
739 /*
740 * The Rhine's packet buffers must be 4-byte aligned.
741 * But this means that the data after the Ethernet header
742 * is misaligned. We must allocate a new buffer and
743 * copy the data, shifted forward 2 bytes.
744 */
745 MGETHDR(m, M_DONTWAIT, MT_DATA);
746 if (m == NULL) {
747 dropit:
748 ifp->if_ierrors++;
749 VR_INIT_RXDESC(sc, i);
750 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
751 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
752 continue;
753 }
754 if (total_len > (MHLEN - 2)) {
755 MCLGET(m, M_DONTWAIT);
756 if ((m->m_flags & M_EXT) == 0) {
757 m_freem(m);
758 goto dropit;
759 }
760 }
761 m->m_data += 2;
762
763 /*
764 * Note that we use clusters for incoming frames, so the
765 * buffer is virtually contiguous.
766 */
767 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
768 total_len);
769
770 /* Allow the receive descriptor to continue using its mbuf. */
771 VR_INIT_RXDESC(sc, i);
772 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
773 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
774 #endif /* __NO_STRICT_ALIGNMENT */
775
776 ifp->if_ipackets++;
777 m->m_pkthdr.rcvif = ifp;
778 m->m_pkthdr.len = m->m_len = total_len;
779 #if NBPFILTER > 0
780 /*
781 * Handle BPF listeners. Let the BPF user see the packet, but
782 * don't pass it up to the ether_input() layer unless it's
783 * a broadcast packet, multicast packet, matches our ethernet
784 * address or the interface is in promiscuous mode.
785 */
786 if (ifp->if_bpf)
787 bpf_mtap(ifp->if_bpf, m);
788 #endif
789 /* Pass it on. */
790 (*ifp->if_input)(ifp, m);
791 }
792
793 /* Update the receive pointer. */
794 sc->vr_rxptr = i;
795 }
796
797 void
798 vr_rxeoc(struct vr_softc *sc)
799 {
800 struct ifnet *ifp;
801 int i;
802
803 ifp = &sc->vr_ec.ec_if;
804
805 ifp->if_ierrors++;
806
807 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
808 for (i = 0; i < VR_TIMEOUT; i++) {
809 DELAY(10);
810 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
811 break;
812 }
813 if (i == VR_TIMEOUT) {
814 /* XXX need reset? */
815 printf("%s: RX shutdown never complete\n",
816 sc->vr_dev.dv_xname);
817 }
818
819 vr_rxeof(sc);
820
821 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
822 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
823 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
824 }
825
826 /*
827 * A frame was downloaded to the chip. It's safe for us to clean up
828 * the list buffers.
829 */
830 static void
831 vr_txeof(struct vr_softc *sc)
832 {
833 struct ifnet *ifp = &sc->vr_ec.ec_if;
834 struct vr_desc *d;
835 struct vr_descsoft *ds;
836 uint32_t txstat;
837 int i, j;
838
839 ifp->if_flags &= ~IFF_OACTIVE;
840
841 /*
842 * Go through our tx list and free mbufs for those
843 * frames that have been transmitted.
844 */
845 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
846 i = VR_NEXTTX(i), sc->vr_txpending--) {
847 d = VR_CDTX(sc, i);
848 ds = VR_DSTX(sc, i);
849
850 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
851
852 txstat = le32toh(d->vr_status);
853
854 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
855 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
856 for (j = 0; j < VR_TIMEOUT; j++) {
857 DELAY(10);
858 if ((CSR_READ_2(sc, VR_COMMAND) &
859 VR_CMD_TX_ON) == 0)
860 break;
861 }
862 if (j == VR_TIMEOUT) {
863 /* XXX need reset? */
864 printf("%s: TX shutdown never complete\n",
865 sc->vr_dev.dv_xname);
866 }
867 d->vr_status = htole32(VR_TXSTAT_OWN);
868 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
869 break;
870 }
871
872 if (txstat & VR_TXSTAT_OWN)
873 break;
874
875 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
876 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
877 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
878 m_freem(ds->ds_mbuf);
879 ds->ds_mbuf = NULL;
880
881 if (txstat & VR_TXSTAT_ERRSUM) {
882 ifp->if_oerrors++;
883 if (txstat & VR_TXSTAT_DEFER)
884 ifp->if_collisions++;
885 if (txstat & VR_TXSTAT_LATECOLL)
886 ifp->if_collisions++;
887 }
888
889 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
890 ifp->if_opackets++;
891 }
892
893 /* Update the dirty transmit buffer pointer. */
894 sc->vr_txdirty = i;
895
896 /*
897 * Cancel the watchdog timer if there are no pending
898 * transmissions.
899 */
900 if (sc->vr_txpending == 0)
901 ifp->if_timer = 0;
902 }
903
904 static int
905 vr_intr(void *arg)
906 {
907 struct vr_softc *sc;
908 struct ifnet *ifp;
909 uint16_t status;
910 int handled = 0, dotx = 0;
911
912 sc = arg;
913 ifp = &sc->vr_ec.ec_if;
914
915 /* Suppress unwanted interrupts. */
916 if ((ifp->if_flags & IFF_UP) == 0) {
917 vr_stop(ifp, 1);
918 return (0);
919 }
920
921 /* Disable interrupts. */
922 CSR_WRITE_2(sc, VR_IMR, 0x0000);
923
924 for (;;) {
925 status = CSR_READ_2(sc, VR_ISR);
926 if (status)
927 CSR_WRITE_2(sc, VR_ISR, status);
928
929 if ((status & VR_INTRS) == 0)
930 break;
931
932 handled = 1;
933
934 #if NRND > 0
935 if (RND_ENABLED(&sc->rnd_source))
936 rnd_add_uint32(&sc->rnd_source, status);
937 #endif
938
939 if (status & VR_ISR_RX_OK)
940 vr_rxeof(sc);
941
942 if (status & VR_ISR_RX_DROPPED) {
943 printf("%s: rx packet lost\n", sc->vr_dev.dv_xname);
944 ifp->if_ierrors++;
945 }
946
947 if (status &
948 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
949 vr_rxeoc(sc);
950
951
952 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
953 if (status & VR_ISR_BUSERR)
954 printf("%s: PCI bus error\n",
955 sc->vr_dev.dv_xname);
956 if (status & VR_ISR_TX_UNDERRUN)
957 printf("%s: transmit underrun\n",
958 sc->vr_dev.dv_xname);
959 /* vr_init() calls vr_start() */
960 dotx = 0;
961 (void)vr_init(ifp);
962
963 }
964
965 if (status & VR_ISR_TX_OK) {
966 dotx = 1;
967 vr_txeof(sc);
968 }
969
970 if (status &
971 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
972 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
973 printf("%s: transmit aborted\n",
974 sc->vr_dev.dv_xname);
975 if (status & VR_ISR_TX_UDFI)
976 printf("%s: transmit underflow\n",
977 sc->vr_dev.dv_xname);
978 ifp->if_oerrors++;
979 dotx = 1;
980 vr_txeof(sc);
981 if (sc->vr_txpending) {
982 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
983 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
984 }
985 }
986 }
987
988 /* Re-enable interrupts. */
989 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
990
991 if (dotx)
992 vr_start(ifp);
993
994 return (handled);
995 }
996
997 /*
998 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
999 * to the mbuf data regions directly in the transmit lists. We also save a
1000 * copy of the pointers since the transmit list fragment pointers are
1001 * physical addresses.
1002 */
1003 static void
1004 vr_start(struct ifnet *ifp)
1005 {
1006 struct vr_softc *sc = ifp->if_softc;
1007 struct mbuf *m0, *m;
1008 struct vr_desc *d;
1009 struct vr_descsoft *ds;
1010 int error, firsttx, nexttx, opending;
1011
1012 /*
1013 * Remember the previous txpending and the first transmit
1014 * descriptor we use.
1015 */
1016 opending = sc->vr_txpending;
1017 firsttx = VR_NEXTTX(sc->vr_txlast);
1018
1019 /*
1020 * Loop through the send queue, setting up transmit descriptors
1021 * until we drain the queue, or use up all available transmit
1022 * descriptors.
1023 */
1024 while (sc->vr_txpending < VR_NTXDESC) {
1025 /*
1026 * Grab a packet off the queue.
1027 */
1028 IFQ_POLL(&ifp->if_snd, m0);
1029 if (m0 == NULL)
1030 break;
1031 m = NULL;
1032
1033 /*
1034 * Get the next available transmit descriptor.
1035 */
1036 nexttx = VR_NEXTTX(sc->vr_txlast);
1037 d = VR_CDTX(sc, nexttx);
1038 ds = VR_DSTX(sc, nexttx);
1039
1040 /*
1041 * Load the DMA map. If this fails, the packet didn't
1042 * fit in one DMA segment, and we need to copy. Note,
1043 * the packet must also be aligned.
1044 * if the packet is too small, copy it too, so we're sure
1045 * we have enough room for the pad buffer.
1046 */
1047 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1048 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1049 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1050 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1051 MGETHDR(m, M_DONTWAIT, MT_DATA);
1052 if (m == NULL) {
1053 printf("%s: unable to allocate Tx mbuf\n",
1054 sc->vr_dev.dv_xname);
1055 break;
1056 }
1057 if (m0->m_pkthdr.len > MHLEN) {
1058 MCLGET(m, M_DONTWAIT);
1059 if ((m->m_flags & M_EXT) == 0) {
1060 printf("%s: unable to allocate Tx "
1061 "cluster\n", sc->vr_dev.dv_xname);
1062 m_freem(m);
1063 break;
1064 }
1065 }
1066 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1067 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1068 /*
1069 * The Rhine doesn't auto-pad, so we have to do this
1070 * ourselves.
1071 */
1072 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1073 memset(mtod(m, char *) + m0->m_pkthdr.len,
1074 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1075 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1076 }
1077 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1078 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1079 if (error) {
1080 m_freem(m);
1081 printf("%s: unable to load Tx buffer, "
1082 "error = %d\n", sc->vr_dev.dv_xname, error);
1083 break;
1084 }
1085 }
1086
1087 IFQ_DEQUEUE(&ifp->if_snd, m0);
1088 if (m != NULL) {
1089 m_freem(m0);
1090 m0 = m;
1091 }
1092
1093 /* Sync the DMA map. */
1094 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1095 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1096
1097 /*
1098 * Store a pointer to the packet so we can free it later.
1099 */
1100 ds->ds_mbuf = m0;
1101
1102 #if NBPFILTER > 0
1103 /*
1104 * If there's a BPF listener, bounce a copy of this frame
1105 * to him.
1106 */
1107 if (ifp->if_bpf)
1108 bpf_mtap(ifp->if_bpf, m0);
1109 #endif
1110
1111 /*
1112 * Fill in the transmit descriptor.
1113 */
1114 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1115 d->vr_ctl = htole32(m0->m_pkthdr.len);
1116 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1117
1118 /*
1119 * If this is the first descriptor we're enqueuing,
1120 * don't give it to the Rhine yet. That could cause
1121 * a race condition. We'll do it below.
1122 */
1123 if (nexttx == firsttx)
1124 d->vr_status = 0;
1125 else
1126 d->vr_status = htole32(VR_TXSTAT_OWN);
1127
1128 VR_CDTXSYNC(sc, nexttx,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130
1131 /* Advance the tx pointer. */
1132 sc->vr_txpending++;
1133 sc->vr_txlast = nexttx;
1134 }
1135
1136 if (sc->vr_txpending == VR_NTXDESC) {
1137 /* No more slots left; notify upper layer. */
1138 ifp->if_flags |= IFF_OACTIVE;
1139 }
1140
1141 if (sc->vr_txpending != opending) {
1142 /*
1143 * We enqueued packets. If the transmitter was idle,
1144 * reset the txdirty pointer.
1145 */
1146 if (opending == 0)
1147 sc->vr_txdirty = firsttx;
1148
1149 /*
1150 * Cause a transmit interrupt to happen on the
1151 * last packet we enqueued.
1152 */
1153 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1154 VR_CDTXSYNC(sc, sc->vr_txlast,
1155 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1156
1157 /*
1158 * The entire packet chain is set up. Give the
1159 * first descriptor to the Rhine now.
1160 */
1161 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1162 VR_CDTXSYNC(sc, firsttx,
1163 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1164
1165 /* Start the transmitter. */
1166 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1167
1168 /* Set the watchdog timer in case the chip flakes out. */
1169 ifp->if_timer = 5;
1170 }
1171 }
1172
1173 /*
1174 * Initialize the interface. Must be called at splnet.
1175 */
1176 static int
1177 vr_init(struct ifnet *ifp)
1178 {
1179 struct vr_softc *sc = ifp->if_softc;
1180 struct vr_desc *d;
1181 struct vr_descsoft *ds;
1182 int i, error = 0;
1183
1184 /* Cancel pending I/O. */
1185 vr_stop(ifp, 0);
1186
1187 /* Reset the Rhine to a known state. */
1188 vr_reset(sc);
1189
1190 /* set DMA length in BCR0 and BCR1 */
1191 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1192 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1193
1194 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1195 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1196
1197 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1198 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1199
1200 /* set DMA threshold length in RXCFG and TXCFG */
1201 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1202 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1203
1204 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1205 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1206
1207 /*
1208 * Initialize the transmit descriptor ring. txlast is initialized
1209 * to the end of the list so that it will wrap around to the first
1210 * descriptor when the first packet is transmitted.
1211 */
1212 for (i = 0; i < VR_NTXDESC; i++) {
1213 d = VR_CDTX(sc, i);
1214 memset(d, 0, sizeof(struct vr_desc));
1215 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1216 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1217 }
1218 sc->vr_txpending = 0;
1219 sc->vr_txdirty = 0;
1220 sc->vr_txlast = VR_NTXDESC - 1;
1221
1222 /*
1223 * Initialize the receive descriptor ring.
1224 */
1225 for (i = 0; i < VR_NRXDESC; i++) {
1226 ds = VR_DSRX(sc, i);
1227 if (ds->ds_mbuf == NULL) {
1228 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1229 printf("%s: unable to allocate or map rx "
1230 "buffer %d, error = %d\n",
1231 sc->vr_dev.dv_xname, i, error);
1232 /*
1233 * XXX Should attempt to run with fewer receive
1234 * XXX buffers instead of just failing.
1235 */
1236 vr_rxdrain(sc);
1237 goto out;
1238 }
1239 } else
1240 VR_INIT_RXDESC(sc, i);
1241 }
1242 sc->vr_rxptr = 0;
1243
1244 /* If we want promiscuous mode, set the allframes bit. */
1245 if (ifp->if_flags & IFF_PROMISC)
1246 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1247 else
1248 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1249
1250 /* Set capture broadcast bit to capture broadcast frames. */
1251 if (ifp->if_flags & IFF_BROADCAST)
1252 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1253 else
1254 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1255
1256 /* Program the multicast filter, if necessary. */
1257 vr_setmulti(sc);
1258
1259 /* Give the transmit and receive rings to the Rhine. */
1260 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1261 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1262
1263 /* Set current media. */
1264 mii_mediachg(&sc->vr_mii);
1265
1266 /* Enable receiver and transmitter. */
1267 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1268 VR_CMD_TX_ON|VR_CMD_RX_ON|
1269 VR_CMD_RX_GO);
1270
1271 /* Enable interrupts. */
1272 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1273 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1274
1275 ifp->if_flags |= IFF_RUNNING;
1276 ifp->if_flags &= ~IFF_OACTIVE;
1277
1278 /* Start one second timer. */
1279 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1280
1281 /* Attempt to start output on the interface. */
1282 vr_start(ifp);
1283
1284 out:
1285 if (error)
1286 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1287 return (error);
1288 }
1289
1290 /*
1291 * Set media options.
1292 */
1293 static int
1294 vr_ifmedia_upd(struct ifnet *ifp)
1295 {
1296 struct vr_softc *sc = ifp->if_softc;
1297
1298 if (ifp->if_flags & IFF_UP)
1299 mii_mediachg(&sc->vr_mii);
1300 return (0);
1301 }
1302
1303 /*
1304 * Report current media status.
1305 */
1306 static void
1307 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1308 {
1309 struct vr_softc *sc = ifp->if_softc;
1310
1311 mii_pollstat(&sc->vr_mii);
1312 ifmr->ifm_status = sc->vr_mii.mii_media_status;
1313 ifmr->ifm_active = sc->vr_mii.mii_media_active;
1314 }
1315
1316 static int
1317 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1318 {
1319 struct vr_softc *sc = ifp->if_softc;
1320 struct ifreq *ifr = (struct ifreq *)data;
1321 int s, error = 0;
1322
1323 s = splnet();
1324
1325 switch (command) {
1326 case SIOCGIFMEDIA:
1327 case SIOCSIFMEDIA:
1328 error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
1329 break;
1330
1331 default:
1332 error = ether_ioctl(ifp, command, data);
1333 if (error == ENETRESET) {
1334 /*
1335 * Multicast list has changed; set the hardware filter
1336 * accordingly.
1337 */
1338 if (ifp->if_flags & IFF_RUNNING)
1339 vr_setmulti(sc);
1340 error = 0;
1341 }
1342 break;
1343 }
1344
1345 splx(s);
1346 return (error);
1347 }
1348
1349 static void
1350 vr_watchdog(struct ifnet *ifp)
1351 {
1352 struct vr_softc *sc = ifp->if_softc;
1353
1354 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1355 ifp->if_oerrors++;
1356
1357 (void) vr_init(ifp);
1358 }
1359
1360 /*
1361 * One second timer, used to tick MII.
1362 */
1363 static void
1364 vr_tick(void *arg)
1365 {
1366 struct vr_softc *sc = arg;
1367 int s;
1368
1369 s = splnet();
1370 mii_tick(&sc->vr_mii);
1371 splx(s);
1372
1373 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1374 }
1375
1376 /*
1377 * Drain the receive queue.
1378 */
1379 static void
1380 vr_rxdrain(struct vr_softc *sc)
1381 {
1382 struct vr_descsoft *ds;
1383 int i;
1384
1385 for (i = 0; i < VR_NRXDESC; i++) {
1386 ds = VR_DSRX(sc, i);
1387 if (ds->ds_mbuf != NULL) {
1388 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1389 m_freem(ds->ds_mbuf);
1390 ds->ds_mbuf = NULL;
1391 }
1392 }
1393 }
1394
1395 /*
1396 * Stop the adapter and free any mbufs allocated to the
1397 * transmit lists.
1398 */
1399 static void
1400 vr_stop(struct ifnet *ifp, int disable)
1401 {
1402 struct vr_softc *sc = ifp->if_softc;
1403 struct vr_descsoft *ds;
1404 int i;
1405
1406 /* Cancel one second timer. */
1407 callout_stop(&sc->vr_tick_ch);
1408
1409 /* Down the MII. */
1410 mii_down(&sc->vr_mii);
1411
1412 ifp = &sc->vr_ec.ec_if;
1413 ifp->if_timer = 0;
1414
1415 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1416 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1417 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1418 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1419 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1420
1421 /*
1422 * Release any queued transmit buffers.
1423 */
1424 for (i = 0; i < VR_NTXDESC; i++) {
1425 ds = VR_DSTX(sc, i);
1426 if (ds->ds_mbuf != NULL) {
1427 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1428 m_freem(ds->ds_mbuf);
1429 ds->ds_mbuf = NULL;
1430 }
1431 }
1432
1433 if (disable)
1434 vr_rxdrain(sc);
1435
1436 /*
1437 * Mark the interface down and cancel the watchdog timer.
1438 */
1439 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1440 ifp->if_timer = 0;
1441 }
1442
1443 static int vr_probe(struct device *, struct cfdata *, void *);
1444 static void vr_attach(struct device *, struct device *, void *);
1445 static void vr_shutdown(void *);
1446
1447 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1448 vr_probe, vr_attach, NULL, NULL);
1449
1450 static struct vr_type *
1451 vr_lookup(struct pci_attach_args *pa)
1452 {
1453 struct vr_type *vrt;
1454
1455 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1456 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1457 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1458 return (vrt);
1459 }
1460 return (NULL);
1461 }
1462
1463 static int
1464 vr_probe(struct device *parent, struct cfdata *match,
1465 void *aux)
1466 {
1467 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1468
1469 if (vr_lookup(pa) != NULL)
1470 return (1);
1471
1472 return (0);
1473 }
1474
1475 /*
1476 * Stop all chip I/O so that the kernel's probe routines don't
1477 * get confused by errant DMAs when rebooting.
1478 */
1479 static void
1480 vr_shutdown(void *arg)
1481 {
1482 struct vr_softc *sc = (struct vr_softc *)arg;
1483
1484 vr_stop(&sc->vr_ec.ec_if, 1);
1485 }
1486
1487 /*
1488 * Attach the interface. Allocate softc structures, do ifmedia
1489 * setup and ethernet/BPF attach.
1490 */
1491 static void
1492 vr_attach(struct device *parent, struct device *self, void *aux)
1493 {
1494 struct vr_softc *sc = (struct vr_softc *) self;
1495 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1496 bus_dma_segment_t seg;
1497 struct vr_type *vrt;
1498 uint32_t reg;
1499 struct ifnet *ifp;
1500 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1501 int i, rseg, error;
1502
1503 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1504 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1505
1506 sc->vr_pc = pa->pa_pc;
1507 sc->vr_tag = pa->pa_tag;
1508 callout_init(&sc->vr_tick_ch, 0);
1509
1510 vrt = vr_lookup(pa);
1511 if (vrt == NULL) {
1512 printf("\n");
1513 panic("vr_attach: impossible");
1514 }
1515
1516 printf(": %s Ethernet\n", vrt->vr_name);
1517
1518 /*
1519 * Handle power management nonsense.
1520 */
1521
1522 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1523 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1524 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1525
1526 /* power up chip */
1527 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1528 vr_restore_state)) && error != EOPNOTSUPP) {
1529 aprint_error("%s: cannot activate %d\n", sc->vr_dev.dv_xname,
1530 error);
1531 return;
1532 }
1533
1534 /* Make sure bus mastering is enabled. */
1535 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1536 reg |= PCI_COMMAND_MASTER_ENABLE;
1537 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1538
1539 /* Get revision */
1540 sc->vr_revid = PCI_REVISION(pa->pa_class);
1541
1542 /*
1543 * Map control/status registers.
1544 */
1545 {
1546 bus_space_tag_t iot, memt;
1547 bus_space_handle_t ioh, memh;
1548 int ioh_valid, memh_valid;
1549 pci_intr_handle_t intrhandle;
1550 const char *intrstr;
1551
1552 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1553 PCI_MAPREG_TYPE_IO, 0,
1554 &iot, &ioh, NULL, NULL) == 0);
1555 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1556 PCI_MAPREG_TYPE_MEM |
1557 PCI_MAPREG_MEM_TYPE_32BIT,
1558 0, &memt, &memh, NULL, NULL) == 0);
1559 #if defined(VR_USEIOSPACE)
1560 if (ioh_valid) {
1561 sc->vr_bst = iot;
1562 sc->vr_bsh = ioh;
1563 } else if (memh_valid) {
1564 sc->vr_bst = memt;
1565 sc->vr_bsh = memh;
1566 }
1567 #else
1568 if (memh_valid) {
1569 sc->vr_bst = memt;
1570 sc->vr_bsh = memh;
1571 } else if (ioh_valid) {
1572 sc->vr_bst = iot;
1573 sc->vr_bsh = ioh;
1574 }
1575 #endif
1576 else {
1577 printf(": unable to map device registers\n");
1578 return;
1579 }
1580
1581 /* Allocate interrupt */
1582 if (pci_intr_map(pa, &intrhandle)) {
1583 printf("%s: couldn't map interrupt\n",
1584 sc->vr_dev.dv_xname);
1585 return;
1586 }
1587 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1588 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1589 vr_intr, sc);
1590 if (sc->vr_ih == NULL) {
1591 printf("%s: couldn't establish interrupt",
1592 sc->vr_dev.dv_xname);
1593 if (intrstr != NULL)
1594 printf(" at %s", intrstr);
1595 printf("\n");
1596 }
1597 printf("%s: interrupting at %s\n",
1598 sc->vr_dev.dv_xname, intrstr);
1599 }
1600
1601 /*
1602 * Windows may put the chip in suspend mode when it
1603 * shuts down. Be sure to kick it in the head to wake it
1604 * up again.
1605 *
1606 * Don't touch this register on VT3043 since it causes
1607 * kernel MCHK trap on macppc.
1608 * (Note some VT86C100A chip returns a product ID of VT3043)
1609 */
1610 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1611 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1612
1613 /* Reset the adapter. */
1614 vr_reset(sc);
1615
1616 /*
1617 * Get station address. The way the Rhine chips work,
1618 * you're not allowed to directly access the EEPROM once
1619 * they've been programmed a special way. Consequently,
1620 * we need to read the node address from the PAR0 and PAR1
1621 * registers.
1622 *
1623 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1624 * of the *whole* EEPROM, not just the MAC address. This is
1625 * pretty pointless since the chip does this automatically
1626 * at powerup/reset.
1627 * I suspect the same thing applies to the other Rhine
1628 * variants, but in the absence of a data sheet for those
1629 * (and the lack of anyone else noticing the problems this
1630 * causes) I'm going to retain the old behaviour for the
1631 * other parts.
1632 * In some cases, the chip really does startup without having
1633 * read the EEPROM (kern/34812). To handle this case, we force
1634 * a reload if we see an all-zeroes MAC address.
1635 */
1636 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1637 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1638
1639 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1640 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1641 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1642 DELAY(200);
1643 for (i = 0; i < ETHER_ADDR_LEN; i++)
1644 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1645 }
1646
1647 /*
1648 * A Rhine chip was detected. Inform the world.
1649 */
1650 printf("%s: Ethernet address: %s\n",
1651 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1652
1653 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1654
1655 sc->vr_dmat = pa->pa_dmat;
1656
1657 /*
1658 * Allocate the control data structures, and create and load
1659 * the DMA map for it.
1660 */
1661 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1662 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1663 0)) != 0) {
1664 printf("%s: unable to allocate control data, error = %d\n",
1665 sc->vr_dev.dv_xname, error);
1666 goto fail_0;
1667 }
1668
1669 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1670 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1671 BUS_DMA_COHERENT)) != 0) {
1672 printf("%s: unable to map control data, error = %d\n",
1673 sc->vr_dev.dv_xname, error);
1674 goto fail_1;
1675 }
1676
1677 if ((error = bus_dmamap_create(sc->vr_dmat,
1678 sizeof(struct vr_control_data), 1,
1679 sizeof(struct vr_control_data), 0, 0,
1680 &sc->vr_cddmamap)) != 0) {
1681 printf("%s: unable to create control data DMA map, "
1682 "error = %d\n", sc->vr_dev.dv_xname, error);
1683 goto fail_2;
1684 }
1685
1686 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1687 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1688 0)) != 0) {
1689 printf("%s: unable to load control data DMA map, error = %d\n",
1690 sc->vr_dev.dv_xname, error);
1691 goto fail_3;
1692 }
1693
1694 /*
1695 * Create the transmit buffer DMA maps.
1696 */
1697 for (i = 0; i < VR_NTXDESC; i++) {
1698 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1699 1, MCLBYTES, 0, 0,
1700 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1701 printf("%s: unable to create tx DMA map %d, "
1702 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1703 goto fail_4;
1704 }
1705 }
1706
1707 /*
1708 * Create the receive buffer DMA maps.
1709 */
1710 for (i = 0; i < VR_NRXDESC; i++) {
1711 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1712 MCLBYTES, 0, 0,
1713 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1714 printf("%s: unable to create rx DMA map %d, "
1715 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1716 goto fail_5;
1717 }
1718 VR_DSRX(sc, i)->ds_mbuf = NULL;
1719 }
1720
1721 ifp = &sc->vr_ec.ec_if;
1722 ifp->if_softc = sc;
1723 ifp->if_mtu = ETHERMTU;
1724 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1725 ifp->if_ioctl = vr_ioctl;
1726 ifp->if_start = vr_start;
1727 ifp->if_watchdog = vr_watchdog;
1728 ifp->if_init = vr_init;
1729 ifp->if_stop = vr_stop;
1730 IFQ_SET_READY(&ifp->if_snd);
1731
1732 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1733
1734 /*
1735 * Initialize MII/media info.
1736 */
1737 sc->vr_mii.mii_ifp = ifp;
1738 sc->vr_mii.mii_readreg = vr_mii_readreg;
1739 sc->vr_mii.mii_writereg = vr_mii_writereg;
1740 sc->vr_mii.mii_statchg = vr_mii_statchg;
1741 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, vr_ifmedia_upd,
1742 vr_ifmedia_sts);
1743 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1744 MII_OFFSET_ANY, MIIF_FORCEANEG);
1745 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1746 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1747 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1748 } else
1749 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1750
1751 /*
1752 * Call MI attach routines.
1753 */
1754 if_attach(ifp);
1755 ether_ifattach(ifp, sc->vr_enaddr);
1756 #if NRND > 0
1757 rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1758 RND_TYPE_NET, 0);
1759 #endif
1760
1761 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1762 if (sc->vr_ats == NULL)
1763 printf("%s: warning: couldn't establish shutdown hook\n",
1764 sc->vr_dev.dv_xname);
1765 return;
1766
1767 fail_5:
1768 for (i = 0; i < VR_NRXDESC; i++) {
1769 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1770 bus_dmamap_destroy(sc->vr_dmat,
1771 sc->vr_rxsoft[i].ds_dmamap);
1772 }
1773 fail_4:
1774 for (i = 0; i < VR_NTXDESC; i++) {
1775 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1776 bus_dmamap_destroy(sc->vr_dmat,
1777 sc->vr_txsoft[i].ds_dmamap);
1778 }
1779 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1780 fail_3:
1781 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1782 fail_2:
1783 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1784 sizeof(struct vr_control_data));
1785 fail_1:
1786 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1787 fail_0:
1788 return;
1789 }
1790
1791 static int
1792 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, void *ssc, pcireg_t state)
1793 {
1794 struct vr_softc *sc = ssc;
1795 int error;
1796
1797 if (state == PCI_PMCSR_STATE_D0)
1798 return 0;
1799 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1800 return error;
1801
1802 /* Restore PCI config data. */
1803 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1804 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1805 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1806 return 0;
1807 }
1808