if_vr.c revision 1.89 1 /* $NetBSD: if_vr.c,v 1.89 2008/01/19 22:10:19 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1997, 1998
42 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by Bill Paul.
55 * 4. Neither the name of the author nor the names of any co-contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
69 * THE POSSIBILITY OF SUCH DAMAGE.
70 *
71 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
72 */
73
74 /*
75 * VIA Rhine fast ethernet PCI NIC driver
76 *
77 * Supports various network adapters based on the VIA Rhine
78 * and Rhine II PCI controllers, including the D-Link DFE530TX.
79 * Datasheets are available at http://www.via.com.tw.
80 *
81 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
82 * Electrical Engineering Department
83 * Columbia University, New York City
84 */
85
86 /*
87 * The VIA Rhine controllers are similar in some respects to the
88 * the DEC tulip chips, except less complicated. The controller
89 * uses an MII bus and an external physical layer interface. The
90 * receiver has a one entry perfect filter and a 64-bit hash table
91 * multicast filter. Transmit and receive descriptors are similar
92 * to the tulip.
93 *
94 * The Rhine has a serious flaw in its transmit DMA mechanism:
95 * transmit buffers must be longword aligned. Unfortunately,
96 * the kernel doesn't guarantee that mbufs will be filled in starting
97 * at longword boundaries, so we have to do a buffer copy before
98 * transmission.
99 *
100 * Apparently, the receive DMA mechanism also has the same flaw. This
101 * means that on systems with struct alignment requirements, incoming
102 * frames must be copied to a new buffer which shifts the data forward
103 * 2 bytes so that the payload is aligned on a 4-byte boundary.
104 */
105
106 #include <sys/cdefs.h>
107 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.89 2008/01/19 22:10:19 dyoung Exp $");
108
109 #include "rnd.h"
110
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/callout.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 #include <sys/device.h>
120
121 #if NRND > 0
122 #include <sys/rnd.h>
123 #endif
124
125 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_media.h>
131 #include <net/if_ether.h>
132
133 #include "bpfilter.h"
134 #if NBPFILTER > 0
135 #include <net/bpf.h>
136 #endif
137
138 #include <sys/bus.h>
139 #include <sys/intr.h>
140 #include <machine/endian.h>
141
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144 #include <dev/mii/mii_bitbang.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/pci/if_vrreg.h>
151
152 #define VR_USEIOSPACE
153
154 /*
155 * Various supported device vendors/types and their names.
156 */
157 static struct vr_type {
158 pci_vendor_id_t vr_vid;
159 pci_product_id_t vr_did;
160 const char *vr_name;
161 } vr_devs[] = {
162 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
163 "VIA VT3043 (Rhine) 10/100" },
164 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
165 "VIA VT6102 (Rhine II) 10/100" },
166 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
167 "VIA VT6105 (Rhine III) 10/100" },
168 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M,
169 "VIA VT6105M (Rhine III) 10/100" },
170 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
171 "VIA VT86C100A (Rhine-II) 10/100" },
172 { 0, 0, NULL }
173 };
174
175 /*
176 * Transmit descriptor list size.
177 */
178 #define VR_NTXDESC 64
179 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
180 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
181
182 /*
183 * Receive descriptor list size.
184 */
185 #define VR_NRXDESC 64
186 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
187 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
188
189 /*
190 * Control data structres that are DMA'd to the Rhine chip. We allocate
191 * them in a single clump that maps to a single DMA segment to make several
192 * things easier.
193 *
194 * Note that since we always copy outgoing packets to aligned transmit
195 * buffers, we can reduce the transmit descriptors to one per packet.
196 */
197 struct vr_control_data {
198 struct vr_desc vr_txdescs[VR_NTXDESC];
199 struct vr_desc vr_rxdescs[VR_NRXDESC];
200 };
201
202 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
203 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
204 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
205
206 /*
207 * Software state of transmit and receive descriptors.
208 */
209 struct vr_descsoft {
210 struct mbuf *ds_mbuf; /* head of mbuf chain */
211 bus_dmamap_t ds_dmamap; /* our DMA map */
212 };
213
214 struct vr_softc {
215 struct device vr_dev; /* generic device glue */
216 void *vr_ih; /* interrupt cookie */
217 void *vr_ats; /* shutdown hook */
218 bus_space_tag_t vr_bst; /* bus space tag */
219 bus_space_handle_t vr_bsh; /* bus space handle */
220 bus_dma_tag_t vr_dmat; /* bus DMA tag */
221 pci_chipset_tag_t vr_pc; /* PCI chipset info */
222 pcitag_t vr_tag; /* PCI tag */
223 struct ethercom vr_ec; /* Ethernet common info */
224 uint8_t vr_enaddr[ETHER_ADDR_LEN];
225 struct mii_data vr_mii; /* MII/media info */
226
227 uint8_t vr_revid; /* Rhine chip revision */
228
229 callout_t vr_tick_ch; /* tick callout */
230
231 bus_dmamap_t vr_cddmamap; /* control data DMA map */
232 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
233
234 /*
235 * Software state for transmit and receive descriptors.
236 */
237 struct vr_descsoft vr_txsoft[VR_NTXDESC];
238 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
239
240 /*
241 * Control data structures.
242 */
243 struct vr_control_data *vr_control_data;
244
245 int vr_txpending; /* number of TX requests pending */
246 int vr_txdirty; /* first dirty TX descriptor */
247 int vr_txlast; /* last used TX descriptor */
248
249 int vr_rxptr; /* next ready RX descriptor */
250
251 uint32_t vr_save_iobase;
252 uint32_t vr_save_membase;
253 uint32_t vr_save_irq;
254
255 #if NRND > 0
256 rndsource_element_t rnd_source; /* random source */
257 #endif
258 };
259
260 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
261 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
262
263 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
264 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
265
266 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
267 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
268
269 #define VR_CDTXSYNC(sc, x, ops) \
270 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
271 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
272
273 #define VR_CDRXSYNC(sc, x, ops) \
274 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
275 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
276
277 /*
278 * Note we rely on MCLBYTES being a power of two below.
279 */
280 #define VR_INIT_RXDESC(sc, i) \
281 do { \
282 struct vr_desc *__d = VR_CDRX((sc), (i)); \
283 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
284 \
285 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
286 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
287 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
288 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
289 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
290 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
291 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
292 } while (/* CONSTCOND */ 0)
293
294 /*
295 * register space access macros
296 */
297 #define CSR_WRITE_4(sc, reg, val) \
298 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
299 #define CSR_WRITE_2(sc, reg, val) \
300 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
301 #define CSR_WRITE_1(sc, reg, val) \
302 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
303
304 #define CSR_READ_4(sc, reg) \
305 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
306 #define CSR_READ_2(sc, reg) \
307 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
308 #define CSR_READ_1(sc, reg) \
309 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
310
311 #define VR_TIMEOUT 1000
312
313 static int vr_add_rxbuf(struct vr_softc *, int);
314
315 static void vr_rxeof(struct vr_softc *);
316 static void vr_rxeoc(struct vr_softc *);
317 static void vr_txeof(struct vr_softc *);
318 static int vr_intr(void *);
319 static void vr_start(struct ifnet *);
320 static int vr_ioctl(struct ifnet *, u_long, void *);
321 static int vr_init(struct ifnet *);
322 static void vr_stop(struct ifnet *, int);
323 static void vr_rxdrain(struct vr_softc *);
324 static void vr_watchdog(struct ifnet *);
325 static void vr_tick(void *);
326
327 static int vr_mii_readreg(struct device *, int, int);
328 static void vr_mii_writereg(struct device *, int, int, int);
329 static void vr_mii_statchg(struct device *);
330
331 static void vr_setmulti(struct vr_softc *);
332 static void vr_reset(struct vr_softc *);
333 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, void *, pcireg_t);
334
335 int vr_copy_small = 0;
336
337 #define VR_SETBIT(sc, reg, x) \
338 CSR_WRITE_1(sc, reg, \
339 CSR_READ_1(sc, reg) | (x))
340
341 #define VR_CLRBIT(sc, reg, x) \
342 CSR_WRITE_1(sc, reg, \
343 CSR_READ_1(sc, reg) & ~(x))
344
345 #define VR_SETBIT16(sc, reg, x) \
346 CSR_WRITE_2(sc, reg, \
347 CSR_READ_2(sc, reg) | (x))
348
349 #define VR_CLRBIT16(sc, reg, x) \
350 CSR_WRITE_2(sc, reg, \
351 CSR_READ_2(sc, reg) & ~(x))
352
353 #define VR_SETBIT32(sc, reg, x) \
354 CSR_WRITE_4(sc, reg, \
355 CSR_READ_4(sc, reg) | (x))
356
357 #define VR_CLRBIT32(sc, reg, x) \
358 CSR_WRITE_4(sc, reg, \
359 CSR_READ_4(sc, reg) & ~(x))
360
361 /*
362 * MII bit-bang glue.
363 */
364 static uint32_t vr_mii_bitbang_read(struct device *);
365 static void vr_mii_bitbang_write(struct device *, uint32_t);
366
367 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
368 vr_mii_bitbang_read,
369 vr_mii_bitbang_write,
370 {
371 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
372 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
373 VR_MIICMD_CLK, /* MII_BIT_MDC */
374 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
375 0, /* MII_BIT_DIR_PHY_HOST */
376 }
377 };
378
379 static uint32_t
380 vr_mii_bitbang_read(struct device *self)
381 {
382 struct vr_softc *sc = (void *) self;
383
384 return (CSR_READ_1(sc, VR_MIICMD));
385 }
386
387 static void
388 vr_mii_bitbang_write(struct device *self, uint32_t val)
389 {
390 struct vr_softc *sc = (void *) self;
391
392 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
393 }
394
395 /*
396 * Read an PHY register through the MII.
397 */
398 static int
399 vr_mii_readreg(struct device *self, int phy, int reg)
400 {
401 struct vr_softc *sc = (void *) self;
402
403 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
405 }
406
407 /*
408 * Write to a PHY register through the MII.
409 */
410 static void
411 vr_mii_writereg(struct device *self, int phy, int reg, int val)
412 {
413 struct vr_softc *sc = (void *) self;
414
415 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
416 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
417 }
418
419 static void
420 vr_mii_statchg(struct device *self)
421 {
422 struct vr_softc *sc = (struct vr_softc *)self;
423
424 /*
425 * In order to fiddle with the 'full-duplex' bit in the netconfig
426 * register, we first have to put the transmit and/or receive logic
427 * in the idle state.
428 */
429 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
430
431 if (sc->vr_mii.mii_media_active & IFM_FDX)
432 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
433 else
434 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
435
436 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
437 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
438 }
439
440 #define vr_calchash(addr) \
441 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
442
443 /*
444 * Program the 64-bit multicast hash filter.
445 */
446 static void
447 vr_setmulti(struct vr_softc *sc)
448 {
449 struct ifnet *ifp;
450 int h = 0;
451 uint32_t hashes[2] = { 0, 0 };
452 struct ether_multistep step;
453 struct ether_multi *enm;
454 int mcnt = 0;
455 uint8_t rxfilt;
456
457 ifp = &sc->vr_ec.ec_if;
458
459 rxfilt = CSR_READ_1(sc, VR_RXCFG);
460
461 if (ifp->if_flags & IFF_PROMISC) {
462 allmulti:
463 ifp->if_flags |= IFF_ALLMULTI;
464 rxfilt |= VR_RXCFG_RX_MULTI;
465 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
466 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
467 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
468 return;
469 }
470
471 /* first, zot all the existing hash bits */
472 CSR_WRITE_4(sc, VR_MAR0, 0);
473 CSR_WRITE_4(sc, VR_MAR1, 0);
474
475 /* now program new ones */
476 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
477 while (enm != NULL) {
478 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
479 ETHER_ADDR_LEN) != 0)
480 goto allmulti;
481
482 h = vr_calchash(enm->enm_addrlo);
483
484 if (h < 32)
485 hashes[0] |= (1 << h);
486 else
487 hashes[1] |= (1 << (h - 32));
488 ETHER_NEXT_MULTI(step, enm);
489 mcnt++;
490 }
491
492 ifp->if_flags &= ~IFF_ALLMULTI;
493
494 if (mcnt)
495 rxfilt |= VR_RXCFG_RX_MULTI;
496 else
497 rxfilt &= ~VR_RXCFG_RX_MULTI;
498
499 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
500 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
501 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
502 }
503
504 static void
505 vr_reset(struct vr_softc *sc)
506 {
507 int i;
508
509 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
510
511 for (i = 0; i < VR_TIMEOUT; i++) {
512 DELAY(10);
513 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
514 break;
515 }
516 if (i == VR_TIMEOUT) {
517 if (sc->vr_revid < REV_ID_VT3065_A) {
518 printf("%s: reset never completed!\n",
519 sc->vr_dev.dv_xname);
520 } else {
521 /* Use newer force reset command */
522 printf("%s: using force reset command.\n",
523 sc->vr_dev.dv_xname);
524 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
525 }
526 }
527
528 /* Wait a little while for the chip to get its brains in order. */
529 DELAY(1000);
530 }
531
532 /*
533 * Initialize an RX descriptor and attach an MBUF cluster.
534 * Note: the length fields are only 11 bits wide, which means the
535 * largest size we can specify is 2047. This is important because
536 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
537 * overflow the field and make a mess.
538 */
539 static int
540 vr_add_rxbuf(struct vr_softc *sc, int i)
541 {
542 struct vr_descsoft *ds = VR_DSRX(sc, i);
543 struct mbuf *m_new;
544 int error;
545
546 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
547 if (m_new == NULL)
548 return (ENOBUFS);
549
550 MCLGET(m_new, M_DONTWAIT);
551 if ((m_new->m_flags & M_EXT) == 0) {
552 m_freem(m_new);
553 return (ENOBUFS);
554 }
555
556 if (ds->ds_mbuf != NULL)
557 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
558
559 ds->ds_mbuf = m_new;
560
561 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
562 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
563 BUS_DMA_READ|BUS_DMA_NOWAIT);
564 if (error) {
565 printf("%s: unable to load rx DMA map %d, error = %d\n",
566 sc->vr_dev.dv_xname, i, error);
567 panic("vr_add_rxbuf"); /* XXX */
568 }
569
570 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
571 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
572
573 VR_INIT_RXDESC(sc, i);
574
575 return (0);
576 }
577
578 /*
579 * A frame has been uploaded: pass the resulting mbuf chain up to
580 * the higher level protocols.
581 */
582 static void
583 vr_rxeof(struct vr_softc *sc)
584 {
585 struct mbuf *m;
586 struct ifnet *ifp;
587 struct vr_desc *d;
588 struct vr_descsoft *ds;
589 int i, total_len;
590 uint32_t rxstat;
591
592 ifp = &sc->vr_ec.ec_if;
593
594 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
595 d = VR_CDRX(sc, i);
596 ds = VR_DSRX(sc, i);
597
598 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
599
600 rxstat = le32toh(d->vr_status);
601
602 if (rxstat & VR_RXSTAT_OWN) {
603 /*
604 * We have processed all of the receive buffers.
605 */
606 break;
607 }
608
609 /*
610 * If an error occurs, update stats, clear the
611 * status word and leave the mbuf cluster in place:
612 * it should simply get re-used next time this descriptor
613 * comes up in the ring.
614 */
615 if (rxstat & VR_RXSTAT_RXERR) {
616 const char *errstr;
617
618 ifp->if_ierrors++;
619 switch (rxstat & 0x000000FF) {
620 case VR_RXSTAT_CRCERR:
621 errstr = "crc error";
622 break;
623 case VR_RXSTAT_FRAMEALIGNERR:
624 errstr = "frame alignment error";
625 break;
626 case VR_RXSTAT_FIFOOFLOW:
627 errstr = "FIFO overflow";
628 break;
629 case VR_RXSTAT_GIANT:
630 errstr = "received giant packet";
631 break;
632 case VR_RXSTAT_RUNT:
633 errstr = "received runt packet";
634 break;
635 case VR_RXSTAT_BUSERR:
636 errstr = "system bus error";
637 break;
638 case VR_RXSTAT_BUFFERR:
639 errstr = "rx buffer error";
640 break;
641 default:
642 errstr = "unknown rx error";
643 break;
644 }
645 printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
646 errstr);
647
648 VR_INIT_RXDESC(sc, i);
649
650 continue;
651 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
652 !(rxstat & VR_RXSTAT_LASTFRAG)) {
653 /*
654 * This driver expects to receive whole packets every
655 * time. In case we receive a fragment that is not
656 * a complete packet, we discard it.
657 */
658 ifp->if_ierrors++;
659
660 printf("%s: receive error: incomplete frame; "
661 "size = %d, status = 0x%x\n",
662 sc->vr_dev.dv_xname,
663 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
664
665 VR_INIT_RXDESC(sc, i);
666
667 continue;
668 }
669
670 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
671 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
672
673 /* No errors; receive the packet. */
674 total_len = VR_RXBYTES(le32toh(d->vr_status));
675 #ifdef DIAGNOSTIC
676 if (total_len == 0) {
677 /*
678 * If we receive a zero-length packet, we probably
679 * missed to handle an error condition above.
680 * Discard it to avoid a later crash.
681 */
682 ifp->if_ierrors++;
683
684 printf("%s: receive error: zero-length packet; "
685 "status = 0x%x\n",
686 sc->vr_dev.dv_xname, rxstat);
687
688 VR_INIT_RXDESC(sc, i);
689
690 continue;
691 }
692 #endif
693
694 /*
695 * The Rhine chip includes the CRC with every packet.
696 * Trim it off here.
697 */
698 total_len -= ETHER_CRC_LEN;
699
700 #ifdef __NO_STRICT_ALIGNMENT
701 /*
702 * If the packet is small enough to fit in a
703 * single header mbuf, allocate one and copy
704 * the data into it. This greatly reduces
705 * memory consumption when we receive lots
706 * of small packets.
707 *
708 * Otherwise, we add a new buffer to the receive
709 * chain. If this fails, we drop the packet and
710 * recycle the old buffer.
711 */
712 if (vr_copy_small != 0 && total_len <= MHLEN) {
713 MGETHDR(m, M_DONTWAIT, MT_DATA);
714 if (m == NULL)
715 goto dropit;
716 memcpy(mtod(m, void *),
717 mtod(ds->ds_mbuf, void *), total_len);
718 VR_INIT_RXDESC(sc, i);
719 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
720 ds->ds_dmamap->dm_mapsize,
721 BUS_DMASYNC_PREREAD);
722 } else {
723 m = ds->ds_mbuf;
724 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
725 dropit:
726 ifp->if_ierrors++;
727 VR_INIT_RXDESC(sc, i);
728 bus_dmamap_sync(sc->vr_dmat,
729 ds->ds_dmamap, 0,
730 ds->ds_dmamap->dm_mapsize,
731 BUS_DMASYNC_PREREAD);
732 continue;
733 }
734 }
735 #else
736 /*
737 * The Rhine's packet buffers must be 4-byte aligned.
738 * But this means that the data after the Ethernet header
739 * is misaligned. We must allocate a new buffer and
740 * copy the data, shifted forward 2 bytes.
741 */
742 MGETHDR(m, M_DONTWAIT, MT_DATA);
743 if (m == NULL) {
744 dropit:
745 ifp->if_ierrors++;
746 VR_INIT_RXDESC(sc, i);
747 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
748 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
749 continue;
750 }
751 if (total_len > (MHLEN - 2)) {
752 MCLGET(m, M_DONTWAIT);
753 if ((m->m_flags & M_EXT) == 0) {
754 m_freem(m);
755 goto dropit;
756 }
757 }
758 m->m_data += 2;
759
760 /*
761 * Note that we use clusters for incoming frames, so the
762 * buffer is virtually contiguous.
763 */
764 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
765 total_len);
766
767 /* Allow the receive descriptor to continue using its mbuf. */
768 VR_INIT_RXDESC(sc, i);
769 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
770 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
771 #endif /* __NO_STRICT_ALIGNMENT */
772
773 ifp->if_ipackets++;
774 m->m_pkthdr.rcvif = ifp;
775 m->m_pkthdr.len = m->m_len = total_len;
776 #if NBPFILTER > 0
777 /*
778 * Handle BPF listeners. Let the BPF user see the packet, but
779 * don't pass it up to the ether_input() layer unless it's
780 * a broadcast packet, multicast packet, matches our ethernet
781 * address or the interface is in promiscuous mode.
782 */
783 if (ifp->if_bpf)
784 bpf_mtap(ifp->if_bpf, m);
785 #endif
786 /* Pass it on. */
787 (*ifp->if_input)(ifp, m);
788 }
789
790 /* Update the receive pointer. */
791 sc->vr_rxptr = i;
792 }
793
794 void
795 vr_rxeoc(struct vr_softc *sc)
796 {
797 struct ifnet *ifp;
798 int i;
799
800 ifp = &sc->vr_ec.ec_if;
801
802 ifp->if_ierrors++;
803
804 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
805 for (i = 0; i < VR_TIMEOUT; i++) {
806 DELAY(10);
807 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
808 break;
809 }
810 if (i == VR_TIMEOUT) {
811 /* XXX need reset? */
812 printf("%s: RX shutdown never complete\n",
813 sc->vr_dev.dv_xname);
814 }
815
816 vr_rxeof(sc);
817
818 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
819 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
820 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
821 }
822
823 /*
824 * A frame was downloaded to the chip. It's safe for us to clean up
825 * the list buffers.
826 */
827 static void
828 vr_txeof(struct vr_softc *sc)
829 {
830 struct ifnet *ifp = &sc->vr_ec.ec_if;
831 struct vr_desc *d;
832 struct vr_descsoft *ds;
833 uint32_t txstat;
834 int i, j;
835
836 ifp->if_flags &= ~IFF_OACTIVE;
837
838 /*
839 * Go through our tx list and free mbufs for those
840 * frames that have been transmitted.
841 */
842 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
843 i = VR_NEXTTX(i), sc->vr_txpending--) {
844 d = VR_CDTX(sc, i);
845 ds = VR_DSTX(sc, i);
846
847 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
848
849 txstat = le32toh(d->vr_status);
850
851 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
852 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
853 for (j = 0; j < VR_TIMEOUT; j++) {
854 DELAY(10);
855 if ((CSR_READ_2(sc, VR_COMMAND) &
856 VR_CMD_TX_ON) == 0)
857 break;
858 }
859 if (j == VR_TIMEOUT) {
860 /* XXX need reset? */
861 printf("%s: TX shutdown never complete\n",
862 sc->vr_dev.dv_xname);
863 }
864 d->vr_status = htole32(VR_TXSTAT_OWN);
865 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
866 break;
867 }
868
869 if (txstat & VR_TXSTAT_OWN)
870 break;
871
872 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
873 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
874 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
875 m_freem(ds->ds_mbuf);
876 ds->ds_mbuf = NULL;
877
878 if (txstat & VR_TXSTAT_ERRSUM) {
879 ifp->if_oerrors++;
880 if (txstat & VR_TXSTAT_DEFER)
881 ifp->if_collisions++;
882 if (txstat & VR_TXSTAT_LATECOLL)
883 ifp->if_collisions++;
884 }
885
886 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
887 ifp->if_opackets++;
888 }
889
890 /* Update the dirty transmit buffer pointer. */
891 sc->vr_txdirty = i;
892
893 /*
894 * Cancel the watchdog timer if there are no pending
895 * transmissions.
896 */
897 if (sc->vr_txpending == 0)
898 ifp->if_timer = 0;
899 }
900
901 static int
902 vr_intr(void *arg)
903 {
904 struct vr_softc *sc;
905 struct ifnet *ifp;
906 uint16_t status;
907 int handled = 0, dotx = 0;
908
909 sc = arg;
910 ifp = &sc->vr_ec.ec_if;
911
912 /* Suppress unwanted interrupts. */
913 if ((ifp->if_flags & IFF_UP) == 0) {
914 vr_stop(ifp, 1);
915 return (0);
916 }
917
918 /* Disable interrupts. */
919 CSR_WRITE_2(sc, VR_IMR, 0x0000);
920
921 for (;;) {
922 status = CSR_READ_2(sc, VR_ISR);
923 if (status)
924 CSR_WRITE_2(sc, VR_ISR, status);
925
926 if ((status & VR_INTRS) == 0)
927 break;
928
929 handled = 1;
930
931 #if NRND > 0
932 if (RND_ENABLED(&sc->rnd_source))
933 rnd_add_uint32(&sc->rnd_source, status);
934 #endif
935
936 if (status & VR_ISR_RX_OK)
937 vr_rxeof(sc);
938
939 if (status & VR_ISR_RX_DROPPED) {
940 printf("%s: rx packet lost\n", sc->vr_dev.dv_xname);
941 ifp->if_ierrors++;
942 }
943
944 if (status &
945 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
946 vr_rxeoc(sc);
947
948
949 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
950 if (status & VR_ISR_BUSERR)
951 printf("%s: PCI bus error\n",
952 sc->vr_dev.dv_xname);
953 if (status & VR_ISR_TX_UNDERRUN)
954 printf("%s: transmit underrun\n",
955 sc->vr_dev.dv_xname);
956 /* vr_init() calls vr_start() */
957 dotx = 0;
958 (void)vr_init(ifp);
959
960 }
961
962 if (status & VR_ISR_TX_OK) {
963 dotx = 1;
964 vr_txeof(sc);
965 }
966
967 if (status &
968 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
969 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
970 printf("%s: transmit aborted\n",
971 sc->vr_dev.dv_xname);
972 if (status & VR_ISR_TX_UDFI)
973 printf("%s: transmit underflow\n",
974 sc->vr_dev.dv_xname);
975 ifp->if_oerrors++;
976 dotx = 1;
977 vr_txeof(sc);
978 if (sc->vr_txpending) {
979 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
980 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
981 }
982 }
983 }
984
985 /* Re-enable interrupts. */
986 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
987
988 if (dotx)
989 vr_start(ifp);
990
991 return (handled);
992 }
993
994 /*
995 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
996 * to the mbuf data regions directly in the transmit lists. We also save a
997 * copy of the pointers since the transmit list fragment pointers are
998 * physical addresses.
999 */
1000 static void
1001 vr_start(struct ifnet *ifp)
1002 {
1003 struct vr_softc *sc = ifp->if_softc;
1004 struct mbuf *m0, *m;
1005 struct vr_desc *d;
1006 struct vr_descsoft *ds;
1007 int error, firsttx, nexttx, opending;
1008
1009 /*
1010 * Remember the previous txpending and the first transmit
1011 * descriptor we use.
1012 */
1013 opending = sc->vr_txpending;
1014 firsttx = VR_NEXTTX(sc->vr_txlast);
1015
1016 /*
1017 * Loop through the send queue, setting up transmit descriptors
1018 * until we drain the queue, or use up all available transmit
1019 * descriptors.
1020 */
1021 while (sc->vr_txpending < VR_NTXDESC) {
1022 /*
1023 * Grab a packet off the queue.
1024 */
1025 IFQ_POLL(&ifp->if_snd, m0);
1026 if (m0 == NULL)
1027 break;
1028 m = NULL;
1029
1030 /*
1031 * Get the next available transmit descriptor.
1032 */
1033 nexttx = VR_NEXTTX(sc->vr_txlast);
1034 d = VR_CDTX(sc, nexttx);
1035 ds = VR_DSTX(sc, nexttx);
1036
1037 /*
1038 * Load the DMA map. If this fails, the packet didn't
1039 * fit in one DMA segment, and we need to copy. Note,
1040 * the packet must also be aligned.
1041 * if the packet is too small, copy it too, so we're sure
1042 * we have enough room for the pad buffer.
1043 */
1044 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1045 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1046 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1047 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1048 MGETHDR(m, M_DONTWAIT, MT_DATA);
1049 if (m == NULL) {
1050 printf("%s: unable to allocate Tx mbuf\n",
1051 sc->vr_dev.dv_xname);
1052 break;
1053 }
1054 if (m0->m_pkthdr.len > MHLEN) {
1055 MCLGET(m, M_DONTWAIT);
1056 if ((m->m_flags & M_EXT) == 0) {
1057 printf("%s: unable to allocate Tx "
1058 "cluster\n", sc->vr_dev.dv_xname);
1059 m_freem(m);
1060 break;
1061 }
1062 }
1063 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1064 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1065 /*
1066 * The Rhine doesn't auto-pad, so we have to do this
1067 * ourselves.
1068 */
1069 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1070 memset(mtod(m, char *) + m0->m_pkthdr.len,
1071 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1072 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1073 }
1074 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1075 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1076 if (error) {
1077 m_freem(m);
1078 printf("%s: unable to load Tx buffer, "
1079 "error = %d\n", sc->vr_dev.dv_xname, error);
1080 break;
1081 }
1082 }
1083
1084 IFQ_DEQUEUE(&ifp->if_snd, m0);
1085 if (m != NULL) {
1086 m_freem(m0);
1087 m0 = m;
1088 }
1089
1090 /* Sync the DMA map. */
1091 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1092 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1093
1094 /*
1095 * Store a pointer to the packet so we can free it later.
1096 */
1097 ds->ds_mbuf = m0;
1098
1099 #if NBPFILTER > 0
1100 /*
1101 * If there's a BPF listener, bounce a copy of this frame
1102 * to him.
1103 */
1104 if (ifp->if_bpf)
1105 bpf_mtap(ifp->if_bpf, m0);
1106 #endif
1107
1108 /*
1109 * Fill in the transmit descriptor.
1110 */
1111 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1112 d->vr_ctl = htole32(m0->m_pkthdr.len);
1113 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1114
1115 /*
1116 * If this is the first descriptor we're enqueuing,
1117 * don't give it to the Rhine yet. That could cause
1118 * a race condition. We'll do it below.
1119 */
1120 if (nexttx == firsttx)
1121 d->vr_status = 0;
1122 else
1123 d->vr_status = htole32(VR_TXSTAT_OWN);
1124
1125 VR_CDTXSYNC(sc, nexttx,
1126 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127
1128 /* Advance the tx pointer. */
1129 sc->vr_txpending++;
1130 sc->vr_txlast = nexttx;
1131 }
1132
1133 if (sc->vr_txpending == VR_NTXDESC) {
1134 /* No more slots left; notify upper layer. */
1135 ifp->if_flags |= IFF_OACTIVE;
1136 }
1137
1138 if (sc->vr_txpending != opending) {
1139 /*
1140 * We enqueued packets. If the transmitter was idle,
1141 * reset the txdirty pointer.
1142 */
1143 if (opending == 0)
1144 sc->vr_txdirty = firsttx;
1145
1146 /*
1147 * Cause a transmit interrupt to happen on the
1148 * last packet we enqueued.
1149 */
1150 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1151 VR_CDTXSYNC(sc, sc->vr_txlast,
1152 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1153
1154 /*
1155 * The entire packet chain is set up. Give the
1156 * first descriptor to the Rhine now.
1157 */
1158 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1159 VR_CDTXSYNC(sc, firsttx,
1160 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161
1162 /* Start the transmitter. */
1163 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1164
1165 /* Set the watchdog timer in case the chip flakes out. */
1166 ifp->if_timer = 5;
1167 }
1168 }
1169
1170 /*
1171 * Initialize the interface. Must be called at splnet.
1172 */
1173 static int
1174 vr_init(struct ifnet *ifp)
1175 {
1176 struct vr_softc *sc = ifp->if_softc;
1177 struct vr_desc *d;
1178 struct vr_descsoft *ds;
1179 int i, error = 0;
1180
1181 /* Cancel pending I/O. */
1182 vr_stop(ifp, 0);
1183
1184 /* Reset the Rhine to a known state. */
1185 vr_reset(sc);
1186
1187 /* set DMA length in BCR0 and BCR1 */
1188 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1189 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1190
1191 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1192 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1193
1194 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1195 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1196
1197 /* set DMA threshold length in RXCFG and TXCFG */
1198 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1199 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1200
1201 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1202 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1203
1204 /*
1205 * Initialize the transmit descriptor ring. txlast is initialized
1206 * to the end of the list so that it will wrap around to the first
1207 * descriptor when the first packet is transmitted.
1208 */
1209 for (i = 0; i < VR_NTXDESC; i++) {
1210 d = VR_CDTX(sc, i);
1211 memset(d, 0, sizeof(struct vr_desc));
1212 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1213 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1214 }
1215 sc->vr_txpending = 0;
1216 sc->vr_txdirty = 0;
1217 sc->vr_txlast = VR_NTXDESC - 1;
1218
1219 /*
1220 * Initialize the receive descriptor ring.
1221 */
1222 for (i = 0; i < VR_NRXDESC; i++) {
1223 ds = VR_DSRX(sc, i);
1224 if (ds->ds_mbuf == NULL) {
1225 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1226 printf("%s: unable to allocate or map rx "
1227 "buffer %d, error = %d\n",
1228 sc->vr_dev.dv_xname, i, error);
1229 /*
1230 * XXX Should attempt to run with fewer receive
1231 * XXX buffers instead of just failing.
1232 */
1233 vr_rxdrain(sc);
1234 goto out;
1235 }
1236 } else
1237 VR_INIT_RXDESC(sc, i);
1238 }
1239 sc->vr_rxptr = 0;
1240
1241 /* If we want promiscuous mode, set the allframes bit. */
1242 if (ifp->if_flags & IFF_PROMISC)
1243 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1244 else
1245 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1246
1247 /* Set capture broadcast bit to capture broadcast frames. */
1248 if (ifp->if_flags & IFF_BROADCAST)
1249 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1250 else
1251 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1252
1253 /* Program the multicast filter, if necessary. */
1254 vr_setmulti(sc);
1255
1256 /* Give the transmit and receive rings to the Rhine. */
1257 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1258 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1259
1260 /* Set current media. */
1261 if ((error = ether_mediachange(ifp)) != 0)
1262 goto out;
1263
1264 /* Enable receiver and transmitter. */
1265 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1266 VR_CMD_TX_ON|VR_CMD_RX_ON|
1267 VR_CMD_RX_GO);
1268
1269 /* Enable interrupts. */
1270 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1271 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1272
1273 ifp->if_flags |= IFF_RUNNING;
1274 ifp->if_flags &= ~IFF_OACTIVE;
1275
1276 /* Start one second timer. */
1277 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1278
1279 /* Attempt to start output on the interface. */
1280 vr_start(ifp);
1281
1282 out:
1283 if (error)
1284 printf("%s: interface not running\n", sc->vr_dev.dv_xname);
1285 return (error);
1286 }
1287
1288 static int
1289 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1290 {
1291 struct vr_softc *sc = ifp->if_softc;
1292 int s, error = 0;
1293
1294 s = splnet();
1295
1296 error = ether_ioctl(ifp, command, data);
1297 if (error == ENETRESET) {
1298 /*
1299 * Multicast list has changed; set the hardware filter
1300 * accordingly.
1301 */
1302 if (ifp->if_flags & IFF_RUNNING)
1303 vr_setmulti(sc);
1304 error = 0;
1305 }
1306
1307 splx(s);
1308 return (error);
1309 }
1310
1311 static void
1312 vr_watchdog(struct ifnet *ifp)
1313 {
1314 struct vr_softc *sc = ifp->if_softc;
1315
1316 printf("%s: device timeout\n", sc->vr_dev.dv_xname);
1317 ifp->if_oerrors++;
1318
1319 (void) vr_init(ifp);
1320 }
1321
1322 /*
1323 * One second timer, used to tick MII.
1324 */
1325 static void
1326 vr_tick(void *arg)
1327 {
1328 struct vr_softc *sc = arg;
1329 int s;
1330
1331 s = splnet();
1332 mii_tick(&sc->vr_mii);
1333 splx(s);
1334
1335 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1336 }
1337
1338 /*
1339 * Drain the receive queue.
1340 */
1341 static void
1342 vr_rxdrain(struct vr_softc *sc)
1343 {
1344 struct vr_descsoft *ds;
1345 int i;
1346
1347 for (i = 0; i < VR_NRXDESC; i++) {
1348 ds = VR_DSRX(sc, i);
1349 if (ds->ds_mbuf != NULL) {
1350 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1351 m_freem(ds->ds_mbuf);
1352 ds->ds_mbuf = NULL;
1353 }
1354 }
1355 }
1356
1357 /*
1358 * Stop the adapter and free any mbufs allocated to the
1359 * transmit lists.
1360 */
1361 static void
1362 vr_stop(struct ifnet *ifp, int disable)
1363 {
1364 struct vr_softc *sc = ifp->if_softc;
1365 struct vr_descsoft *ds;
1366 int i;
1367
1368 /* Cancel one second timer. */
1369 callout_stop(&sc->vr_tick_ch);
1370
1371 /* Down the MII. */
1372 mii_down(&sc->vr_mii);
1373
1374 ifp = &sc->vr_ec.ec_if;
1375 ifp->if_timer = 0;
1376
1377 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1378 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1379 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1380 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1381 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1382
1383 /*
1384 * Release any queued transmit buffers.
1385 */
1386 for (i = 0; i < VR_NTXDESC; i++) {
1387 ds = VR_DSTX(sc, i);
1388 if (ds->ds_mbuf != NULL) {
1389 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1390 m_freem(ds->ds_mbuf);
1391 ds->ds_mbuf = NULL;
1392 }
1393 }
1394
1395 if (disable)
1396 vr_rxdrain(sc);
1397
1398 /*
1399 * Mark the interface down and cancel the watchdog timer.
1400 */
1401 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1402 ifp->if_timer = 0;
1403 }
1404
1405 static int vr_probe(struct device *, struct cfdata *, void *);
1406 static void vr_attach(struct device *, struct device *, void *);
1407 static void vr_shutdown(void *);
1408
1409 CFATTACH_DECL(vr, sizeof (struct vr_softc),
1410 vr_probe, vr_attach, NULL, NULL);
1411
1412 static struct vr_type *
1413 vr_lookup(struct pci_attach_args *pa)
1414 {
1415 struct vr_type *vrt;
1416
1417 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1418 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1419 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1420 return (vrt);
1421 }
1422 return (NULL);
1423 }
1424
1425 static int
1426 vr_probe(struct device *parent, struct cfdata *match,
1427 void *aux)
1428 {
1429 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1430
1431 if (vr_lookup(pa) != NULL)
1432 return (1);
1433
1434 return (0);
1435 }
1436
1437 /*
1438 * Stop all chip I/O so that the kernel's probe routines don't
1439 * get confused by errant DMAs when rebooting.
1440 */
1441 static void
1442 vr_shutdown(void *arg)
1443 {
1444 struct vr_softc *sc = (struct vr_softc *)arg;
1445
1446 vr_stop(&sc->vr_ec.ec_if, 1);
1447 }
1448
1449 /*
1450 * Attach the interface. Allocate softc structures, do ifmedia
1451 * setup and ethernet/BPF attach.
1452 */
1453 static void
1454 vr_attach(struct device *parent, struct device *self, void *aux)
1455 {
1456 struct vr_softc *sc = (struct vr_softc *) self;
1457 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1458 bus_dma_segment_t seg;
1459 struct vr_type *vrt;
1460 uint32_t reg;
1461 struct ifnet *ifp;
1462 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1463 int i, rseg, error;
1464
1465 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1466 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1467
1468 sc->vr_pc = pa->pa_pc;
1469 sc->vr_tag = pa->pa_tag;
1470 callout_init(&sc->vr_tick_ch, 0);
1471
1472 vrt = vr_lookup(pa);
1473 if (vrt == NULL) {
1474 printf("\n");
1475 panic("vr_attach: impossible");
1476 }
1477
1478 printf(": %s Ethernet\n", vrt->vr_name);
1479
1480 /*
1481 * Handle power management nonsense.
1482 */
1483
1484 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1485 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1486 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1487
1488 /* power up chip */
1489 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1490 vr_restore_state)) && error != EOPNOTSUPP) {
1491 aprint_error("%s: cannot activate %d\n", sc->vr_dev.dv_xname,
1492 error);
1493 return;
1494 }
1495
1496 /* Make sure bus mastering is enabled. */
1497 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1498 reg |= PCI_COMMAND_MASTER_ENABLE;
1499 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1500
1501 /* Get revision */
1502 sc->vr_revid = PCI_REVISION(pa->pa_class);
1503
1504 /*
1505 * Map control/status registers.
1506 */
1507 {
1508 bus_space_tag_t iot, memt;
1509 bus_space_handle_t ioh, memh;
1510 int ioh_valid, memh_valid;
1511 pci_intr_handle_t intrhandle;
1512 const char *intrstr;
1513
1514 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1515 PCI_MAPREG_TYPE_IO, 0,
1516 &iot, &ioh, NULL, NULL) == 0);
1517 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1518 PCI_MAPREG_TYPE_MEM |
1519 PCI_MAPREG_MEM_TYPE_32BIT,
1520 0, &memt, &memh, NULL, NULL) == 0);
1521 #if defined(VR_USEIOSPACE)
1522 if (ioh_valid) {
1523 sc->vr_bst = iot;
1524 sc->vr_bsh = ioh;
1525 } else if (memh_valid) {
1526 sc->vr_bst = memt;
1527 sc->vr_bsh = memh;
1528 }
1529 #else
1530 if (memh_valid) {
1531 sc->vr_bst = memt;
1532 sc->vr_bsh = memh;
1533 } else if (ioh_valid) {
1534 sc->vr_bst = iot;
1535 sc->vr_bsh = ioh;
1536 }
1537 #endif
1538 else {
1539 printf(": unable to map device registers\n");
1540 return;
1541 }
1542
1543 /* Allocate interrupt */
1544 if (pci_intr_map(pa, &intrhandle)) {
1545 printf("%s: couldn't map interrupt\n",
1546 sc->vr_dev.dv_xname);
1547 return;
1548 }
1549 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1550 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1551 vr_intr, sc);
1552 if (sc->vr_ih == NULL) {
1553 printf("%s: couldn't establish interrupt",
1554 sc->vr_dev.dv_xname);
1555 if (intrstr != NULL)
1556 printf(" at %s", intrstr);
1557 printf("\n");
1558 }
1559 printf("%s: interrupting at %s\n",
1560 sc->vr_dev.dv_xname, intrstr);
1561 }
1562
1563 /*
1564 * Windows may put the chip in suspend mode when it
1565 * shuts down. Be sure to kick it in the head to wake it
1566 * up again.
1567 *
1568 * Don't touch this register on VT3043 since it causes
1569 * kernel MCHK trap on macppc.
1570 * (Note some VT86C100A chip returns a product ID of VT3043)
1571 */
1572 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1573 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1574
1575 /* Reset the adapter. */
1576 vr_reset(sc);
1577
1578 /*
1579 * Get station address. The way the Rhine chips work,
1580 * you're not allowed to directly access the EEPROM once
1581 * they've been programmed a special way. Consequently,
1582 * we need to read the node address from the PAR0 and PAR1
1583 * registers.
1584 *
1585 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1586 * of the *whole* EEPROM, not just the MAC address. This is
1587 * pretty pointless since the chip does this automatically
1588 * at powerup/reset.
1589 * I suspect the same thing applies to the other Rhine
1590 * variants, but in the absence of a data sheet for those
1591 * (and the lack of anyone else noticing the problems this
1592 * causes) I'm going to retain the old behaviour for the
1593 * other parts.
1594 * In some cases, the chip really does startup without having
1595 * read the EEPROM (kern/34812). To handle this case, we force
1596 * a reload if we see an all-zeroes MAC address.
1597 */
1598 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1599 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1600
1601 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1602 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1603 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1604 DELAY(200);
1605 for (i = 0; i < ETHER_ADDR_LEN; i++)
1606 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1607 }
1608
1609 /*
1610 * A Rhine chip was detected. Inform the world.
1611 */
1612 printf("%s: Ethernet address: %s\n",
1613 sc->vr_dev.dv_xname, ether_sprintf(eaddr));
1614
1615 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1616
1617 sc->vr_dmat = pa->pa_dmat;
1618
1619 /*
1620 * Allocate the control data structures, and create and load
1621 * the DMA map for it.
1622 */
1623 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1624 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1625 0)) != 0) {
1626 printf("%s: unable to allocate control data, error = %d\n",
1627 sc->vr_dev.dv_xname, error);
1628 goto fail_0;
1629 }
1630
1631 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1632 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1633 BUS_DMA_COHERENT)) != 0) {
1634 printf("%s: unable to map control data, error = %d\n",
1635 sc->vr_dev.dv_xname, error);
1636 goto fail_1;
1637 }
1638
1639 if ((error = bus_dmamap_create(sc->vr_dmat,
1640 sizeof(struct vr_control_data), 1,
1641 sizeof(struct vr_control_data), 0, 0,
1642 &sc->vr_cddmamap)) != 0) {
1643 printf("%s: unable to create control data DMA map, "
1644 "error = %d\n", sc->vr_dev.dv_xname, error);
1645 goto fail_2;
1646 }
1647
1648 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1649 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1650 0)) != 0) {
1651 printf("%s: unable to load control data DMA map, error = %d\n",
1652 sc->vr_dev.dv_xname, error);
1653 goto fail_3;
1654 }
1655
1656 /*
1657 * Create the transmit buffer DMA maps.
1658 */
1659 for (i = 0; i < VR_NTXDESC; i++) {
1660 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1661 1, MCLBYTES, 0, 0,
1662 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1663 printf("%s: unable to create tx DMA map %d, "
1664 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1665 goto fail_4;
1666 }
1667 }
1668
1669 /*
1670 * Create the receive buffer DMA maps.
1671 */
1672 for (i = 0; i < VR_NRXDESC; i++) {
1673 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1674 MCLBYTES, 0, 0,
1675 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1676 printf("%s: unable to create rx DMA map %d, "
1677 "error = %d\n", sc->vr_dev.dv_xname, i, error);
1678 goto fail_5;
1679 }
1680 VR_DSRX(sc, i)->ds_mbuf = NULL;
1681 }
1682
1683 ifp = &sc->vr_ec.ec_if;
1684 ifp->if_softc = sc;
1685 ifp->if_mtu = ETHERMTU;
1686 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1687 ifp->if_ioctl = vr_ioctl;
1688 ifp->if_start = vr_start;
1689 ifp->if_watchdog = vr_watchdog;
1690 ifp->if_init = vr_init;
1691 ifp->if_stop = vr_stop;
1692 IFQ_SET_READY(&ifp->if_snd);
1693
1694 strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
1695
1696 /*
1697 * Initialize MII/media info.
1698 */
1699 sc->vr_mii.mii_ifp = ifp;
1700 sc->vr_mii.mii_readreg = vr_mii_readreg;
1701 sc->vr_mii.mii_writereg = vr_mii_writereg;
1702 sc->vr_mii.mii_statchg = vr_mii_statchg;
1703
1704 sc->vr_ec.ec_mii = &sc->vr_mii;
1705 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1706 ether_mediastatus);
1707 mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1708 MII_OFFSET_ANY, MIIF_FORCEANEG);
1709 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1710 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1711 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1712 } else
1713 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1714
1715 /*
1716 * Call MI attach routines.
1717 */
1718 if_attach(ifp);
1719 ether_ifattach(ifp, sc->vr_enaddr);
1720 #if NRND > 0
1721 rnd_attach_source(&sc->rnd_source, sc->vr_dev.dv_xname,
1722 RND_TYPE_NET, 0);
1723 #endif
1724
1725 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1726 if (sc->vr_ats == NULL)
1727 printf("%s: warning: couldn't establish shutdown hook\n",
1728 sc->vr_dev.dv_xname);
1729 return;
1730
1731 fail_5:
1732 for (i = 0; i < VR_NRXDESC; i++) {
1733 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1734 bus_dmamap_destroy(sc->vr_dmat,
1735 sc->vr_rxsoft[i].ds_dmamap);
1736 }
1737 fail_4:
1738 for (i = 0; i < VR_NTXDESC; i++) {
1739 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1740 bus_dmamap_destroy(sc->vr_dmat,
1741 sc->vr_txsoft[i].ds_dmamap);
1742 }
1743 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1744 fail_3:
1745 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1746 fail_2:
1747 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1748 sizeof(struct vr_control_data));
1749 fail_1:
1750 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1751 fail_0:
1752 return;
1753 }
1754
1755 static int
1756 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, void *ssc, pcireg_t state)
1757 {
1758 struct vr_softc *sc = ssc;
1759 int error;
1760
1761 if (state == PCI_PMCSR_STATE_D0)
1762 return 0;
1763 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1764 return error;
1765
1766 /* Restore PCI config data. */
1767 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1768 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1769 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1770 return 0;
1771 }
1772