if_vr.c revision 1.96 1 /* $NetBSD: if_vr.c,v 1.96 2009/05/06 09:25:16 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.96 2009/05/06 09:25:16 cegger Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include "bpfilter.h"
127 #if NBPFILTER > 0
128 #include <net/bpf.h>
129 #endif
130
131 #include <sys/bus.h>
132 #include <sys/intr.h>
133 #include <machine/endian.h>
134
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 #include <dev/mii/mii_bitbang.h>
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_vrreg.h>
144
145 #define VR_USEIOSPACE
146
147 /*
148 * Various supported device vendors/types and their names.
149 */
150 static const struct vr_type {
151 pci_vendor_id_t vr_vid;
152 pci_product_id_t vr_did;
153 const char *vr_name;
154 } vr_devs[] = {
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
156 "VIA VT3043 (Rhine) 10/100" },
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
158 "VIA VT6102 (Rhine II) 10/100" },
159 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
160 "VIA VT6105 (Rhine III) 10/100" },
161 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M,
162 "VIA VT6105M (Rhine III) 10/100" },
163 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
164 "VIA VT86C100A (Rhine-II) 10/100" },
165 { 0, 0, NULL }
166 };
167
168 /*
169 * Transmit descriptor list size.
170 */
171 #define VR_NTXDESC 64
172 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
173 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
174
175 /*
176 * Receive descriptor list size.
177 */
178 #define VR_NRXDESC 64
179 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
180 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
181
182 /*
183 * Control data structres that are DMA'd to the Rhine chip. We allocate
184 * them in a single clump that maps to a single DMA segment to make several
185 * things easier.
186 *
187 * Note that since we always copy outgoing packets to aligned transmit
188 * buffers, we can reduce the transmit descriptors to one per packet.
189 */
190 struct vr_control_data {
191 struct vr_desc vr_txdescs[VR_NTXDESC];
192 struct vr_desc vr_rxdescs[VR_NRXDESC];
193 };
194
195 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
196 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
197 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
198
199 /*
200 * Software state of transmit and receive descriptors.
201 */
202 struct vr_descsoft {
203 struct mbuf *ds_mbuf; /* head of mbuf chain */
204 bus_dmamap_t ds_dmamap; /* our DMA map */
205 };
206
207 struct vr_softc {
208 device_t vr_dev;
209 void *vr_ih; /* interrupt cookie */
210 void *vr_ats; /* shutdown hook */
211 bus_space_tag_t vr_bst; /* bus space tag */
212 bus_space_handle_t vr_bsh; /* bus space handle */
213 bus_dma_tag_t vr_dmat; /* bus DMA tag */
214 pci_chipset_tag_t vr_pc; /* PCI chipset info */
215 pcitag_t vr_tag; /* PCI tag */
216 struct ethercom vr_ec; /* Ethernet common info */
217 uint8_t vr_enaddr[ETHER_ADDR_LEN];
218 struct mii_data vr_mii; /* MII/media info */
219
220 uint8_t vr_revid; /* Rhine chip revision */
221
222 callout_t vr_tick_ch; /* tick callout */
223
224 bus_dmamap_t vr_cddmamap; /* control data DMA map */
225 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct vr_descsoft vr_txsoft[VR_NTXDESC];
231 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct vr_control_data *vr_control_data;
237
238 int vr_txpending; /* number of TX requests pending */
239 int vr_txdirty; /* first dirty TX descriptor */
240 int vr_txlast; /* last used TX descriptor */
241
242 int vr_rxptr; /* next ready RX descriptor */
243
244 uint32_t vr_save_iobase;
245 uint32_t vr_save_membase;
246 uint32_t vr_save_irq;
247
248 #if NRND > 0
249 rndsource_element_t rnd_source; /* random source */
250 #endif
251 };
252
253 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
254 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
255
256 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
257 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
258
259 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
260 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
261
262 #define VR_CDTXSYNC(sc, x, ops) \
263 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
264 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
265
266 #define VR_CDRXSYNC(sc, x, ops) \
267 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
268 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
269
270 /*
271 * Note we rely on MCLBYTES being a power of two below.
272 */
273 #define VR_INIT_RXDESC(sc, i) \
274 do { \
275 struct vr_desc *__d = VR_CDRX((sc), (i)); \
276 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
277 \
278 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
279 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
280 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
281 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
282 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
283 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
284 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
285 } while (/* CONSTCOND */ 0)
286
287 /*
288 * register space access macros
289 */
290 #define CSR_WRITE_4(sc, reg, val) \
291 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
292 #define CSR_WRITE_2(sc, reg, val) \
293 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
294 #define CSR_WRITE_1(sc, reg, val) \
295 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
296
297 #define CSR_READ_4(sc, reg) \
298 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
299 #define CSR_READ_2(sc, reg) \
300 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
301 #define CSR_READ_1(sc, reg) \
302 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
303
304 #define VR_TIMEOUT 1000
305
306 static int vr_add_rxbuf(struct vr_softc *, int);
307
308 static void vr_rxeof(struct vr_softc *);
309 static void vr_rxeoc(struct vr_softc *);
310 static void vr_txeof(struct vr_softc *);
311 static int vr_intr(void *);
312 static void vr_start(struct ifnet *);
313 static int vr_ioctl(struct ifnet *, u_long, void *);
314 static int vr_init(struct ifnet *);
315 static void vr_stop(struct ifnet *, int);
316 static void vr_rxdrain(struct vr_softc *);
317 static void vr_watchdog(struct ifnet *);
318 static void vr_tick(void *);
319
320 static int vr_mii_readreg(device_t, int, int);
321 static void vr_mii_writereg(device_t, int, int, int);
322 static void vr_mii_statchg(device_t);
323
324 static void vr_setmulti(struct vr_softc *);
325 static void vr_reset(struct vr_softc *);
326 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
327 pcireg_t);
328
329 int vr_copy_small = 0;
330
331 #define VR_SETBIT(sc, reg, x) \
332 CSR_WRITE_1(sc, reg, \
333 CSR_READ_1(sc, reg) | (x))
334
335 #define VR_CLRBIT(sc, reg, x) \
336 CSR_WRITE_1(sc, reg, \
337 CSR_READ_1(sc, reg) & ~(x))
338
339 #define VR_SETBIT16(sc, reg, x) \
340 CSR_WRITE_2(sc, reg, \
341 CSR_READ_2(sc, reg) | (x))
342
343 #define VR_CLRBIT16(sc, reg, x) \
344 CSR_WRITE_2(sc, reg, \
345 CSR_READ_2(sc, reg) & ~(x))
346
347 #define VR_SETBIT32(sc, reg, x) \
348 CSR_WRITE_4(sc, reg, \
349 CSR_READ_4(sc, reg) | (x))
350
351 #define VR_CLRBIT32(sc, reg, x) \
352 CSR_WRITE_4(sc, reg, \
353 CSR_READ_4(sc, reg) & ~(x))
354
355 /*
356 * MII bit-bang glue.
357 */
358 static uint32_t vr_mii_bitbang_read(device_t);
359 static void vr_mii_bitbang_write(device_t, uint32_t);
360
361 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
362 vr_mii_bitbang_read,
363 vr_mii_bitbang_write,
364 {
365 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
366 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
367 VR_MIICMD_CLK, /* MII_BIT_MDC */
368 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
369 0, /* MII_BIT_DIR_PHY_HOST */
370 }
371 };
372
373 static uint32_t
374 vr_mii_bitbang_read(device_t self)
375 {
376 struct vr_softc *sc = device_private(self);
377
378 return (CSR_READ_1(sc, VR_MIICMD));
379 }
380
381 static void
382 vr_mii_bitbang_write(device_t self, uint32_t val)
383 {
384 struct vr_softc *sc = device_private(self);
385
386 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
387 }
388
389 /*
390 * Read an PHY register through the MII.
391 */
392 static int
393 vr_mii_readreg(device_t self, int phy, int reg)
394 {
395 struct vr_softc *sc = device_private(self);
396
397 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
398 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
399 }
400
401 /*
402 * Write to a PHY register through the MII.
403 */
404 static void
405 vr_mii_writereg(device_t self, int phy, int reg, int val)
406 {
407 struct vr_softc *sc = device_private(self);
408
409 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
410 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
411 }
412
413 static void
414 vr_mii_statchg(device_t self)
415 {
416 struct vr_softc *sc = device_private(self);
417
418 /*
419 * In order to fiddle with the 'full-duplex' bit in the netconfig
420 * register, we first have to put the transmit and/or receive logic
421 * in the idle state.
422 */
423 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
424
425 if (sc->vr_mii.mii_media_active & IFM_FDX)
426 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
427 else
428 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
429
430 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
431 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
432 }
433
434 #define vr_calchash(addr) \
435 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
436
437 /*
438 * Program the 64-bit multicast hash filter.
439 */
440 static void
441 vr_setmulti(struct vr_softc *sc)
442 {
443 struct ifnet *ifp;
444 int h = 0;
445 uint32_t hashes[2] = { 0, 0 };
446 struct ether_multistep step;
447 struct ether_multi *enm;
448 int mcnt = 0;
449 uint8_t rxfilt;
450
451 ifp = &sc->vr_ec.ec_if;
452
453 rxfilt = CSR_READ_1(sc, VR_RXCFG);
454
455 if (ifp->if_flags & IFF_PROMISC) {
456 allmulti:
457 ifp->if_flags |= IFF_ALLMULTI;
458 rxfilt |= VR_RXCFG_RX_MULTI;
459 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
460 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
461 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
462 return;
463 }
464
465 /* first, zot all the existing hash bits */
466 CSR_WRITE_4(sc, VR_MAR0, 0);
467 CSR_WRITE_4(sc, VR_MAR1, 0);
468
469 /* now program new ones */
470 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
471 while (enm != NULL) {
472 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
473 ETHER_ADDR_LEN) != 0)
474 goto allmulti;
475
476 h = vr_calchash(enm->enm_addrlo);
477
478 if (h < 32)
479 hashes[0] |= (1 << h);
480 else
481 hashes[1] |= (1 << (h - 32));
482 ETHER_NEXT_MULTI(step, enm);
483 mcnt++;
484 }
485
486 ifp->if_flags &= ~IFF_ALLMULTI;
487
488 if (mcnt)
489 rxfilt |= VR_RXCFG_RX_MULTI;
490 else
491 rxfilt &= ~VR_RXCFG_RX_MULTI;
492
493 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
494 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
495 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
496 }
497
498 static void
499 vr_reset(struct vr_softc *sc)
500 {
501 int i;
502
503 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
504
505 for (i = 0; i < VR_TIMEOUT; i++) {
506 DELAY(10);
507 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
508 break;
509 }
510 if (i == VR_TIMEOUT) {
511 if (sc->vr_revid < REV_ID_VT3065_A) {
512 printf("%s: reset never completed!\n",
513 device_xname(sc->vr_dev));
514 } else {
515 /* Use newer force reset command */
516 printf("%s: using force reset command.\n",
517 device_xname(sc->vr_dev));
518 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
519 }
520 }
521
522 /* Wait a little while for the chip to get its brains in order. */
523 DELAY(1000);
524 }
525
526 /*
527 * Initialize an RX descriptor and attach an MBUF cluster.
528 * Note: the length fields are only 11 bits wide, which means the
529 * largest size we can specify is 2047. This is important because
530 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
531 * overflow the field and make a mess.
532 */
533 static int
534 vr_add_rxbuf(struct vr_softc *sc, int i)
535 {
536 struct vr_descsoft *ds = VR_DSRX(sc, i);
537 struct mbuf *m_new;
538 int error;
539
540 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
541 if (m_new == NULL)
542 return (ENOBUFS);
543
544 MCLGET(m_new, M_DONTWAIT);
545 if ((m_new->m_flags & M_EXT) == 0) {
546 m_freem(m_new);
547 return (ENOBUFS);
548 }
549
550 if (ds->ds_mbuf != NULL)
551 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
552
553 ds->ds_mbuf = m_new;
554
555 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
556 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
557 BUS_DMA_READ|BUS_DMA_NOWAIT);
558 if (error) {
559 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
560 i, error);
561 panic("vr_add_rxbuf"); /* XXX */
562 }
563
564 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
565 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
566
567 VR_INIT_RXDESC(sc, i);
568
569 return (0);
570 }
571
572 /*
573 * A frame has been uploaded: pass the resulting mbuf chain up to
574 * the higher level protocols.
575 */
576 static void
577 vr_rxeof(struct vr_softc *sc)
578 {
579 struct mbuf *m;
580 struct ifnet *ifp;
581 struct vr_desc *d;
582 struct vr_descsoft *ds;
583 int i, total_len;
584 uint32_t rxstat;
585
586 ifp = &sc->vr_ec.ec_if;
587
588 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
589 d = VR_CDRX(sc, i);
590 ds = VR_DSRX(sc, i);
591
592 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
593
594 rxstat = le32toh(d->vr_status);
595
596 if (rxstat & VR_RXSTAT_OWN) {
597 /*
598 * We have processed all of the receive buffers.
599 */
600 break;
601 }
602
603 /*
604 * If an error occurs, update stats, clear the
605 * status word and leave the mbuf cluster in place:
606 * it should simply get re-used next time this descriptor
607 * comes up in the ring.
608 */
609 if (rxstat & VR_RXSTAT_RXERR) {
610 const char *errstr;
611
612 ifp->if_ierrors++;
613 switch (rxstat & 0x000000FF) {
614 case VR_RXSTAT_CRCERR:
615 errstr = "crc error";
616 break;
617 case VR_RXSTAT_FRAMEALIGNERR:
618 errstr = "frame alignment error";
619 break;
620 case VR_RXSTAT_FIFOOFLOW:
621 errstr = "FIFO overflow";
622 break;
623 case VR_RXSTAT_GIANT:
624 errstr = "received giant packet";
625 break;
626 case VR_RXSTAT_RUNT:
627 errstr = "received runt packet";
628 break;
629 case VR_RXSTAT_BUSERR:
630 errstr = "system bus error";
631 break;
632 case VR_RXSTAT_BUFFERR:
633 errstr = "rx buffer error";
634 break;
635 default:
636 errstr = "unknown rx error";
637 break;
638 }
639 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
640 errstr);
641
642 VR_INIT_RXDESC(sc, i);
643
644 continue;
645 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
646 !(rxstat & VR_RXSTAT_LASTFRAG)) {
647 /*
648 * This driver expects to receive whole packets every
649 * time. In case we receive a fragment that is not
650 * a complete packet, we discard it.
651 */
652 ifp->if_ierrors++;
653
654 printf("%s: receive error: incomplete frame; "
655 "size = %d, status = 0x%x\n",
656 device_xname(sc->vr_dev),
657 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
658
659 VR_INIT_RXDESC(sc, i);
660
661 continue;
662 }
663
664 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
666
667 /* No errors; receive the packet. */
668 total_len = VR_RXBYTES(le32toh(d->vr_status));
669 #ifdef DIAGNOSTIC
670 if (total_len == 0) {
671 /*
672 * If we receive a zero-length packet, we probably
673 * missed to handle an error condition above.
674 * Discard it to avoid a later crash.
675 */
676 ifp->if_ierrors++;
677
678 printf("%s: receive error: zero-length packet; "
679 "status = 0x%x\n",
680 device_xname(sc->vr_dev), rxstat);
681
682 VR_INIT_RXDESC(sc, i);
683
684 continue;
685 }
686 #endif
687
688 /*
689 * The Rhine chip includes the CRC with every packet.
690 * Trim it off here.
691 */
692 total_len -= ETHER_CRC_LEN;
693
694 #ifdef __NO_STRICT_ALIGNMENT
695 /*
696 * If the packet is small enough to fit in a
697 * single header mbuf, allocate one and copy
698 * the data into it. This greatly reduces
699 * memory consumption when we receive lots
700 * of small packets.
701 *
702 * Otherwise, we add a new buffer to the receive
703 * chain. If this fails, we drop the packet and
704 * recycle the old buffer.
705 */
706 if (vr_copy_small != 0 && total_len <= MHLEN) {
707 MGETHDR(m, M_DONTWAIT, MT_DATA);
708 if (m == NULL)
709 goto dropit;
710 memcpy(mtod(m, void *),
711 mtod(ds->ds_mbuf, void *), total_len);
712 VR_INIT_RXDESC(sc, i);
713 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
714 ds->ds_dmamap->dm_mapsize,
715 BUS_DMASYNC_PREREAD);
716 } else {
717 m = ds->ds_mbuf;
718 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
719 dropit:
720 ifp->if_ierrors++;
721 VR_INIT_RXDESC(sc, i);
722 bus_dmamap_sync(sc->vr_dmat,
723 ds->ds_dmamap, 0,
724 ds->ds_dmamap->dm_mapsize,
725 BUS_DMASYNC_PREREAD);
726 continue;
727 }
728 }
729 #else
730 /*
731 * The Rhine's packet buffers must be 4-byte aligned.
732 * But this means that the data after the Ethernet header
733 * is misaligned. We must allocate a new buffer and
734 * copy the data, shifted forward 2 bytes.
735 */
736 MGETHDR(m, M_DONTWAIT, MT_DATA);
737 if (m == NULL) {
738 dropit:
739 ifp->if_ierrors++;
740 VR_INIT_RXDESC(sc, i);
741 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
742 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
743 continue;
744 }
745 if (total_len > (MHLEN - 2)) {
746 MCLGET(m, M_DONTWAIT);
747 if ((m->m_flags & M_EXT) == 0) {
748 m_freem(m);
749 goto dropit;
750 }
751 }
752 m->m_data += 2;
753
754 /*
755 * Note that we use clusters for incoming frames, so the
756 * buffer is virtually contiguous.
757 */
758 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
759 total_len);
760
761 /* Allow the receive descriptor to continue using its mbuf. */
762 VR_INIT_RXDESC(sc, i);
763 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
764 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
765 #endif /* __NO_STRICT_ALIGNMENT */
766
767 ifp->if_ipackets++;
768 m->m_pkthdr.rcvif = ifp;
769 m->m_pkthdr.len = m->m_len = total_len;
770 #if NBPFILTER > 0
771 /*
772 * Handle BPF listeners. Let the BPF user see the packet, but
773 * don't pass it up to the ether_input() layer unless it's
774 * a broadcast packet, multicast packet, matches our ethernet
775 * address or the interface is in promiscuous mode.
776 */
777 if (ifp->if_bpf)
778 bpf_mtap(ifp->if_bpf, m);
779 #endif
780 /* Pass it on. */
781 (*ifp->if_input)(ifp, m);
782 }
783
784 /* Update the receive pointer. */
785 sc->vr_rxptr = i;
786 }
787
788 void
789 vr_rxeoc(struct vr_softc *sc)
790 {
791 struct ifnet *ifp;
792 int i;
793
794 ifp = &sc->vr_ec.ec_if;
795
796 ifp->if_ierrors++;
797
798 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
799 for (i = 0; i < VR_TIMEOUT; i++) {
800 DELAY(10);
801 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
802 break;
803 }
804 if (i == VR_TIMEOUT) {
805 /* XXX need reset? */
806 printf("%s: RX shutdown never complete\n",
807 device_xname(sc->vr_dev));
808 }
809
810 vr_rxeof(sc);
811
812 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
813 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
814 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
815 }
816
817 /*
818 * A frame was downloaded to the chip. It's safe for us to clean up
819 * the list buffers.
820 */
821 static void
822 vr_txeof(struct vr_softc *sc)
823 {
824 struct ifnet *ifp = &sc->vr_ec.ec_if;
825 struct vr_desc *d;
826 struct vr_descsoft *ds;
827 uint32_t txstat;
828 int i, j;
829
830 ifp->if_flags &= ~IFF_OACTIVE;
831
832 /*
833 * Go through our tx list and free mbufs for those
834 * frames that have been transmitted.
835 */
836 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
837 i = VR_NEXTTX(i), sc->vr_txpending--) {
838 d = VR_CDTX(sc, i);
839 ds = VR_DSTX(sc, i);
840
841 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
842
843 txstat = le32toh(d->vr_status);
844
845 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
846 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
847 for (j = 0; j < VR_TIMEOUT; j++) {
848 DELAY(10);
849 if ((CSR_READ_2(sc, VR_COMMAND) &
850 VR_CMD_TX_ON) == 0)
851 break;
852 }
853 if (j == VR_TIMEOUT) {
854 /* XXX need reset? */
855 printf("%s: TX shutdown never complete\n",
856 device_xname(sc->vr_dev));
857 }
858 d->vr_status = htole32(VR_TXSTAT_OWN);
859 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
860 break;
861 }
862
863 if (txstat & VR_TXSTAT_OWN)
864 break;
865
866 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
867 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
868 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
869 m_freem(ds->ds_mbuf);
870 ds->ds_mbuf = NULL;
871
872 if (txstat & VR_TXSTAT_ERRSUM) {
873 ifp->if_oerrors++;
874 if (txstat & VR_TXSTAT_DEFER)
875 ifp->if_collisions++;
876 if (txstat & VR_TXSTAT_LATECOLL)
877 ifp->if_collisions++;
878 }
879
880 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
881 ifp->if_opackets++;
882 }
883
884 /* Update the dirty transmit buffer pointer. */
885 sc->vr_txdirty = i;
886
887 /*
888 * Cancel the watchdog timer if there are no pending
889 * transmissions.
890 */
891 if (sc->vr_txpending == 0)
892 ifp->if_timer = 0;
893 }
894
895 static int
896 vr_intr(void *arg)
897 {
898 struct vr_softc *sc;
899 struct ifnet *ifp;
900 uint16_t status;
901 int handled = 0, dotx = 0;
902
903 sc = arg;
904 ifp = &sc->vr_ec.ec_if;
905
906 /* Suppress unwanted interrupts. */
907 if ((ifp->if_flags & IFF_UP) == 0) {
908 vr_stop(ifp, 1);
909 return (0);
910 }
911
912 /* Disable interrupts. */
913 CSR_WRITE_2(sc, VR_IMR, 0x0000);
914
915 for (;;) {
916 status = CSR_READ_2(sc, VR_ISR);
917 if (status)
918 CSR_WRITE_2(sc, VR_ISR, status);
919
920 if ((status & VR_INTRS) == 0)
921 break;
922
923 handled = 1;
924
925 #if NRND > 0
926 if (RND_ENABLED(&sc->rnd_source))
927 rnd_add_uint32(&sc->rnd_source, status);
928 #endif
929
930 if (status & VR_ISR_RX_OK)
931 vr_rxeof(sc);
932
933 if (status & VR_ISR_RX_DROPPED) {
934 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
935 ifp->if_ierrors++;
936 }
937
938 if (status &
939 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
940 vr_rxeoc(sc);
941
942
943 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
944 if (status & VR_ISR_BUSERR)
945 printf("%s: PCI bus error\n",
946 device_xname(sc->vr_dev));
947 if (status & VR_ISR_TX_UNDERRUN)
948 printf("%s: transmit underrun\n",
949 device_xname(sc->vr_dev));
950 /* vr_init() calls vr_start() */
951 dotx = 0;
952 (void)vr_init(ifp);
953
954 }
955
956 if (status & VR_ISR_TX_OK) {
957 dotx = 1;
958 vr_txeof(sc);
959 }
960
961 if (status &
962 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
963 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
964 printf("%s: transmit aborted\n",
965 device_xname(sc->vr_dev));
966 if (status & VR_ISR_TX_UDFI)
967 printf("%s: transmit underflow\n",
968 device_xname(sc->vr_dev));
969 ifp->if_oerrors++;
970 dotx = 1;
971 vr_txeof(sc);
972 if (sc->vr_txpending) {
973 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
974 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
975 }
976 }
977 }
978
979 /* Re-enable interrupts. */
980 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
981
982 if (dotx)
983 vr_start(ifp);
984
985 return (handled);
986 }
987
988 /*
989 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
990 * to the mbuf data regions directly in the transmit lists. We also save a
991 * copy of the pointers since the transmit list fragment pointers are
992 * physical addresses.
993 */
994 static void
995 vr_start(struct ifnet *ifp)
996 {
997 struct vr_softc *sc = ifp->if_softc;
998 struct mbuf *m0, *m;
999 struct vr_desc *d;
1000 struct vr_descsoft *ds;
1001 int error, firsttx, nexttx, opending;
1002
1003 /*
1004 * Remember the previous txpending and the first transmit
1005 * descriptor we use.
1006 */
1007 opending = sc->vr_txpending;
1008 firsttx = VR_NEXTTX(sc->vr_txlast);
1009
1010 /*
1011 * Loop through the send queue, setting up transmit descriptors
1012 * until we drain the queue, or use up all available transmit
1013 * descriptors.
1014 */
1015 while (sc->vr_txpending < VR_NTXDESC) {
1016 /*
1017 * Grab a packet off the queue.
1018 */
1019 IFQ_POLL(&ifp->if_snd, m0);
1020 if (m0 == NULL)
1021 break;
1022 m = NULL;
1023
1024 /*
1025 * Get the next available transmit descriptor.
1026 */
1027 nexttx = VR_NEXTTX(sc->vr_txlast);
1028 d = VR_CDTX(sc, nexttx);
1029 ds = VR_DSTX(sc, nexttx);
1030
1031 /*
1032 * Load the DMA map. If this fails, the packet didn't
1033 * fit in one DMA segment, and we need to copy. Note,
1034 * the packet must also be aligned.
1035 * if the packet is too small, copy it too, so we're sure
1036 * we have enough room for the pad buffer.
1037 */
1038 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1039 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1040 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1041 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1042 MGETHDR(m, M_DONTWAIT, MT_DATA);
1043 if (m == NULL) {
1044 printf("%s: unable to allocate Tx mbuf\n",
1045 device_xname(sc->vr_dev));
1046 break;
1047 }
1048 if (m0->m_pkthdr.len > MHLEN) {
1049 MCLGET(m, M_DONTWAIT);
1050 if ((m->m_flags & M_EXT) == 0) {
1051 printf("%s: unable to allocate Tx "
1052 "cluster\n", device_xname(sc->vr_dev));
1053 m_freem(m);
1054 break;
1055 }
1056 }
1057 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1058 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1059 /*
1060 * The Rhine doesn't auto-pad, so we have to do this
1061 * ourselves.
1062 */
1063 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1064 memset(mtod(m, char *) + m0->m_pkthdr.len,
1065 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1066 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1067 }
1068 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1069 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 if (error) {
1071 m_freem(m);
1072 printf("%s: unable to load Tx buffer, "
1073 "error = %d\n", device_xname(sc->vr_dev), error);
1074 break;
1075 }
1076 }
1077
1078 IFQ_DEQUEUE(&ifp->if_snd, m0);
1079 if (m != NULL) {
1080 m_freem(m0);
1081 m0 = m;
1082 }
1083
1084 /* Sync the DMA map. */
1085 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1086 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1087
1088 /*
1089 * Store a pointer to the packet so we can free it later.
1090 */
1091 ds->ds_mbuf = m0;
1092
1093 #if NBPFILTER > 0
1094 /*
1095 * If there's a BPF listener, bounce a copy of this frame
1096 * to him.
1097 */
1098 if (ifp->if_bpf)
1099 bpf_mtap(ifp->if_bpf, m0);
1100 #endif
1101
1102 /*
1103 * Fill in the transmit descriptor.
1104 */
1105 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1106 d->vr_ctl = htole32(m0->m_pkthdr.len);
1107 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1108
1109 /*
1110 * If this is the first descriptor we're enqueuing,
1111 * don't give it to the Rhine yet. That could cause
1112 * a race condition. We'll do it below.
1113 */
1114 if (nexttx == firsttx)
1115 d->vr_status = 0;
1116 else
1117 d->vr_status = htole32(VR_TXSTAT_OWN);
1118
1119 VR_CDTXSYNC(sc, nexttx,
1120 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121
1122 /* Advance the tx pointer. */
1123 sc->vr_txpending++;
1124 sc->vr_txlast = nexttx;
1125 }
1126
1127 if (sc->vr_txpending == VR_NTXDESC) {
1128 /* No more slots left; notify upper layer. */
1129 ifp->if_flags |= IFF_OACTIVE;
1130 }
1131
1132 if (sc->vr_txpending != opending) {
1133 /*
1134 * We enqueued packets. If the transmitter was idle,
1135 * reset the txdirty pointer.
1136 */
1137 if (opending == 0)
1138 sc->vr_txdirty = firsttx;
1139
1140 /*
1141 * Cause a transmit interrupt to happen on the
1142 * last packet we enqueued.
1143 */
1144 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1145 VR_CDTXSYNC(sc, sc->vr_txlast,
1146 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1147
1148 /*
1149 * The entire packet chain is set up. Give the
1150 * first descriptor to the Rhine now.
1151 */
1152 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1153 VR_CDTXSYNC(sc, firsttx,
1154 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1155
1156 /* Start the transmitter. */
1157 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1158
1159 /* Set the watchdog timer in case the chip flakes out. */
1160 ifp->if_timer = 5;
1161 }
1162 }
1163
1164 /*
1165 * Initialize the interface. Must be called at splnet.
1166 */
1167 static int
1168 vr_init(struct ifnet *ifp)
1169 {
1170 struct vr_softc *sc = ifp->if_softc;
1171 struct vr_desc *d;
1172 struct vr_descsoft *ds;
1173 int i, error = 0;
1174
1175 /* Cancel pending I/O. */
1176 vr_stop(ifp, 0);
1177
1178 /* Reset the Rhine to a known state. */
1179 vr_reset(sc);
1180
1181 /* set DMA length in BCR0 and BCR1 */
1182 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1183 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1184
1185 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1186 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1187
1188 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1189 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1190
1191 /* set DMA threshold length in RXCFG and TXCFG */
1192 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1193 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1194
1195 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1196 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1197
1198 /*
1199 * Initialize the transmit descriptor ring. txlast is initialized
1200 * to the end of the list so that it will wrap around to the first
1201 * descriptor when the first packet is transmitted.
1202 */
1203 for (i = 0; i < VR_NTXDESC; i++) {
1204 d = VR_CDTX(sc, i);
1205 memset(d, 0, sizeof(struct vr_desc));
1206 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1207 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1208 }
1209 sc->vr_txpending = 0;
1210 sc->vr_txdirty = 0;
1211 sc->vr_txlast = VR_NTXDESC - 1;
1212
1213 /*
1214 * Initialize the receive descriptor ring.
1215 */
1216 for (i = 0; i < VR_NRXDESC; i++) {
1217 ds = VR_DSRX(sc, i);
1218 if (ds->ds_mbuf == NULL) {
1219 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1220 printf("%s: unable to allocate or map rx "
1221 "buffer %d, error = %d\n",
1222 device_xname(sc->vr_dev), i, error);
1223 /*
1224 * XXX Should attempt to run with fewer receive
1225 * XXX buffers instead of just failing.
1226 */
1227 vr_rxdrain(sc);
1228 goto out;
1229 }
1230 } else
1231 VR_INIT_RXDESC(sc, i);
1232 }
1233 sc->vr_rxptr = 0;
1234
1235 /* If we want promiscuous mode, set the allframes bit. */
1236 if (ifp->if_flags & IFF_PROMISC)
1237 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1238 else
1239 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1240
1241 /* Set capture broadcast bit to capture broadcast frames. */
1242 if (ifp->if_flags & IFF_BROADCAST)
1243 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1244 else
1245 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1246
1247 /* Program the multicast filter, if necessary. */
1248 vr_setmulti(sc);
1249
1250 /* Give the transmit and receive rings to the Rhine. */
1251 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1252 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1253
1254 /* Set current media. */
1255 if ((error = ether_mediachange(ifp)) != 0)
1256 goto out;
1257
1258 /* Enable receiver and transmitter. */
1259 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1260 VR_CMD_TX_ON|VR_CMD_RX_ON|
1261 VR_CMD_RX_GO);
1262
1263 /* Enable interrupts. */
1264 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1265 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1266
1267 ifp->if_flags |= IFF_RUNNING;
1268 ifp->if_flags &= ~IFF_OACTIVE;
1269
1270 /* Start one second timer. */
1271 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1272
1273 /* Attempt to start output on the interface. */
1274 vr_start(ifp);
1275
1276 out:
1277 if (error)
1278 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1279 return (error);
1280 }
1281
1282 static int
1283 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1284 {
1285 struct vr_softc *sc = ifp->if_softc;
1286 int s, error = 0;
1287
1288 s = splnet();
1289
1290 error = ether_ioctl(ifp, command, data);
1291 if (error == ENETRESET) {
1292 /*
1293 * Multicast list has changed; set the hardware filter
1294 * accordingly.
1295 */
1296 if (ifp->if_flags & IFF_RUNNING)
1297 vr_setmulti(sc);
1298 error = 0;
1299 }
1300
1301 splx(s);
1302 return (error);
1303 }
1304
1305 static void
1306 vr_watchdog(struct ifnet *ifp)
1307 {
1308 struct vr_softc *sc = ifp->if_softc;
1309
1310 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1311 ifp->if_oerrors++;
1312
1313 (void) vr_init(ifp);
1314 }
1315
1316 /*
1317 * One second timer, used to tick MII.
1318 */
1319 static void
1320 vr_tick(void *arg)
1321 {
1322 struct vr_softc *sc = arg;
1323 int s;
1324
1325 s = splnet();
1326 mii_tick(&sc->vr_mii);
1327 splx(s);
1328
1329 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1330 }
1331
1332 /*
1333 * Drain the receive queue.
1334 */
1335 static void
1336 vr_rxdrain(struct vr_softc *sc)
1337 {
1338 struct vr_descsoft *ds;
1339 int i;
1340
1341 for (i = 0; i < VR_NRXDESC; i++) {
1342 ds = VR_DSRX(sc, i);
1343 if (ds->ds_mbuf != NULL) {
1344 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1345 m_freem(ds->ds_mbuf);
1346 ds->ds_mbuf = NULL;
1347 }
1348 }
1349 }
1350
1351 /*
1352 * Stop the adapter and free any mbufs allocated to the
1353 * transmit lists.
1354 */
1355 static void
1356 vr_stop(struct ifnet *ifp, int disable)
1357 {
1358 struct vr_softc *sc = ifp->if_softc;
1359 struct vr_descsoft *ds;
1360 int i;
1361
1362 /* Cancel one second timer. */
1363 callout_stop(&sc->vr_tick_ch);
1364
1365 /* Down the MII. */
1366 mii_down(&sc->vr_mii);
1367
1368 ifp = &sc->vr_ec.ec_if;
1369 ifp->if_timer = 0;
1370
1371 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1372 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1373 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1374 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1375 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1376
1377 /*
1378 * Release any queued transmit buffers.
1379 */
1380 for (i = 0; i < VR_NTXDESC; i++) {
1381 ds = VR_DSTX(sc, i);
1382 if (ds->ds_mbuf != NULL) {
1383 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1384 m_freem(ds->ds_mbuf);
1385 ds->ds_mbuf = NULL;
1386 }
1387 }
1388
1389 /*
1390 * Mark the interface down and cancel the watchdog timer.
1391 */
1392 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1393 ifp->if_timer = 0;
1394
1395 if (disable)
1396 vr_rxdrain(sc);
1397 }
1398
1399 static int vr_probe(device_t, cfdata_t, void *);
1400 static void vr_attach(device_t, device_t, void *);
1401 static void vr_shutdown(void *);
1402
1403 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1404 vr_probe, vr_attach, NULL, NULL);
1405
1406 static const struct vr_type *
1407 vr_lookup(struct pci_attach_args *pa)
1408 {
1409 const struct vr_type *vrt;
1410
1411 for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
1412 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1413 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1414 return (vrt);
1415 }
1416 return (NULL);
1417 }
1418
1419 static int
1420 vr_probe(device_t parent, cfdata_t match, void *aux)
1421 {
1422 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1423
1424 if (vr_lookup(pa) != NULL)
1425 return (1);
1426
1427 return (0);
1428 }
1429
1430 /*
1431 * Stop all chip I/O so that the kernel's probe routines don't
1432 * get confused by errant DMAs when rebooting.
1433 */
1434 static void
1435 vr_shutdown(void *arg)
1436 {
1437 struct vr_softc *sc = (struct vr_softc *)arg;
1438
1439 vr_stop(&sc->vr_ec.ec_if, 1);
1440 }
1441
1442 /*
1443 * Attach the interface. Allocate softc structures, do ifmedia
1444 * setup and ethernet/BPF attach.
1445 */
1446 static void
1447 vr_attach(device_t parent, device_t self, void *aux)
1448 {
1449 struct vr_softc *sc = device_private(self);
1450 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1451 bus_dma_segment_t seg;
1452 const struct vr_type *vrt;
1453 uint32_t reg;
1454 struct ifnet *ifp;
1455 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1456 int i, rseg, error;
1457
1458 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1459 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1460
1461 sc->vr_dev = self;
1462 sc->vr_pc = pa->pa_pc;
1463 sc->vr_tag = pa->pa_tag;
1464 callout_init(&sc->vr_tick_ch, 0);
1465
1466 vrt = vr_lookup(pa);
1467 if (vrt == NULL) {
1468 printf("\n");
1469 panic("vr_attach: impossible");
1470 }
1471
1472 printf(": %s Ethernet\n", vrt->vr_name);
1473
1474 /*
1475 * Handle power management nonsense.
1476 */
1477
1478 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1479 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1480 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1481
1482 /* power up chip */
1483 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1484 vr_restore_state)) && error != EOPNOTSUPP) {
1485 aprint_error_dev(self, "cannot activate %d\n",
1486 error);
1487 return;
1488 }
1489
1490 /* Make sure bus mastering is enabled. */
1491 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1492 reg |= PCI_COMMAND_MASTER_ENABLE;
1493 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1494
1495 /* Get revision */
1496 sc->vr_revid = PCI_REVISION(pa->pa_class);
1497
1498 /*
1499 * Map control/status registers.
1500 */
1501 {
1502 bus_space_tag_t iot, memt;
1503 bus_space_handle_t ioh, memh;
1504 int ioh_valid, memh_valid;
1505 pci_intr_handle_t intrhandle;
1506 const char *intrstr;
1507
1508 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1509 PCI_MAPREG_TYPE_IO, 0,
1510 &iot, &ioh, NULL, NULL) == 0);
1511 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1512 PCI_MAPREG_TYPE_MEM |
1513 PCI_MAPREG_MEM_TYPE_32BIT,
1514 0, &memt, &memh, NULL, NULL) == 0);
1515 #if defined(VR_USEIOSPACE)
1516 if (ioh_valid) {
1517 sc->vr_bst = iot;
1518 sc->vr_bsh = ioh;
1519 } else if (memh_valid) {
1520 sc->vr_bst = memt;
1521 sc->vr_bsh = memh;
1522 }
1523 #else
1524 if (memh_valid) {
1525 sc->vr_bst = memt;
1526 sc->vr_bsh = memh;
1527 } else if (ioh_valid) {
1528 sc->vr_bst = iot;
1529 sc->vr_bsh = ioh;
1530 }
1531 #endif
1532 else {
1533 printf(": unable to map device registers\n");
1534 return;
1535 }
1536
1537 /* Allocate interrupt */
1538 if (pci_intr_map(pa, &intrhandle)) {
1539 aprint_error_dev(self, "couldn't map interrupt\n");
1540 return;
1541 }
1542 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1543 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1544 vr_intr, sc);
1545 if (sc->vr_ih == NULL) {
1546 aprint_error_dev(self, "couldn't establish interrupt");
1547 if (intrstr != NULL)
1548 printf(" at %s", intrstr);
1549 printf("\n");
1550 }
1551 printf("%s: interrupting at %s\n",
1552 device_xname(self), intrstr);
1553 }
1554
1555 /*
1556 * Windows may put the chip in suspend mode when it
1557 * shuts down. Be sure to kick it in the head to wake it
1558 * up again.
1559 *
1560 * Don't touch this register on VT3043 since it causes
1561 * kernel MCHK trap on macppc.
1562 * (Note some VT86C100A chip returns a product ID of VT3043)
1563 */
1564 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1565 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1566
1567 /* Reset the adapter. */
1568 vr_reset(sc);
1569
1570 /*
1571 * Get station address. The way the Rhine chips work,
1572 * you're not allowed to directly access the EEPROM once
1573 * they've been programmed a special way. Consequently,
1574 * we need to read the node address from the PAR0 and PAR1
1575 * registers.
1576 *
1577 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1578 * of the *whole* EEPROM, not just the MAC address. This is
1579 * pretty pointless since the chip does this automatically
1580 * at powerup/reset.
1581 * I suspect the same thing applies to the other Rhine
1582 * variants, but in the absence of a data sheet for those
1583 * (and the lack of anyone else noticing the problems this
1584 * causes) I'm going to retain the old behaviour for the
1585 * other parts.
1586 * In some cases, the chip really does startup without having
1587 * read the EEPROM (kern/34812). To handle this case, we force
1588 * a reload if we see an all-zeroes MAC address.
1589 */
1590 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1591 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1592
1593 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1594 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1595 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1596 DELAY(200);
1597 for (i = 0; i < ETHER_ADDR_LEN; i++)
1598 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1599 }
1600
1601 /*
1602 * A Rhine chip was detected. Inform the world.
1603 */
1604 printf("%s: Ethernet address: %s\n",
1605 device_xname(self), ether_sprintf(eaddr));
1606
1607 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1608
1609 sc->vr_dmat = pa->pa_dmat;
1610
1611 /*
1612 * Allocate the control data structures, and create and load
1613 * the DMA map for it.
1614 */
1615 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1616 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1617 0)) != 0) {
1618 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1619 goto fail_0;
1620 }
1621
1622 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1623 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1624 BUS_DMA_COHERENT)) != 0) {
1625 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1626 goto fail_1;
1627 }
1628
1629 if ((error = bus_dmamap_create(sc->vr_dmat,
1630 sizeof(struct vr_control_data), 1,
1631 sizeof(struct vr_control_data), 0, 0,
1632 &sc->vr_cddmamap)) != 0) {
1633 aprint_error_dev(self, "unable to create control data DMA map, "
1634 "error = %d\n", error);
1635 goto fail_2;
1636 }
1637
1638 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1639 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1640 0)) != 0) {
1641 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1642 error);
1643 goto fail_3;
1644 }
1645
1646 /*
1647 * Create the transmit buffer DMA maps.
1648 */
1649 for (i = 0; i < VR_NTXDESC; i++) {
1650 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1651 1, MCLBYTES, 0, 0,
1652 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1653 aprint_error_dev(self, "unable to create tx DMA map %d, "
1654 "error = %d\n", i, error);
1655 goto fail_4;
1656 }
1657 }
1658
1659 /*
1660 * Create the receive buffer DMA maps.
1661 */
1662 for (i = 0; i < VR_NRXDESC; i++) {
1663 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1664 MCLBYTES, 0, 0,
1665 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1666 aprint_error_dev(self, "unable to create rx DMA map %d, "
1667 "error = %d\n", i, error);
1668 goto fail_5;
1669 }
1670 VR_DSRX(sc, i)->ds_mbuf = NULL;
1671 }
1672
1673 ifp = &sc->vr_ec.ec_if;
1674 ifp->if_softc = sc;
1675 ifp->if_mtu = ETHERMTU;
1676 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1677 ifp->if_ioctl = vr_ioctl;
1678 ifp->if_start = vr_start;
1679 ifp->if_watchdog = vr_watchdog;
1680 ifp->if_init = vr_init;
1681 ifp->if_stop = vr_stop;
1682 IFQ_SET_READY(&ifp->if_snd);
1683
1684 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1685
1686 /*
1687 * Initialize MII/media info.
1688 */
1689 sc->vr_mii.mii_ifp = ifp;
1690 sc->vr_mii.mii_readreg = vr_mii_readreg;
1691 sc->vr_mii.mii_writereg = vr_mii_writereg;
1692 sc->vr_mii.mii_statchg = vr_mii_statchg;
1693
1694 sc->vr_ec.ec_mii = &sc->vr_mii;
1695 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1696 ether_mediastatus);
1697 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1698 MII_OFFSET_ANY, MIIF_FORCEANEG);
1699 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1700 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1701 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1702 } else
1703 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1704
1705 /*
1706 * Call MI attach routines.
1707 */
1708 if_attach(ifp);
1709 ether_ifattach(ifp, sc->vr_enaddr);
1710 #if NRND > 0
1711 rnd_attach_source(&sc->rnd_source, device_xname(self),
1712 RND_TYPE_NET, 0);
1713 #endif
1714
1715 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1716 if (sc->vr_ats == NULL)
1717 aprint_error_dev(self, "warning: couldn't establish shutdown hook\n");
1718 return;
1719
1720 fail_5:
1721 for (i = 0; i < VR_NRXDESC; i++) {
1722 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1723 bus_dmamap_destroy(sc->vr_dmat,
1724 sc->vr_rxsoft[i].ds_dmamap);
1725 }
1726 fail_4:
1727 for (i = 0; i < VR_NTXDESC; i++) {
1728 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1729 bus_dmamap_destroy(sc->vr_dmat,
1730 sc->vr_txsoft[i].ds_dmamap);
1731 }
1732 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1733 fail_3:
1734 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1735 fail_2:
1736 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1737 sizeof(struct vr_control_data));
1738 fail_1:
1739 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1740 fail_0:
1741 return;
1742 }
1743
1744 static int
1745 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1746 pcireg_t state)
1747 {
1748 struct vr_softc *sc = device_private(self);
1749 int error;
1750
1751 if (state == PCI_PMCSR_STATE_D0)
1752 return 0;
1753 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1754 return error;
1755
1756 /* Restore PCI config data. */
1757 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1758 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1759 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1760 return 0;
1761 }
1762