if_vr.c revision 1.97 1 /* $NetBSD: if_vr.c,v 1.97 2009/08/23 16:11:48 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.97 2009/08/23 16:11:48 jmcneill Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include "bpfilter.h"
127 #if NBPFILTER > 0
128 #include <net/bpf.h>
129 #endif
130
131 #include <sys/bus.h>
132 #include <sys/intr.h>
133 #include <machine/endian.h>
134
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 #include <dev/mii/mii_bitbang.h>
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_vrreg.h>
144
145 #define VR_USEIOSPACE
146
147 /*
148 * Various supported device vendors/types and their names.
149 */
150 static const struct vr_type {
151 pci_vendor_id_t vr_vid;
152 pci_product_id_t vr_did;
153 } vr_devs[] = {
154 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
159 };
160
161 /*
162 * Transmit descriptor list size.
163 */
164 #define VR_NTXDESC 64
165 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
166 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
167
168 /*
169 * Receive descriptor list size.
170 */
171 #define VR_NRXDESC 64
172 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
173 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
174
175 /*
176 * Control data structres that are DMA'd to the Rhine chip. We allocate
177 * them in a single clump that maps to a single DMA segment to make several
178 * things easier.
179 *
180 * Note that since we always copy outgoing packets to aligned transmit
181 * buffers, we can reduce the transmit descriptors to one per packet.
182 */
183 struct vr_control_data {
184 struct vr_desc vr_txdescs[VR_NTXDESC];
185 struct vr_desc vr_rxdescs[VR_NRXDESC];
186 };
187
188 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
189 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
190 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
191
192 /*
193 * Software state of transmit and receive descriptors.
194 */
195 struct vr_descsoft {
196 struct mbuf *ds_mbuf; /* head of mbuf chain */
197 bus_dmamap_t ds_dmamap; /* our DMA map */
198 };
199
200 struct vr_softc {
201 device_t vr_dev;
202 void *vr_ih; /* interrupt cookie */
203 void *vr_ats; /* shutdown hook */
204 bus_space_tag_t vr_bst; /* bus space tag */
205 bus_space_handle_t vr_bsh; /* bus space handle */
206 bus_dma_tag_t vr_dmat; /* bus DMA tag */
207 pci_chipset_tag_t vr_pc; /* PCI chipset info */
208 pcitag_t vr_tag; /* PCI tag */
209 struct ethercom vr_ec; /* Ethernet common info */
210 uint8_t vr_enaddr[ETHER_ADDR_LEN];
211 struct mii_data vr_mii; /* MII/media info */
212
213 uint8_t vr_revid; /* Rhine chip revision */
214
215 callout_t vr_tick_ch; /* tick callout */
216
217 bus_dmamap_t vr_cddmamap; /* control data DMA map */
218 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
219
220 /*
221 * Software state for transmit and receive descriptors.
222 */
223 struct vr_descsoft vr_txsoft[VR_NTXDESC];
224 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
225
226 /*
227 * Control data structures.
228 */
229 struct vr_control_data *vr_control_data;
230
231 int vr_txpending; /* number of TX requests pending */
232 int vr_txdirty; /* first dirty TX descriptor */
233 int vr_txlast; /* last used TX descriptor */
234
235 int vr_rxptr; /* next ready RX descriptor */
236
237 uint32_t vr_save_iobase;
238 uint32_t vr_save_membase;
239 uint32_t vr_save_irq;
240
241 #if NRND > 0
242 rndsource_element_t rnd_source; /* random source */
243 #endif
244 };
245
246 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
247 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
248
249 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
250 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
251
252 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
253 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
254
255 #define VR_CDTXSYNC(sc, x, ops) \
256 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
257 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
258
259 #define VR_CDRXSYNC(sc, x, ops) \
260 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
261 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
262
263 /*
264 * Note we rely on MCLBYTES being a power of two below.
265 */
266 #define VR_INIT_RXDESC(sc, i) \
267 do { \
268 struct vr_desc *__d = VR_CDRX((sc), (i)); \
269 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
270 \
271 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
272 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
273 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
274 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
275 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
276 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
277 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
278 } while (/* CONSTCOND */ 0)
279
280 /*
281 * register space access macros
282 */
283 #define CSR_WRITE_4(sc, reg, val) \
284 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
285 #define CSR_WRITE_2(sc, reg, val) \
286 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
287 #define CSR_WRITE_1(sc, reg, val) \
288 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
289
290 #define CSR_READ_4(sc, reg) \
291 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
292 #define CSR_READ_2(sc, reg) \
293 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
294 #define CSR_READ_1(sc, reg) \
295 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
296
297 #define VR_TIMEOUT 1000
298
299 static int vr_add_rxbuf(struct vr_softc *, int);
300
301 static void vr_rxeof(struct vr_softc *);
302 static void vr_rxeoc(struct vr_softc *);
303 static void vr_txeof(struct vr_softc *);
304 static int vr_intr(void *);
305 static void vr_start(struct ifnet *);
306 static int vr_ioctl(struct ifnet *, u_long, void *);
307 static int vr_init(struct ifnet *);
308 static void vr_stop(struct ifnet *, int);
309 static void vr_rxdrain(struct vr_softc *);
310 static void vr_watchdog(struct ifnet *);
311 static void vr_tick(void *);
312
313 static int vr_mii_readreg(device_t, int, int);
314 static void vr_mii_writereg(device_t, int, int, int);
315 static void vr_mii_statchg(device_t);
316
317 static void vr_setmulti(struct vr_softc *);
318 static void vr_reset(struct vr_softc *);
319 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
320 pcireg_t);
321
322 int vr_copy_small = 0;
323
324 #define VR_SETBIT(sc, reg, x) \
325 CSR_WRITE_1(sc, reg, \
326 CSR_READ_1(sc, reg) | (x))
327
328 #define VR_CLRBIT(sc, reg, x) \
329 CSR_WRITE_1(sc, reg, \
330 CSR_READ_1(sc, reg) & ~(x))
331
332 #define VR_SETBIT16(sc, reg, x) \
333 CSR_WRITE_2(sc, reg, \
334 CSR_READ_2(sc, reg) | (x))
335
336 #define VR_CLRBIT16(sc, reg, x) \
337 CSR_WRITE_2(sc, reg, \
338 CSR_READ_2(sc, reg) & ~(x))
339
340 #define VR_SETBIT32(sc, reg, x) \
341 CSR_WRITE_4(sc, reg, \
342 CSR_READ_4(sc, reg) | (x))
343
344 #define VR_CLRBIT32(sc, reg, x) \
345 CSR_WRITE_4(sc, reg, \
346 CSR_READ_4(sc, reg) & ~(x))
347
348 /*
349 * MII bit-bang glue.
350 */
351 static uint32_t vr_mii_bitbang_read(device_t);
352 static void vr_mii_bitbang_write(device_t, uint32_t);
353
354 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
355 vr_mii_bitbang_read,
356 vr_mii_bitbang_write,
357 {
358 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
359 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
360 VR_MIICMD_CLK, /* MII_BIT_MDC */
361 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
362 0, /* MII_BIT_DIR_PHY_HOST */
363 }
364 };
365
366 static uint32_t
367 vr_mii_bitbang_read(device_t self)
368 {
369 struct vr_softc *sc = device_private(self);
370
371 return (CSR_READ_1(sc, VR_MIICMD));
372 }
373
374 static void
375 vr_mii_bitbang_write(device_t self, uint32_t val)
376 {
377 struct vr_softc *sc = device_private(self);
378
379 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
380 }
381
382 /*
383 * Read an PHY register through the MII.
384 */
385 static int
386 vr_mii_readreg(device_t self, int phy, int reg)
387 {
388 struct vr_softc *sc = device_private(self);
389
390 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
391 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
392 }
393
394 /*
395 * Write to a PHY register through the MII.
396 */
397 static void
398 vr_mii_writereg(device_t self, int phy, int reg, int val)
399 {
400 struct vr_softc *sc = device_private(self);
401
402 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
403 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
404 }
405
406 static void
407 vr_mii_statchg(device_t self)
408 {
409 struct vr_softc *sc = device_private(self);
410
411 /*
412 * In order to fiddle with the 'full-duplex' bit in the netconfig
413 * register, we first have to put the transmit and/or receive logic
414 * in the idle state.
415 */
416 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
417
418 if (sc->vr_mii.mii_media_active & IFM_FDX)
419 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
420 else
421 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
422
423 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
424 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
425 }
426
427 #define vr_calchash(addr) \
428 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
429
430 /*
431 * Program the 64-bit multicast hash filter.
432 */
433 static void
434 vr_setmulti(struct vr_softc *sc)
435 {
436 struct ifnet *ifp;
437 int h = 0;
438 uint32_t hashes[2] = { 0, 0 };
439 struct ether_multistep step;
440 struct ether_multi *enm;
441 int mcnt = 0;
442 uint8_t rxfilt;
443
444 ifp = &sc->vr_ec.ec_if;
445
446 rxfilt = CSR_READ_1(sc, VR_RXCFG);
447
448 if (ifp->if_flags & IFF_PROMISC) {
449 allmulti:
450 ifp->if_flags |= IFF_ALLMULTI;
451 rxfilt |= VR_RXCFG_RX_MULTI;
452 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
453 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
454 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
455 return;
456 }
457
458 /* first, zot all the existing hash bits */
459 CSR_WRITE_4(sc, VR_MAR0, 0);
460 CSR_WRITE_4(sc, VR_MAR1, 0);
461
462 /* now program new ones */
463 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
464 while (enm != NULL) {
465 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
466 ETHER_ADDR_LEN) != 0)
467 goto allmulti;
468
469 h = vr_calchash(enm->enm_addrlo);
470
471 if (h < 32)
472 hashes[0] |= (1 << h);
473 else
474 hashes[1] |= (1 << (h - 32));
475 ETHER_NEXT_MULTI(step, enm);
476 mcnt++;
477 }
478
479 ifp->if_flags &= ~IFF_ALLMULTI;
480
481 if (mcnt)
482 rxfilt |= VR_RXCFG_RX_MULTI;
483 else
484 rxfilt &= ~VR_RXCFG_RX_MULTI;
485
486 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
487 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
488 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
489 }
490
491 static void
492 vr_reset(struct vr_softc *sc)
493 {
494 int i;
495
496 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
497
498 for (i = 0; i < VR_TIMEOUT; i++) {
499 DELAY(10);
500 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
501 break;
502 }
503 if (i == VR_TIMEOUT) {
504 if (sc->vr_revid < REV_ID_VT3065_A) {
505 printf("%s: reset never completed!\n",
506 device_xname(sc->vr_dev));
507 } else {
508 /* Use newer force reset command */
509 printf("%s: using force reset command.\n",
510 device_xname(sc->vr_dev));
511 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
512 }
513 }
514
515 /* Wait a little while for the chip to get its brains in order. */
516 DELAY(1000);
517 }
518
519 /*
520 * Initialize an RX descriptor and attach an MBUF cluster.
521 * Note: the length fields are only 11 bits wide, which means the
522 * largest size we can specify is 2047. This is important because
523 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
524 * overflow the field and make a mess.
525 */
526 static int
527 vr_add_rxbuf(struct vr_softc *sc, int i)
528 {
529 struct vr_descsoft *ds = VR_DSRX(sc, i);
530 struct mbuf *m_new;
531 int error;
532
533 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
534 if (m_new == NULL)
535 return (ENOBUFS);
536
537 MCLGET(m_new, M_DONTWAIT);
538 if ((m_new->m_flags & M_EXT) == 0) {
539 m_freem(m_new);
540 return (ENOBUFS);
541 }
542
543 if (ds->ds_mbuf != NULL)
544 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
545
546 ds->ds_mbuf = m_new;
547
548 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
549 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
550 BUS_DMA_READ|BUS_DMA_NOWAIT);
551 if (error) {
552 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
553 i, error);
554 panic("vr_add_rxbuf"); /* XXX */
555 }
556
557 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
558 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
559
560 VR_INIT_RXDESC(sc, i);
561
562 return (0);
563 }
564
565 /*
566 * A frame has been uploaded: pass the resulting mbuf chain up to
567 * the higher level protocols.
568 */
569 static void
570 vr_rxeof(struct vr_softc *sc)
571 {
572 struct mbuf *m;
573 struct ifnet *ifp;
574 struct vr_desc *d;
575 struct vr_descsoft *ds;
576 int i, total_len;
577 uint32_t rxstat;
578
579 ifp = &sc->vr_ec.ec_if;
580
581 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
582 d = VR_CDRX(sc, i);
583 ds = VR_DSRX(sc, i);
584
585 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
586
587 rxstat = le32toh(d->vr_status);
588
589 if (rxstat & VR_RXSTAT_OWN) {
590 /*
591 * We have processed all of the receive buffers.
592 */
593 break;
594 }
595
596 /*
597 * If an error occurs, update stats, clear the
598 * status word and leave the mbuf cluster in place:
599 * it should simply get re-used next time this descriptor
600 * comes up in the ring.
601 */
602 if (rxstat & VR_RXSTAT_RXERR) {
603 const char *errstr;
604
605 ifp->if_ierrors++;
606 switch (rxstat & 0x000000FF) {
607 case VR_RXSTAT_CRCERR:
608 errstr = "crc error";
609 break;
610 case VR_RXSTAT_FRAMEALIGNERR:
611 errstr = "frame alignment error";
612 break;
613 case VR_RXSTAT_FIFOOFLOW:
614 errstr = "FIFO overflow";
615 break;
616 case VR_RXSTAT_GIANT:
617 errstr = "received giant packet";
618 break;
619 case VR_RXSTAT_RUNT:
620 errstr = "received runt packet";
621 break;
622 case VR_RXSTAT_BUSERR:
623 errstr = "system bus error";
624 break;
625 case VR_RXSTAT_BUFFERR:
626 errstr = "rx buffer error";
627 break;
628 default:
629 errstr = "unknown rx error";
630 break;
631 }
632 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
633 errstr);
634
635 VR_INIT_RXDESC(sc, i);
636
637 continue;
638 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
639 !(rxstat & VR_RXSTAT_LASTFRAG)) {
640 /*
641 * This driver expects to receive whole packets every
642 * time. In case we receive a fragment that is not
643 * a complete packet, we discard it.
644 */
645 ifp->if_ierrors++;
646
647 printf("%s: receive error: incomplete frame; "
648 "size = %d, status = 0x%x\n",
649 device_xname(sc->vr_dev),
650 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
651
652 VR_INIT_RXDESC(sc, i);
653
654 continue;
655 }
656
657 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
658 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
659
660 /* No errors; receive the packet. */
661 total_len = VR_RXBYTES(le32toh(d->vr_status));
662 #ifdef DIAGNOSTIC
663 if (total_len == 0) {
664 /*
665 * If we receive a zero-length packet, we probably
666 * missed to handle an error condition above.
667 * Discard it to avoid a later crash.
668 */
669 ifp->if_ierrors++;
670
671 printf("%s: receive error: zero-length packet; "
672 "status = 0x%x\n",
673 device_xname(sc->vr_dev), rxstat);
674
675 VR_INIT_RXDESC(sc, i);
676
677 continue;
678 }
679 #endif
680
681 /*
682 * The Rhine chip includes the CRC with every packet.
683 * Trim it off here.
684 */
685 total_len -= ETHER_CRC_LEN;
686
687 #ifdef __NO_STRICT_ALIGNMENT
688 /*
689 * If the packet is small enough to fit in a
690 * single header mbuf, allocate one and copy
691 * the data into it. This greatly reduces
692 * memory consumption when we receive lots
693 * of small packets.
694 *
695 * Otherwise, we add a new buffer to the receive
696 * chain. If this fails, we drop the packet and
697 * recycle the old buffer.
698 */
699 if (vr_copy_small != 0 && total_len <= MHLEN) {
700 MGETHDR(m, M_DONTWAIT, MT_DATA);
701 if (m == NULL)
702 goto dropit;
703 memcpy(mtod(m, void *),
704 mtod(ds->ds_mbuf, void *), total_len);
705 VR_INIT_RXDESC(sc, i);
706 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
707 ds->ds_dmamap->dm_mapsize,
708 BUS_DMASYNC_PREREAD);
709 } else {
710 m = ds->ds_mbuf;
711 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
712 dropit:
713 ifp->if_ierrors++;
714 VR_INIT_RXDESC(sc, i);
715 bus_dmamap_sync(sc->vr_dmat,
716 ds->ds_dmamap, 0,
717 ds->ds_dmamap->dm_mapsize,
718 BUS_DMASYNC_PREREAD);
719 continue;
720 }
721 }
722 #else
723 /*
724 * The Rhine's packet buffers must be 4-byte aligned.
725 * But this means that the data after the Ethernet header
726 * is misaligned. We must allocate a new buffer and
727 * copy the data, shifted forward 2 bytes.
728 */
729 MGETHDR(m, M_DONTWAIT, MT_DATA);
730 if (m == NULL) {
731 dropit:
732 ifp->if_ierrors++;
733 VR_INIT_RXDESC(sc, i);
734 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
735 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
736 continue;
737 }
738 if (total_len > (MHLEN - 2)) {
739 MCLGET(m, M_DONTWAIT);
740 if ((m->m_flags & M_EXT) == 0) {
741 m_freem(m);
742 goto dropit;
743 }
744 }
745 m->m_data += 2;
746
747 /*
748 * Note that we use clusters for incoming frames, so the
749 * buffer is virtually contiguous.
750 */
751 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
752 total_len);
753
754 /* Allow the receive descriptor to continue using its mbuf. */
755 VR_INIT_RXDESC(sc, i);
756 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
757 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
758 #endif /* __NO_STRICT_ALIGNMENT */
759
760 ifp->if_ipackets++;
761 m->m_pkthdr.rcvif = ifp;
762 m->m_pkthdr.len = m->m_len = total_len;
763 #if NBPFILTER > 0
764 /*
765 * Handle BPF listeners. Let the BPF user see the packet, but
766 * don't pass it up to the ether_input() layer unless it's
767 * a broadcast packet, multicast packet, matches our ethernet
768 * address or the interface is in promiscuous mode.
769 */
770 if (ifp->if_bpf)
771 bpf_mtap(ifp->if_bpf, m);
772 #endif
773 /* Pass it on. */
774 (*ifp->if_input)(ifp, m);
775 }
776
777 /* Update the receive pointer. */
778 sc->vr_rxptr = i;
779 }
780
781 void
782 vr_rxeoc(struct vr_softc *sc)
783 {
784 struct ifnet *ifp;
785 int i;
786
787 ifp = &sc->vr_ec.ec_if;
788
789 ifp->if_ierrors++;
790
791 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
792 for (i = 0; i < VR_TIMEOUT; i++) {
793 DELAY(10);
794 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
795 break;
796 }
797 if (i == VR_TIMEOUT) {
798 /* XXX need reset? */
799 printf("%s: RX shutdown never complete\n",
800 device_xname(sc->vr_dev));
801 }
802
803 vr_rxeof(sc);
804
805 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
806 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
807 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
808 }
809
810 /*
811 * A frame was downloaded to the chip. It's safe for us to clean up
812 * the list buffers.
813 */
814 static void
815 vr_txeof(struct vr_softc *sc)
816 {
817 struct ifnet *ifp = &sc->vr_ec.ec_if;
818 struct vr_desc *d;
819 struct vr_descsoft *ds;
820 uint32_t txstat;
821 int i, j;
822
823 ifp->if_flags &= ~IFF_OACTIVE;
824
825 /*
826 * Go through our tx list and free mbufs for those
827 * frames that have been transmitted.
828 */
829 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
830 i = VR_NEXTTX(i), sc->vr_txpending--) {
831 d = VR_CDTX(sc, i);
832 ds = VR_DSTX(sc, i);
833
834 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
835
836 txstat = le32toh(d->vr_status);
837
838 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
839 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
840 for (j = 0; j < VR_TIMEOUT; j++) {
841 DELAY(10);
842 if ((CSR_READ_2(sc, VR_COMMAND) &
843 VR_CMD_TX_ON) == 0)
844 break;
845 }
846 if (j == VR_TIMEOUT) {
847 /* XXX need reset? */
848 printf("%s: TX shutdown never complete\n",
849 device_xname(sc->vr_dev));
850 }
851 d->vr_status = htole32(VR_TXSTAT_OWN);
852 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
853 break;
854 }
855
856 if (txstat & VR_TXSTAT_OWN)
857 break;
858
859 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
860 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
861 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
862 m_freem(ds->ds_mbuf);
863 ds->ds_mbuf = NULL;
864
865 if (txstat & VR_TXSTAT_ERRSUM) {
866 ifp->if_oerrors++;
867 if (txstat & VR_TXSTAT_DEFER)
868 ifp->if_collisions++;
869 if (txstat & VR_TXSTAT_LATECOLL)
870 ifp->if_collisions++;
871 }
872
873 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
874 ifp->if_opackets++;
875 }
876
877 /* Update the dirty transmit buffer pointer. */
878 sc->vr_txdirty = i;
879
880 /*
881 * Cancel the watchdog timer if there are no pending
882 * transmissions.
883 */
884 if (sc->vr_txpending == 0)
885 ifp->if_timer = 0;
886 }
887
888 static int
889 vr_intr(void *arg)
890 {
891 struct vr_softc *sc;
892 struct ifnet *ifp;
893 uint16_t status;
894 int handled = 0, dotx = 0;
895
896 sc = arg;
897 ifp = &sc->vr_ec.ec_if;
898
899 /* Suppress unwanted interrupts. */
900 if ((ifp->if_flags & IFF_UP) == 0) {
901 vr_stop(ifp, 1);
902 return (0);
903 }
904
905 /* Disable interrupts. */
906 CSR_WRITE_2(sc, VR_IMR, 0x0000);
907
908 for (;;) {
909 status = CSR_READ_2(sc, VR_ISR);
910 if (status)
911 CSR_WRITE_2(sc, VR_ISR, status);
912
913 if ((status & VR_INTRS) == 0)
914 break;
915
916 handled = 1;
917
918 #if NRND > 0
919 if (RND_ENABLED(&sc->rnd_source))
920 rnd_add_uint32(&sc->rnd_source, status);
921 #endif
922
923 if (status & VR_ISR_RX_OK)
924 vr_rxeof(sc);
925
926 if (status & VR_ISR_RX_DROPPED) {
927 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
928 ifp->if_ierrors++;
929 }
930
931 if (status &
932 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
933 vr_rxeoc(sc);
934
935
936 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
937 if (status & VR_ISR_BUSERR)
938 printf("%s: PCI bus error\n",
939 device_xname(sc->vr_dev));
940 if (status & VR_ISR_TX_UNDERRUN)
941 printf("%s: transmit underrun\n",
942 device_xname(sc->vr_dev));
943 /* vr_init() calls vr_start() */
944 dotx = 0;
945 (void)vr_init(ifp);
946
947 }
948
949 if (status & VR_ISR_TX_OK) {
950 dotx = 1;
951 vr_txeof(sc);
952 }
953
954 if (status &
955 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
956 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
957 printf("%s: transmit aborted\n",
958 device_xname(sc->vr_dev));
959 if (status & VR_ISR_TX_UDFI)
960 printf("%s: transmit underflow\n",
961 device_xname(sc->vr_dev));
962 ifp->if_oerrors++;
963 dotx = 1;
964 vr_txeof(sc);
965 if (sc->vr_txpending) {
966 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
967 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
968 }
969 }
970 }
971
972 /* Re-enable interrupts. */
973 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
974
975 if (dotx)
976 vr_start(ifp);
977
978 return (handled);
979 }
980
981 /*
982 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
983 * to the mbuf data regions directly in the transmit lists. We also save a
984 * copy of the pointers since the transmit list fragment pointers are
985 * physical addresses.
986 */
987 static void
988 vr_start(struct ifnet *ifp)
989 {
990 struct vr_softc *sc = ifp->if_softc;
991 struct mbuf *m0, *m;
992 struct vr_desc *d;
993 struct vr_descsoft *ds;
994 int error, firsttx, nexttx, opending;
995
996 /*
997 * Remember the previous txpending and the first transmit
998 * descriptor we use.
999 */
1000 opending = sc->vr_txpending;
1001 firsttx = VR_NEXTTX(sc->vr_txlast);
1002
1003 /*
1004 * Loop through the send queue, setting up transmit descriptors
1005 * until we drain the queue, or use up all available transmit
1006 * descriptors.
1007 */
1008 while (sc->vr_txpending < VR_NTXDESC) {
1009 /*
1010 * Grab a packet off the queue.
1011 */
1012 IFQ_POLL(&ifp->if_snd, m0);
1013 if (m0 == NULL)
1014 break;
1015 m = NULL;
1016
1017 /*
1018 * Get the next available transmit descriptor.
1019 */
1020 nexttx = VR_NEXTTX(sc->vr_txlast);
1021 d = VR_CDTX(sc, nexttx);
1022 ds = VR_DSTX(sc, nexttx);
1023
1024 /*
1025 * Load the DMA map. If this fails, the packet didn't
1026 * fit in one DMA segment, and we need to copy. Note,
1027 * the packet must also be aligned.
1028 * if the packet is too small, copy it too, so we're sure
1029 * we have enough room for the pad buffer.
1030 */
1031 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1032 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1033 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1034 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1035 MGETHDR(m, M_DONTWAIT, MT_DATA);
1036 if (m == NULL) {
1037 printf("%s: unable to allocate Tx mbuf\n",
1038 device_xname(sc->vr_dev));
1039 break;
1040 }
1041 if (m0->m_pkthdr.len > MHLEN) {
1042 MCLGET(m, M_DONTWAIT);
1043 if ((m->m_flags & M_EXT) == 0) {
1044 printf("%s: unable to allocate Tx "
1045 "cluster\n", device_xname(sc->vr_dev));
1046 m_freem(m);
1047 break;
1048 }
1049 }
1050 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1051 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1052 /*
1053 * The Rhine doesn't auto-pad, so we have to do this
1054 * ourselves.
1055 */
1056 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1057 memset(mtod(m, char *) + m0->m_pkthdr.len,
1058 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1059 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1060 }
1061 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1062 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1063 if (error) {
1064 m_freem(m);
1065 printf("%s: unable to load Tx buffer, "
1066 "error = %d\n", device_xname(sc->vr_dev), error);
1067 break;
1068 }
1069 }
1070
1071 IFQ_DEQUEUE(&ifp->if_snd, m0);
1072 if (m != NULL) {
1073 m_freem(m0);
1074 m0 = m;
1075 }
1076
1077 /* Sync the DMA map. */
1078 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1079 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1080
1081 /*
1082 * Store a pointer to the packet so we can free it later.
1083 */
1084 ds->ds_mbuf = m0;
1085
1086 #if NBPFILTER > 0
1087 /*
1088 * If there's a BPF listener, bounce a copy of this frame
1089 * to him.
1090 */
1091 if (ifp->if_bpf)
1092 bpf_mtap(ifp->if_bpf, m0);
1093 #endif
1094
1095 /*
1096 * Fill in the transmit descriptor.
1097 */
1098 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1099 d->vr_ctl = htole32(m0->m_pkthdr.len);
1100 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1101
1102 /*
1103 * If this is the first descriptor we're enqueuing,
1104 * don't give it to the Rhine yet. That could cause
1105 * a race condition. We'll do it below.
1106 */
1107 if (nexttx == firsttx)
1108 d->vr_status = 0;
1109 else
1110 d->vr_status = htole32(VR_TXSTAT_OWN);
1111
1112 VR_CDTXSYNC(sc, nexttx,
1113 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1114
1115 /* Advance the tx pointer. */
1116 sc->vr_txpending++;
1117 sc->vr_txlast = nexttx;
1118 }
1119
1120 if (sc->vr_txpending == VR_NTXDESC) {
1121 /* No more slots left; notify upper layer. */
1122 ifp->if_flags |= IFF_OACTIVE;
1123 }
1124
1125 if (sc->vr_txpending != opending) {
1126 /*
1127 * We enqueued packets. If the transmitter was idle,
1128 * reset the txdirty pointer.
1129 */
1130 if (opending == 0)
1131 sc->vr_txdirty = firsttx;
1132
1133 /*
1134 * Cause a transmit interrupt to happen on the
1135 * last packet we enqueued.
1136 */
1137 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1138 VR_CDTXSYNC(sc, sc->vr_txlast,
1139 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140
1141 /*
1142 * The entire packet chain is set up. Give the
1143 * first descriptor to the Rhine now.
1144 */
1145 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1146 VR_CDTXSYNC(sc, firsttx,
1147 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148
1149 /* Start the transmitter. */
1150 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1151
1152 /* Set the watchdog timer in case the chip flakes out. */
1153 ifp->if_timer = 5;
1154 }
1155 }
1156
1157 /*
1158 * Initialize the interface. Must be called at splnet.
1159 */
1160 static int
1161 vr_init(struct ifnet *ifp)
1162 {
1163 struct vr_softc *sc = ifp->if_softc;
1164 struct vr_desc *d;
1165 struct vr_descsoft *ds;
1166 int i, error = 0;
1167
1168 /* Cancel pending I/O. */
1169 vr_stop(ifp, 0);
1170
1171 /* Reset the Rhine to a known state. */
1172 vr_reset(sc);
1173
1174 /* set DMA length in BCR0 and BCR1 */
1175 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1176 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1177
1178 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1179 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1180
1181 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1182 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1183
1184 /* set DMA threshold length in RXCFG and TXCFG */
1185 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1186 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1187
1188 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1189 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1190
1191 /*
1192 * Initialize the transmit descriptor ring. txlast is initialized
1193 * to the end of the list so that it will wrap around to the first
1194 * descriptor when the first packet is transmitted.
1195 */
1196 for (i = 0; i < VR_NTXDESC; i++) {
1197 d = VR_CDTX(sc, i);
1198 memset(d, 0, sizeof(struct vr_desc));
1199 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1200 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1201 }
1202 sc->vr_txpending = 0;
1203 sc->vr_txdirty = 0;
1204 sc->vr_txlast = VR_NTXDESC - 1;
1205
1206 /*
1207 * Initialize the receive descriptor ring.
1208 */
1209 for (i = 0; i < VR_NRXDESC; i++) {
1210 ds = VR_DSRX(sc, i);
1211 if (ds->ds_mbuf == NULL) {
1212 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1213 printf("%s: unable to allocate or map rx "
1214 "buffer %d, error = %d\n",
1215 device_xname(sc->vr_dev), i, error);
1216 /*
1217 * XXX Should attempt to run with fewer receive
1218 * XXX buffers instead of just failing.
1219 */
1220 vr_rxdrain(sc);
1221 goto out;
1222 }
1223 } else
1224 VR_INIT_RXDESC(sc, i);
1225 }
1226 sc->vr_rxptr = 0;
1227
1228 /* If we want promiscuous mode, set the allframes bit. */
1229 if (ifp->if_flags & IFF_PROMISC)
1230 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1231 else
1232 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1233
1234 /* Set capture broadcast bit to capture broadcast frames. */
1235 if (ifp->if_flags & IFF_BROADCAST)
1236 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1237 else
1238 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1239
1240 /* Program the multicast filter, if necessary. */
1241 vr_setmulti(sc);
1242
1243 /* Give the transmit and receive rings to the Rhine. */
1244 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1245 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1246
1247 /* Set current media. */
1248 if ((error = ether_mediachange(ifp)) != 0)
1249 goto out;
1250
1251 /* Enable receiver and transmitter. */
1252 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1253 VR_CMD_TX_ON|VR_CMD_RX_ON|
1254 VR_CMD_RX_GO);
1255
1256 /* Enable interrupts. */
1257 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1258 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1259
1260 ifp->if_flags |= IFF_RUNNING;
1261 ifp->if_flags &= ~IFF_OACTIVE;
1262
1263 /* Start one second timer. */
1264 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1265
1266 /* Attempt to start output on the interface. */
1267 vr_start(ifp);
1268
1269 out:
1270 if (error)
1271 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1272 return (error);
1273 }
1274
1275 static int
1276 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1277 {
1278 struct vr_softc *sc = ifp->if_softc;
1279 int s, error = 0;
1280
1281 s = splnet();
1282
1283 error = ether_ioctl(ifp, command, data);
1284 if (error == ENETRESET) {
1285 /*
1286 * Multicast list has changed; set the hardware filter
1287 * accordingly.
1288 */
1289 if (ifp->if_flags & IFF_RUNNING)
1290 vr_setmulti(sc);
1291 error = 0;
1292 }
1293
1294 splx(s);
1295 return (error);
1296 }
1297
1298 static void
1299 vr_watchdog(struct ifnet *ifp)
1300 {
1301 struct vr_softc *sc = ifp->if_softc;
1302
1303 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1304 ifp->if_oerrors++;
1305
1306 (void) vr_init(ifp);
1307 }
1308
1309 /*
1310 * One second timer, used to tick MII.
1311 */
1312 static void
1313 vr_tick(void *arg)
1314 {
1315 struct vr_softc *sc = arg;
1316 int s;
1317
1318 s = splnet();
1319 mii_tick(&sc->vr_mii);
1320 splx(s);
1321
1322 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1323 }
1324
1325 /*
1326 * Drain the receive queue.
1327 */
1328 static void
1329 vr_rxdrain(struct vr_softc *sc)
1330 {
1331 struct vr_descsoft *ds;
1332 int i;
1333
1334 for (i = 0; i < VR_NRXDESC; i++) {
1335 ds = VR_DSRX(sc, i);
1336 if (ds->ds_mbuf != NULL) {
1337 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1338 m_freem(ds->ds_mbuf);
1339 ds->ds_mbuf = NULL;
1340 }
1341 }
1342 }
1343
1344 /*
1345 * Stop the adapter and free any mbufs allocated to the
1346 * transmit lists.
1347 */
1348 static void
1349 vr_stop(struct ifnet *ifp, int disable)
1350 {
1351 struct vr_softc *sc = ifp->if_softc;
1352 struct vr_descsoft *ds;
1353 int i;
1354
1355 /* Cancel one second timer. */
1356 callout_stop(&sc->vr_tick_ch);
1357
1358 /* Down the MII. */
1359 mii_down(&sc->vr_mii);
1360
1361 ifp = &sc->vr_ec.ec_if;
1362 ifp->if_timer = 0;
1363
1364 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1365 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1366 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1367 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1368 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1369
1370 /*
1371 * Release any queued transmit buffers.
1372 */
1373 for (i = 0; i < VR_NTXDESC; i++) {
1374 ds = VR_DSTX(sc, i);
1375 if (ds->ds_mbuf != NULL) {
1376 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1377 m_freem(ds->ds_mbuf);
1378 ds->ds_mbuf = NULL;
1379 }
1380 }
1381
1382 /*
1383 * Mark the interface down and cancel the watchdog timer.
1384 */
1385 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1386 ifp->if_timer = 0;
1387
1388 if (disable)
1389 vr_rxdrain(sc);
1390 }
1391
1392 static int vr_probe(device_t, cfdata_t, void *);
1393 static void vr_attach(device_t, device_t, void *);
1394 static void vr_shutdown(void *);
1395
1396 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1397 vr_probe, vr_attach, NULL, NULL);
1398
1399 static const struct vr_type *
1400 vr_lookup(struct pci_attach_args *pa)
1401 {
1402 const struct vr_type *vrt;
1403 int i;
1404
1405 for (i = 0; i < __arraycount(vr_devs); i++) {
1406 vrt = &vr_devs[i];
1407 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1408 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1409 return (vrt);
1410 }
1411 return (NULL);
1412 }
1413
1414 static int
1415 vr_probe(device_t parent, cfdata_t match, void *aux)
1416 {
1417 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1418
1419 if (vr_lookup(pa) != NULL)
1420 return (1);
1421
1422 return (0);
1423 }
1424
1425 /*
1426 * Stop all chip I/O so that the kernel's probe routines don't
1427 * get confused by errant DMAs when rebooting.
1428 */
1429 static void
1430 vr_shutdown(void *arg)
1431 {
1432 struct vr_softc *sc = (struct vr_softc *)arg;
1433
1434 vr_stop(&sc->vr_ec.ec_if, 1);
1435 }
1436
1437 /*
1438 * Attach the interface. Allocate softc structures, do ifmedia
1439 * setup and ethernet/BPF attach.
1440 */
1441 static void
1442 vr_attach(device_t parent, device_t self, void *aux)
1443 {
1444 struct vr_softc *sc = device_private(self);
1445 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1446 bus_dma_segment_t seg;
1447 uint32_t reg;
1448 struct ifnet *ifp;
1449 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1450 int i, rseg, error;
1451 char devinfo[256];
1452
1453 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1454 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1455
1456 sc->vr_dev = self;
1457 sc->vr_pc = pa->pa_pc;
1458 sc->vr_tag = pa->pa_tag;
1459 callout_init(&sc->vr_tick_ch, 0);
1460
1461 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1462 aprint_naive("\n");
1463 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1464 PCI_REVISION(pa->pa_class));
1465
1466 /*
1467 * Handle power management nonsense.
1468 */
1469
1470 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1471 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1472 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1473
1474 /* power up chip */
1475 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1476 vr_restore_state)) && error != EOPNOTSUPP) {
1477 aprint_error_dev(self, "cannot activate %d\n",
1478 error);
1479 return;
1480 }
1481
1482 /* Make sure bus mastering is enabled. */
1483 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1484 reg |= PCI_COMMAND_MASTER_ENABLE;
1485 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1486
1487 /* Get revision */
1488 sc->vr_revid = PCI_REVISION(pa->pa_class);
1489
1490 /*
1491 * Map control/status registers.
1492 */
1493 {
1494 bus_space_tag_t iot, memt;
1495 bus_space_handle_t ioh, memh;
1496 int ioh_valid, memh_valid;
1497 pci_intr_handle_t intrhandle;
1498 const char *intrstr;
1499
1500 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1501 PCI_MAPREG_TYPE_IO, 0,
1502 &iot, &ioh, NULL, NULL) == 0);
1503 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1504 PCI_MAPREG_TYPE_MEM |
1505 PCI_MAPREG_MEM_TYPE_32BIT,
1506 0, &memt, &memh, NULL, NULL) == 0);
1507 #if defined(VR_USEIOSPACE)
1508 if (ioh_valid) {
1509 sc->vr_bst = iot;
1510 sc->vr_bsh = ioh;
1511 } else if (memh_valid) {
1512 sc->vr_bst = memt;
1513 sc->vr_bsh = memh;
1514 }
1515 #else
1516 if (memh_valid) {
1517 sc->vr_bst = memt;
1518 sc->vr_bsh = memh;
1519 } else if (ioh_valid) {
1520 sc->vr_bst = iot;
1521 sc->vr_bsh = ioh;
1522 }
1523 #endif
1524 else {
1525 printf(": unable to map device registers\n");
1526 return;
1527 }
1528
1529 /* Allocate interrupt */
1530 if (pci_intr_map(pa, &intrhandle)) {
1531 aprint_error_dev(self, "couldn't map interrupt\n");
1532 return;
1533 }
1534 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1535 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1536 vr_intr, sc);
1537 if (sc->vr_ih == NULL) {
1538 aprint_error_dev(self, "couldn't establish interrupt");
1539 if (intrstr != NULL)
1540 printf(" at %s", intrstr);
1541 printf("\n");
1542 }
1543 printf("%s: interrupting at %s\n",
1544 device_xname(self), intrstr);
1545 }
1546
1547 /*
1548 * Windows may put the chip in suspend mode when it
1549 * shuts down. Be sure to kick it in the head to wake it
1550 * up again.
1551 *
1552 * Don't touch this register on VT3043 since it causes
1553 * kernel MCHK trap on macppc.
1554 * (Note some VT86C100A chip returns a product ID of VT3043)
1555 */
1556 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1557 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1558
1559 /* Reset the adapter. */
1560 vr_reset(sc);
1561
1562 /*
1563 * Get station address. The way the Rhine chips work,
1564 * you're not allowed to directly access the EEPROM once
1565 * they've been programmed a special way. Consequently,
1566 * we need to read the node address from the PAR0 and PAR1
1567 * registers.
1568 *
1569 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1570 * of the *whole* EEPROM, not just the MAC address. This is
1571 * pretty pointless since the chip does this automatically
1572 * at powerup/reset.
1573 * I suspect the same thing applies to the other Rhine
1574 * variants, but in the absence of a data sheet for those
1575 * (and the lack of anyone else noticing the problems this
1576 * causes) I'm going to retain the old behaviour for the
1577 * other parts.
1578 * In some cases, the chip really does startup without having
1579 * read the EEPROM (kern/34812). To handle this case, we force
1580 * a reload if we see an all-zeroes MAC address.
1581 */
1582 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1583 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1584
1585 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1586 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1587 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1588 DELAY(200);
1589 for (i = 0; i < ETHER_ADDR_LEN; i++)
1590 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1591 }
1592
1593 /*
1594 * A Rhine chip was detected. Inform the world.
1595 */
1596 printf("%s: Ethernet address: %s\n",
1597 device_xname(self), ether_sprintf(eaddr));
1598
1599 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1600
1601 sc->vr_dmat = pa->pa_dmat;
1602
1603 /*
1604 * Allocate the control data structures, and create and load
1605 * the DMA map for it.
1606 */
1607 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1608 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1609 0)) != 0) {
1610 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1611 goto fail_0;
1612 }
1613
1614 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1615 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1616 BUS_DMA_COHERENT)) != 0) {
1617 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1618 goto fail_1;
1619 }
1620
1621 if ((error = bus_dmamap_create(sc->vr_dmat,
1622 sizeof(struct vr_control_data), 1,
1623 sizeof(struct vr_control_data), 0, 0,
1624 &sc->vr_cddmamap)) != 0) {
1625 aprint_error_dev(self, "unable to create control data DMA map, "
1626 "error = %d\n", error);
1627 goto fail_2;
1628 }
1629
1630 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1631 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1632 0)) != 0) {
1633 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1634 error);
1635 goto fail_3;
1636 }
1637
1638 /*
1639 * Create the transmit buffer DMA maps.
1640 */
1641 for (i = 0; i < VR_NTXDESC; i++) {
1642 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1643 1, MCLBYTES, 0, 0,
1644 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1645 aprint_error_dev(self, "unable to create tx DMA map %d, "
1646 "error = %d\n", i, error);
1647 goto fail_4;
1648 }
1649 }
1650
1651 /*
1652 * Create the receive buffer DMA maps.
1653 */
1654 for (i = 0; i < VR_NRXDESC; i++) {
1655 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1656 MCLBYTES, 0, 0,
1657 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1658 aprint_error_dev(self, "unable to create rx DMA map %d, "
1659 "error = %d\n", i, error);
1660 goto fail_5;
1661 }
1662 VR_DSRX(sc, i)->ds_mbuf = NULL;
1663 }
1664
1665 ifp = &sc->vr_ec.ec_if;
1666 ifp->if_softc = sc;
1667 ifp->if_mtu = ETHERMTU;
1668 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1669 ifp->if_ioctl = vr_ioctl;
1670 ifp->if_start = vr_start;
1671 ifp->if_watchdog = vr_watchdog;
1672 ifp->if_init = vr_init;
1673 ifp->if_stop = vr_stop;
1674 IFQ_SET_READY(&ifp->if_snd);
1675
1676 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1677
1678 /*
1679 * Initialize MII/media info.
1680 */
1681 sc->vr_mii.mii_ifp = ifp;
1682 sc->vr_mii.mii_readreg = vr_mii_readreg;
1683 sc->vr_mii.mii_writereg = vr_mii_writereg;
1684 sc->vr_mii.mii_statchg = vr_mii_statchg;
1685
1686 sc->vr_ec.ec_mii = &sc->vr_mii;
1687 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1688 ether_mediastatus);
1689 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1690 MII_OFFSET_ANY, MIIF_FORCEANEG);
1691 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1692 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1693 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1694 } else
1695 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1696
1697 /*
1698 * Call MI attach routines.
1699 */
1700 if_attach(ifp);
1701 ether_ifattach(ifp, sc->vr_enaddr);
1702 #if NRND > 0
1703 rnd_attach_source(&sc->rnd_source, device_xname(self),
1704 RND_TYPE_NET, 0);
1705 #endif
1706
1707 sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
1708 if (sc->vr_ats == NULL)
1709 aprint_error_dev(self, "warning: couldn't establish shutdown hook\n");
1710 return;
1711
1712 fail_5:
1713 for (i = 0; i < VR_NRXDESC; i++) {
1714 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1715 bus_dmamap_destroy(sc->vr_dmat,
1716 sc->vr_rxsoft[i].ds_dmamap);
1717 }
1718 fail_4:
1719 for (i = 0; i < VR_NTXDESC; i++) {
1720 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1721 bus_dmamap_destroy(sc->vr_dmat,
1722 sc->vr_txsoft[i].ds_dmamap);
1723 }
1724 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1725 fail_3:
1726 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1727 fail_2:
1728 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1729 sizeof(struct vr_control_data));
1730 fail_1:
1731 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1732 fail_0:
1733 return;
1734 }
1735
1736 static int
1737 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1738 pcireg_t state)
1739 {
1740 struct vr_softc *sc = device_private(self);
1741 int error;
1742
1743 if (state == PCI_PMCSR_STATE_D0)
1744 return 0;
1745 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1746 return error;
1747
1748 /* Restore PCI config data. */
1749 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1750 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1751 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1752 return 0;
1753 }
1754