if_vr.c revision 1.98 1 /* $NetBSD: if_vr.c,v 1.98 2009/09/06 14:10:42 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.98 2009/09/06 14:10:42 tsutsui Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include "bpfilter.h"
127 #if NBPFILTER > 0
128 #include <net/bpf.h>
129 #endif
130
131 #include <sys/bus.h>
132 #include <sys/intr.h>
133 #include <machine/endian.h>
134
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 #include <dev/mii/mii_bitbang.h>
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_vrreg.h>
144
145 #define VR_USEIOSPACE
146
147 /*
148 * Various supported device vendors/types and their names.
149 */
150 static const struct vr_type {
151 pci_vendor_id_t vr_vid;
152 pci_product_id_t vr_did;
153 } vr_devs[] = {
154 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
159 };
160
161 /*
162 * Transmit descriptor list size.
163 */
164 #define VR_NTXDESC 64
165 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
166 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
167
168 /*
169 * Receive descriptor list size.
170 */
171 #define VR_NRXDESC 64
172 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
173 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
174
175 /*
176 * Control data structres that are DMA'd to the Rhine chip. We allocate
177 * them in a single clump that maps to a single DMA segment to make several
178 * things easier.
179 *
180 * Note that since we always copy outgoing packets to aligned transmit
181 * buffers, we can reduce the transmit descriptors to one per packet.
182 */
183 struct vr_control_data {
184 struct vr_desc vr_txdescs[VR_NTXDESC];
185 struct vr_desc vr_rxdescs[VR_NRXDESC];
186 };
187
188 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
189 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
190 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
191
192 /*
193 * Software state of transmit and receive descriptors.
194 */
195 struct vr_descsoft {
196 struct mbuf *ds_mbuf; /* head of mbuf chain */
197 bus_dmamap_t ds_dmamap; /* our DMA map */
198 };
199
200 struct vr_softc {
201 device_t vr_dev;
202 void *vr_ih; /* interrupt cookie */
203 bus_space_tag_t vr_bst; /* bus space tag */
204 bus_space_handle_t vr_bsh; /* bus space handle */
205 bus_dma_tag_t vr_dmat; /* bus DMA tag */
206 pci_chipset_tag_t vr_pc; /* PCI chipset info */
207 pcitag_t vr_tag; /* PCI tag */
208 struct ethercom vr_ec; /* Ethernet common info */
209 uint8_t vr_enaddr[ETHER_ADDR_LEN];
210 struct mii_data vr_mii; /* MII/media info */
211
212 uint8_t vr_revid; /* Rhine chip revision */
213
214 callout_t vr_tick_ch; /* tick callout */
215
216 bus_dmamap_t vr_cddmamap; /* control data DMA map */
217 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
218
219 /*
220 * Software state for transmit and receive descriptors.
221 */
222 struct vr_descsoft vr_txsoft[VR_NTXDESC];
223 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
224
225 /*
226 * Control data structures.
227 */
228 struct vr_control_data *vr_control_data;
229
230 int vr_txpending; /* number of TX requests pending */
231 int vr_txdirty; /* first dirty TX descriptor */
232 int vr_txlast; /* last used TX descriptor */
233
234 int vr_rxptr; /* next ready RX descriptor */
235
236 uint32_t vr_save_iobase;
237 uint32_t vr_save_membase;
238 uint32_t vr_save_irq;
239
240 #if NRND > 0
241 rndsource_element_t rnd_source; /* random source */
242 #endif
243 };
244
245 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
246 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
247
248 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
249 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
250
251 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
252 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
253
254 #define VR_CDTXSYNC(sc, x, ops) \
255 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
256 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
257
258 #define VR_CDRXSYNC(sc, x, ops) \
259 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
260 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
261
262 /*
263 * Note we rely on MCLBYTES being a power of two below.
264 */
265 #define VR_INIT_RXDESC(sc, i) \
266 do { \
267 struct vr_desc *__d = VR_CDRX((sc), (i)); \
268 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
269 \
270 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
271 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
272 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
273 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
274 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
275 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
276 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
277 } while (/* CONSTCOND */ 0)
278
279 /*
280 * register space access macros
281 */
282 #define CSR_WRITE_4(sc, reg, val) \
283 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
284 #define CSR_WRITE_2(sc, reg, val) \
285 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
286 #define CSR_WRITE_1(sc, reg, val) \
287 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
288
289 #define CSR_READ_4(sc, reg) \
290 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
291 #define CSR_READ_2(sc, reg) \
292 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
293 #define CSR_READ_1(sc, reg) \
294 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
295
296 #define VR_TIMEOUT 1000
297
298 static int vr_add_rxbuf(struct vr_softc *, int);
299
300 static void vr_rxeof(struct vr_softc *);
301 static void vr_rxeoc(struct vr_softc *);
302 static void vr_txeof(struct vr_softc *);
303 static int vr_intr(void *);
304 static void vr_start(struct ifnet *);
305 static int vr_ioctl(struct ifnet *, u_long, void *);
306 static int vr_init(struct ifnet *);
307 static void vr_stop(struct ifnet *, int);
308 static void vr_rxdrain(struct vr_softc *);
309 static void vr_watchdog(struct ifnet *);
310 static void vr_tick(void *);
311
312 static int vr_mii_readreg(device_t, int, int);
313 static void vr_mii_writereg(device_t, int, int, int);
314 static void vr_mii_statchg(device_t);
315
316 static void vr_setmulti(struct vr_softc *);
317 static void vr_reset(struct vr_softc *);
318 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
319 pcireg_t);
320
321 int vr_copy_small = 0;
322
323 #define VR_SETBIT(sc, reg, x) \
324 CSR_WRITE_1(sc, reg, \
325 CSR_READ_1(sc, reg) | (x))
326
327 #define VR_CLRBIT(sc, reg, x) \
328 CSR_WRITE_1(sc, reg, \
329 CSR_READ_1(sc, reg) & ~(x))
330
331 #define VR_SETBIT16(sc, reg, x) \
332 CSR_WRITE_2(sc, reg, \
333 CSR_READ_2(sc, reg) | (x))
334
335 #define VR_CLRBIT16(sc, reg, x) \
336 CSR_WRITE_2(sc, reg, \
337 CSR_READ_2(sc, reg) & ~(x))
338
339 #define VR_SETBIT32(sc, reg, x) \
340 CSR_WRITE_4(sc, reg, \
341 CSR_READ_4(sc, reg) | (x))
342
343 #define VR_CLRBIT32(sc, reg, x) \
344 CSR_WRITE_4(sc, reg, \
345 CSR_READ_4(sc, reg) & ~(x))
346
347 /*
348 * MII bit-bang glue.
349 */
350 static uint32_t vr_mii_bitbang_read(device_t);
351 static void vr_mii_bitbang_write(device_t, uint32_t);
352
353 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
354 vr_mii_bitbang_read,
355 vr_mii_bitbang_write,
356 {
357 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
358 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
359 VR_MIICMD_CLK, /* MII_BIT_MDC */
360 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
361 0, /* MII_BIT_DIR_PHY_HOST */
362 }
363 };
364
365 static uint32_t
366 vr_mii_bitbang_read(device_t self)
367 {
368 struct vr_softc *sc = device_private(self);
369
370 return (CSR_READ_1(sc, VR_MIICMD));
371 }
372
373 static void
374 vr_mii_bitbang_write(device_t self, uint32_t val)
375 {
376 struct vr_softc *sc = device_private(self);
377
378 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
379 }
380
381 /*
382 * Read an PHY register through the MII.
383 */
384 static int
385 vr_mii_readreg(device_t self, int phy, int reg)
386 {
387 struct vr_softc *sc = device_private(self);
388
389 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
390 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
391 }
392
393 /*
394 * Write to a PHY register through the MII.
395 */
396 static void
397 vr_mii_writereg(device_t self, int phy, int reg, int val)
398 {
399 struct vr_softc *sc = device_private(self);
400
401 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
402 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
403 }
404
405 static void
406 vr_mii_statchg(device_t self)
407 {
408 struct vr_softc *sc = device_private(self);
409
410 /*
411 * In order to fiddle with the 'full-duplex' bit in the netconfig
412 * register, we first have to put the transmit and/or receive logic
413 * in the idle state.
414 */
415 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
416
417 if (sc->vr_mii.mii_media_active & IFM_FDX)
418 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
419 else
420 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
421
422 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
423 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
424 }
425
426 #define vr_calchash(addr) \
427 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
428
429 /*
430 * Program the 64-bit multicast hash filter.
431 */
432 static void
433 vr_setmulti(struct vr_softc *sc)
434 {
435 struct ifnet *ifp;
436 int h = 0;
437 uint32_t hashes[2] = { 0, 0 };
438 struct ether_multistep step;
439 struct ether_multi *enm;
440 int mcnt = 0;
441 uint8_t rxfilt;
442
443 ifp = &sc->vr_ec.ec_if;
444
445 rxfilt = CSR_READ_1(sc, VR_RXCFG);
446
447 if (ifp->if_flags & IFF_PROMISC) {
448 allmulti:
449 ifp->if_flags |= IFF_ALLMULTI;
450 rxfilt |= VR_RXCFG_RX_MULTI;
451 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
452 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
453 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
454 return;
455 }
456
457 /* first, zot all the existing hash bits */
458 CSR_WRITE_4(sc, VR_MAR0, 0);
459 CSR_WRITE_4(sc, VR_MAR1, 0);
460
461 /* now program new ones */
462 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
463 while (enm != NULL) {
464 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
465 ETHER_ADDR_LEN) != 0)
466 goto allmulti;
467
468 h = vr_calchash(enm->enm_addrlo);
469
470 if (h < 32)
471 hashes[0] |= (1 << h);
472 else
473 hashes[1] |= (1 << (h - 32));
474 ETHER_NEXT_MULTI(step, enm);
475 mcnt++;
476 }
477
478 ifp->if_flags &= ~IFF_ALLMULTI;
479
480 if (mcnt)
481 rxfilt |= VR_RXCFG_RX_MULTI;
482 else
483 rxfilt &= ~VR_RXCFG_RX_MULTI;
484
485 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
486 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
487 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
488 }
489
490 static void
491 vr_reset(struct vr_softc *sc)
492 {
493 int i;
494
495 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
496
497 for (i = 0; i < VR_TIMEOUT; i++) {
498 DELAY(10);
499 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
500 break;
501 }
502 if (i == VR_TIMEOUT) {
503 if (sc->vr_revid < REV_ID_VT3065_A) {
504 printf("%s: reset never completed!\n",
505 device_xname(sc->vr_dev));
506 } else {
507 /* Use newer force reset command */
508 printf("%s: using force reset command.\n",
509 device_xname(sc->vr_dev));
510 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
511 }
512 }
513
514 /* Wait a little while for the chip to get its brains in order. */
515 DELAY(1000);
516 }
517
518 /*
519 * Initialize an RX descriptor and attach an MBUF cluster.
520 * Note: the length fields are only 11 bits wide, which means the
521 * largest size we can specify is 2047. This is important because
522 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
523 * overflow the field and make a mess.
524 */
525 static int
526 vr_add_rxbuf(struct vr_softc *sc, int i)
527 {
528 struct vr_descsoft *ds = VR_DSRX(sc, i);
529 struct mbuf *m_new;
530 int error;
531
532 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
533 if (m_new == NULL)
534 return (ENOBUFS);
535
536 MCLGET(m_new, M_DONTWAIT);
537 if ((m_new->m_flags & M_EXT) == 0) {
538 m_freem(m_new);
539 return (ENOBUFS);
540 }
541
542 if (ds->ds_mbuf != NULL)
543 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
544
545 ds->ds_mbuf = m_new;
546
547 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
548 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
549 BUS_DMA_READ|BUS_DMA_NOWAIT);
550 if (error) {
551 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
552 i, error);
553 panic("vr_add_rxbuf"); /* XXX */
554 }
555
556 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
557 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
558
559 VR_INIT_RXDESC(sc, i);
560
561 return (0);
562 }
563
564 /*
565 * A frame has been uploaded: pass the resulting mbuf chain up to
566 * the higher level protocols.
567 */
568 static void
569 vr_rxeof(struct vr_softc *sc)
570 {
571 struct mbuf *m;
572 struct ifnet *ifp;
573 struct vr_desc *d;
574 struct vr_descsoft *ds;
575 int i, total_len;
576 uint32_t rxstat;
577
578 ifp = &sc->vr_ec.ec_if;
579
580 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
581 d = VR_CDRX(sc, i);
582 ds = VR_DSRX(sc, i);
583
584 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
585
586 rxstat = le32toh(d->vr_status);
587
588 if (rxstat & VR_RXSTAT_OWN) {
589 /*
590 * We have processed all of the receive buffers.
591 */
592 break;
593 }
594
595 /*
596 * If an error occurs, update stats, clear the
597 * status word and leave the mbuf cluster in place:
598 * it should simply get re-used next time this descriptor
599 * comes up in the ring.
600 */
601 if (rxstat & VR_RXSTAT_RXERR) {
602 const char *errstr;
603
604 ifp->if_ierrors++;
605 switch (rxstat & 0x000000FF) {
606 case VR_RXSTAT_CRCERR:
607 errstr = "crc error";
608 break;
609 case VR_RXSTAT_FRAMEALIGNERR:
610 errstr = "frame alignment error";
611 break;
612 case VR_RXSTAT_FIFOOFLOW:
613 errstr = "FIFO overflow";
614 break;
615 case VR_RXSTAT_GIANT:
616 errstr = "received giant packet";
617 break;
618 case VR_RXSTAT_RUNT:
619 errstr = "received runt packet";
620 break;
621 case VR_RXSTAT_BUSERR:
622 errstr = "system bus error";
623 break;
624 case VR_RXSTAT_BUFFERR:
625 errstr = "rx buffer error";
626 break;
627 default:
628 errstr = "unknown rx error";
629 break;
630 }
631 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
632 errstr);
633
634 VR_INIT_RXDESC(sc, i);
635
636 continue;
637 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
638 !(rxstat & VR_RXSTAT_LASTFRAG)) {
639 /*
640 * This driver expects to receive whole packets every
641 * time. In case we receive a fragment that is not
642 * a complete packet, we discard it.
643 */
644 ifp->if_ierrors++;
645
646 printf("%s: receive error: incomplete frame; "
647 "size = %d, status = 0x%x\n",
648 device_xname(sc->vr_dev),
649 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
650
651 VR_INIT_RXDESC(sc, i);
652
653 continue;
654 }
655
656 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
657 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
658
659 /* No errors; receive the packet. */
660 total_len = VR_RXBYTES(le32toh(d->vr_status));
661 #ifdef DIAGNOSTIC
662 if (total_len == 0) {
663 /*
664 * If we receive a zero-length packet, we probably
665 * missed to handle an error condition above.
666 * Discard it to avoid a later crash.
667 */
668 ifp->if_ierrors++;
669
670 printf("%s: receive error: zero-length packet; "
671 "status = 0x%x\n",
672 device_xname(sc->vr_dev), rxstat);
673
674 VR_INIT_RXDESC(sc, i);
675
676 continue;
677 }
678 #endif
679
680 /*
681 * The Rhine chip includes the CRC with every packet.
682 * Trim it off here.
683 */
684 total_len -= ETHER_CRC_LEN;
685
686 #ifdef __NO_STRICT_ALIGNMENT
687 /*
688 * If the packet is small enough to fit in a
689 * single header mbuf, allocate one and copy
690 * the data into it. This greatly reduces
691 * memory consumption when we receive lots
692 * of small packets.
693 *
694 * Otherwise, we add a new buffer to the receive
695 * chain. If this fails, we drop the packet and
696 * recycle the old buffer.
697 */
698 if (vr_copy_small != 0 && total_len <= MHLEN) {
699 MGETHDR(m, M_DONTWAIT, MT_DATA);
700 if (m == NULL)
701 goto dropit;
702 memcpy(mtod(m, void *),
703 mtod(ds->ds_mbuf, void *), total_len);
704 VR_INIT_RXDESC(sc, i);
705 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
706 ds->ds_dmamap->dm_mapsize,
707 BUS_DMASYNC_PREREAD);
708 } else {
709 m = ds->ds_mbuf;
710 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
711 dropit:
712 ifp->if_ierrors++;
713 VR_INIT_RXDESC(sc, i);
714 bus_dmamap_sync(sc->vr_dmat,
715 ds->ds_dmamap, 0,
716 ds->ds_dmamap->dm_mapsize,
717 BUS_DMASYNC_PREREAD);
718 continue;
719 }
720 }
721 #else
722 /*
723 * The Rhine's packet buffers must be 4-byte aligned.
724 * But this means that the data after the Ethernet header
725 * is misaligned. We must allocate a new buffer and
726 * copy the data, shifted forward 2 bytes.
727 */
728 MGETHDR(m, M_DONTWAIT, MT_DATA);
729 if (m == NULL) {
730 dropit:
731 ifp->if_ierrors++;
732 VR_INIT_RXDESC(sc, i);
733 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
734 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
735 continue;
736 }
737 if (total_len > (MHLEN - 2)) {
738 MCLGET(m, M_DONTWAIT);
739 if ((m->m_flags & M_EXT) == 0) {
740 m_freem(m);
741 goto dropit;
742 }
743 }
744 m->m_data += 2;
745
746 /*
747 * Note that we use clusters for incoming frames, so the
748 * buffer is virtually contiguous.
749 */
750 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
751 total_len);
752
753 /* Allow the receive descriptor to continue using its mbuf. */
754 VR_INIT_RXDESC(sc, i);
755 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
756 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
757 #endif /* __NO_STRICT_ALIGNMENT */
758
759 ifp->if_ipackets++;
760 m->m_pkthdr.rcvif = ifp;
761 m->m_pkthdr.len = m->m_len = total_len;
762 #if NBPFILTER > 0
763 /*
764 * Handle BPF listeners. Let the BPF user see the packet, but
765 * don't pass it up to the ether_input() layer unless it's
766 * a broadcast packet, multicast packet, matches our ethernet
767 * address or the interface is in promiscuous mode.
768 */
769 if (ifp->if_bpf)
770 bpf_mtap(ifp->if_bpf, m);
771 #endif
772 /* Pass it on. */
773 (*ifp->if_input)(ifp, m);
774 }
775
776 /* Update the receive pointer. */
777 sc->vr_rxptr = i;
778 }
779
780 void
781 vr_rxeoc(struct vr_softc *sc)
782 {
783 struct ifnet *ifp;
784 int i;
785
786 ifp = &sc->vr_ec.ec_if;
787
788 ifp->if_ierrors++;
789
790 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
791 for (i = 0; i < VR_TIMEOUT; i++) {
792 DELAY(10);
793 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
794 break;
795 }
796 if (i == VR_TIMEOUT) {
797 /* XXX need reset? */
798 printf("%s: RX shutdown never complete\n",
799 device_xname(sc->vr_dev));
800 }
801
802 vr_rxeof(sc);
803
804 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
805 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
806 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
807 }
808
809 /*
810 * A frame was downloaded to the chip. It's safe for us to clean up
811 * the list buffers.
812 */
813 static void
814 vr_txeof(struct vr_softc *sc)
815 {
816 struct ifnet *ifp = &sc->vr_ec.ec_if;
817 struct vr_desc *d;
818 struct vr_descsoft *ds;
819 uint32_t txstat;
820 int i, j;
821
822 ifp->if_flags &= ~IFF_OACTIVE;
823
824 /*
825 * Go through our tx list and free mbufs for those
826 * frames that have been transmitted.
827 */
828 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
829 i = VR_NEXTTX(i), sc->vr_txpending--) {
830 d = VR_CDTX(sc, i);
831 ds = VR_DSTX(sc, i);
832
833 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
834
835 txstat = le32toh(d->vr_status);
836
837 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
838 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
839 for (j = 0; j < VR_TIMEOUT; j++) {
840 DELAY(10);
841 if ((CSR_READ_2(sc, VR_COMMAND) &
842 VR_CMD_TX_ON) == 0)
843 break;
844 }
845 if (j == VR_TIMEOUT) {
846 /* XXX need reset? */
847 printf("%s: TX shutdown never complete\n",
848 device_xname(sc->vr_dev));
849 }
850 d->vr_status = htole32(VR_TXSTAT_OWN);
851 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
852 break;
853 }
854
855 if (txstat & VR_TXSTAT_OWN)
856 break;
857
858 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
859 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
860 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
861 m_freem(ds->ds_mbuf);
862 ds->ds_mbuf = NULL;
863
864 if (txstat & VR_TXSTAT_ERRSUM) {
865 ifp->if_oerrors++;
866 if (txstat & VR_TXSTAT_DEFER)
867 ifp->if_collisions++;
868 if (txstat & VR_TXSTAT_LATECOLL)
869 ifp->if_collisions++;
870 }
871
872 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
873 ifp->if_opackets++;
874 }
875
876 /* Update the dirty transmit buffer pointer. */
877 sc->vr_txdirty = i;
878
879 /*
880 * Cancel the watchdog timer if there are no pending
881 * transmissions.
882 */
883 if (sc->vr_txpending == 0)
884 ifp->if_timer = 0;
885 }
886
887 static int
888 vr_intr(void *arg)
889 {
890 struct vr_softc *sc;
891 struct ifnet *ifp;
892 uint16_t status;
893 int handled = 0, dotx = 0;
894
895 sc = arg;
896 ifp = &sc->vr_ec.ec_if;
897
898 /* Suppress unwanted interrupts. */
899 if ((ifp->if_flags & IFF_UP) == 0) {
900 vr_stop(ifp, 1);
901 return (0);
902 }
903
904 /* Disable interrupts. */
905 CSR_WRITE_2(sc, VR_IMR, 0x0000);
906
907 for (;;) {
908 status = CSR_READ_2(sc, VR_ISR);
909 if (status)
910 CSR_WRITE_2(sc, VR_ISR, status);
911
912 if ((status & VR_INTRS) == 0)
913 break;
914
915 handled = 1;
916
917 #if NRND > 0
918 if (RND_ENABLED(&sc->rnd_source))
919 rnd_add_uint32(&sc->rnd_source, status);
920 #endif
921
922 if (status & VR_ISR_RX_OK)
923 vr_rxeof(sc);
924
925 if (status & VR_ISR_RX_DROPPED) {
926 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
927 ifp->if_ierrors++;
928 }
929
930 if (status &
931 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
932 vr_rxeoc(sc);
933
934
935 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
936 if (status & VR_ISR_BUSERR)
937 printf("%s: PCI bus error\n",
938 device_xname(sc->vr_dev));
939 if (status & VR_ISR_TX_UNDERRUN)
940 printf("%s: transmit underrun\n",
941 device_xname(sc->vr_dev));
942 /* vr_init() calls vr_start() */
943 dotx = 0;
944 (void)vr_init(ifp);
945
946 }
947
948 if (status & VR_ISR_TX_OK) {
949 dotx = 1;
950 vr_txeof(sc);
951 }
952
953 if (status &
954 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
955 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
956 printf("%s: transmit aborted\n",
957 device_xname(sc->vr_dev));
958 if (status & VR_ISR_TX_UDFI)
959 printf("%s: transmit underflow\n",
960 device_xname(sc->vr_dev));
961 ifp->if_oerrors++;
962 dotx = 1;
963 vr_txeof(sc);
964 if (sc->vr_txpending) {
965 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
966 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
967 }
968 }
969 }
970
971 /* Re-enable interrupts. */
972 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
973
974 if (dotx)
975 vr_start(ifp);
976
977 return (handled);
978 }
979
980 /*
981 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
982 * to the mbuf data regions directly in the transmit lists. We also save a
983 * copy of the pointers since the transmit list fragment pointers are
984 * physical addresses.
985 */
986 static void
987 vr_start(struct ifnet *ifp)
988 {
989 struct vr_softc *sc = ifp->if_softc;
990 struct mbuf *m0, *m;
991 struct vr_desc *d;
992 struct vr_descsoft *ds;
993 int error, firsttx, nexttx, opending;
994
995 /*
996 * Remember the previous txpending and the first transmit
997 * descriptor we use.
998 */
999 opending = sc->vr_txpending;
1000 firsttx = VR_NEXTTX(sc->vr_txlast);
1001
1002 /*
1003 * Loop through the send queue, setting up transmit descriptors
1004 * until we drain the queue, or use up all available transmit
1005 * descriptors.
1006 */
1007 while (sc->vr_txpending < VR_NTXDESC) {
1008 /*
1009 * Grab a packet off the queue.
1010 */
1011 IFQ_POLL(&ifp->if_snd, m0);
1012 if (m0 == NULL)
1013 break;
1014 m = NULL;
1015
1016 /*
1017 * Get the next available transmit descriptor.
1018 */
1019 nexttx = VR_NEXTTX(sc->vr_txlast);
1020 d = VR_CDTX(sc, nexttx);
1021 ds = VR_DSTX(sc, nexttx);
1022
1023 /*
1024 * Load the DMA map. If this fails, the packet didn't
1025 * fit in one DMA segment, and we need to copy. Note,
1026 * the packet must also be aligned.
1027 * if the packet is too small, copy it too, so we're sure
1028 * we have enough room for the pad buffer.
1029 */
1030 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1031 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1032 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1033 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1034 MGETHDR(m, M_DONTWAIT, MT_DATA);
1035 if (m == NULL) {
1036 printf("%s: unable to allocate Tx mbuf\n",
1037 device_xname(sc->vr_dev));
1038 break;
1039 }
1040 if (m0->m_pkthdr.len > MHLEN) {
1041 MCLGET(m, M_DONTWAIT);
1042 if ((m->m_flags & M_EXT) == 0) {
1043 printf("%s: unable to allocate Tx "
1044 "cluster\n", device_xname(sc->vr_dev));
1045 m_freem(m);
1046 break;
1047 }
1048 }
1049 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1050 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1051 /*
1052 * The Rhine doesn't auto-pad, so we have to do this
1053 * ourselves.
1054 */
1055 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1056 memset(mtod(m, char *) + m0->m_pkthdr.len,
1057 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1058 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1059 }
1060 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1061 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1062 if (error) {
1063 m_freem(m);
1064 printf("%s: unable to load Tx buffer, "
1065 "error = %d\n", device_xname(sc->vr_dev), error);
1066 break;
1067 }
1068 }
1069
1070 IFQ_DEQUEUE(&ifp->if_snd, m0);
1071 if (m != NULL) {
1072 m_freem(m0);
1073 m0 = m;
1074 }
1075
1076 /* Sync the DMA map. */
1077 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1078 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1079
1080 /*
1081 * Store a pointer to the packet so we can free it later.
1082 */
1083 ds->ds_mbuf = m0;
1084
1085 #if NBPFILTER > 0
1086 /*
1087 * If there's a BPF listener, bounce a copy of this frame
1088 * to him.
1089 */
1090 if (ifp->if_bpf)
1091 bpf_mtap(ifp->if_bpf, m0);
1092 #endif
1093
1094 /*
1095 * Fill in the transmit descriptor.
1096 */
1097 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1098 d->vr_ctl = htole32(m0->m_pkthdr.len);
1099 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1100
1101 /*
1102 * If this is the first descriptor we're enqueuing,
1103 * don't give it to the Rhine yet. That could cause
1104 * a race condition. We'll do it below.
1105 */
1106 if (nexttx == firsttx)
1107 d->vr_status = 0;
1108 else
1109 d->vr_status = htole32(VR_TXSTAT_OWN);
1110
1111 VR_CDTXSYNC(sc, nexttx,
1112 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1113
1114 /* Advance the tx pointer. */
1115 sc->vr_txpending++;
1116 sc->vr_txlast = nexttx;
1117 }
1118
1119 if (sc->vr_txpending == VR_NTXDESC) {
1120 /* No more slots left; notify upper layer. */
1121 ifp->if_flags |= IFF_OACTIVE;
1122 }
1123
1124 if (sc->vr_txpending != opending) {
1125 /*
1126 * We enqueued packets. If the transmitter was idle,
1127 * reset the txdirty pointer.
1128 */
1129 if (opending == 0)
1130 sc->vr_txdirty = firsttx;
1131
1132 /*
1133 * Cause a transmit interrupt to happen on the
1134 * last packet we enqueued.
1135 */
1136 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1137 VR_CDTXSYNC(sc, sc->vr_txlast,
1138 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1139
1140 /*
1141 * The entire packet chain is set up. Give the
1142 * first descriptor to the Rhine now.
1143 */
1144 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1145 VR_CDTXSYNC(sc, firsttx,
1146 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1147
1148 /* Start the transmitter. */
1149 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1150
1151 /* Set the watchdog timer in case the chip flakes out. */
1152 ifp->if_timer = 5;
1153 }
1154 }
1155
1156 /*
1157 * Initialize the interface. Must be called at splnet.
1158 */
1159 static int
1160 vr_init(struct ifnet *ifp)
1161 {
1162 struct vr_softc *sc = ifp->if_softc;
1163 struct vr_desc *d;
1164 struct vr_descsoft *ds;
1165 int i, error = 0;
1166
1167 /* Cancel pending I/O. */
1168 vr_stop(ifp, 0);
1169
1170 /* Reset the Rhine to a known state. */
1171 vr_reset(sc);
1172
1173 /* set DMA length in BCR0 and BCR1 */
1174 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1175 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1176
1177 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1178 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1179
1180 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1181 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1182
1183 /* set DMA threshold length in RXCFG and TXCFG */
1184 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1185 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1186
1187 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1188 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1189
1190 /*
1191 * Initialize the transmit descriptor ring. txlast is initialized
1192 * to the end of the list so that it will wrap around to the first
1193 * descriptor when the first packet is transmitted.
1194 */
1195 for (i = 0; i < VR_NTXDESC; i++) {
1196 d = VR_CDTX(sc, i);
1197 memset(d, 0, sizeof(struct vr_desc));
1198 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1199 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1200 }
1201 sc->vr_txpending = 0;
1202 sc->vr_txdirty = 0;
1203 sc->vr_txlast = VR_NTXDESC - 1;
1204
1205 /*
1206 * Initialize the receive descriptor ring.
1207 */
1208 for (i = 0; i < VR_NRXDESC; i++) {
1209 ds = VR_DSRX(sc, i);
1210 if (ds->ds_mbuf == NULL) {
1211 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1212 printf("%s: unable to allocate or map rx "
1213 "buffer %d, error = %d\n",
1214 device_xname(sc->vr_dev), i, error);
1215 /*
1216 * XXX Should attempt to run with fewer receive
1217 * XXX buffers instead of just failing.
1218 */
1219 vr_rxdrain(sc);
1220 goto out;
1221 }
1222 } else
1223 VR_INIT_RXDESC(sc, i);
1224 }
1225 sc->vr_rxptr = 0;
1226
1227 /* If we want promiscuous mode, set the allframes bit. */
1228 if (ifp->if_flags & IFF_PROMISC)
1229 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1230 else
1231 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1232
1233 /* Set capture broadcast bit to capture broadcast frames. */
1234 if (ifp->if_flags & IFF_BROADCAST)
1235 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1236 else
1237 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1238
1239 /* Program the multicast filter, if necessary. */
1240 vr_setmulti(sc);
1241
1242 /* Give the transmit and receive rings to the Rhine. */
1243 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1244 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1245
1246 /* Set current media. */
1247 if ((error = ether_mediachange(ifp)) != 0)
1248 goto out;
1249
1250 /* Enable receiver and transmitter. */
1251 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1252 VR_CMD_TX_ON|VR_CMD_RX_ON|
1253 VR_CMD_RX_GO);
1254
1255 /* Enable interrupts. */
1256 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1257 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1258
1259 ifp->if_flags |= IFF_RUNNING;
1260 ifp->if_flags &= ~IFF_OACTIVE;
1261
1262 /* Start one second timer. */
1263 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1264
1265 /* Attempt to start output on the interface. */
1266 vr_start(ifp);
1267
1268 out:
1269 if (error)
1270 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1271 return (error);
1272 }
1273
1274 static int
1275 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1276 {
1277 struct vr_softc *sc = ifp->if_softc;
1278 int s, error = 0;
1279
1280 s = splnet();
1281
1282 error = ether_ioctl(ifp, command, data);
1283 if (error == ENETRESET) {
1284 /*
1285 * Multicast list has changed; set the hardware filter
1286 * accordingly.
1287 */
1288 if (ifp->if_flags & IFF_RUNNING)
1289 vr_setmulti(sc);
1290 error = 0;
1291 }
1292
1293 splx(s);
1294 return (error);
1295 }
1296
1297 static void
1298 vr_watchdog(struct ifnet *ifp)
1299 {
1300 struct vr_softc *sc = ifp->if_softc;
1301
1302 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1303 ifp->if_oerrors++;
1304
1305 (void) vr_init(ifp);
1306 }
1307
1308 /*
1309 * One second timer, used to tick MII.
1310 */
1311 static void
1312 vr_tick(void *arg)
1313 {
1314 struct vr_softc *sc = arg;
1315 int s;
1316
1317 s = splnet();
1318 mii_tick(&sc->vr_mii);
1319 splx(s);
1320
1321 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1322 }
1323
1324 /*
1325 * Drain the receive queue.
1326 */
1327 static void
1328 vr_rxdrain(struct vr_softc *sc)
1329 {
1330 struct vr_descsoft *ds;
1331 int i;
1332
1333 for (i = 0; i < VR_NRXDESC; i++) {
1334 ds = VR_DSRX(sc, i);
1335 if (ds->ds_mbuf != NULL) {
1336 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1337 m_freem(ds->ds_mbuf);
1338 ds->ds_mbuf = NULL;
1339 }
1340 }
1341 }
1342
1343 /*
1344 * Stop the adapter and free any mbufs allocated to the
1345 * transmit lists.
1346 */
1347 static void
1348 vr_stop(struct ifnet *ifp, int disable)
1349 {
1350 struct vr_softc *sc = ifp->if_softc;
1351 struct vr_descsoft *ds;
1352 int i;
1353
1354 /* Cancel one second timer. */
1355 callout_stop(&sc->vr_tick_ch);
1356
1357 /* Down the MII. */
1358 mii_down(&sc->vr_mii);
1359
1360 ifp = &sc->vr_ec.ec_if;
1361 ifp->if_timer = 0;
1362
1363 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1364 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1365 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1366 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1367 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1368
1369 /*
1370 * Release any queued transmit buffers.
1371 */
1372 for (i = 0; i < VR_NTXDESC; i++) {
1373 ds = VR_DSTX(sc, i);
1374 if (ds->ds_mbuf != NULL) {
1375 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1376 m_freem(ds->ds_mbuf);
1377 ds->ds_mbuf = NULL;
1378 }
1379 }
1380
1381 /*
1382 * Mark the interface down and cancel the watchdog timer.
1383 */
1384 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1385 ifp->if_timer = 0;
1386
1387 if (disable)
1388 vr_rxdrain(sc);
1389 }
1390
1391 static int vr_probe(device_t, cfdata_t, void *);
1392 static void vr_attach(device_t, device_t, void *);
1393 static bool vr_shutdown(device_t, int);
1394
1395 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1396 vr_probe, vr_attach, NULL, NULL);
1397
1398 static const struct vr_type *
1399 vr_lookup(struct pci_attach_args *pa)
1400 {
1401 const struct vr_type *vrt;
1402 int i;
1403
1404 for (i = 0; i < __arraycount(vr_devs); i++) {
1405 vrt = &vr_devs[i];
1406 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1407 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1408 return (vrt);
1409 }
1410 return (NULL);
1411 }
1412
1413 static int
1414 vr_probe(device_t parent, cfdata_t match, void *aux)
1415 {
1416 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1417
1418 if (vr_lookup(pa) != NULL)
1419 return (1);
1420
1421 return (0);
1422 }
1423
1424 /*
1425 * Stop all chip I/O so that the kernel's probe routines don't
1426 * get confused by errant DMAs when rebooting.
1427 */
1428 static bool
1429 vr_shutdown(device_t self, int howto)
1430 {
1431 struct vr_softc *sc = device_private(self);
1432
1433 vr_stop(&sc->vr_ec.ec_if, 1);
1434
1435 return true;
1436 }
1437
1438 /*
1439 * Attach the interface. Allocate softc structures, do ifmedia
1440 * setup and ethernet/BPF attach.
1441 */
1442 static void
1443 vr_attach(device_t parent, device_t self, void *aux)
1444 {
1445 struct vr_softc *sc = device_private(self);
1446 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1447 bus_dma_segment_t seg;
1448 uint32_t reg;
1449 struct ifnet *ifp;
1450 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1451 int i, rseg, error;
1452 char devinfo[256];
1453
1454 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1455 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1456
1457 sc->vr_dev = self;
1458 sc->vr_pc = pa->pa_pc;
1459 sc->vr_tag = pa->pa_tag;
1460 callout_init(&sc->vr_tick_ch, 0);
1461
1462 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1463 aprint_naive("\n");
1464 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1465 PCI_REVISION(pa->pa_class));
1466
1467 /*
1468 * Handle power management nonsense.
1469 */
1470
1471 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1472 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1473 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1474
1475 /* power up chip */
1476 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1477 vr_restore_state)) && error != EOPNOTSUPP) {
1478 aprint_error_dev(self, "cannot activate %d\n",
1479 error);
1480 return;
1481 }
1482
1483 /* Make sure bus mastering is enabled. */
1484 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1485 reg |= PCI_COMMAND_MASTER_ENABLE;
1486 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1487
1488 /* Get revision */
1489 sc->vr_revid = PCI_REVISION(pa->pa_class);
1490
1491 /*
1492 * Map control/status registers.
1493 */
1494 {
1495 bus_space_tag_t iot, memt;
1496 bus_space_handle_t ioh, memh;
1497 int ioh_valid, memh_valid;
1498 pci_intr_handle_t intrhandle;
1499 const char *intrstr;
1500
1501 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1502 PCI_MAPREG_TYPE_IO, 0,
1503 &iot, &ioh, NULL, NULL) == 0);
1504 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1505 PCI_MAPREG_TYPE_MEM |
1506 PCI_MAPREG_MEM_TYPE_32BIT,
1507 0, &memt, &memh, NULL, NULL) == 0);
1508 #if defined(VR_USEIOSPACE)
1509 if (ioh_valid) {
1510 sc->vr_bst = iot;
1511 sc->vr_bsh = ioh;
1512 } else if (memh_valid) {
1513 sc->vr_bst = memt;
1514 sc->vr_bsh = memh;
1515 }
1516 #else
1517 if (memh_valid) {
1518 sc->vr_bst = memt;
1519 sc->vr_bsh = memh;
1520 } else if (ioh_valid) {
1521 sc->vr_bst = iot;
1522 sc->vr_bsh = ioh;
1523 }
1524 #endif
1525 else {
1526 printf(": unable to map device registers\n");
1527 return;
1528 }
1529
1530 /* Allocate interrupt */
1531 if (pci_intr_map(pa, &intrhandle)) {
1532 aprint_error_dev(self, "couldn't map interrupt\n");
1533 return;
1534 }
1535 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1536 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1537 vr_intr, sc);
1538 if (sc->vr_ih == NULL) {
1539 aprint_error_dev(self, "couldn't establish interrupt");
1540 if (intrstr != NULL)
1541 printf(" at %s", intrstr);
1542 printf("\n");
1543 }
1544 printf("%s: interrupting at %s\n",
1545 device_xname(self), intrstr);
1546 }
1547
1548 /*
1549 * Windows may put the chip in suspend mode when it
1550 * shuts down. Be sure to kick it in the head to wake it
1551 * up again.
1552 *
1553 * Don't touch this register on VT3043 since it causes
1554 * kernel MCHK trap on macppc.
1555 * (Note some VT86C100A chip returns a product ID of VT3043)
1556 */
1557 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1558 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1559
1560 /* Reset the adapter. */
1561 vr_reset(sc);
1562
1563 /*
1564 * Get station address. The way the Rhine chips work,
1565 * you're not allowed to directly access the EEPROM once
1566 * they've been programmed a special way. Consequently,
1567 * we need to read the node address from the PAR0 and PAR1
1568 * registers.
1569 *
1570 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1571 * of the *whole* EEPROM, not just the MAC address. This is
1572 * pretty pointless since the chip does this automatically
1573 * at powerup/reset.
1574 * I suspect the same thing applies to the other Rhine
1575 * variants, but in the absence of a data sheet for those
1576 * (and the lack of anyone else noticing the problems this
1577 * causes) I'm going to retain the old behaviour for the
1578 * other parts.
1579 * In some cases, the chip really does startup without having
1580 * read the EEPROM (kern/34812). To handle this case, we force
1581 * a reload if we see an all-zeroes MAC address.
1582 */
1583 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1584 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1585
1586 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1587 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1588 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1589 DELAY(200);
1590 for (i = 0; i < ETHER_ADDR_LEN; i++)
1591 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1592 }
1593
1594 /*
1595 * A Rhine chip was detected. Inform the world.
1596 */
1597 printf("%s: Ethernet address: %s\n",
1598 device_xname(self), ether_sprintf(eaddr));
1599
1600 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1601
1602 sc->vr_dmat = pa->pa_dmat;
1603
1604 /*
1605 * Allocate the control data structures, and create and load
1606 * the DMA map for it.
1607 */
1608 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1609 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1610 0)) != 0) {
1611 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1612 goto fail_0;
1613 }
1614
1615 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1616 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1617 BUS_DMA_COHERENT)) != 0) {
1618 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1619 goto fail_1;
1620 }
1621
1622 if ((error = bus_dmamap_create(sc->vr_dmat,
1623 sizeof(struct vr_control_data), 1,
1624 sizeof(struct vr_control_data), 0, 0,
1625 &sc->vr_cddmamap)) != 0) {
1626 aprint_error_dev(self, "unable to create control data DMA map, "
1627 "error = %d\n", error);
1628 goto fail_2;
1629 }
1630
1631 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1632 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1633 0)) != 0) {
1634 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1635 error);
1636 goto fail_3;
1637 }
1638
1639 /*
1640 * Create the transmit buffer DMA maps.
1641 */
1642 for (i = 0; i < VR_NTXDESC; i++) {
1643 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1644 1, MCLBYTES, 0, 0,
1645 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1646 aprint_error_dev(self, "unable to create tx DMA map %d, "
1647 "error = %d\n", i, error);
1648 goto fail_4;
1649 }
1650 }
1651
1652 /*
1653 * Create the receive buffer DMA maps.
1654 */
1655 for (i = 0; i < VR_NRXDESC; i++) {
1656 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1657 MCLBYTES, 0, 0,
1658 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1659 aprint_error_dev(self, "unable to create rx DMA map %d, "
1660 "error = %d\n", i, error);
1661 goto fail_5;
1662 }
1663 VR_DSRX(sc, i)->ds_mbuf = NULL;
1664 }
1665
1666 ifp = &sc->vr_ec.ec_if;
1667 ifp->if_softc = sc;
1668 ifp->if_mtu = ETHERMTU;
1669 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1670 ifp->if_ioctl = vr_ioctl;
1671 ifp->if_start = vr_start;
1672 ifp->if_watchdog = vr_watchdog;
1673 ifp->if_init = vr_init;
1674 ifp->if_stop = vr_stop;
1675 IFQ_SET_READY(&ifp->if_snd);
1676
1677 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1678
1679 /*
1680 * Initialize MII/media info.
1681 */
1682 sc->vr_mii.mii_ifp = ifp;
1683 sc->vr_mii.mii_readreg = vr_mii_readreg;
1684 sc->vr_mii.mii_writereg = vr_mii_writereg;
1685 sc->vr_mii.mii_statchg = vr_mii_statchg;
1686
1687 sc->vr_ec.ec_mii = &sc->vr_mii;
1688 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1689 ether_mediastatus);
1690 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1691 MII_OFFSET_ANY, MIIF_FORCEANEG);
1692 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1693 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1694 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1695 } else
1696 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1697
1698 /*
1699 * Call MI attach routines.
1700 */
1701 if_attach(ifp);
1702 ether_ifattach(ifp, sc->vr_enaddr);
1703 #if NRND > 0
1704 rnd_attach_source(&sc->rnd_source, device_xname(self),
1705 RND_TYPE_NET, 0);
1706 #endif
1707
1708 if (pmf_device_register1(self, NULL, NULL, vr_shutdown))
1709 pmf_class_network_register(self, ifp);
1710 else
1711 aprint_error_dev(self, "couldn't establish power handler\n");
1712
1713 return;
1714
1715 fail_5:
1716 for (i = 0; i < VR_NRXDESC; i++) {
1717 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1718 bus_dmamap_destroy(sc->vr_dmat,
1719 sc->vr_rxsoft[i].ds_dmamap);
1720 }
1721 fail_4:
1722 for (i = 0; i < VR_NTXDESC; i++) {
1723 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1724 bus_dmamap_destroy(sc->vr_dmat,
1725 sc->vr_txsoft[i].ds_dmamap);
1726 }
1727 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1728 fail_3:
1729 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1730 fail_2:
1731 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1732 sizeof(struct vr_control_data));
1733 fail_1:
1734 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1735 fail_0:
1736 return;
1737 }
1738
1739 static int
1740 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1741 pcireg_t state)
1742 {
1743 struct vr_softc *sc = device_private(self);
1744 int error;
1745
1746 if (state == PCI_PMCSR_STATE_D0)
1747 return 0;
1748 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1749 return error;
1750
1751 /* Restore PCI config data. */
1752 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1753 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1754 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1755 return 0;
1756 }
1757