if_vr.c revision 1.99 1 /* $NetBSD: if_vr.c,v 1.99 2009/09/26 19:58:53 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1997, 1998
35 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by Bill Paul.
48 * 4. Neither the name of the author nor the names of any co-contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
62 * THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 * $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
65 */
66
67 /*
68 * VIA Rhine fast ethernet PCI NIC driver
69 *
70 * Supports various network adapters based on the VIA Rhine
71 * and Rhine II PCI controllers, including the D-Link DFE530TX.
72 * Datasheets are available at http://www.via.com.tw.
73 *
74 * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
75 * Electrical Engineering Department
76 * Columbia University, New York City
77 */
78
79 /*
80 * The VIA Rhine controllers are similar in some respects to the
81 * the DEC tulip chips, except less complicated. The controller
82 * uses an MII bus and an external physical layer interface. The
83 * receiver has a one entry perfect filter and a 64-bit hash table
84 * multicast filter. Transmit and receive descriptors are similar
85 * to the tulip.
86 *
87 * The Rhine has a serious flaw in its transmit DMA mechanism:
88 * transmit buffers must be longword aligned. Unfortunately,
89 * the kernel doesn't guarantee that mbufs will be filled in starting
90 * at longword boundaries, so we have to do a buffer copy before
91 * transmission.
92 *
93 * Apparently, the receive DMA mechanism also has the same flaw. This
94 * means that on systems with struct alignment requirements, incoming
95 * frames must be copied to a new buffer which shifts the data forward
96 * 2 bytes so that the payload is aligned on a 4-byte boundary.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.99 2009/09/26 19:58:53 jmcneill Exp $");
101
102 #include "rnd.h"
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/sockio.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/device.h>
113
114 #if NRND > 0
115 #include <sys/rnd.h>
116 #endif
117
118 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
119
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_ether.h>
125
126 #include "bpfilter.h"
127 #if NBPFILTER > 0
128 #include <net/bpf.h>
129 #endif
130
131 #include <sys/bus.h>
132 #include <sys/intr.h>
133 #include <machine/endian.h>
134
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 #include <dev/mii/mii_bitbang.h>
138
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 #include <dev/pci/pcidevs.h>
142
143 #include <dev/pci/if_vrreg.h>
144
145 #define VR_USEIOSPACE
146
147 /*
148 * Various supported device vendors/types and their names.
149 */
150 static const struct vr_type {
151 pci_vendor_id_t vr_vid;
152 pci_product_id_t vr_did;
153 } vr_devs[] = {
154 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
155 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
156 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
157 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
158 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
159 };
160
161 /*
162 * Transmit descriptor list size.
163 */
164 #define VR_NTXDESC 64
165 #define VR_NTXDESC_MASK (VR_NTXDESC - 1)
166 #define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
167
168 /*
169 * Receive descriptor list size.
170 */
171 #define VR_NRXDESC 64
172 #define VR_NRXDESC_MASK (VR_NRXDESC - 1)
173 #define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
174
175 /*
176 * Control data structres that are DMA'd to the Rhine chip. We allocate
177 * them in a single clump that maps to a single DMA segment to make several
178 * things easier.
179 *
180 * Note that since we always copy outgoing packets to aligned transmit
181 * buffers, we can reduce the transmit descriptors to one per packet.
182 */
183 struct vr_control_data {
184 struct vr_desc vr_txdescs[VR_NTXDESC];
185 struct vr_desc vr_rxdescs[VR_NRXDESC];
186 };
187
188 #define VR_CDOFF(x) offsetof(struct vr_control_data, x)
189 #define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
190 #define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
191
192 /*
193 * Software state of transmit and receive descriptors.
194 */
195 struct vr_descsoft {
196 struct mbuf *ds_mbuf; /* head of mbuf chain */
197 bus_dmamap_t ds_dmamap; /* our DMA map */
198 };
199
200 struct vr_softc {
201 device_t vr_dev;
202 void *vr_ih; /* interrupt cookie */
203 bus_space_tag_t vr_bst; /* bus space tag */
204 bus_space_handle_t vr_bsh; /* bus space handle */
205 bus_dma_tag_t vr_dmat; /* bus DMA tag */
206 pci_chipset_tag_t vr_pc; /* PCI chipset info */
207 pcitag_t vr_tag; /* PCI tag */
208 struct ethercom vr_ec; /* Ethernet common info */
209 uint8_t vr_enaddr[ETHER_ADDR_LEN];
210 struct mii_data vr_mii; /* MII/media info */
211
212 pcireg_t vr_id; /* vendor/product ID */
213 uint8_t vr_revid; /* Rhine chip revision */
214
215 callout_t vr_tick_ch; /* tick callout */
216
217 bus_dmamap_t vr_cddmamap; /* control data DMA map */
218 #define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
219
220 /*
221 * Software state for transmit and receive descriptors.
222 */
223 struct vr_descsoft vr_txsoft[VR_NTXDESC];
224 struct vr_descsoft vr_rxsoft[VR_NRXDESC];
225
226 /*
227 * Control data structures.
228 */
229 struct vr_control_data *vr_control_data;
230
231 int vr_txpending; /* number of TX requests pending */
232 int vr_txdirty; /* first dirty TX descriptor */
233 int vr_txlast; /* last used TX descriptor */
234
235 int vr_rxptr; /* next ready RX descriptor */
236
237 uint32_t vr_save_iobase;
238 uint32_t vr_save_membase;
239 uint32_t vr_save_irq;
240
241 #if NRND > 0
242 rndsource_element_t rnd_source; /* random source */
243 #endif
244 };
245
246 #define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
247 #define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
248
249 #define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
250 #define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
251
252 #define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
253 #define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
254
255 #define VR_CDTXSYNC(sc, x, ops) \
256 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
257 VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
258
259 #define VR_CDRXSYNC(sc, x, ops) \
260 bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
261 VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
262
263 /*
264 * Note we rely on MCLBYTES being a power of two below.
265 */
266 #define VR_INIT_RXDESC(sc, i) \
267 do { \
268 struct vr_desc *__d = VR_CDRX((sc), (i)); \
269 struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
270 \
271 __d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
272 __d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
273 __d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
274 ((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
275 __d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
276 VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
277 VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
278 } while (/* CONSTCOND */ 0)
279
280 /*
281 * register space access macros
282 */
283 #define CSR_WRITE_4(sc, reg, val) \
284 bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
285 #define CSR_WRITE_2(sc, reg, val) \
286 bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
287 #define CSR_WRITE_1(sc, reg, val) \
288 bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
289
290 #define CSR_READ_4(sc, reg) \
291 bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
292 #define CSR_READ_2(sc, reg) \
293 bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
294 #define CSR_READ_1(sc, reg) \
295 bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
296
297 #define VR_TIMEOUT 1000
298
299 static int vr_add_rxbuf(struct vr_softc *, int);
300
301 static void vr_rxeof(struct vr_softc *);
302 static void vr_rxeoc(struct vr_softc *);
303 static void vr_txeof(struct vr_softc *);
304 static int vr_intr(void *);
305 static void vr_start(struct ifnet *);
306 static int vr_ioctl(struct ifnet *, u_long, void *);
307 static int vr_init(struct ifnet *);
308 static void vr_stop(struct ifnet *, int);
309 static void vr_rxdrain(struct vr_softc *);
310 static void vr_watchdog(struct ifnet *);
311 static void vr_tick(void *);
312
313 static int vr_mii_readreg(device_t, int, int);
314 static void vr_mii_writereg(device_t, int, int, int);
315 static void vr_mii_statchg(device_t);
316
317 static void vr_setmulti(struct vr_softc *);
318 static void vr_reset(struct vr_softc *);
319 static int vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
320 pcireg_t);
321 static bool vr_resume(device_t PMF_FN_PROTO);
322
323 int vr_copy_small = 0;
324
325 #define VR_SETBIT(sc, reg, x) \
326 CSR_WRITE_1(sc, reg, \
327 CSR_READ_1(sc, reg) | (x))
328
329 #define VR_CLRBIT(sc, reg, x) \
330 CSR_WRITE_1(sc, reg, \
331 CSR_READ_1(sc, reg) & ~(x))
332
333 #define VR_SETBIT16(sc, reg, x) \
334 CSR_WRITE_2(sc, reg, \
335 CSR_READ_2(sc, reg) | (x))
336
337 #define VR_CLRBIT16(sc, reg, x) \
338 CSR_WRITE_2(sc, reg, \
339 CSR_READ_2(sc, reg) & ~(x))
340
341 #define VR_SETBIT32(sc, reg, x) \
342 CSR_WRITE_4(sc, reg, \
343 CSR_READ_4(sc, reg) | (x))
344
345 #define VR_CLRBIT32(sc, reg, x) \
346 CSR_WRITE_4(sc, reg, \
347 CSR_READ_4(sc, reg) & ~(x))
348
349 /*
350 * MII bit-bang glue.
351 */
352 static uint32_t vr_mii_bitbang_read(device_t);
353 static void vr_mii_bitbang_write(device_t, uint32_t);
354
355 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
356 vr_mii_bitbang_read,
357 vr_mii_bitbang_write,
358 {
359 VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
360 VR_MIICMD_DATAIN, /* MII_BIT_MDI */
361 VR_MIICMD_CLK, /* MII_BIT_MDC */
362 VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
363 0, /* MII_BIT_DIR_PHY_HOST */
364 }
365 };
366
367 static uint32_t
368 vr_mii_bitbang_read(device_t self)
369 {
370 struct vr_softc *sc = device_private(self);
371
372 return (CSR_READ_1(sc, VR_MIICMD));
373 }
374
375 static void
376 vr_mii_bitbang_write(device_t self, uint32_t val)
377 {
378 struct vr_softc *sc = device_private(self);
379
380 CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
381 }
382
383 /*
384 * Read an PHY register through the MII.
385 */
386 static int
387 vr_mii_readreg(device_t self, int phy, int reg)
388 {
389 struct vr_softc *sc = device_private(self);
390
391 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
392 return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
393 }
394
395 /*
396 * Write to a PHY register through the MII.
397 */
398 static void
399 vr_mii_writereg(device_t self, int phy, int reg, int val)
400 {
401 struct vr_softc *sc = device_private(self);
402
403 CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
404 mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
405 }
406
407 static void
408 vr_mii_statchg(device_t self)
409 {
410 struct vr_softc *sc = device_private(self);
411
412 /*
413 * In order to fiddle with the 'full-duplex' bit in the netconfig
414 * register, we first have to put the transmit and/or receive logic
415 * in the idle state.
416 */
417 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
418
419 if (sc->vr_mii.mii_media_active & IFM_FDX)
420 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
421 else
422 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
423
424 if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
425 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
426 }
427
428 #define vr_calchash(addr) \
429 (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
430
431 /*
432 * Program the 64-bit multicast hash filter.
433 */
434 static void
435 vr_setmulti(struct vr_softc *sc)
436 {
437 struct ifnet *ifp;
438 int h = 0;
439 uint32_t hashes[2] = { 0, 0 };
440 struct ether_multistep step;
441 struct ether_multi *enm;
442 int mcnt = 0;
443 uint8_t rxfilt;
444
445 ifp = &sc->vr_ec.ec_if;
446
447 rxfilt = CSR_READ_1(sc, VR_RXCFG);
448
449 if (ifp->if_flags & IFF_PROMISC) {
450 allmulti:
451 ifp->if_flags |= IFF_ALLMULTI;
452 rxfilt |= VR_RXCFG_RX_MULTI;
453 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
454 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
455 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
456 return;
457 }
458
459 /* first, zot all the existing hash bits */
460 CSR_WRITE_4(sc, VR_MAR0, 0);
461 CSR_WRITE_4(sc, VR_MAR1, 0);
462
463 /* now program new ones */
464 ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
465 while (enm != NULL) {
466 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
467 ETHER_ADDR_LEN) != 0)
468 goto allmulti;
469
470 h = vr_calchash(enm->enm_addrlo);
471
472 if (h < 32)
473 hashes[0] |= (1 << h);
474 else
475 hashes[1] |= (1 << (h - 32));
476 ETHER_NEXT_MULTI(step, enm);
477 mcnt++;
478 }
479
480 ifp->if_flags &= ~IFF_ALLMULTI;
481
482 if (mcnt)
483 rxfilt |= VR_RXCFG_RX_MULTI;
484 else
485 rxfilt &= ~VR_RXCFG_RX_MULTI;
486
487 CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
488 CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
489 CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
490 }
491
492 static void
493 vr_reset(struct vr_softc *sc)
494 {
495 int i;
496
497 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
498
499 for (i = 0; i < VR_TIMEOUT; i++) {
500 DELAY(10);
501 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
502 break;
503 }
504 if (i == VR_TIMEOUT) {
505 if (sc->vr_revid < REV_ID_VT3065_A) {
506 printf("%s: reset never completed!\n",
507 device_xname(sc->vr_dev));
508 } else {
509 /* Use newer force reset command */
510 printf("%s: using force reset command.\n",
511 device_xname(sc->vr_dev));
512 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
513 }
514 }
515
516 /* Wait a little while for the chip to get its brains in order. */
517 DELAY(1000);
518 }
519
520 /*
521 * Initialize an RX descriptor and attach an MBUF cluster.
522 * Note: the length fields are only 11 bits wide, which means the
523 * largest size we can specify is 2047. This is important because
524 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
525 * overflow the field and make a mess.
526 */
527 static int
528 vr_add_rxbuf(struct vr_softc *sc, int i)
529 {
530 struct vr_descsoft *ds = VR_DSRX(sc, i);
531 struct mbuf *m_new;
532 int error;
533
534 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
535 if (m_new == NULL)
536 return (ENOBUFS);
537
538 MCLGET(m_new, M_DONTWAIT);
539 if ((m_new->m_flags & M_EXT) == 0) {
540 m_freem(m_new);
541 return (ENOBUFS);
542 }
543
544 if (ds->ds_mbuf != NULL)
545 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
546
547 ds->ds_mbuf = m_new;
548
549 error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
550 m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
551 BUS_DMA_READ|BUS_DMA_NOWAIT);
552 if (error) {
553 aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
554 i, error);
555 panic("vr_add_rxbuf"); /* XXX */
556 }
557
558 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
559 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
560
561 VR_INIT_RXDESC(sc, i);
562
563 return (0);
564 }
565
566 /*
567 * A frame has been uploaded: pass the resulting mbuf chain up to
568 * the higher level protocols.
569 */
570 static void
571 vr_rxeof(struct vr_softc *sc)
572 {
573 struct mbuf *m;
574 struct ifnet *ifp;
575 struct vr_desc *d;
576 struct vr_descsoft *ds;
577 int i, total_len;
578 uint32_t rxstat;
579
580 ifp = &sc->vr_ec.ec_if;
581
582 for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
583 d = VR_CDRX(sc, i);
584 ds = VR_DSRX(sc, i);
585
586 VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
587
588 rxstat = le32toh(d->vr_status);
589
590 if (rxstat & VR_RXSTAT_OWN) {
591 /*
592 * We have processed all of the receive buffers.
593 */
594 break;
595 }
596
597 /*
598 * If an error occurs, update stats, clear the
599 * status word and leave the mbuf cluster in place:
600 * it should simply get re-used next time this descriptor
601 * comes up in the ring.
602 */
603 if (rxstat & VR_RXSTAT_RXERR) {
604 const char *errstr;
605
606 ifp->if_ierrors++;
607 switch (rxstat & 0x000000FF) {
608 case VR_RXSTAT_CRCERR:
609 errstr = "crc error";
610 break;
611 case VR_RXSTAT_FRAMEALIGNERR:
612 errstr = "frame alignment error";
613 break;
614 case VR_RXSTAT_FIFOOFLOW:
615 errstr = "FIFO overflow";
616 break;
617 case VR_RXSTAT_GIANT:
618 errstr = "received giant packet";
619 break;
620 case VR_RXSTAT_RUNT:
621 errstr = "received runt packet";
622 break;
623 case VR_RXSTAT_BUSERR:
624 errstr = "system bus error";
625 break;
626 case VR_RXSTAT_BUFFERR:
627 errstr = "rx buffer error";
628 break;
629 default:
630 errstr = "unknown rx error";
631 break;
632 }
633 printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
634 errstr);
635
636 VR_INIT_RXDESC(sc, i);
637
638 continue;
639 } else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
640 !(rxstat & VR_RXSTAT_LASTFRAG)) {
641 /*
642 * This driver expects to receive whole packets every
643 * time. In case we receive a fragment that is not
644 * a complete packet, we discard it.
645 */
646 ifp->if_ierrors++;
647
648 printf("%s: receive error: incomplete frame; "
649 "size = %d, status = 0x%x\n",
650 device_xname(sc->vr_dev),
651 VR_RXBYTES(le32toh(d->vr_status)), rxstat);
652
653 VR_INIT_RXDESC(sc, i);
654
655 continue;
656 }
657
658 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
659 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
660
661 /* No errors; receive the packet. */
662 total_len = VR_RXBYTES(le32toh(d->vr_status));
663 #ifdef DIAGNOSTIC
664 if (total_len == 0) {
665 /*
666 * If we receive a zero-length packet, we probably
667 * missed to handle an error condition above.
668 * Discard it to avoid a later crash.
669 */
670 ifp->if_ierrors++;
671
672 printf("%s: receive error: zero-length packet; "
673 "status = 0x%x\n",
674 device_xname(sc->vr_dev), rxstat);
675
676 VR_INIT_RXDESC(sc, i);
677
678 continue;
679 }
680 #endif
681
682 /*
683 * The Rhine chip includes the CRC with every packet.
684 * Trim it off here.
685 */
686 total_len -= ETHER_CRC_LEN;
687
688 #ifdef __NO_STRICT_ALIGNMENT
689 /*
690 * If the packet is small enough to fit in a
691 * single header mbuf, allocate one and copy
692 * the data into it. This greatly reduces
693 * memory consumption when we receive lots
694 * of small packets.
695 *
696 * Otherwise, we add a new buffer to the receive
697 * chain. If this fails, we drop the packet and
698 * recycle the old buffer.
699 */
700 if (vr_copy_small != 0 && total_len <= MHLEN) {
701 MGETHDR(m, M_DONTWAIT, MT_DATA);
702 if (m == NULL)
703 goto dropit;
704 memcpy(mtod(m, void *),
705 mtod(ds->ds_mbuf, void *), total_len);
706 VR_INIT_RXDESC(sc, i);
707 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
708 ds->ds_dmamap->dm_mapsize,
709 BUS_DMASYNC_PREREAD);
710 } else {
711 m = ds->ds_mbuf;
712 if (vr_add_rxbuf(sc, i) == ENOBUFS) {
713 dropit:
714 ifp->if_ierrors++;
715 VR_INIT_RXDESC(sc, i);
716 bus_dmamap_sync(sc->vr_dmat,
717 ds->ds_dmamap, 0,
718 ds->ds_dmamap->dm_mapsize,
719 BUS_DMASYNC_PREREAD);
720 continue;
721 }
722 }
723 #else
724 /*
725 * The Rhine's packet buffers must be 4-byte aligned.
726 * But this means that the data after the Ethernet header
727 * is misaligned. We must allocate a new buffer and
728 * copy the data, shifted forward 2 bytes.
729 */
730 MGETHDR(m, M_DONTWAIT, MT_DATA);
731 if (m == NULL) {
732 dropit:
733 ifp->if_ierrors++;
734 VR_INIT_RXDESC(sc, i);
735 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
736 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
737 continue;
738 }
739 if (total_len > (MHLEN - 2)) {
740 MCLGET(m, M_DONTWAIT);
741 if ((m->m_flags & M_EXT) == 0) {
742 m_freem(m);
743 goto dropit;
744 }
745 }
746 m->m_data += 2;
747
748 /*
749 * Note that we use clusters for incoming frames, so the
750 * buffer is virtually contiguous.
751 */
752 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
753 total_len);
754
755 /* Allow the receive descriptor to continue using its mbuf. */
756 VR_INIT_RXDESC(sc, i);
757 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
758 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
759 #endif /* __NO_STRICT_ALIGNMENT */
760
761 ifp->if_ipackets++;
762 m->m_pkthdr.rcvif = ifp;
763 m->m_pkthdr.len = m->m_len = total_len;
764 #if NBPFILTER > 0
765 /*
766 * Handle BPF listeners. Let the BPF user see the packet, but
767 * don't pass it up to the ether_input() layer unless it's
768 * a broadcast packet, multicast packet, matches our ethernet
769 * address or the interface is in promiscuous mode.
770 */
771 if (ifp->if_bpf)
772 bpf_mtap(ifp->if_bpf, m);
773 #endif
774 /* Pass it on. */
775 (*ifp->if_input)(ifp, m);
776 }
777
778 /* Update the receive pointer. */
779 sc->vr_rxptr = i;
780 }
781
782 void
783 vr_rxeoc(struct vr_softc *sc)
784 {
785 struct ifnet *ifp;
786 int i;
787
788 ifp = &sc->vr_ec.ec_if;
789
790 ifp->if_ierrors++;
791
792 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
793 for (i = 0; i < VR_TIMEOUT; i++) {
794 DELAY(10);
795 if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
796 break;
797 }
798 if (i == VR_TIMEOUT) {
799 /* XXX need reset? */
800 printf("%s: RX shutdown never complete\n",
801 device_xname(sc->vr_dev));
802 }
803
804 vr_rxeof(sc);
805
806 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
807 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
808 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
809 }
810
811 /*
812 * A frame was downloaded to the chip. It's safe for us to clean up
813 * the list buffers.
814 */
815 static void
816 vr_txeof(struct vr_softc *sc)
817 {
818 struct ifnet *ifp = &sc->vr_ec.ec_if;
819 struct vr_desc *d;
820 struct vr_descsoft *ds;
821 uint32_t txstat;
822 int i, j;
823
824 ifp->if_flags &= ~IFF_OACTIVE;
825
826 /*
827 * Go through our tx list and free mbufs for those
828 * frames that have been transmitted.
829 */
830 for (i = sc->vr_txdirty; sc->vr_txpending != 0;
831 i = VR_NEXTTX(i), sc->vr_txpending--) {
832 d = VR_CDTX(sc, i);
833 ds = VR_DSTX(sc, i);
834
835 VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
836
837 txstat = le32toh(d->vr_status);
838
839 if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
840 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
841 for (j = 0; j < VR_TIMEOUT; j++) {
842 DELAY(10);
843 if ((CSR_READ_2(sc, VR_COMMAND) &
844 VR_CMD_TX_ON) == 0)
845 break;
846 }
847 if (j == VR_TIMEOUT) {
848 /* XXX need reset? */
849 printf("%s: TX shutdown never complete\n",
850 device_xname(sc->vr_dev));
851 }
852 d->vr_status = htole32(VR_TXSTAT_OWN);
853 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
854 break;
855 }
856
857 if (txstat & VR_TXSTAT_OWN)
858 break;
859
860 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
861 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
862 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
863 m_freem(ds->ds_mbuf);
864 ds->ds_mbuf = NULL;
865
866 if (txstat & VR_TXSTAT_ERRSUM) {
867 ifp->if_oerrors++;
868 if (txstat & VR_TXSTAT_DEFER)
869 ifp->if_collisions++;
870 if (txstat & VR_TXSTAT_LATECOLL)
871 ifp->if_collisions++;
872 }
873
874 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
875 ifp->if_opackets++;
876 }
877
878 /* Update the dirty transmit buffer pointer. */
879 sc->vr_txdirty = i;
880
881 /*
882 * Cancel the watchdog timer if there are no pending
883 * transmissions.
884 */
885 if (sc->vr_txpending == 0)
886 ifp->if_timer = 0;
887 }
888
889 static int
890 vr_intr(void *arg)
891 {
892 struct vr_softc *sc;
893 struct ifnet *ifp;
894 uint16_t status;
895 int handled = 0, dotx = 0;
896
897 sc = arg;
898 ifp = &sc->vr_ec.ec_if;
899
900 /* Suppress unwanted interrupts. */
901 if ((ifp->if_flags & IFF_UP) == 0) {
902 vr_stop(ifp, 1);
903 return (0);
904 }
905
906 /* Disable interrupts. */
907 CSR_WRITE_2(sc, VR_IMR, 0x0000);
908
909 for (;;) {
910 status = CSR_READ_2(sc, VR_ISR);
911 if (status)
912 CSR_WRITE_2(sc, VR_ISR, status);
913
914 if ((status & VR_INTRS) == 0)
915 break;
916
917 handled = 1;
918
919 #if NRND > 0
920 if (RND_ENABLED(&sc->rnd_source))
921 rnd_add_uint32(&sc->rnd_source, status);
922 #endif
923
924 if (status & VR_ISR_RX_OK)
925 vr_rxeof(sc);
926
927 if (status & VR_ISR_RX_DROPPED) {
928 printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
929 ifp->if_ierrors++;
930 }
931
932 if (status &
933 (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
934 vr_rxeoc(sc);
935
936
937 if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
938 if (status & VR_ISR_BUSERR)
939 printf("%s: PCI bus error\n",
940 device_xname(sc->vr_dev));
941 if (status & VR_ISR_TX_UNDERRUN)
942 printf("%s: transmit underrun\n",
943 device_xname(sc->vr_dev));
944 /* vr_init() calls vr_start() */
945 dotx = 0;
946 (void)vr_init(ifp);
947
948 }
949
950 if (status & VR_ISR_TX_OK) {
951 dotx = 1;
952 vr_txeof(sc);
953 }
954
955 if (status &
956 (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
957 if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
958 printf("%s: transmit aborted\n",
959 device_xname(sc->vr_dev));
960 if (status & VR_ISR_TX_UDFI)
961 printf("%s: transmit underflow\n",
962 device_xname(sc->vr_dev));
963 ifp->if_oerrors++;
964 dotx = 1;
965 vr_txeof(sc);
966 if (sc->vr_txpending) {
967 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
968 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
969 }
970 }
971 }
972
973 /* Re-enable interrupts. */
974 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
975
976 if (dotx)
977 vr_start(ifp);
978
979 return (handled);
980 }
981
982 /*
983 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
984 * to the mbuf data regions directly in the transmit lists. We also save a
985 * copy of the pointers since the transmit list fragment pointers are
986 * physical addresses.
987 */
988 static void
989 vr_start(struct ifnet *ifp)
990 {
991 struct vr_softc *sc = ifp->if_softc;
992 struct mbuf *m0, *m;
993 struct vr_desc *d;
994 struct vr_descsoft *ds;
995 int error, firsttx, nexttx, opending;
996
997 /*
998 * Remember the previous txpending and the first transmit
999 * descriptor we use.
1000 */
1001 opending = sc->vr_txpending;
1002 firsttx = VR_NEXTTX(sc->vr_txlast);
1003
1004 /*
1005 * Loop through the send queue, setting up transmit descriptors
1006 * until we drain the queue, or use up all available transmit
1007 * descriptors.
1008 */
1009 while (sc->vr_txpending < VR_NTXDESC) {
1010 /*
1011 * Grab a packet off the queue.
1012 */
1013 IFQ_POLL(&ifp->if_snd, m0);
1014 if (m0 == NULL)
1015 break;
1016 m = NULL;
1017
1018 /*
1019 * Get the next available transmit descriptor.
1020 */
1021 nexttx = VR_NEXTTX(sc->vr_txlast);
1022 d = VR_CDTX(sc, nexttx);
1023 ds = VR_DSTX(sc, nexttx);
1024
1025 /*
1026 * Load the DMA map. If this fails, the packet didn't
1027 * fit in one DMA segment, and we need to copy. Note,
1028 * the packet must also be aligned.
1029 * if the packet is too small, copy it too, so we're sure
1030 * we have enough room for the pad buffer.
1031 */
1032 if ((mtod(m0, uintptr_t) & 3) != 0 ||
1033 m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
1034 bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
1035 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1036 MGETHDR(m, M_DONTWAIT, MT_DATA);
1037 if (m == NULL) {
1038 printf("%s: unable to allocate Tx mbuf\n",
1039 device_xname(sc->vr_dev));
1040 break;
1041 }
1042 if (m0->m_pkthdr.len > MHLEN) {
1043 MCLGET(m, M_DONTWAIT);
1044 if ((m->m_flags & M_EXT) == 0) {
1045 printf("%s: unable to allocate Tx "
1046 "cluster\n", device_xname(sc->vr_dev));
1047 m_freem(m);
1048 break;
1049 }
1050 }
1051 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1052 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1053 /*
1054 * The Rhine doesn't auto-pad, so we have to do this
1055 * ourselves.
1056 */
1057 if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
1058 memset(mtod(m, char *) + m0->m_pkthdr.len,
1059 0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
1060 m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
1061 }
1062 error = bus_dmamap_load_mbuf(sc->vr_dmat,
1063 ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1064 if (error) {
1065 m_freem(m);
1066 printf("%s: unable to load Tx buffer, "
1067 "error = %d\n", device_xname(sc->vr_dev), error);
1068 break;
1069 }
1070 }
1071
1072 IFQ_DEQUEUE(&ifp->if_snd, m0);
1073 if (m != NULL) {
1074 m_freem(m0);
1075 m0 = m;
1076 }
1077
1078 /* Sync the DMA map. */
1079 bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
1080 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1081
1082 /*
1083 * Store a pointer to the packet so we can free it later.
1084 */
1085 ds->ds_mbuf = m0;
1086
1087 #if NBPFILTER > 0
1088 /*
1089 * If there's a BPF listener, bounce a copy of this frame
1090 * to him.
1091 */
1092 if (ifp->if_bpf)
1093 bpf_mtap(ifp->if_bpf, m0);
1094 #endif
1095
1096 /*
1097 * Fill in the transmit descriptor.
1098 */
1099 d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
1100 d->vr_ctl = htole32(m0->m_pkthdr.len);
1101 d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
1102
1103 /*
1104 * If this is the first descriptor we're enqueuing,
1105 * don't give it to the Rhine yet. That could cause
1106 * a race condition. We'll do it below.
1107 */
1108 if (nexttx == firsttx)
1109 d->vr_status = 0;
1110 else
1111 d->vr_status = htole32(VR_TXSTAT_OWN);
1112
1113 VR_CDTXSYNC(sc, nexttx,
1114 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1115
1116 /* Advance the tx pointer. */
1117 sc->vr_txpending++;
1118 sc->vr_txlast = nexttx;
1119 }
1120
1121 if (sc->vr_txpending == VR_NTXDESC) {
1122 /* No more slots left; notify upper layer. */
1123 ifp->if_flags |= IFF_OACTIVE;
1124 }
1125
1126 if (sc->vr_txpending != opending) {
1127 /*
1128 * We enqueued packets. If the transmitter was idle,
1129 * reset the txdirty pointer.
1130 */
1131 if (opending == 0)
1132 sc->vr_txdirty = firsttx;
1133
1134 /*
1135 * Cause a transmit interrupt to happen on the
1136 * last packet we enqueued.
1137 */
1138 VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
1139 VR_CDTXSYNC(sc, sc->vr_txlast,
1140 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1141
1142 /*
1143 * The entire packet chain is set up. Give the
1144 * first descriptor to the Rhine now.
1145 */
1146 VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
1147 VR_CDTXSYNC(sc, firsttx,
1148 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1149
1150 /* Start the transmitter. */
1151 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
1152
1153 /* Set the watchdog timer in case the chip flakes out. */
1154 ifp->if_timer = 5;
1155 }
1156 }
1157
1158 /*
1159 * Initialize the interface. Must be called at splnet.
1160 */
1161 static int
1162 vr_init(struct ifnet *ifp)
1163 {
1164 struct vr_softc *sc = ifp->if_softc;
1165 struct vr_desc *d;
1166 struct vr_descsoft *ds;
1167 int i, error = 0;
1168
1169 /* Cancel pending I/O. */
1170 vr_stop(ifp, 0);
1171
1172 /* Reset the Rhine to a known state. */
1173 vr_reset(sc);
1174
1175 /* set DMA length in BCR0 and BCR1 */
1176 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1177 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1178
1179 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1180 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
1181
1182 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1183 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
1184
1185 /* set DMA threshold length in RXCFG and TXCFG */
1186 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1187 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1188
1189 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1190 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1191
1192 /*
1193 * Initialize the transmit descriptor ring. txlast is initialized
1194 * to the end of the list so that it will wrap around to the first
1195 * descriptor when the first packet is transmitted.
1196 */
1197 for (i = 0; i < VR_NTXDESC; i++) {
1198 d = VR_CDTX(sc, i);
1199 memset(d, 0, sizeof(struct vr_desc));
1200 d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
1201 VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1202 }
1203 sc->vr_txpending = 0;
1204 sc->vr_txdirty = 0;
1205 sc->vr_txlast = VR_NTXDESC - 1;
1206
1207 /*
1208 * Initialize the receive descriptor ring.
1209 */
1210 for (i = 0; i < VR_NRXDESC; i++) {
1211 ds = VR_DSRX(sc, i);
1212 if (ds->ds_mbuf == NULL) {
1213 if ((error = vr_add_rxbuf(sc, i)) != 0) {
1214 printf("%s: unable to allocate or map rx "
1215 "buffer %d, error = %d\n",
1216 device_xname(sc->vr_dev), i, error);
1217 /*
1218 * XXX Should attempt to run with fewer receive
1219 * XXX buffers instead of just failing.
1220 */
1221 vr_rxdrain(sc);
1222 goto out;
1223 }
1224 } else
1225 VR_INIT_RXDESC(sc, i);
1226 }
1227 sc->vr_rxptr = 0;
1228
1229 /* If we want promiscuous mode, set the allframes bit. */
1230 if (ifp->if_flags & IFF_PROMISC)
1231 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1232 else
1233 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
1234
1235 /* Set capture broadcast bit to capture broadcast frames. */
1236 if (ifp->if_flags & IFF_BROADCAST)
1237 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1238 else
1239 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
1240
1241 /* Program the multicast filter, if necessary. */
1242 vr_setmulti(sc);
1243
1244 /* Give the transmit and receive rings to the Rhine. */
1245 CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
1246 CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
1247
1248 /* Set current media. */
1249 if ((error = ether_mediachange(ifp)) != 0)
1250 goto out;
1251
1252 /* Enable receiver and transmitter. */
1253 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1254 VR_CMD_TX_ON|VR_CMD_RX_ON|
1255 VR_CMD_RX_GO);
1256
1257 /* Enable interrupts. */
1258 CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1259 CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1260
1261 ifp->if_flags |= IFF_RUNNING;
1262 ifp->if_flags &= ~IFF_OACTIVE;
1263
1264 /* Start one second timer. */
1265 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1266
1267 /* Attempt to start output on the interface. */
1268 vr_start(ifp);
1269
1270 out:
1271 if (error)
1272 printf("%s: interface not running\n", device_xname(sc->vr_dev));
1273 return (error);
1274 }
1275
1276 static int
1277 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
1278 {
1279 struct vr_softc *sc = ifp->if_softc;
1280 int s, error = 0;
1281
1282 s = splnet();
1283
1284 error = ether_ioctl(ifp, command, data);
1285 if (error == ENETRESET) {
1286 /*
1287 * Multicast list has changed; set the hardware filter
1288 * accordingly.
1289 */
1290 if (ifp->if_flags & IFF_RUNNING)
1291 vr_setmulti(sc);
1292 error = 0;
1293 }
1294
1295 splx(s);
1296 return (error);
1297 }
1298
1299 static void
1300 vr_watchdog(struct ifnet *ifp)
1301 {
1302 struct vr_softc *sc = ifp->if_softc;
1303
1304 printf("%s: device timeout\n", device_xname(sc->vr_dev));
1305 ifp->if_oerrors++;
1306
1307 (void) vr_init(ifp);
1308 }
1309
1310 /*
1311 * One second timer, used to tick MII.
1312 */
1313 static void
1314 vr_tick(void *arg)
1315 {
1316 struct vr_softc *sc = arg;
1317 int s;
1318
1319 s = splnet();
1320 mii_tick(&sc->vr_mii);
1321 splx(s);
1322
1323 callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
1324 }
1325
1326 /*
1327 * Drain the receive queue.
1328 */
1329 static void
1330 vr_rxdrain(struct vr_softc *sc)
1331 {
1332 struct vr_descsoft *ds;
1333 int i;
1334
1335 for (i = 0; i < VR_NRXDESC; i++) {
1336 ds = VR_DSRX(sc, i);
1337 if (ds->ds_mbuf != NULL) {
1338 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1339 m_freem(ds->ds_mbuf);
1340 ds->ds_mbuf = NULL;
1341 }
1342 }
1343 }
1344
1345 /*
1346 * Stop the adapter and free any mbufs allocated to the
1347 * transmit lists.
1348 */
1349 static void
1350 vr_stop(struct ifnet *ifp, int disable)
1351 {
1352 struct vr_softc *sc = ifp->if_softc;
1353 struct vr_descsoft *ds;
1354 int i;
1355
1356 /* Cancel one second timer. */
1357 callout_stop(&sc->vr_tick_ch);
1358
1359 /* Down the MII. */
1360 mii_down(&sc->vr_mii);
1361
1362 ifp = &sc->vr_ec.ec_if;
1363 ifp->if_timer = 0;
1364
1365 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1366 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1367 CSR_WRITE_2(sc, VR_IMR, 0x0000);
1368 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1369 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1370
1371 /*
1372 * Release any queued transmit buffers.
1373 */
1374 for (i = 0; i < VR_NTXDESC; i++) {
1375 ds = VR_DSTX(sc, i);
1376 if (ds->ds_mbuf != NULL) {
1377 bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
1378 m_freem(ds->ds_mbuf);
1379 ds->ds_mbuf = NULL;
1380 }
1381 }
1382
1383 /*
1384 * Mark the interface down and cancel the watchdog timer.
1385 */
1386 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1387 ifp->if_timer = 0;
1388
1389 if (disable)
1390 vr_rxdrain(sc);
1391 }
1392
1393 static int vr_probe(device_t, cfdata_t, void *);
1394 static void vr_attach(device_t, device_t, void *);
1395 static bool vr_shutdown(device_t, int);
1396
1397 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
1398 vr_probe, vr_attach, NULL, NULL);
1399
1400 static const struct vr_type *
1401 vr_lookup(struct pci_attach_args *pa)
1402 {
1403 const struct vr_type *vrt;
1404 int i;
1405
1406 for (i = 0; i < __arraycount(vr_devs); i++) {
1407 vrt = &vr_devs[i];
1408 if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
1409 PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
1410 return (vrt);
1411 }
1412 return (NULL);
1413 }
1414
1415 static int
1416 vr_probe(device_t parent, cfdata_t match, void *aux)
1417 {
1418 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1419
1420 if (vr_lookup(pa) != NULL)
1421 return (1);
1422
1423 return (0);
1424 }
1425
1426 /*
1427 * Stop all chip I/O so that the kernel's probe routines don't
1428 * get confused by errant DMAs when rebooting.
1429 */
1430 static bool
1431 vr_shutdown(device_t self, int howto)
1432 {
1433 struct vr_softc *sc = device_private(self);
1434
1435 vr_stop(&sc->vr_ec.ec_if, 1);
1436
1437 return true;
1438 }
1439
1440 /*
1441 * Attach the interface. Allocate softc structures, do ifmedia
1442 * setup and ethernet/BPF attach.
1443 */
1444 static void
1445 vr_attach(device_t parent, device_t self, void *aux)
1446 {
1447 struct vr_softc *sc = device_private(self);
1448 struct pci_attach_args *pa = (struct pci_attach_args *) aux;
1449 bus_dma_segment_t seg;
1450 uint32_t reg;
1451 struct ifnet *ifp;
1452 uint8_t eaddr[ETHER_ADDR_LEN], mac;
1453 int i, rseg, error;
1454 char devinfo[256];
1455
1456 #define PCI_CONF_WRITE(r, v) pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
1457 #define PCI_CONF_READ(r) pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
1458
1459 sc->vr_dev = self;
1460 sc->vr_pc = pa->pa_pc;
1461 sc->vr_tag = pa->pa_tag;
1462 sc->vr_id = pa->pa_id;
1463 callout_init(&sc->vr_tick_ch, 0);
1464
1465 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
1466 aprint_naive("\n");
1467 aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
1468 PCI_REVISION(pa->pa_class));
1469
1470 /*
1471 * Handle power management nonsense.
1472 */
1473
1474 sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
1475 sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
1476 sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
1477
1478 /* power up chip */
1479 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
1480 vr_restore_state)) && error != EOPNOTSUPP) {
1481 aprint_error_dev(self, "cannot activate %d\n",
1482 error);
1483 return;
1484 }
1485
1486 /* Make sure bus mastering is enabled. */
1487 reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
1488 reg |= PCI_COMMAND_MASTER_ENABLE;
1489 PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
1490
1491 /* Get revision */
1492 sc->vr_revid = PCI_REVISION(pa->pa_class);
1493
1494 /*
1495 * Map control/status registers.
1496 */
1497 {
1498 bus_space_tag_t iot, memt;
1499 bus_space_handle_t ioh, memh;
1500 int ioh_valid, memh_valid;
1501 pci_intr_handle_t intrhandle;
1502 const char *intrstr;
1503
1504 ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
1505 PCI_MAPREG_TYPE_IO, 0,
1506 &iot, &ioh, NULL, NULL) == 0);
1507 memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
1508 PCI_MAPREG_TYPE_MEM |
1509 PCI_MAPREG_MEM_TYPE_32BIT,
1510 0, &memt, &memh, NULL, NULL) == 0);
1511 #if defined(VR_USEIOSPACE)
1512 if (ioh_valid) {
1513 sc->vr_bst = iot;
1514 sc->vr_bsh = ioh;
1515 } else if (memh_valid) {
1516 sc->vr_bst = memt;
1517 sc->vr_bsh = memh;
1518 }
1519 #else
1520 if (memh_valid) {
1521 sc->vr_bst = memt;
1522 sc->vr_bsh = memh;
1523 } else if (ioh_valid) {
1524 sc->vr_bst = iot;
1525 sc->vr_bsh = ioh;
1526 }
1527 #endif
1528 else {
1529 printf(": unable to map device registers\n");
1530 return;
1531 }
1532
1533 /* Allocate interrupt */
1534 if (pci_intr_map(pa, &intrhandle)) {
1535 aprint_error_dev(self, "couldn't map interrupt\n");
1536 return;
1537 }
1538 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
1539 sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
1540 vr_intr, sc);
1541 if (sc->vr_ih == NULL) {
1542 aprint_error_dev(self, "couldn't establish interrupt");
1543 if (intrstr != NULL)
1544 printf(" at %s", intrstr);
1545 printf("\n");
1546 }
1547 printf("%s: interrupting at %s\n",
1548 device_xname(self), intrstr);
1549 }
1550
1551 /*
1552 * Windows may put the chip in suspend mode when it
1553 * shuts down. Be sure to kick it in the head to wake it
1554 * up again.
1555 *
1556 * Don't touch this register on VT3043 since it causes
1557 * kernel MCHK trap on macppc.
1558 * (Note some VT86C100A chip returns a product ID of VT3043)
1559 */
1560 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
1561 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1562
1563 /* Reset the adapter. */
1564 vr_reset(sc);
1565
1566 /*
1567 * Get station address. The way the Rhine chips work,
1568 * you're not allowed to directly access the EEPROM once
1569 * they've been programmed a special way. Consequently,
1570 * we need to read the node address from the PAR0 and PAR1
1571 * registers.
1572 *
1573 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
1574 * of the *whole* EEPROM, not just the MAC address. This is
1575 * pretty pointless since the chip does this automatically
1576 * at powerup/reset.
1577 * I suspect the same thing applies to the other Rhine
1578 * variants, but in the absence of a data sheet for those
1579 * (and the lack of anyone else noticing the problems this
1580 * causes) I'm going to retain the old behaviour for the
1581 * other parts.
1582 * In some cases, the chip really does startup without having
1583 * read the EEPROM (kern/34812). To handle this case, we force
1584 * a reload if we see an all-zeroes MAC address.
1585 */
1586 for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
1587 mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
1588
1589 if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
1590 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
1591 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
1592 DELAY(200);
1593 for (i = 0; i < ETHER_ADDR_LEN; i++)
1594 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
1595 }
1596
1597 /*
1598 * A Rhine chip was detected. Inform the world.
1599 */
1600 printf("%s: Ethernet address: %s\n",
1601 device_xname(self), ether_sprintf(eaddr));
1602
1603 memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
1604
1605 sc->vr_dmat = pa->pa_dmat;
1606
1607 /*
1608 * Allocate the control data structures, and create and load
1609 * the DMA map for it.
1610 */
1611 if ((error = bus_dmamem_alloc(sc->vr_dmat,
1612 sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
1613 0)) != 0) {
1614 aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
1615 goto fail_0;
1616 }
1617
1618 if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
1619 sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
1620 BUS_DMA_COHERENT)) != 0) {
1621 aprint_error_dev(self, "unable to map control data, error = %d\n", error);
1622 goto fail_1;
1623 }
1624
1625 if ((error = bus_dmamap_create(sc->vr_dmat,
1626 sizeof(struct vr_control_data), 1,
1627 sizeof(struct vr_control_data), 0, 0,
1628 &sc->vr_cddmamap)) != 0) {
1629 aprint_error_dev(self, "unable to create control data DMA map, "
1630 "error = %d\n", error);
1631 goto fail_2;
1632 }
1633
1634 if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
1635 sc->vr_control_data, sizeof(struct vr_control_data), NULL,
1636 0)) != 0) {
1637 aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
1638 error);
1639 goto fail_3;
1640 }
1641
1642 /*
1643 * Create the transmit buffer DMA maps.
1644 */
1645 for (i = 0; i < VR_NTXDESC; i++) {
1646 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1647 1, MCLBYTES, 0, 0,
1648 &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
1649 aprint_error_dev(self, "unable to create tx DMA map %d, "
1650 "error = %d\n", i, error);
1651 goto fail_4;
1652 }
1653 }
1654
1655 /*
1656 * Create the receive buffer DMA maps.
1657 */
1658 for (i = 0; i < VR_NRXDESC; i++) {
1659 if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
1660 MCLBYTES, 0, 0,
1661 &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
1662 aprint_error_dev(self, "unable to create rx DMA map %d, "
1663 "error = %d\n", i, error);
1664 goto fail_5;
1665 }
1666 VR_DSRX(sc, i)->ds_mbuf = NULL;
1667 }
1668
1669 ifp = &sc->vr_ec.ec_if;
1670 ifp->if_softc = sc;
1671 ifp->if_mtu = ETHERMTU;
1672 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1673 ifp->if_ioctl = vr_ioctl;
1674 ifp->if_start = vr_start;
1675 ifp->if_watchdog = vr_watchdog;
1676 ifp->if_init = vr_init;
1677 ifp->if_stop = vr_stop;
1678 IFQ_SET_READY(&ifp->if_snd);
1679
1680 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1681
1682 /*
1683 * Initialize MII/media info.
1684 */
1685 sc->vr_mii.mii_ifp = ifp;
1686 sc->vr_mii.mii_readreg = vr_mii_readreg;
1687 sc->vr_mii.mii_writereg = vr_mii_writereg;
1688 sc->vr_mii.mii_statchg = vr_mii_statchg;
1689
1690 sc->vr_ec.ec_mii = &sc->vr_mii;
1691 ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
1692 ether_mediastatus);
1693 mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
1694 MII_OFFSET_ANY, MIIF_FORCEANEG);
1695 if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
1696 ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1697 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
1698 } else
1699 ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
1700
1701 /*
1702 * Call MI attach routines.
1703 */
1704 if_attach(ifp);
1705 ether_ifattach(ifp, sc->vr_enaddr);
1706 #if NRND > 0
1707 rnd_attach_source(&sc->rnd_source, device_xname(self),
1708 RND_TYPE_NET, 0);
1709 #endif
1710
1711 if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
1712 pmf_class_network_register(self, ifp);
1713 else
1714 aprint_error_dev(self, "couldn't establish power handler\n");
1715
1716 return;
1717
1718 fail_5:
1719 for (i = 0; i < VR_NRXDESC; i++) {
1720 if (sc->vr_rxsoft[i].ds_dmamap != NULL)
1721 bus_dmamap_destroy(sc->vr_dmat,
1722 sc->vr_rxsoft[i].ds_dmamap);
1723 }
1724 fail_4:
1725 for (i = 0; i < VR_NTXDESC; i++) {
1726 if (sc->vr_txsoft[i].ds_dmamap != NULL)
1727 bus_dmamap_destroy(sc->vr_dmat,
1728 sc->vr_txsoft[i].ds_dmamap);
1729 }
1730 bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
1731 fail_3:
1732 bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
1733 fail_2:
1734 bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
1735 sizeof(struct vr_control_data));
1736 fail_1:
1737 bus_dmamem_free(sc->vr_dmat, &seg, rseg);
1738 fail_0:
1739 return;
1740 }
1741
1742 static int
1743 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
1744 pcireg_t state)
1745 {
1746 struct vr_softc *sc = device_private(self);
1747 int error;
1748
1749 if (state == PCI_PMCSR_STATE_D0)
1750 return 0;
1751 if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
1752 return error;
1753
1754 /* Restore PCI config data. */
1755 PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
1756 PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
1757 PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
1758 return 0;
1759 }
1760
1761 static bool
1762 vr_resume(device_t self PMF_FN_ARGS)
1763 {
1764 struct vr_softc *sc = device_private(self);
1765
1766 if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
1767 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1768
1769 return true;
1770 }
1771