Home | History | Annotate | Line # | Download | only in pci
if_vr.c revision 1.99
      1 /*	$NetBSD: if_vr.c,v 1.99 2009/09/26 19:58:53 jmcneill Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1997, 1998
     35  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by Bill Paul.
     48  * 4. Neither the name of the author nor the names of any co-contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     62  * THE POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  *	$FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
     65  */
     66 
     67 /*
     68  * VIA Rhine fast ethernet PCI NIC driver
     69  *
     70  * Supports various network adapters based on the VIA Rhine
     71  * and Rhine II PCI controllers, including the D-Link DFE530TX.
     72  * Datasheets are available at http://www.via.com.tw.
     73  *
     74  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     75  * Electrical Engineering Department
     76  * Columbia University, New York City
     77  */
     78 
     79 /*
     80  * The VIA Rhine controllers are similar in some respects to the
     81  * the DEC tulip chips, except less complicated. The controller
     82  * uses an MII bus and an external physical layer interface. The
     83  * receiver has a one entry perfect filter and a 64-bit hash table
     84  * multicast filter. Transmit and receive descriptors are similar
     85  * to the tulip.
     86  *
     87  * The Rhine has a serious flaw in its transmit DMA mechanism:
     88  * transmit buffers must be longword aligned. Unfortunately,
     89  * the kernel doesn't guarantee that mbufs will be filled in starting
     90  * at longword boundaries, so we have to do a buffer copy before
     91  * transmission.
     92  *
     93  * Apparently, the receive DMA mechanism also has the same flaw.  This
     94  * means that on systems with struct alignment requirements, incoming
     95  * frames must be copied to a new buffer which shifts the data forward
     96  * 2 bytes so that the payload is aligned on a 4-byte boundary.
     97  */
     98 
     99 #include <sys/cdefs.h>
    100 __KERNEL_RCSID(0, "$NetBSD: if_vr.c,v 1.99 2009/09/26 19:58:53 jmcneill Exp $");
    101 
    102 #include "rnd.h"
    103 
    104 #include <sys/param.h>
    105 #include <sys/systm.h>
    106 #include <sys/callout.h>
    107 #include <sys/sockio.h>
    108 #include <sys/mbuf.h>
    109 #include <sys/malloc.h>
    110 #include <sys/kernel.h>
    111 #include <sys/socket.h>
    112 #include <sys/device.h>
    113 
    114 #if NRND > 0
    115 #include <sys/rnd.h>
    116 #endif
    117 
    118 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    119 
    120 #include <net/if.h>
    121 #include <net/if_arp.h>
    122 #include <net/if_dl.h>
    123 #include <net/if_media.h>
    124 #include <net/if_ether.h>
    125 
    126 #include "bpfilter.h"
    127 #if NBPFILTER > 0
    128 #include <net/bpf.h>
    129 #endif
    130 
    131 #include <sys/bus.h>
    132 #include <sys/intr.h>
    133 #include <machine/endian.h>
    134 
    135 #include <dev/mii/mii.h>
    136 #include <dev/mii/miivar.h>
    137 #include <dev/mii/mii_bitbang.h>
    138 
    139 #include <dev/pci/pcireg.h>
    140 #include <dev/pci/pcivar.h>
    141 #include <dev/pci/pcidevs.h>
    142 
    143 #include <dev/pci/if_vrreg.h>
    144 
    145 #define	VR_USEIOSPACE
    146 
    147 /*
    148  * Various supported device vendors/types and their names.
    149  */
    150 static const struct vr_type {
    151 	pci_vendor_id_t		vr_vid;
    152 	pci_product_id_t	vr_did;
    153 } vr_devs[] = {
    154 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043 },
    155 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102 },
    156 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105 },
    157 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M },
    158 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A }
    159 };
    160 
    161 /*
    162  * Transmit descriptor list size.
    163  */
    164 #define	VR_NTXDESC		64
    165 #define	VR_NTXDESC_MASK		(VR_NTXDESC - 1)
    166 #define	VR_NEXTTX(x)		(((x) + 1) & VR_NTXDESC_MASK)
    167 
    168 /*
    169  * Receive descriptor list size.
    170  */
    171 #define	VR_NRXDESC		64
    172 #define	VR_NRXDESC_MASK		(VR_NRXDESC - 1)
    173 #define	VR_NEXTRX(x)		(((x) + 1) & VR_NRXDESC_MASK)
    174 
    175 /*
    176  * Control data structres that are DMA'd to the Rhine chip.  We allocate
    177  * them in a single clump that maps to a single DMA segment to make several
    178  * things easier.
    179  *
    180  * Note that since we always copy outgoing packets to aligned transmit
    181  * buffers, we can reduce the transmit descriptors to one per packet.
    182  */
    183 struct vr_control_data {
    184 	struct vr_desc		vr_txdescs[VR_NTXDESC];
    185 	struct vr_desc		vr_rxdescs[VR_NRXDESC];
    186 };
    187 
    188 #define	VR_CDOFF(x)		offsetof(struct vr_control_data, x)
    189 #define	VR_CDTXOFF(x)		VR_CDOFF(vr_txdescs[(x)])
    190 #define	VR_CDRXOFF(x)		VR_CDOFF(vr_rxdescs[(x)])
    191 
    192 /*
    193  * Software state of transmit and receive descriptors.
    194  */
    195 struct vr_descsoft {
    196 	struct mbuf		*ds_mbuf;	/* head of mbuf chain */
    197 	bus_dmamap_t		ds_dmamap;	/* our DMA map */
    198 };
    199 
    200 struct vr_softc {
    201 	device_t		vr_dev;
    202 	void			*vr_ih;		/* interrupt cookie */
    203 	bus_space_tag_t		vr_bst;		/* bus space tag */
    204 	bus_space_handle_t	vr_bsh;		/* bus space handle */
    205 	bus_dma_tag_t		vr_dmat;	/* bus DMA tag */
    206 	pci_chipset_tag_t	vr_pc;		/* PCI chipset info */
    207 	pcitag_t		vr_tag;		/* PCI tag */
    208 	struct ethercom		vr_ec;		/* Ethernet common info */
    209 	uint8_t 		vr_enaddr[ETHER_ADDR_LEN];
    210 	struct mii_data		vr_mii;		/* MII/media info */
    211 
    212 	pcireg_t		vr_id;		/* vendor/product ID */
    213 	uint8_t			vr_revid;	/* Rhine chip revision */
    214 
    215 	callout_t		vr_tick_ch;	/* tick callout */
    216 
    217 	bus_dmamap_t		vr_cddmamap;	/* control data DMA map */
    218 #define	vr_cddma	vr_cddmamap->dm_segs[0].ds_addr
    219 
    220 	/*
    221 	 * Software state for transmit and receive descriptors.
    222 	 */
    223 	struct vr_descsoft	vr_txsoft[VR_NTXDESC];
    224 	struct vr_descsoft	vr_rxsoft[VR_NRXDESC];
    225 
    226 	/*
    227 	 * Control data structures.
    228 	 */
    229 	struct vr_control_data	*vr_control_data;
    230 
    231 	int	vr_txpending;		/* number of TX requests pending */
    232 	int	vr_txdirty;		/* first dirty TX descriptor */
    233 	int	vr_txlast;		/* last used TX descriptor */
    234 
    235 	int	vr_rxptr;		/* next ready RX descriptor */
    236 
    237 	uint32_t	vr_save_iobase;
    238 	uint32_t	vr_save_membase;
    239 	uint32_t	vr_save_irq;
    240 
    241 #if NRND > 0
    242 	rndsource_element_t rnd_source;	/* random source */
    243 #endif
    244 };
    245 
    246 #define	VR_CDTXADDR(sc, x)	((sc)->vr_cddma + VR_CDTXOFF((x)))
    247 #define	VR_CDRXADDR(sc, x)	((sc)->vr_cddma + VR_CDRXOFF((x)))
    248 
    249 #define	VR_CDTX(sc, x)		(&(sc)->vr_control_data->vr_txdescs[(x)])
    250 #define	VR_CDRX(sc, x)		(&(sc)->vr_control_data->vr_rxdescs[(x)])
    251 
    252 #define	VR_DSTX(sc, x)		(&(sc)->vr_txsoft[(x)])
    253 #define	VR_DSRX(sc, x)		(&(sc)->vr_rxsoft[(x)])
    254 
    255 #define	VR_CDTXSYNC(sc, x, ops)						\
    256 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    257 	    VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
    258 
    259 #define	VR_CDRXSYNC(sc, x, ops)						\
    260 	bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap,		\
    261 	    VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
    262 
    263 /*
    264  * Note we rely on MCLBYTES being a power of two below.
    265  */
    266 #define	VR_INIT_RXDESC(sc, i)						\
    267 do {									\
    268 	struct vr_desc *__d = VR_CDRX((sc), (i));			\
    269 	struct vr_descsoft *__ds = VR_DSRX((sc), (i));			\
    270 									\
    271 	__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i))));	\
    272 	__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr);	\
    273 	__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR |	\
    274 	    ((MCLBYTES - 1) & VR_RXCTL_BUFLEN));			\
    275 	__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG |			\
    276 	    VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN);			\
    277 	VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    278 } while (/* CONSTCOND */ 0)
    279 
    280 /*
    281  * register space access macros
    282  */
    283 #define	CSR_WRITE_4(sc, reg, val)					\
    284 	bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
    285 #define	CSR_WRITE_2(sc, reg, val)					\
    286 	bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
    287 #define	CSR_WRITE_1(sc, reg, val)					\
    288 	bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
    289 
    290 #define	CSR_READ_4(sc, reg)						\
    291 	bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
    292 #define	CSR_READ_2(sc, reg)						\
    293 	bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
    294 #define	CSR_READ_1(sc, reg)						\
    295 	bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
    296 
    297 #define	VR_TIMEOUT		1000
    298 
    299 static int	vr_add_rxbuf(struct vr_softc *, int);
    300 
    301 static void	vr_rxeof(struct vr_softc *);
    302 static void	vr_rxeoc(struct vr_softc *);
    303 static void	vr_txeof(struct vr_softc *);
    304 static int	vr_intr(void *);
    305 static void	vr_start(struct ifnet *);
    306 static int	vr_ioctl(struct ifnet *, u_long, void *);
    307 static int	vr_init(struct ifnet *);
    308 static void	vr_stop(struct ifnet *, int);
    309 static void	vr_rxdrain(struct vr_softc *);
    310 static void	vr_watchdog(struct ifnet *);
    311 static void	vr_tick(void *);
    312 
    313 static int	vr_mii_readreg(device_t, int, int);
    314 static void	vr_mii_writereg(device_t, int, int, int);
    315 static void	vr_mii_statchg(device_t);
    316 
    317 static void	vr_setmulti(struct vr_softc *);
    318 static void	vr_reset(struct vr_softc *);
    319 static int	vr_restore_state(pci_chipset_tag_t, pcitag_t, device_t,
    320     pcireg_t);
    321 static bool	vr_resume(device_t PMF_FN_PROTO);
    322 
    323 int	vr_copy_small = 0;
    324 
    325 #define	VR_SETBIT(sc, reg, x)				\
    326 	CSR_WRITE_1(sc, reg,				\
    327 	    CSR_READ_1(sc, reg) | (x))
    328 
    329 #define	VR_CLRBIT(sc, reg, x)				\
    330 	CSR_WRITE_1(sc, reg,				\
    331 	    CSR_READ_1(sc, reg) & ~(x))
    332 
    333 #define	VR_SETBIT16(sc, reg, x)				\
    334 	CSR_WRITE_2(sc, reg,				\
    335 	    CSR_READ_2(sc, reg) | (x))
    336 
    337 #define	VR_CLRBIT16(sc, reg, x)				\
    338 	CSR_WRITE_2(sc, reg,				\
    339 	    CSR_READ_2(sc, reg) & ~(x))
    340 
    341 #define	VR_SETBIT32(sc, reg, x)				\
    342 	CSR_WRITE_4(sc, reg,				\
    343 	    CSR_READ_4(sc, reg) | (x))
    344 
    345 #define	VR_CLRBIT32(sc, reg, x)				\
    346 	CSR_WRITE_4(sc, reg,				\
    347 	    CSR_READ_4(sc, reg) & ~(x))
    348 
    349 /*
    350  * MII bit-bang glue.
    351  */
    352 static uint32_t vr_mii_bitbang_read(device_t);
    353 static void	vr_mii_bitbang_write(device_t, uint32_t);
    354 
    355 static const struct mii_bitbang_ops vr_mii_bitbang_ops = {
    356 	vr_mii_bitbang_read,
    357 	vr_mii_bitbang_write,
    358 	{
    359 		VR_MIICMD_DATAOUT,	/* MII_BIT_MDO */
    360 		VR_MIICMD_DATAIN,	/* MII_BIT_MDI */
    361 		VR_MIICMD_CLK,		/* MII_BIT_MDC */
    362 		VR_MIICMD_DIR,		/* MII_BIT_DIR_HOST_PHY */
    363 		0,			/* MII_BIT_DIR_PHY_HOST */
    364 	}
    365 };
    366 
    367 static uint32_t
    368 vr_mii_bitbang_read(device_t self)
    369 {
    370 	struct vr_softc *sc = device_private(self);
    371 
    372 	return (CSR_READ_1(sc, VR_MIICMD));
    373 }
    374 
    375 static void
    376 vr_mii_bitbang_write(device_t self, uint32_t val)
    377 {
    378 	struct vr_softc *sc = device_private(self);
    379 
    380 	CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
    381 }
    382 
    383 /*
    384  * Read an PHY register through the MII.
    385  */
    386 static int
    387 vr_mii_readreg(device_t self, int phy, int reg)
    388 {
    389 	struct vr_softc *sc = device_private(self);
    390 
    391 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    392 	return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
    393 }
    394 
    395 /*
    396  * Write to a PHY register through the MII.
    397  */
    398 static void
    399 vr_mii_writereg(device_t self, int phy, int reg, int val)
    400 {
    401 	struct vr_softc *sc = device_private(self);
    402 
    403 	CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
    404 	mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
    405 }
    406 
    407 static void
    408 vr_mii_statchg(device_t self)
    409 {
    410 	struct vr_softc *sc = device_private(self);
    411 
    412 	/*
    413 	 * In order to fiddle with the 'full-duplex' bit in the netconfig
    414 	 * register, we first have to put the transmit and/or receive logic
    415 	 * in the idle state.
    416 	 */
    417 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
    418 
    419 	if (sc->vr_mii.mii_media_active & IFM_FDX)
    420 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    421 	else
    422 		VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
    423 
    424 	if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
    425 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
    426 }
    427 
    428 #define	vr_calchash(addr) \
    429 	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
    430 
    431 /*
    432  * Program the 64-bit multicast hash filter.
    433  */
    434 static void
    435 vr_setmulti(struct vr_softc *sc)
    436 {
    437 	struct ifnet *ifp;
    438 	int h = 0;
    439 	uint32_t hashes[2] = { 0, 0 };
    440 	struct ether_multistep step;
    441 	struct ether_multi *enm;
    442 	int mcnt = 0;
    443 	uint8_t rxfilt;
    444 
    445 	ifp = &sc->vr_ec.ec_if;
    446 
    447 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
    448 
    449 	if (ifp->if_flags & IFF_PROMISC) {
    450 allmulti:
    451 		ifp->if_flags |= IFF_ALLMULTI;
    452 		rxfilt |= VR_RXCFG_RX_MULTI;
    453 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    454 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
    455 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
    456 		return;
    457 	}
    458 
    459 	/* first, zot all the existing hash bits */
    460 	CSR_WRITE_4(sc, VR_MAR0, 0);
    461 	CSR_WRITE_4(sc, VR_MAR1, 0);
    462 
    463 	/* now program new ones */
    464 	ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
    465 	while (enm != NULL) {
    466 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    467 		    ETHER_ADDR_LEN) != 0)
    468 			goto allmulti;
    469 
    470 		h = vr_calchash(enm->enm_addrlo);
    471 
    472 		if (h < 32)
    473 			hashes[0] |= (1 << h);
    474 		else
    475 			hashes[1] |= (1 << (h - 32));
    476 		ETHER_NEXT_MULTI(step, enm);
    477 		mcnt++;
    478 	}
    479 
    480 	ifp->if_flags &= ~IFF_ALLMULTI;
    481 
    482 	if (mcnt)
    483 		rxfilt |= VR_RXCFG_RX_MULTI;
    484 	else
    485 		rxfilt &= ~VR_RXCFG_RX_MULTI;
    486 
    487 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
    488 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
    489 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
    490 }
    491 
    492 static void
    493 vr_reset(struct vr_softc *sc)
    494 {
    495 	int i;
    496 
    497 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
    498 
    499 	for (i = 0; i < VR_TIMEOUT; i++) {
    500 		DELAY(10);
    501 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
    502 			break;
    503 	}
    504 	if (i == VR_TIMEOUT) {
    505 		if (sc->vr_revid < REV_ID_VT3065_A) {
    506 			printf("%s: reset never completed!\n",
    507 			    device_xname(sc->vr_dev));
    508 		} else {
    509 			/* Use newer force reset command */
    510 			printf("%s: using force reset command.\n",
    511 			    device_xname(sc->vr_dev));
    512 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
    513 		}
    514 	}
    515 
    516 	/* Wait a little while for the chip to get its brains in order. */
    517 	DELAY(1000);
    518 }
    519 
    520 /*
    521  * Initialize an RX descriptor and attach an MBUF cluster.
    522  * Note: the length fields are only 11 bits wide, which means the
    523  * largest size we can specify is 2047. This is important because
    524  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
    525  * overflow the field and make a mess.
    526  */
    527 static int
    528 vr_add_rxbuf(struct vr_softc *sc, int i)
    529 {
    530 	struct vr_descsoft *ds = VR_DSRX(sc, i);
    531 	struct mbuf *m_new;
    532 	int error;
    533 
    534 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    535 	if (m_new == NULL)
    536 		return (ENOBUFS);
    537 
    538 	MCLGET(m_new, M_DONTWAIT);
    539 	if ((m_new->m_flags & M_EXT) == 0) {
    540 		m_freem(m_new);
    541 		return (ENOBUFS);
    542 	}
    543 
    544 	if (ds->ds_mbuf != NULL)
    545 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    546 
    547 	ds->ds_mbuf = m_new;
    548 
    549 	error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
    550 	    m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
    551 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    552 	if (error) {
    553 		aprint_error_dev(sc->vr_dev, "unable to load rx DMA map %d, error = %d\n",
    554 		    i, error);
    555 		panic("vr_add_rxbuf");		/* XXX */
    556 	}
    557 
    558 	bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    559 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    560 
    561 	VR_INIT_RXDESC(sc, i);
    562 
    563 	return (0);
    564 }
    565 
    566 /*
    567  * A frame has been uploaded: pass the resulting mbuf chain up to
    568  * the higher level protocols.
    569  */
    570 static void
    571 vr_rxeof(struct vr_softc *sc)
    572 {
    573 	struct mbuf *m;
    574 	struct ifnet *ifp;
    575 	struct vr_desc *d;
    576 	struct vr_descsoft *ds;
    577 	int i, total_len;
    578 	uint32_t rxstat;
    579 
    580 	ifp = &sc->vr_ec.ec_if;
    581 
    582 	for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
    583 		d = VR_CDRX(sc, i);
    584 		ds = VR_DSRX(sc, i);
    585 
    586 		VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    587 
    588 		rxstat = le32toh(d->vr_status);
    589 
    590 		if (rxstat & VR_RXSTAT_OWN) {
    591 			/*
    592 			 * We have processed all of the receive buffers.
    593 			 */
    594 			break;
    595 		}
    596 
    597 		/*
    598 		 * If an error occurs, update stats, clear the
    599 		 * status word and leave the mbuf cluster in place:
    600 		 * it should simply get re-used next time this descriptor
    601 		 * comes up in the ring.
    602 		 */
    603 		if (rxstat & VR_RXSTAT_RXERR) {
    604 			const char *errstr;
    605 
    606 			ifp->if_ierrors++;
    607 			switch (rxstat & 0x000000FF) {
    608 			case VR_RXSTAT_CRCERR:
    609 				errstr = "crc error";
    610 				break;
    611 			case VR_RXSTAT_FRAMEALIGNERR:
    612 				errstr = "frame alignment error";
    613 				break;
    614 			case VR_RXSTAT_FIFOOFLOW:
    615 				errstr = "FIFO overflow";
    616 				break;
    617 			case VR_RXSTAT_GIANT:
    618 				errstr = "received giant packet";
    619 				break;
    620 			case VR_RXSTAT_RUNT:
    621 				errstr = "received runt packet";
    622 				break;
    623 			case VR_RXSTAT_BUSERR:
    624 				errstr = "system bus error";
    625 				break;
    626 			case VR_RXSTAT_BUFFERR:
    627 				errstr = "rx buffer error";
    628 				break;
    629 			default:
    630 				errstr = "unknown rx error";
    631 				break;
    632 			}
    633 			printf("%s: receive error: %s\n", device_xname(sc->vr_dev),
    634 			    errstr);
    635 
    636 			VR_INIT_RXDESC(sc, i);
    637 
    638 			continue;
    639 		} else if (!(rxstat & VR_RXSTAT_FIRSTFRAG) ||
    640 		           !(rxstat & VR_RXSTAT_LASTFRAG)) {
    641 			/*
    642 			 * This driver expects to receive whole packets every
    643 			 * time.  In case we receive a fragment that is not
    644 			 * a complete packet, we discard it.
    645 			 */
    646 			ifp->if_ierrors++;
    647 
    648 			printf("%s: receive error: incomplete frame; "
    649 			       "size = %d, status = 0x%x\n",
    650 			       device_xname(sc->vr_dev),
    651 			       VR_RXBYTES(le32toh(d->vr_status)), rxstat);
    652 
    653 			VR_INIT_RXDESC(sc, i);
    654 
    655 			continue;
    656 		}
    657 
    658 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    659 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    660 
    661 		/* No errors; receive the packet. */
    662 		total_len = VR_RXBYTES(le32toh(d->vr_status));
    663 #ifdef DIAGNOSTIC
    664 		if (total_len == 0) {
    665 			/*
    666 			 * If we receive a zero-length packet, we probably
    667 			 * missed to handle an error condition above.
    668 			 * Discard it to avoid a later crash.
    669 			 */
    670 			ifp->if_ierrors++;
    671 
    672 			printf("%s: receive error: zero-length packet; "
    673 			       "status = 0x%x\n",
    674 			       device_xname(sc->vr_dev), rxstat);
    675 
    676 			VR_INIT_RXDESC(sc, i);
    677 
    678 			continue;
    679 		}
    680 #endif
    681 
    682 		/*
    683 		 * The Rhine chip includes the CRC with every packet.
    684 		 * Trim it off here.
    685 		 */
    686 		total_len -= ETHER_CRC_LEN;
    687 
    688 #ifdef __NO_STRICT_ALIGNMENT
    689 		/*
    690 		 * If the packet is small enough to fit in a
    691 		 * single header mbuf, allocate one and copy
    692 		 * the data into it.  This greatly reduces
    693 		 * memory consumption when we receive lots
    694 		 * of small packets.
    695 		 *
    696 		 * Otherwise, we add a new buffer to the receive
    697 		 * chain.  If this fails, we drop the packet and
    698 		 * recycle the old buffer.
    699 		 */
    700 		if (vr_copy_small != 0 && total_len <= MHLEN) {
    701 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    702 			if (m == NULL)
    703 				goto dropit;
    704 			memcpy(mtod(m, void *),
    705 			    mtod(ds->ds_mbuf, void *), total_len);
    706 			VR_INIT_RXDESC(sc, i);
    707 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    708 			    ds->ds_dmamap->dm_mapsize,
    709 			    BUS_DMASYNC_PREREAD);
    710 		} else {
    711 			m = ds->ds_mbuf;
    712 			if (vr_add_rxbuf(sc, i) == ENOBUFS) {
    713  dropit:
    714 				ifp->if_ierrors++;
    715 				VR_INIT_RXDESC(sc, i);
    716 				bus_dmamap_sync(sc->vr_dmat,
    717 				    ds->ds_dmamap, 0,
    718 				    ds->ds_dmamap->dm_mapsize,
    719 				    BUS_DMASYNC_PREREAD);
    720 				continue;
    721 			}
    722 		}
    723 #else
    724 		/*
    725 		 * The Rhine's packet buffers must be 4-byte aligned.
    726 		 * But this means that the data after the Ethernet header
    727 		 * is misaligned.  We must allocate a new buffer and
    728 		 * copy the data, shifted forward 2 bytes.
    729 		 */
    730 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    731 		if (m == NULL) {
    732  dropit:
    733 			ifp->if_ierrors++;
    734 			VR_INIT_RXDESC(sc, i);
    735 			bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    736 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    737 			continue;
    738 		}
    739 		if (total_len > (MHLEN - 2)) {
    740 			MCLGET(m, M_DONTWAIT);
    741 			if ((m->m_flags & M_EXT) == 0) {
    742 				m_freem(m);
    743 				goto dropit;
    744 			}
    745 		}
    746 		m->m_data += 2;
    747 
    748 		/*
    749 		 * Note that we use clusters for incoming frames, so the
    750 		 * buffer is virtually contiguous.
    751 		 */
    752 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
    753 		    total_len);
    754 
    755 		/* Allow the receive descriptor to continue using its mbuf. */
    756 		VR_INIT_RXDESC(sc, i);
    757 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
    758 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    759 #endif /* __NO_STRICT_ALIGNMENT */
    760 
    761 		ifp->if_ipackets++;
    762 		m->m_pkthdr.rcvif = ifp;
    763 		m->m_pkthdr.len = m->m_len = total_len;
    764 #if NBPFILTER > 0
    765 		/*
    766 		 * Handle BPF listeners. Let the BPF user see the packet, but
    767 		 * don't pass it up to the ether_input() layer unless it's
    768 		 * a broadcast packet, multicast packet, matches our ethernet
    769 		 * address or the interface is in promiscuous mode.
    770 		 */
    771 		if (ifp->if_bpf)
    772 			bpf_mtap(ifp->if_bpf, m);
    773 #endif
    774 		/* Pass it on. */
    775 		(*ifp->if_input)(ifp, m);
    776 	}
    777 
    778 	/* Update the receive pointer. */
    779 	sc->vr_rxptr = i;
    780 }
    781 
    782 void
    783 vr_rxeoc(struct vr_softc *sc)
    784 {
    785 	struct ifnet *ifp;
    786 	int i;
    787 
    788 	ifp = &sc->vr_ec.ec_if;
    789 
    790 	ifp->if_ierrors++;
    791 
    792 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    793 	for (i = 0; i < VR_TIMEOUT; i++) {
    794 		DELAY(10);
    795 		if ((CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON) == 0)
    796 			break;
    797 	}
    798 	if (i == VR_TIMEOUT) {
    799 		/* XXX need reset? */
    800 		printf("%s: RX shutdown never complete\n",
    801 		    device_xname(sc->vr_dev));
    802 	}
    803 
    804 	vr_rxeof(sc);
    805 
    806 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
    807 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
    808 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
    809 }
    810 
    811 /*
    812  * A frame was downloaded to the chip. It's safe for us to clean up
    813  * the list buffers.
    814  */
    815 static void
    816 vr_txeof(struct vr_softc *sc)
    817 {
    818 	struct ifnet *ifp = &sc->vr_ec.ec_if;
    819 	struct vr_desc *d;
    820 	struct vr_descsoft *ds;
    821 	uint32_t txstat;
    822 	int i, j;
    823 
    824 	ifp->if_flags &= ~IFF_OACTIVE;
    825 
    826 	/*
    827 	 * Go through our tx list and free mbufs for those
    828 	 * frames that have been transmitted.
    829 	 */
    830 	for (i = sc->vr_txdirty; sc->vr_txpending != 0;
    831 	     i = VR_NEXTTX(i), sc->vr_txpending--) {
    832 		d = VR_CDTX(sc, i);
    833 		ds = VR_DSTX(sc, i);
    834 
    835 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    836 
    837 		txstat = le32toh(d->vr_status);
    838 
    839 		if (txstat & (VR_TXSTAT_ABRT | VR_TXSTAT_UDF)) {
    840 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    841 			for (j = 0; j < VR_TIMEOUT; j++) {
    842 				DELAY(10);
    843 				if ((CSR_READ_2(sc, VR_COMMAND) &
    844 				    VR_CMD_TX_ON) == 0)
    845 					break;
    846 			}
    847 			if (j == VR_TIMEOUT) {
    848 				/* XXX need reset? */
    849 				printf("%s: TX shutdown never complete\n",
    850 				    device_xname(sc->vr_dev));
    851 			}
    852 			d->vr_status = htole32(VR_TXSTAT_OWN);
    853 			CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, i));
    854 			break;
    855 		}
    856 
    857 		if (txstat & VR_TXSTAT_OWN)
    858 			break;
    859 
    860 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
    861 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    862 		bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
    863 		m_freem(ds->ds_mbuf);
    864 		ds->ds_mbuf = NULL;
    865 
    866 		if (txstat & VR_TXSTAT_ERRSUM) {
    867 			ifp->if_oerrors++;
    868 			if (txstat & VR_TXSTAT_DEFER)
    869 				ifp->if_collisions++;
    870 			if (txstat & VR_TXSTAT_LATECOLL)
    871 				ifp->if_collisions++;
    872 		}
    873 
    874 		ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
    875 		ifp->if_opackets++;
    876 	}
    877 
    878 	/* Update the dirty transmit buffer pointer. */
    879 	sc->vr_txdirty = i;
    880 
    881 	/*
    882 	 * Cancel the watchdog timer if there are no pending
    883 	 * transmissions.
    884 	 */
    885 	if (sc->vr_txpending == 0)
    886 		ifp->if_timer = 0;
    887 }
    888 
    889 static int
    890 vr_intr(void *arg)
    891 {
    892 	struct vr_softc *sc;
    893 	struct ifnet *ifp;
    894 	uint16_t status;
    895 	int handled = 0, dotx = 0;
    896 
    897 	sc = arg;
    898 	ifp = &sc->vr_ec.ec_if;
    899 
    900 	/* Suppress unwanted interrupts. */
    901 	if ((ifp->if_flags & IFF_UP) == 0) {
    902 		vr_stop(ifp, 1);
    903 		return (0);
    904 	}
    905 
    906 	/* Disable interrupts. */
    907 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
    908 
    909 	for (;;) {
    910 		status = CSR_READ_2(sc, VR_ISR);
    911 		if (status)
    912 			CSR_WRITE_2(sc, VR_ISR, status);
    913 
    914 		if ((status & VR_INTRS) == 0)
    915 			break;
    916 
    917 		handled = 1;
    918 
    919 #if NRND > 0
    920 		if (RND_ENABLED(&sc->rnd_source))
    921 			rnd_add_uint32(&sc->rnd_source, status);
    922 #endif
    923 
    924 		if (status & VR_ISR_RX_OK)
    925 			vr_rxeof(sc);
    926 
    927 		if (status & VR_ISR_RX_DROPPED) {
    928 			printf("%s: rx packet lost\n", device_xname(sc->vr_dev));
    929 			ifp->if_ierrors++;
    930 		}
    931 
    932 		if (status &
    933 		    (VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW))
    934 			vr_rxeoc(sc);
    935 
    936 
    937 		if (status & (VR_ISR_BUSERR | VR_ISR_TX_UNDERRUN)) {
    938 			if (status & VR_ISR_BUSERR)
    939 				printf("%s: PCI bus error\n",
    940 				    device_xname(sc->vr_dev));
    941 			if (status & VR_ISR_TX_UNDERRUN)
    942 				printf("%s: transmit underrun\n",
    943 				    device_xname(sc->vr_dev));
    944 			/* vr_init() calls vr_start() */
    945 			dotx = 0;
    946 			(void)vr_init(ifp);
    947 
    948 		}
    949 
    950 		if (status & VR_ISR_TX_OK) {
    951 			dotx = 1;
    952 			vr_txeof(sc);
    953 		}
    954 
    955 		if (status &
    956 		    (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2 | VR_ISR_TX_UDFI)) {
    957 			if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
    958 				printf("%s: transmit aborted\n",
    959 				    device_xname(sc->vr_dev));
    960 			if (status & VR_ISR_TX_UDFI)
    961 				printf("%s: transmit underflow\n",
    962 				    device_xname(sc->vr_dev));
    963 			ifp->if_oerrors++;
    964 			dotx = 1;
    965 			vr_txeof(sc);
    966 			if (sc->vr_txpending) {
    967 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
    968 				VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
    969 			}
    970 		}
    971 	}
    972 
    973 	/* Re-enable interrupts. */
    974 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
    975 
    976 	if (dotx)
    977 		vr_start(ifp);
    978 
    979 	return (handled);
    980 }
    981 
    982 /*
    983  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
    984  * to the mbuf data regions directly in the transmit lists. We also save a
    985  * copy of the pointers since the transmit list fragment pointers are
    986  * physical addresses.
    987  */
    988 static void
    989 vr_start(struct ifnet *ifp)
    990 {
    991 	struct vr_softc *sc = ifp->if_softc;
    992 	struct mbuf *m0, *m;
    993 	struct vr_desc *d;
    994 	struct vr_descsoft *ds;
    995 	int error, firsttx, nexttx, opending;
    996 
    997 	/*
    998 	 * Remember the previous txpending and the first transmit
    999 	 * descriptor we use.
   1000 	 */
   1001 	opending = sc->vr_txpending;
   1002 	firsttx = VR_NEXTTX(sc->vr_txlast);
   1003 
   1004 	/*
   1005 	 * Loop through the send queue, setting up transmit descriptors
   1006 	 * until we drain the queue, or use up all available transmit
   1007 	 * descriptors.
   1008 	 */
   1009 	while (sc->vr_txpending < VR_NTXDESC) {
   1010 		/*
   1011 		 * Grab a packet off the queue.
   1012 		 */
   1013 		IFQ_POLL(&ifp->if_snd, m0);
   1014 		if (m0 == NULL)
   1015 			break;
   1016 		m = NULL;
   1017 
   1018 		/*
   1019 		 * Get the next available transmit descriptor.
   1020 		 */
   1021 		nexttx = VR_NEXTTX(sc->vr_txlast);
   1022 		d = VR_CDTX(sc, nexttx);
   1023 		ds = VR_DSTX(sc, nexttx);
   1024 
   1025 		/*
   1026 		 * Load the DMA map.  If this fails, the packet didn't
   1027 		 * fit in one DMA segment, and we need to copy.  Note,
   1028 		 * the packet must also be aligned.
   1029 		 * if the packet is too small, copy it too, so we're sure
   1030 		 * we have enough room for the pad buffer.
   1031 		 */
   1032 		if ((mtod(m0, uintptr_t) & 3) != 0 ||
   1033 		    m0->m_pkthdr.len < VR_MIN_FRAMELEN ||
   1034 		    bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
   1035 		     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1036 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1037 			if (m == NULL) {
   1038 				printf("%s: unable to allocate Tx mbuf\n",
   1039 				    device_xname(sc->vr_dev));
   1040 				break;
   1041 			}
   1042 			if (m0->m_pkthdr.len > MHLEN) {
   1043 				MCLGET(m, M_DONTWAIT);
   1044 				if ((m->m_flags & M_EXT) == 0) {
   1045 					printf("%s: unable to allocate Tx "
   1046 					    "cluster\n", device_xname(sc->vr_dev));
   1047 					m_freem(m);
   1048 					break;
   1049 				}
   1050 			}
   1051 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1052 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1053 			/*
   1054 			 * The Rhine doesn't auto-pad, so we have to do this
   1055 			 * ourselves.
   1056 			 */
   1057 			if (m0->m_pkthdr.len < VR_MIN_FRAMELEN) {
   1058 				memset(mtod(m, char *) + m0->m_pkthdr.len,
   1059 				    0, VR_MIN_FRAMELEN - m0->m_pkthdr.len);
   1060 				m->m_pkthdr.len = m->m_len = VR_MIN_FRAMELEN;
   1061 			}
   1062 			error = bus_dmamap_load_mbuf(sc->vr_dmat,
   1063 			    ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1064 			if (error) {
   1065 				m_freem(m);
   1066 				printf("%s: unable to load Tx buffer, "
   1067 				    "error = %d\n", device_xname(sc->vr_dev), error);
   1068 				break;
   1069 			}
   1070 		}
   1071 
   1072 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1073 		if (m != NULL) {
   1074 			m_freem(m0);
   1075 			m0 = m;
   1076 		}
   1077 
   1078 		/* Sync the DMA map. */
   1079 		bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
   1080 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1081 
   1082 		/*
   1083 		 * Store a pointer to the packet so we can free it later.
   1084 		 */
   1085 		ds->ds_mbuf = m0;
   1086 
   1087 #if NBPFILTER > 0
   1088 		/*
   1089 		 * If there's a BPF listener, bounce a copy of this frame
   1090 		 * to him.
   1091 		 */
   1092 		if (ifp->if_bpf)
   1093 			bpf_mtap(ifp->if_bpf, m0);
   1094 #endif
   1095 
   1096 		/*
   1097 		 * Fill in the transmit descriptor.
   1098 		 */
   1099 		d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
   1100 		d->vr_ctl = htole32(m0->m_pkthdr.len);
   1101 		d->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG | VR_TXCTL_LASTFRAG);
   1102 
   1103 		/*
   1104 		 * If this is the first descriptor we're enqueuing,
   1105 		 * don't give it to the Rhine yet.  That could cause
   1106 		 * a race condition.  We'll do it below.
   1107 		 */
   1108 		if (nexttx == firsttx)
   1109 			d->vr_status = 0;
   1110 		else
   1111 			d->vr_status = htole32(VR_TXSTAT_OWN);
   1112 
   1113 		VR_CDTXSYNC(sc, nexttx,
   1114 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1115 
   1116 		/* Advance the tx pointer. */
   1117 		sc->vr_txpending++;
   1118 		sc->vr_txlast = nexttx;
   1119 	}
   1120 
   1121 	if (sc->vr_txpending == VR_NTXDESC) {
   1122 		/* No more slots left; notify upper layer. */
   1123 		ifp->if_flags |= IFF_OACTIVE;
   1124 	}
   1125 
   1126 	if (sc->vr_txpending != opending) {
   1127 		/*
   1128 		 * We enqueued packets.  If the transmitter was idle,
   1129 		 * reset the txdirty pointer.
   1130 		 */
   1131 		if (opending == 0)
   1132 			sc->vr_txdirty = firsttx;
   1133 
   1134 		/*
   1135 		 * Cause a transmit interrupt to happen on the
   1136 		 * last packet we enqueued.
   1137 		 */
   1138 		VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
   1139 		VR_CDTXSYNC(sc, sc->vr_txlast,
   1140 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1141 
   1142 		/*
   1143 		 * The entire packet chain is set up.  Give the
   1144 		 * first descriptor to the Rhine now.
   1145 		 */
   1146 		VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
   1147 		VR_CDTXSYNC(sc, firsttx,
   1148 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1149 
   1150 		/* Start the transmitter. */
   1151 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
   1152 
   1153 		/* Set the watchdog timer in case the chip flakes out. */
   1154 		ifp->if_timer = 5;
   1155 	}
   1156 }
   1157 
   1158 /*
   1159  * Initialize the interface.  Must be called at splnet.
   1160  */
   1161 static int
   1162 vr_init(struct ifnet *ifp)
   1163 {
   1164 	struct vr_softc *sc = ifp->if_softc;
   1165 	struct vr_desc *d;
   1166 	struct vr_descsoft *ds;
   1167 	int i, error = 0;
   1168 
   1169 	/* Cancel pending I/O. */
   1170 	vr_stop(ifp, 0);
   1171 
   1172 	/* Reset the Rhine to a known state. */
   1173 	vr_reset(sc);
   1174 
   1175 	/* set DMA length in BCR0 and BCR1 */
   1176 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
   1177 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
   1178 
   1179 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
   1180 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTH_128BYTES);
   1181 
   1182 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
   1183 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTH_STORENFWD);
   1184 
   1185 	/* set DMA threshold length in RXCFG and TXCFG */
   1186 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
   1187 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
   1188 
   1189 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
   1190 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
   1191 
   1192 	/*
   1193 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1194 	 * to the end of the list so that it will wrap around to the first
   1195 	 * descriptor when the first packet is transmitted.
   1196 	 */
   1197 	for (i = 0; i < VR_NTXDESC; i++) {
   1198 		d = VR_CDTX(sc, i);
   1199 		memset(d, 0, sizeof(struct vr_desc));
   1200 		d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
   1201 		VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1202 	}
   1203 	sc->vr_txpending = 0;
   1204 	sc->vr_txdirty = 0;
   1205 	sc->vr_txlast = VR_NTXDESC - 1;
   1206 
   1207 	/*
   1208 	 * Initialize the receive descriptor ring.
   1209 	 */
   1210 	for (i = 0; i < VR_NRXDESC; i++) {
   1211 		ds = VR_DSRX(sc, i);
   1212 		if (ds->ds_mbuf == NULL) {
   1213 			if ((error = vr_add_rxbuf(sc, i)) != 0) {
   1214 				printf("%s: unable to allocate or map rx "
   1215 				    "buffer %d, error = %d\n",
   1216 				    device_xname(sc->vr_dev), i, error);
   1217 				/*
   1218 				 * XXX Should attempt to run with fewer receive
   1219 				 * XXX buffers instead of just failing.
   1220 				 */
   1221 				vr_rxdrain(sc);
   1222 				goto out;
   1223 			}
   1224 		} else
   1225 			VR_INIT_RXDESC(sc, i);
   1226 	}
   1227 	sc->vr_rxptr = 0;
   1228 
   1229 	/* If we want promiscuous mode, set the allframes bit. */
   1230 	if (ifp->if_flags & IFF_PROMISC)
   1231 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1232 	else
   1233 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
   1234 
   1235 	/* Set capture broadcast bit to capture broadcast frames. */
   1236 	if (ifp->if_flags & IFF_BROADCAST)
   1237 		VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1238 	else
   1239 		VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
   1240 
   1241 	/* Program the multicast filter, if necessary. */
   1242 	vr_setmulti(sc);
   1243 
   1244 	/* Give the transmit and receive rings to the Rhine. */
   1245 	CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
   1246 	CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
   1247 
   1248 	/* Set current media. */
   1249 	if ((error = ether_mediachange(ifp)) != 0)
   1250 		goto out;
   1251 
   1252 	/* Enable receiver and transmitter. */
   1253 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
   1254 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
   1255 				    VR_CMD_RX_GO);
   1256 
   1257 	/* Enable interrupts. */
   1258 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
   1259 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
   1260 
   1261 	ifp->if_flags |= IFF_RUNNING;
   1262 	ifp->if_flags &= ~IFF_OACTIVE;
   1263 
   1264 	/* Start one second timer. */
   1265 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1266 
   1267 	/* Attempt to start output on the interface. */
   1268 	vr_start(ifp);
   1269 
   1270  out:
   1271 	if (error)
   1272 		printf("%s: interface not running\n", device_xname(sc->vr_dev));
   1273 	return (error);
   1274 }
   1275 
   1276 static int
   1277 vr_ioctl(struct ifnet *ifp, u_long command, void *data)
   1278 {
   1279 	struct vr_softc *sc = ifp->if_softc;
   1280 	int s, error = 0;
   1281 
   1282 	s = splnet();
   1283 
   1284 	error = ether_ioctl(ifp, command, data);
   1285 	if (error == ENETRESET) {
   1286 		/*
   1287 		 * Multicast list has changed; set the hardware filter
   1288 		 * accordingly.
   1289 		 */
   1290 		if (ifp->if_flags & IFF_RUNNING)
   1291 			vr_setmulti(sc);
   1292 		error = 0;
   1293 	}
   1294 
   1295 	splx(s);
   1296 	return (error);
   1297 }
   1298 
   1299 static void
   1300 vr_watchdog(struct ifnet *ifp)
   1301 {
   1302 	struct vr_softc *sc = ifp->if_softc;
   1303 
   1304 	printf("%s: device timeout\n", device_xname(sc->vr_dev));
   1305 	ifp->if_oerrors++;
   1306 
   1307 	(void) vr_init(ifp);
   1308 }
   1309 
   1310 /*
   1311  * One second timer, used to tick MII.
   1312  */
   1313 static void
   1314 vr_tick(void *arg)
   1315 {
   1316 	struct vr_softc *sc = arg;
   1317 	int s;
   1318 
   1319 	s = splnet();
   1320 	mii_tick(&sc->vr_mii);
   1321 	splx(s);
   1322 
   1323 	callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
   1324 }
   1325 
   1326 /*
   1327  * Drain the receive queue.
   1328  */
   1329 static void
   1330 vr_rxdrain(struct vr_softc *sc)
   1331 {
   1332 	struct vr_descsoft *ds;
   1333 	int i;
   1334 
   1335 	for (i = 0; i < VR_NRXDESC; i++) {
   1336 		ds = VR_DSRX(sc, i);
   1337 		if (ds->ds_mbuf != NULL) {
   1338 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1339 			m_freem(ds->ds_mbuf);
   1340 			ds->ds_mbuf = NULL;
   1341 		}
   1342 	}
   1343 }
   1344 
   1345 /*
   1346  * Stop the adapter and free any mbufs allocated to the
   1347  * transmit lists.
   1348  */
   1349 static void
   1350 vr_stop(struct ifnet *ifp, int disable)
   1351 {
   1352 	struct vr_softc *sc = ifp->if_softc;
   1353 	struct vr_descsoft *ds;
   1354 	int i;
   1355 
   1356 	/* Cancel one second timer. */
   1357 	callout_stop(&sc->vr_tick_ch);
   1358 
   1359 	/* Down the MII. */
   1360 	mii_down(&sc->vr_mii);
   1361 
   1362 	ifp = &sc->vr_ec.ec_if;
   1363 	ifp->if_timer = 0;
   1364 
   1365 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
   1366 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
   1367 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
   1368 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
   1369 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
   1370 
   1371 	/*
   1372 	 * Release any queued transmit buffers.
   1373 	 */
   1374 	for (i = 0; i < VR_NTXDESC; i++) {
   1375 		ds = VR_DSTX(sc, i);
   1376 		if (ds->ds_mbuf != NULL) {
   1377 			bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
   1378 			m_freem(ds->ds_mbuf);
   1379 			ds->ds_mbuf = NULL;
   1380 		}
   1381 	}
   1382 
   1383 	/*
   1384 	 * Mark the interface down and cancel the watchdog timer.
   1385 	 */
   1386 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1387 	ifp->if_timer = 0;
   1388 
   1389 	if (disable)
   1390 		vr_rxdrain(sc);
   1391 }
   1392 
   1393 static int	vr_probe(device_t, cfdata_t, void *);
   1394 static void	vr_attach(device_t, device_t, void *);
   1395 static bool	vr_shutdown(device_t, int);
   1396 
   1397 CFATTACH_DECL_NEW(vr, sizeof (struct vr_softc),
   1398     vr_probe, vr_attach, NULL, NULL);
   1399 
   1400 static const struct vr_type *
   1401 vr_lookup(struct pci_attach_args *pa)
   1402 {
   1403 	const struct vr_type *vrt;
   1404 	int i;
   1405 
   1406 	for (i = 0; i < __arraycount(vr_devs); i++) {
   1407 		vrt = &vr_devs[i];
   1408 		if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
   1409 		    PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
   1410 			return (vrt);
   1411 	}
   1412 	return (NULL);
   1413 }
   1414 
   1415 static int
   1416 vr_probe(device_t parent, cfdata_t match, void *aux)
   1417 {
   1418 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1419 
   1420 	if (vr_lookup(pa) != NULL)
   1421 		return (1);
   1422 
   1423 	return (0);
   1424 }
   1425 
   1426 /*
   1427  * Stop all chip I/O so that the kernel's probe routines don't
   1428  * get confused by errant DMAs when rebooting.
   1429  */
   1430 static bool
   1431 vr_shutdown(device_t self, int howto)
   1432 {
   1433 	struct vr_softc *sc = device_private(self);
   1434 
   1435 	vr_stop(&sc->vr_ec.ec_if, 1);
   1436 
   1437 	return true;
   1438 }
   1439 
   1440 /*
   1441  * Attach the interface. Allocate softc structures, do ifmedia
   1442  * setup and ethernet/BPF attach.
   1443  */
   1444 static void
   1445 vr_attach(device_t parent, device_t self, void *aux)
   1446 {
   1447 	struct vr_softc *sc = device_private(self);
   1448 	struct pci_attach_args *pa = (struct pci_attach_args *) aux;
   1449 	bus_dma_segment_t seg;
   1450 	uint32_t reg;
   1451 	struct ifnet *ifp;
   1452 	uint8_t eaddr[ETHER_ADDR_LEN], mac;
   1453 	int i, rseg, error;
   1454 	char devinfo[256];
   1455 
   1456 #define	PCI_CONF_WRITE(r, v)	pci_conf_write(sc->vr_pc, sc->vr_tag, (r), (v))
   1457 #define	PCI_CONF_READ(r)	pci_conf_read(sc->vr_pc, sc->vr_tag, (r))
   1458 
   1459 	sc->vr_dev = self;
   1460 	sc->vr_pc = pa->pa_pc;
   1461 	sc->vr_tag = pa->pa_tag;
   1462 	sc->vr_id = pa->pa_id;
   1463 	callout_init(&sc->vr_tick_ch, 0);
   1464 
   1465 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
   1466 	aprint_naive("\n");
   1467 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
   1468 	    PCI_REVISION(pa->pa_class));
   1469 
   1470 	/*
   1471 	 * Handle power management nonsense.
   1472 	 */
   1473 
   1474 	sc->vr_save_iobase = PCI_CONF_READ(VR_PCI_LOIO);
   1475 	sc->vr_save_membase = PCI_CONF_READ(VR_PCI_LOMEM);
   1476 	sc->vr_save_irq = PCI_CONF_READ(PCI_INTERRUPT_REG);
   1477 
   1478 	/* power up chip */
   1479 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
   1480 	    vr_restore_state)) && error != EOPNOTSUPP) {
   1481 		aprint_error_dev(self, "cannot activate %d\n",
   1482 		    error);
   1483 		return;
   1484 	}
   1485 
   1486 	/* Make sure bus mastering is enabled. */
   1487 	reg = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
   1488 	reg |= PCI_COMMAND_MASTER_ENABLE;
   1489 	PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, reg);
   1490 
   1491 	/* Get revision */
   1492 	sc->vr_revid = PCI_REVISION(pa->pa_class);
   1493 
   1494 	/*
   1495 	 * Map control/status registers.
   1496 	 */
   1497 	{
   1498 		bus_space_tag_t iot, memt;
   1499 		bus_space_handle_t ioh, memh;
   1500 		int ioh_valid, memh_valid;
   1501 		pci_intr_handle_t intrhandle;
   1502 		const char *intrstr;
   1503 
   1504 		ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
   1505 			PCI_MAPREG_TYPE_IO, 0,
   1506 			&iot, &ioh, NULL, NULL) == 0);
   1507 		memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
   1508 			PCI_MAPREG_TYPE_MEM |
   1509 			PCI_MAPREG_MEM_TYPE_32BIT,
   1510 			0, &memt, &memh, NULL, NULL) == 0);
   1511 #if defined(VR_USEIOSPACE)
   1512 		if (ioh_valid) {
   1513 			sc->vr_bst = iot;
   1514 			sc->vr_bsh = ioh;
   1515 		} else if (memh_valid) {
   1516 			sc->vr_bst = memt;
   1517 			sc->vr_bsh = memh;
   1518 		}
   1519 #else
   1520 		if (memh_valid) {
   1521 			sc->vr_bst = memt;
   1522 			sc->vr_bsh = memh;
   1523 		} else if (ioh_valid) {
   1524 			sc->vr_bst = iot;
   1525 			sc->vr_bsh = ioh;
   1526 		}
   1527 #endif
   1528 		else {
   1529 			printf(": unable to map device registers\n");
   1530 			return;
   1531 		}
   1532 
   1533 		/* Allocate interrupt */
   1534 		if (pci_intr_map(pa, &intrhandle)) {
   1535 			aprint_error_dev(self, "couldn't map interrupt\n");
   1536 			return;
   1537 		}
   1538 		intrstr = pci_intr_string(pa->pa_pc, intrhandle);
   1539 		sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
   1540 						vr_intr, sc);
   1541 		if (sc->vr_ih == NULL) {
   1542 			aprint_error_dev(self, "couldn't establish interrupt");
   1543 			if (intrstr != NULL)
   1544 				printf(" at %s", intrstr);
   1545 			printf("\n");
   1546 		}
   1547 		printf("%s: interrupting at %s\n",
   1548 			device_xname(self), intrstr);
   1549 	}
   1550 
   1551 	/*
   1552 	 * Windows may put the chip in suspend mode when it
   1553 	 * shuts down. Be sure to kick it in the head to wake it
   1554 	 * up again.
   1555 	 *
   1556 	 * Don't touch this register on VT3043 since it causes
   1557 	 * kernel MCHK trap on macppc.
   1558 	 * (Note some VT86C100A chip returns a product ID of VT3043)
   1559 	 */
   1560 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT3043)
   1561 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1562 
   1563 	/* Reset the adapter. */
   1564 	vr_reset(sc);
   1565 
   1566 	/*
   1567 	 * Get station address. The way the Rhine chips work,
   1568 	 * you're not allowed to directly access the EEPROM once
   1569 	 * they've been programmed a special way. Consequently,
   1570 	 * we need to read the node address from the PAR0 and PAR1
   1571 	 * registers.
   1572 	 *
   1573 	 * XXXSCW: On the Rhine III, setting VR_EECSR_LOAD forces a reload
   1574 	 *         of the *whole* EEPROM, not just the MAC address. This is
   1575 	 *         pretty pointless since the chip does this automatically
   1576 	 *         at powerup/reset.
   1577 	 *         I suspect the same thing applies to the other Rhine
   1578 	 *         variants, but in the absence of a data sheet for those
   1579 	 *         (and the lack of anyone else noticing the problems this
   1580 	 *         causes) I'm going to retain the old behaviour for the
   1581 	 *         other parts.
   1582 	 *         In some cases, the chip really does startup without having
   1583 	 *         read the EEPROM (kern/34812). To handle this case, we force
   1584 	 *         a reload if we see an all-zeroes MAC address.
   1585 	 */
   1586 	for (mac = 0, i = 0; i < ETHER_ADDR_LEN; i++)
   1587 		mac |= (eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i));
   1588 
   1589 	if (mac == 0 || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6105 &&
   1590 	    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_VIATECH_VT6102)) {
   1591 		VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
   1592 		DELAY(200);
   1593 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1594 			eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
   1595 	}
   1596 
   1597 	/*
   1598 	 * A Rhine chip was detected. Inform the world.
   1599 	 */
   1600 	printf("%s: Ethernet address: %s\n",
   1601 		device_xname(self), ether_sprintf(eaddr));
   1602 
   1603 	memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
   1604 
   1605 	sc->vr_dmat = pa->pa_dmat;
   1606 
   1607 	/*
   1608 	 * Allocate the control data structures, and create and load
   1609 	 * the DMA map for it.
   1610 	 */
   1611 	if ((error = bus_dmamem_alloc(sc->vr_dmat,
   1612 	    sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
   1613 	    0)) != 0) {
   1614 		aprint_error_dev(self, "unable to allocate control data, error = %d\n", error);
   1615 		goto fail_0;
   1616 	}
   1617 
   1618 	if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
   1619 	    sizeof(struct vr_control_data), (void **)&sc->vr_control_data,
   1620 	    BUS_DMA_COHERENT)) != 0) {
   1621 		aprint_error_dev(self, "unable to map control data, error = %d\n", error);
   1622 		goto fail_1;
   1623 	}
   1624 
   1625 	if ((error = bus_dmamap_create(sc->vr_dmat,
   1626 	    sizeof(struct vr_control_data), 1,
   1627 	    sizeof(struct vr_control_data), 0, 0,
   1628 	    &sc->vr_cddmamap)) != 0) {
   1629 		aprint_error_dev(self, "unable to create control data DMA map, "
   1630 		    "error = %d\n", error);
   1631 		goto fail_2;
   1632 	}
   1633 
   1634 	if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
   1635 	    sc->vr_control_data, sizeof(struct vr_control_data), NULL,
   1636 	    0)) != 0) {
   1637 		aprint_error_dev(self, "unable to load control data DMA map, error = %d\n",
   1638 		    error);
   1639 		goto fail_3;
   1640 	}
   1641 
   1642 	/*
   1643 	 * Create the transmit buffer DMA maps.
   1644 	 */
   1645 	for (i = 0; i < VR_NTXDESC; i++) {
   1646 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
   1647 		    1, MCLBYTES, 0, 0,
   1648 		    &VR_DSTX(sc, i)->ds_dmamap)) != 0) {
   1649 			aprint_error_dev(self, "unable to create tx DMA map %d, "
   1650 			    "error = %d\n", i, error);
   1651 			goto fail_4;
   1652 		}
   1653 	}
   1654 
   1655 	/*
   1656 	 * Create the receive buffer DMA maps.
   1657 	 */
   1658 	for (i = 0; i < VR_NRXDESC; i++) {
   1659 		if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
   1660 		    MCLBYTES, 0, 0,
   1661 		    &VR_DSRX(sc, i)->ds_dmamap)) != 0) {
   1662 			aprint_error_dev(self, "unable to create rx DMA map %d, "
   1663 			    "error = %d\n", i, error);
   1664 			goto fail_5;
   1665 		}
   1666 		VR_DSRX(sc, i)->ds_mbuf = NULL;
   1667 	}
   1668 
   1669 	ifp = &sc->vr_ec.ec_if;
   1670 	ifp->if_softc = sc;
   1671 	ifp->if_mtu = ETHERMTU;
   1672 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1673 	ifp->if_ioctl = vr_ioctl;
   1674 	ifp->if_start = vr_start;
   1675 	ifp->if_watchdog = vr_watchdog;
   1676 	ifp->if_init = vr_init;
   1677 	ifp->if_stop = vr_stop;
   1678 	IFQ_SET_READY(&ifp->if_snd);
   1679 
   1680 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
   1681 
   1682 	/*
   1683 	 * Initialize MII/media info.
   1684 	 */
   1685 	sc->vr_mii.mii_ifp = ifp;
   1686 	sc->vr_mii.mii_readreg = vr_mii_readreg;
   1687 	sc->vr_mii.mii_writereg = vr_mii_writereg;
   1688 	sc->vr_mii.mii_statchg = vr_mii_statchg;
   1689 
   1690 	sc->vr_ec.ec_mii = &sc->vr_mii;
   1691 	ifmedia_init(&sc->vr_mii.mii_media, IFM_IMASK, ether_mediachange,
   1692 		ether_mediastatus);
   1693 	mii_attach(self, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
   1694 	    MII_OFFSET_ANY, MIIF_FORCEANEG);
   1695 	if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
   1696 		ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   1697 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
   1698 	} else
   1699 		ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
   1700 
   1701 	/*
   1702 	 * Call MI attach routines.
   1703 	 */
   1704 	if_attach(ifp);
   1705 	ether_ifattach(ifp, sc->vr_enaddr);
   1706 #if NRND > 0
   1707 	rnd_attach_source(&sc->rnd_source, device_xname(self),
   1708 	    RND_TYPE_NET, 0);
   1709 #endif
   1710 
   1711 	if (pmf_device_register1(self, NULL, vr_resume, vr_shutdown))
   1712 		pmf_class_network_register(self, ifp);
   1713 	else
   1714 		aprint_error_dev(self, "couldn't establish power handler\n");
   1715 
   1716 	return;
   1717 
   1718  fail_5:
   1719 	for (i = 0; i < VR_NRXDESC; i++) {
   1720 		if (sc->vr_rxsoft[i].ds_dmamap != NULL)
   1721 			bus_dmamap_destroy(sc->vr_dmat,
   1722 			    sc->vr_rxsoft[i].ds_dmamap);
   1723 	}
   1724  fail_4:
   1725 	for (i = 0; i < VR_NTXDESC; i++) {
   1726 		if (sc->vr_txsoft[i].ds_dmamap != NULL)
   1727 			bus_dmamap_destroy(sc->vr_dmat,
   1728 			    sc->vr_txsoft[i].ds_dmamap);
   1729 	}
   1730 	bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
   1731  fail_3:
   1732 	bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
   1733  fail_2:
   1734 	bus_dmamem_unmap(sc->vr_dmat, (void *)sc->vr_control_data,
   1735 	    sizeof(struct vr_control_data));
   1736  fail_1:
   1737 	bus_dmamem_free(sc->vr_dmat, &seg, rseg);
   1738  fail_0:
   1739 	return;
   1740 }
   1741 
   1742 static int
   1743 vr_restore_state(pci_chipset_tag_t pc, pcitag_t tag, device_t self,
   1744     pcireg_t state)
   1745 {
   1746 	struct vr_softc *sc = device_private(self);
   1747 	int error;
   1748 
   1749 	if (state == PCI_PMCSR_STATE_D0)
   1750 		return 0;
   1751 	if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0)))
   1752 		return error;
   1753 
   1754 	/* Restore PCI config data. */
   1755 	PCI_CONF_WRITE(VR_PCI_LOIO, sc->vr_save_iobase);
   1756 	PCI_CONF_WRITE(VR_PCI_LOMEM, sc->vr_save_membase);
   1757 	PCI_CONF_WRITE(PCI_INTERRUPT_REG, sc->vr_save_irq);
   1758 	return 0;
   1759 }
   1760 
   1761 static bool
   1762 vr_resume(device_t self PMF_FN_ARGS)
   1763 {
   1764 	struct vr_softc *sc = device_private(self);
   1765 
   1766 	if (PCI_PRODUCT(sc->vr_id) != PCI_PRODUCT_VIATECH_VT3043)
   1767 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
   1768 
   1769 	return true;
   1770 }
   1771