if_vte.c revision 1.1.4.2 1 /* $NetBSD: if_vte.c,v 1.1.4.2 2011/03/05 20:53:45 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.1.4.2 2011/03/05 20:53:45 rmind Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81
82 #include "rnd.h"
83 #if NRND > 0
84 #include <sys/rnd.h>
85 #endif
86
87 #include "opt_inet.h"
88 #include <net/if_ether.h>
89 #ifdef INET
90 #include <netinet/in.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip.h>
94 #include <netinet/if_inarp.h>
95 #endif
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 #include <dev/pci/pcidevs.h>
103
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106
107 #include <dev/pci/if_vtereg.h>
108 #include <dev/pci/if_vtevar.h>
109
110 static int vte_match(device_t, cfdata_t, void *);
111 static void vte_attach(device_t, device_t, void *);
112 static int vte_detach(device_t, int);
113 static int vte_dma_alloc(struct vte_softc *);
114 static void vte_dma_free(struct vte_softc *);
115 static struct vte_txdesc *
116 vte_encap(struct vte_softc *, struct mbuf **);
117 static void vte_get_macaddr(struct vte_softc *);
118 static int vte_init(struct ifnet *);
119 static int vte_init_rx_ring(struct vte_softc *);
120 static int vte_init_tx_ring(struct vte_softc *);
121 static int vte_intr(void *);
122 static int vte_ifioctl(struct ifnet *, u_long, void *);
123 static void vte_mac_config(struct vte_softc *);
124 static int vte_miibus_readreg(device_t, int, int);
125 static void vte_miibus_statchg(device_t);
126 static void vte_miibus_writereg(device_t, int, int, int);
127 static int vte_mediachange(struct ifnet *);
128 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
129 static void vte_reset(struct vte_softc *);
130 static void vte_rxeof(struct vte_softc *);
131 static void vte_rxfilter(struct vte_softc *);
132 static bool vte_shutdown(device_t, int);
133 static bool vte_suspend(device_t, const pmf_qual_t *);
134 static bool vte_resume(device_t, const pmf_qual_t *);
135 static void vte_ifstart(struct ifnet *);
136 static void vte_start_mac(struct vte_softc *);
137 static void vte_stats_clear(struct vte_softc *);
138 static void vte_stats_update(struct vte_softc *);
139 static void vte_stop(struct ifnet *, int);
140 static void vte_stop_mac(struct vte_softc *);
141 static void vte_tick(void *);
142 static void vte_txeof(struct vte_softc *);
143 static void vte_ifwatchdog(struct ifnet *);
144
145 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
146 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
147 static int vte_root_num;
148
149 #define DPRINTF(a)
150
151 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
152 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
153
154
155 static int
156 vte_match(device_t parent, cfdata_t cf, void *aux)
157 {
158 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
159
160 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
161 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
162 return 1;
163
164 return 0;
165 }
166
167 static void
168 vte_attach(device_t parent, device_t self, void *aux)
169 {
170 struct vte_softc *sc = device_private(self);
171 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
172 struct ifnet * const ifp = &sc->vte_if;
173 int h_valid;
174 pcireg_t reg, csr;
175 pci_intr_handle_t intrhandle;
176 const char *intrstr;
177 int error;
178 char devinfo[256];
179 const struct sysctlnode *node;
180 int vte_nodenum;
181
182 sc->vte_dev = self;
183 aprint_normal("\n");
184
185 callout_init(&sc->vte_tick_ch, 0);
186
187 /* Map the device. */
188 h_valid = 0;
189 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
190 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
191 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
192 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
193 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
194 }
195 if (h_valid == 0) {
196 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
197 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
198 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
199 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
200 &sc->vte_bushandle, NULL, NULL) == 0);
201 }
202 }
203 if (h_valid == 0) {
204 aprint_error_dev(self, "unable to map device registers\n");
205 return;
206 }
207 sc->vte_dmatag = pa->pa_dmat;
208 /* Enable the device. */
209 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
210 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
211 csr | PCI_COMMAND_MASTER_ENABLE);
212
213 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
214 aprint_normal_dev(self, "%s\n", devinfo);
215
216 /* Reset the ethernet controller. */
217 vte_reset(sc);
218
219 if ((error = vte_dma_alloc(sc) != 0))
220 return;
221
222 /* Load station address. */
223 vte_get_macaddr(sc);
224
225 aprint_normal_dev(self, "Ethernet address %s\n",
226 ether_sprintf(sc->vte_eaddr));
227
228 /* Map and establish interrupts */
229 if (pci_intr_map(pa, &intrhandle)) {
230 aprint_error_dev(self, "couldn't map interrupt\n");
231 return;
232 }
233 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
234 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
235 vte_intr, sc);
236 if (sc->vte_ih == NULL) {
237 aprint_error_dev(self, "couldn't establish interrupt");
238 if (intrstr != NULL)
239 aprint_error(" at %s", intrstr);
240 aprint_error("\n");
241 return;
242 }
243 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
244
245 sc->vte_if.if_softc = sc;
246 sc->vte_mii.mii_ifp = ifp;
247 sc->vte_mii.mii_readreg = vte_miibus_readreg;
248 sc->vte_mii.mii_writereg = vte_miibus_writereg;
249 sc->vte_mii.mii_statchg = vte_miibus_statchg;
250 sc->vte_ec.ec_mii = &sc->vte_mii;
251 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
252 ether_mediastatus);
253 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
254 MII_OFFSET_ANY, 0);
255 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
256 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
257 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
258 } else
259 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
260
261 /*
262 * We can support 802.1Q VLAN-sized frames.
263 */
264 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
265
266 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
267 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
268 ifp->if_ioctl = vte_ifioctl;
269 ifp->if_start = vte_ifstart;
270 ifp->if_watchdog = vte_ifwatchdog;
271 ifp->if_init = vte_init;
272 ifp->if_stop = vte_stop;
273 ifp->if_timer = 0;
274 IFQ_SET_READY(&ifp->if_snd);
275 if_attach(ifp);
276 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
277
278 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
279 pmf_class_network_register(self, ifp);
280 else
281 aprint_error_dev(self, "couldn't establish power handler\n");
282
283 #if NRND > 0
284 rnd_attach_source(&sc->rnd_source, device_xname(self),
285 RND_TYPE_NET, 0);
286 #endif
287 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
288 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
289 SYSCTL_DESCR("vte per-controller controls"),
290 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
291 CTL_EOL) != 0) {
292 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
293 return;
294 }
295 vte_nodenum = node->sysctl_num;
296 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
297 CTLFLAG_READWRITE,
298 CTLTYPE_INT, "int_rxct",
299 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
300 vte_sysctl_intrxct, 0, sc,
301 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
302 CTL_EOL) != 0) {
303 aprint_normal_dev(sc->vte_dev,
304 "couldn't create int_rxct sysctl node\n");
305 }
306 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
307 CTLFLAG_READWRITE,
308 CTLTYPE_INT, "int_txct",
309 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
310 vte_sysctl_inttxct, 0, sc,
311 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
312 CTL_EOL) != 0) {
313 aprint_normal_dev(sc->vte_dev,
314 "couldn't create int_txct sysctl node\n");
315 }
316 }
317
318 static int
319 vte_detach(device_t dev, int flags __unused)
320 {
321 struct vte_softc *sc = device_private(dev);
322 struct ifnet *ifp = &sc->vte_if;
323 int s;
324
325 s = splnet();
326 /* Stop the interface. Callouts are stopped in it. */
327 vte_stop(ifp, 1);
328 splx(s);
329
330 pmf_device_deregister(dev);
331
332 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
333 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
334
335 ether_ifdetach(ifp);
336 if_detach(ifp);
337
338 vte_dma_free(sc);
339
340 return (0);
341 }
342
343 static int
344 vte_miibus_readreg(device_t dev, int phy, int reg)
345 {
346 struct vte_softc *sc = device_private(dev);
347 int i;
348
349 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
350 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
351 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
352 DELAY(5);
353 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
354 break;
355 }
356
357 if (i == 0) {
358 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
359 return (0);
360 }
361
362 return (CSR_READ_2(sc, VTE_MMRD));
363 }
364
365 static void
366 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
367 {
368 struct vte_softc *sc = device_private(dev);
369 int i;
370
371 CSR_WRITE_2(sc, VTE_MMWD, val);
372 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
373 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
374 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
375 DELAY(5);
376 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
377 break;
378 }
379
380 if (i == 0)
381 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
382
383 }
384
385 static void
386 vte_miibus_statchg(device_t dev)
387 {
388 struct vte_softc *sc = device_private(dev);
389 struct ifnet *ifp;
390 uint16_t val;
391
392 ifp = &sc->vte_if;
393
394 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
395 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
396
397 sc->vte_flags &= ~VTE_FLAG_LINK;
398 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
399 (IFM_ACTIVE | IFM_AVALID)) {
400 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
401 case IFM_10_T:
402 case IFM_100_TX:
403 sc->vte_flags |= VTE_FLAG_LINK;
404 break;
405 default:
406 break;
407 }
408 }
409
410 /* Stop RX/TX MACs. */
411 vte_stop_mac(sc);
412 /* Program MACs with resolved duplex and flow control. */
413 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
414 /*
415 * Timer waiting time : (63 + TIMER * 64) MII clock.
416 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
417 */
418 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
419 val = 18 << VTE_IM_TIMER_SHIFT;
420 else
421 val = 1 << VTE_IM_TIMER_SHIFT;
422 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
423 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
424 CSR_WRITE_2(sc, VTE_MRICR, val);
425
426 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
427 val = 18 << VTE_IM_TIMER_SHIFT;
428 else
429 val = 1 << VTE_IM_TIMER_SHIFT;
430 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
431 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
432 CSR_WRITE_2(sc, VTE_MTICR, val);
433
434 vte_mac_config(sc);
435 vte_start_mac(sc);
436 DPRINTF(("vte_miibus_statchg: link\n"));
437 }
438 }
439
440 static void
441 vte_get_macaddr(struct vte_softc *sc)
442 {
443 uint16_t mid;
444
445 /*
446 * It seems there is no way to reload station address and
447 * it is supposed to be set by BIOS.
448 */
449 mid = CSR_READ_2(sc, VTE_MID0L);
450 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
451 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
452 mid = CSR_READ_2(sc, VTE_MID0M);
453 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
454 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
455 mid = CSR_READ_2(sc, VTE_MID0H);
456 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
457 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
458 }
459
460
461 static int
462 vte_dma_alloc(struct vte_softc *sc)
463 {
464 struct vte_txdesc *txd;
465 struct vte_rxdesc *rxd;
466 int error, i, rseg;
467
468 /* create DMA map for TX ring */
469 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
470 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
471 &sc->vte_cdata.vte_tx_ring_map);
472 if (error) {
473 aprint_error_dev(sc->vte_dev,
474 "could not create dma map for TX ring (%d)\n",
475 error);
476 goto fail;
477 }
478 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
479 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
480 VTE_TX_RING_ALIGN, 0,
481 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
482 BUS_DMA_NOWAIT);
483 if (error != 0) {
484 aprint_error_dev(sc->vte_dev,
485 "could not allocate DMA'able memory for TX ring (%d).\n",
486 error);
487 goto fail;
488 }
489 KASSERT(rseg == 1);
490 error = bus_dmamem_map(sc->vte_dmatag,
491 sc->vte_cdata.vte_tx_ring_seg, 1,
492 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
493 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
494 if (error != 0) {
495 aprint_error_dev(sc->vte_dev,
496 "could not map DMA'able memory for TX ring (%d).\n",
497 error);
498 goto fail;
499 }
500 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
501 error = bus_dmamap_load(sc->vte_dmatag,
502 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
503 VTE_TX_RING_SZ, NULL,
504 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
505 if (error != 0) {
506 aprint_error_dev(sc->vte_dev,
507 "could not load DMA'able memory for TX ring.\n");
508 goto fail;
509 }
510
511 /* create DMA map for RX ring */
512 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
513 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
514 &sc->vte_cdata.vte_rx_ring_map);
515 if (error) {
516 aprint_error_dev(sc->vte_dev,
517 "could not create dma map for RX ring (%d)\n",
518 error);
519 goto fail;
520 }
521 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
522 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
523 VTE_RX_RING_ALIGN, 0,
524 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
525 BUS_DMA_NOWAIT);
526 if (error != 0) {
527 aprint_error_dev(sc->vte_dev,
528 "could not allocate DMA'able memory for RX ring (%d).\n",
529 error);
530 goto fail;
531 }
532 KASSERT(rseg == 1);
533 error = bus_dmamem_map(sc->vte_dmatag,
534 sc->vte_cdata.vte_rx_ring_seg, 1,
535 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
536 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
537 if (error != 0) {
538 aprint_error_dev(sc->vte_dev,
539 "could not map DMA'able memory for RX ring (%d).\n",
540 error);
541 goto fail;
542 }
543 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
544 error = bus_dmamap_load(sc->vte_dmatag,
545 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
546 VTE_RX_RING_SZ, NULL,
547 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
548 if (error != 0) {
549 aprint_error_dev(sc->vte_dev,
550 "could not load DMA'able memory for RX ring (%d).\n",
551 error);
552 goto fail;
553 }
554
555 /* Create DMA maps for TX buffers. */
556 for (i = 0; i < VTE_TX_RING_CNT; i++) {
557 txd = &sc->vte_cdata.vte_txdesc[i];
558 txd->tx_m = NULL;
559 txd->tx_dmamap = NULL;
560 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
561 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
562 &txd->tx_dmamap);
563 if (error != 0) {
564 aprint_error_dev(sc->vte_dev,
565 "could not create TX DMA map %d (%d).\n", i, error);
566 goto fail;
567 }
568 }
569 /* Create DMA maps for RX buffers. */
570 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
571 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
572 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
573 aprint_error_dev(sc->vte_dev,
574 "could not create spare RX dmamap (%d).\n", error);
575 goto fail;
576 }
577 for (i = 0; i < VTE_RX_RING_CNT; i++) {
578 rxd = &sc->vte_cdata.vte_rxdesc[i];
579 rxd->rx_m = NULL;
580 rxd->rx_dmamap = NULL;
581 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
582 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
583 &rxd->rx_dmamap);
584 if (error != 0) {
585 aprint_error_dev(sc->vte_dev,
586 "could not create RX dmamap %d (%d).\n", i, error);
587 goto fail;
588 }
589 }
590 return 0;
591
592 fail:
593 vte_dma_free(sc);
594 return (error);
595 }
596
597 static void
598 vte_dma_free(struct vte_softc *sc)
599 {
600 struct vte_txdesc *txd;
601 struct vte_rxdesc *rxd;
602 int i;
603
604 /* TX buffers. */
605 for (i = 0; i < VTE_TX_RING_CNT; i++) {
606 txd = &sc->vte_cdata.vte_txdesc[i];
607 if (txd->tx_dmamap != NULL) {
608 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
609 txd->tx_dmamap = NULL;
610 }
611 }
612 /* RX buffers */
613 for (i = 0; i < VTE_RX_RING_CNT; i++) {
614 rxd = &sc->vte_cdata.vte_rxdesc[i];
615 if (rxd->rx_dmamap != NULL) {
616 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
617 rxd->rx_dmamap = NULL;
618 }
619 }
620 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
621 bus_dmamap_destroy(sc->vte_dmatag,
622 sc->vte_cdata.vte_rx_sparemap);
623 sc->vte_cdata.vte_rx_sparemap = NULL;
624 }
625 /* TX descriptor ring. */
626 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
627 bus_dmamap_unload(sc->vte_dmatag,
628 sc->vte_cdata.vte_tx_ring_map);
629 bus_dmamap_destroy(sc->vte_dmatag,
630 sc->vte_cdata.vte_tx_ring_map);
631 }
632 if (sc->vte_cdata.vte_tx_ring != NULL) {
633 bus_dmamem_unmap(sc->vte_dmatag,
634 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
635 bus_dmamem_free(sc->vte_dmatag,
636 sc->vte_cdata.vte_tx_ring_seg, 1);
637 }
638 sc->vte_cdata.vte_tx_ring = NULL;
639 sc->vte_cdata.vte_tx_ring_map = NULL;
640 /* RX ring. */
641 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
642 bus_dmamap_unload(sc->vte_dmatag,
643 sc->vte_cdata.vte_rx_ring_map);
644 bus_dmamap_destroy(sc->vte_dmatag,
645 sc->vte_cdata.vte_rx_ring_map);
646 }
647 if (sc->vte_cdata.vte_rx_ring != NULL) {
648 bus_dmamem_unmap(sc->vte_dmatag,
649 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
650 bus_dmamem_free(sc->vte_dmatag,
651 sc->vte_cdata.vte_rx_ring_seg, 1);
652 }
653 sc->vte_cdata.vte_rx_ring = NULL;
654 sc->vte_cdata.vte_rx_ring_map = NULL;
655 }
656
657 static bool
658 vte_shutdown(device_t dev, int howto)
659 {
660
661 return (vte_suspend(dev, NULL));
662 }
663
664 static bool
665 vte_suspend(device_t dev, const pmf_qual_t *qual)
666 {
667 struct vte_softc *sc = device_private(dev);
668 struct ifnet *ifp = &sc->vte_if;
669
670 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
671 if ((ifp->if_flags & IFF_RUNNING) != 0)
672 vte_stop(ifp, 1);
673 return (0);
674 }
675
676 static bool
677 vte_resume(device_t dev, const pmf_qual_t *qual)
678 {
679 struct vte_softc *sc = device_private(dev);
680 struct ifnet *ifp;
681
682 ifp = &sc->vte_if;
683 if ((ifp->if_flags & IFF_UP) != 0) {
684 ifp->if_flags &= ~IFF_RUNNING;
685 vte_init(ifp);
686 }
687
688 return (0);
689 }
690
691 static struct vte_txdesc *
692 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
693 {
694 struct vte_txdesc *txd;
695 struct mbuf *m, *n;
696 int copy, error, padlen;
697
698 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
699 m = *m_head;
700 /*
701 * Controller doesn't auto-pad, so we have to make sure pad
702 * short frames out to the minimum frame length.
703 */
704 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
705 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
706 else
707 padlen = 0;
708
709 /*
710 * Controller does not support multi-fragmented TX buffers.
711 * Controller spends most of its TX processing time in
712 * de-fragmenting TX buffers. Either faster CPU or more
713 * advanced controller DMA engine is required to speed up
714 * TX path processing.
715 * To mitigate the de-fragmenting issue, perform deep copy
716 * from fragmented mbuf chains to a pre-allocated mbuf
717 * cluster with extra cost of kernel memory. For frames
718 * that is composed of single TX buffer, the deep copy is
719 * bypassed.
720 */
721 copy = 0;
722 if (m->m_next != NULL)
723 copy++;
724 if (padlen > 0 && (M_READONLY(m) ||
725 padlen > M_TRAILINGSPACE(m)))
726 copy++;
727 if (copy != 0) {
728 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
729 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
730 n->m_pkthdr.len = m->m_pkthdr.len;
731 n->m_len = m->m_pkthdr.len;
732 m = n;
733 txd->tx_flags |= VTE_TXMBUF;
734 }
735
736 if (padlen > 0) {
737 /* Zero out the bytes in the pad area. */
738 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
739 m->m_pkthdr.len += padlen;
740 m->m_len = m->m_pkthdr.len;
741 }
742
743 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
744 if (error != 0) {
745 txd->tx_flags &= ~VTE_TXMBUF;
746 return (NULL);
747 }
748 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
749 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
750 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
751
752 txd->tx_desc->dtlen =
753 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
754 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
755 sc->vte_cdata.vte_tx_cnt++;
756 /* Update producer index. */
757 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
758
759 /* Finally hand over ownership to controller. */
760 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
761 txd->tx_m = m;
762
763 return (txd);
764 }
765
766 static void
767 vte_ifstart(struct ifnet *ifp)
768 {
769 struct vte_softc *sc = ifp->if_softc;
770 struct vte_txdesc *txd;
771 struct mbuf *m_head, *m;
772 int enq;
773
774 ifp = &sc->vte_if;
775
776 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
777
778 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
779 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
780 return;
781
782 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
783 /* Reserve one free TX descriptor. */
784 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
785 ifp->if_flags |= IFF_OACTIVE;
786 break;
787 }
788 IFQ_POLL(&ifp->if_snd, m_head);
789 if (m_head == NULL)
790 break;
791 /*
792 * Pack the data into the transmit ring. If we
793 * don't have room, set the OACTIVE flag and wait
794 * for the NIC to drain the ring.
795 */
796 DPRINTF(("vte_encap:"));
797 if ((txd = vte_encap(sc, &m_head)) == NULL) {
798 DPRINTF((" failed\n"));
799 break;
800 }
801 DPRINTF((" ok\n"));
802 IFQ_DEQUEUE(&ifp->if_snd, m);
803 KASSERT(m == m_head);
804
805 enq++;
806 /*
807 * If there's a BPF listener, bounce a copy of this frame
808 * to him.
809 */
810 bpf_mtap(ifp, m_head);
811 /* Free consumed TX frame. */
812 if ((txd->tx_flags & VTE_TXMBUF) != 0)
813 m_freem(m_head);
814 }
815
816 if (enq > 0) {
817 bus_dmamap_sync(sc->vte_dmatag,
818 sc->vte_cdata.vte_tx_ring_map, 0,
819 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
820 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
821 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
822 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
823 }
824 }
825
826 static void
827 vte_ifwatchdog(struct ifnet *ifp)
828 {
829 struct vte_softc *sc = ifp->if_softc;
830
831 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
832 return;
833
834 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
835 ifp->if_oerrors++;
836 vte_init(ifp);
837 if (!IFQ_IS_EMPTY(&ifp->if_snd))
838 vte_ifstart(ifp);
839 }
840
841 static int
842 vte_mediachange(struct ifnet *ifp)
843 {
844 int error;
845 struct vte_softc *sc = ifp->if_softc;
846
847 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
848 error = 0;
849 else if (error != 0) {
850 aprint_error_dev(sc->vte_dev, "could not set media\n");
851 return error;
852 }
853 return 0;
854
855 }
856
857 static int
858 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
859 {
860 struct vte_softc *sc = ifp->if_softc;
861 int error, s;
862
863 s = splnet();
864 error = ether_ioctl(ifp, cmd, data);
865 if (error == ENETRESET) {
866 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
867 if (ifp->if_flags & IFF_RUNNING)
868 vte_rxfilter(sc);
869 error = 0;
870 }
871 splx(s);
872 return error;
873 }
874
875 static void
876 vte_mac_config(struct vte_softc *sc)
877 {
878 uint16_t mcr;
879
880 mcr = CSR_READ_2(sc, VTE_MCR0);
881 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
882 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
883 mcr |= MCR0_FULL_DUPLEX;
884 #ifdef notyet
885 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
886 mcr |= MCR0_FC_ENB;
887 /*
888 * The data sheet is not clear whether the controller
889 * honors received pause frames or not. The is no
890 * separate control bit for RX pause frame so just
891 * enable MCR0_FC_ENB bit.
892 */
893 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
894 mcr |= MCR0_FC_ENB;
895 #endif
896 }
897 CSR_WRITE_2(sc, VTE_MCR0, mcr);
898 }
899
900 static void
901 vte_stats_clear(struct vte_softc *sc)
902 {
903
904 /* Reading counter registers clears its contents. */
905 CSR_READ_2(sc, VTE_CNT_RX_DONE);
906 CSR_READ_2(sc, VTE_CNT_MECNT0);
907 CSR_READ_2(sc, VTE_CNT_MECNT1);
908 CSR_READ_2(sc, VTE_CNT_MECNT2);
909 CSR_READ_2(sc, VTE_CNT_MECNT3);
910 CSR_READ_2(sc, VTE_CNT_TX_DONE);
911 CSR_READ_2(sc, VTE_CNT_MECNT4);
912 CSR_READ_2(sc, VTE_CNT_PAUSE);
913 }
914
915 static void
916 vte_stats_update(struct vte_softc *sc)
917 {
918 struct vte_hw_stats *stat;
919 struct ifnet *ifp = &sc->vte_if;
920 uint16_t value;
921
922 stat = &sc->vte_stats;
923
924 CSR_READ_2(sc, VTE_MECISR);
925 /* RX stats. */
926 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
927 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
928 stat->rx_bcast_frames += (value >> 8);
929 stat->rx_mcast_frames += (value & 0xFF);
930 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
931 stat->rx_runts += (value >> 8);
932 stat->rx_crcerrs += (value & 0xFF);
933 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
934 stat->rx_long_frames += (value & 0xFF);
935 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
936 stat->rx_fifo_full += (value >> 8);
937 stat->rx_desc_unavail += (value & 0xFF);
938
939 /* TX stats. */
940 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
941 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
942 stat->tx_underruns += (value >> 8);
943 stat->tx_late_colls += (value & 0xFF);
944
945 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
946 stat->tx_pause_frames += (value >> 8);
947 stat->rx_pause_frames += (value & 0xFF);
948
949 /* Update ifp counters. */
950 ifp->if_opackets = stat->tx_frames;
951 ifp->if_collisions = stat->tx_late_colls;
952 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
953 ifp->if_ipackets = stat->rx_frames;
954 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
955 stat->rx_long_frames + stat->rx_fifo_full;
956 }
957
958 static int
959 vte_intr(void *arg)
960 {
961 struct vte_softc *sc = (struct vte_softc *)arg;
962 struct ifnet *ifp = &sc->vte_if;
963 uint16_t status;
964 int n;
965
966 /* Reading VTE_MISR acknowledges interrupts. */
967 status = CSR_READ_2(sc, VTE_MISR);
968 DPRINTF(("vte_intr status 0x%x\n", status));
969 if ((status & VTE_INTRS) == 0) {
970 /* Not ours. */
971 return 0;
972 }
973
974 /* Disable interrupts. */
975 CSR_WRITE_2(sc, VTE_MIER, 0);
976 for (n = 8; (status & VTE_INTRS) != 0;) {
977 if ((ifp->if_flags & IFF_RUNNING) == 0)
978 break;
979 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
980 MISR_RX_FIFO_FULL)) != 0)
981 vte_rxeof(sc);
982 if ((status & MISR_TX_DONE) != 0)
983 vte_txeof(sc);
984 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
985 vte_stats_update(sc);
986 if (!IFQ_IS_EMPTY(&ifp->if_snd))
987 vte_ifstart(ifp);
988 if (--n > 0)
989 status = CSR_READ_2(sc, VTE_MISR);
990 else
991 break;
992 }
993
994 if ((ifp->if_flags & IFF_RUNNING) != 0) {
995 /* Re-enable interrupts. */
996 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
997 }
998 return 1;
999 }
1000
1001 static void
1002 vte_txeof(struct vte_softc *sc)
1003 {
1004 struct ifnet *ifp;
1005 struct vte_txdesc *txd;
1006 uint16_t status;
1007 int cons, prog;
1008
1009 ifp = &sc->vte_if;
1010
1011 if (sc->vte_cdata.vte_tx_cnt == 0)
1012 return;
1013 bus_dmamap_sync(sc->vte_dmatag,
1014 sc->vte_cdata.vte_tx_ring_map, 0,
1015 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1016 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1017 cons = sc->vte_cdata.vte_tx_cons;
1018 /*
1019 * Go through our TX list and free mbufs for those
1020 * frames which have been transmitted.
1021 */
1022 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1023 txd = &sc->vte_cdata.vte_txdesc[cons];
1024 status = le16toh(txd->tx_desc->dtst);
1025 if ((status & VTE_DTST_TX_OWN) != 0)
1026 break;
1027 sc->vte_cdata.vte_tx_cnt--;
1028 /* Reclaim transmitted mbufs. */
1029 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1030 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1031 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1032 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1033 m_freem(txd->tx_m);
1034 txd->tx_flags &= ~VTE_TXMBUF;
1035 txd->tx_m = NULL;
1036 prog++;
1037 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1038 }
1039
1040 if (prog > 0) {
1041 ifp->if_flags &= ~IFF_OACTIVE;
1042 sc->vte_cdata.vte_tx_cons = cons;
1043 /*
1044 * Unarm watchdog timer only when there is no pending
1045 * frames in TX queue.
1046 */
1047 if (sc->vte_cdata.vte_tx_cnt == 0)
1048 sc->vte_watchdog_timer = 0;
1049 }
1050 }
1051
1052 static int
1053 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1054 {
1055 struct mbuf *m;
1056 bus_dmamap_t map;
1057
1058 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1059 if (m == NULL)
1060 return (ENOBUFS);
1061 m->m_len = m->m_pkthdr.len = MCLBYTES;
1062 m_adj(m, sizeof(uint32_t));
1063
1064 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1065 sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1066 m_freem(m);
1067 return (ENOBUFS);
1068 }
1069 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1070
1071 if (rxd->rx_m != NULL) {
1072 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1073 0, rxd->rx_dmamap->dm_mapsize,
1074 BUS_DMASYNC_POSTREAD);
1075 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1076 }
1077 map = rxd->rx_dmamap;
1078 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1079 sc->vte_cdata.vte_rx_sparemap = map;
1080 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1081 0, rxd->rx_dmamap->dm_mapsize,
1082 BUS_DMASYNC_PREREAD);
1083 rxd->rx_m = m;
1084 rxd->rx_desc->drbp =
1085 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1086 rxd->rx_desc->drlen = htole16(
1087 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1088 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
1089 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1090
1091 return (0);
1092 }
1093
1094 static void
1095 vte_rxeof(struct vte_softc *sc)
1096 {
1097 struct ifnet *ifp;
1098 struct vte_rxdesc *rxd;
1099 struct mbuf *m;
1100 uint16_t status, total_len;
1101 int cons, prog;
1102
1103 bus_dmamap_sync(sc->vte_dmatag,
1104 sc->vte_cdata.vte_rx_ring_map, 0,
1105 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1106 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1107 cons = sc->vte_cdata.vte_rx_cons;
1108 ifp = &sc->vte_if;
1109 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1110 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1111 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1112 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1113 status = le16toh(rxd->rx_desc->drst);
1114 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1115 if ((status & VTE_DRST_RX_OWN) != 0)
1116 break;
1117 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1118 m = rxd->rx_m;
1119 if ((status & VTE_DRST_RX_OK) == 0) {
1120 /* Discard errored frame. */
1121 rxd->rx_desc->drlen =
1122 htole16(MCLBYTES - sizeof(uint32_t));
1123 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1124 continue;
1125 }
1126 if (vte_newbuf(sc, rxd) != 0) {
1127 DPRINTF(("vte_rxeof newbuf failed\n"));
1128 ifp->if_ierrors++;
1129 rxd->rx_desc->drlen =
1130 htole16(MCLBYTES - sizeof(uint32_t));
1131 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1132 continue;
1133 }
1134
1135 /*
1136 * It seems there is no way to strip FCS bytes.
1137 */
1138 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1139 m->m_pkthdr.rcvif = ifp;
1140 ifp->if_ipackets++;
1141 bpf_mtap(ifp, m);
1142 (*ifp->if_input)(ifp, m);
1143 }
1144
1145 if (prog > 0) {
1146 /* Update the consumer index. */
1147 sc->vte_cdata.vte_rx_cons = cons;
1148 /*
1149 * Sync updated RX descriptors such that controller see
1150 * modified RX buffer addresses.
1151 */
1152 bus_dmamap_sync(sc->vte_dmatag,
1153 sc->vte_cdata.vte_rx_ring_map, 0,
1154 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1155 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1156 #ifdef notyet
1157 /*
1158 * Update residue counter. Controller does not
1159 * keep track of number of available RX descriptors
1160 * such that driver should have to update VTE_MRDCR
1161 * to make controller know how many free RX
1162 * descriptors were added to controller. This is
1163 * a similar mechanism used in VIA velocity
1164 * controllers and it indicates controller just
1165 * polls OWN bit of current RX descriptor pointer.
1166 * A couple of severe issues were seen on sample
1167 * board where the controller continuously emits TX
1168 * pause frames once RX pause threshold crossed.
1169 * Once triggered it never recovered form that
1170 * state, I couldn't find a way to make it back to
1171 * work at least. This issue effectively
1172 * disconnected the system from network. Also, the
1173 * controller used 00:00:00:00:00:00 as source
1174 * station address of TX pause frame. Probably this
1175 * is one of reason why vendor recommends not to
1176 * enable flow control on R6040 controller.
1177 */
1178 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1179 (((VTE_RX_RING_CNT * 2) / 10) <<
1180 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1181 #endif
1182 #if NRND > 0
1183 if (RND_ENABLED(&sc->rnd_source))
1184 rnd_add_uint32(&sc->rnd_source, prog);
1185 #endif /* NRND > 0 */
1186 }
1187 }
1188
1189 static void
1190 vte_tick(void *arg)
1191 {
1192 struct vte_softc *sc;
1193 int s = splnet();
1194
1195 sc = (struct vte_softc *)arg;
1196
1197 mii_tick(&sc->vte_mii);
1198 vte_stats_update(sc);
1199 vte_txeof(sc);
1200 vte_ifwatchdog(&sc->vte_if);
1201 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1202 splx(s);
1203 }
1204
1205 static void
1206 vte_reset(struct vte_softc *sc)
1207 {
1208 uint16_t mcr;
1209 int i;
1210
1211 mcr = CSR_READ_2(sc, VTE_MCR1);
1212 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1213 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1214 DELAY(10);
1215 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1216 break;
1217 }
1218 if (i == 0)
1219 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1220 /*
1221 * Follow the guide of vendor recommended way to reset MAC.
1222 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1223 * not reliable so manually reset internal state machine.
1224 */
1225 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1226 CSR_WRITE_2(sc, VTE_MACSM, 0);
1227 DELAY(5000);
1228 }
1229
1230
1231 static int
1232 vte_init(struct ifnet *ifp)
1233 {
1234 struct vte_softc *sc = ifp->if_softc;
1235 bus_addr_t paddr;
1236 uint8_t eaddr[ETHER_ADDR_LEN];
1237 int s, error;
1238
1239 s = splnet();
1240 /*
1241 * Cancel any pending I/O.
1242 */
1243 vte_stop(ifp, 1);
1244 /*
1245 * Reset the chip to a known state.
1246 */
1247 vte_reset(sc);
1248
1249 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1250 splx(s);
1251 return 0;
1252 }
1253
1254 /* Initialize RX descriptors. */
1255 if (vte_init_rx_ring(sc) != 0) {
1256 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1257 vte_stop(ifp, 1);
1258 splx(s);
1259 return ENOMEM;
1260 }
1261 if (vte_init_tx_ring(sc) != 0) {
1262 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1263 vte_stop(ifp, 1);
1264 splx(s);
1265 return ENOMEM;
1266 }
1267
1268 /*
1269 * Reprogram the station address. Controller supports up
1270 * to 4 different station addresses so driver programs the
1271 * first station address as its own ethernet address and
1272 * configure the remaining three addresses as perfect
1273 * multicast addresses.
1274 */
1275 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1276 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1277 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1278 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1279
1280 /* Set TX descriptor base addresses. */
1281 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1282 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1283 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1284 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1285
1286 /* Set RX descriptor base addresses. */
1287 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1288 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1289 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1290 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1291 /*
1292 * Initialize RX descriptor residue counter and set RX
1293 * pause threshold to 20% of available RX descriptors.
1294 * See comments on vte_rxeof() for details on flow control
1295 * issues.
1296 */
1297 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1298 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1299
1300 /*
1301 * Always use maximum frame size that controller can
1302 * support. Otherwise received frames that has longer
1303 * frame length than vte(4) MTU would be silently dropped
1304 * in controller. This would break path-MTU discovery as
1305 * sender wouldn't get any responses from receiver. The
1306 * RX buffer size should be multiple of 4.
1307 * Note, jumbo frames are silently ignored by controller
1308 * and even MAC counters do not detect them.
1309 */
1310 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1311
1312 /* Configure FIFO. */
1313 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1314 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1315 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1316
1317 /*
1318 * Configure TX/RX MACs. Actual resolved duplex and flow
1319 * control configuration is done after detecting a valid
1320 * link. Note, we don't generate early interrupt here
1321 * as well since FreeBSD does not have interrupt latency
1322 * problems like Windows.
1323 */
1324 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1325 /*
1326 * We manually keep track of PHY status changes to
1327 * configure resolved duplex and flow control since only
1328 * duplex configuration can be automatically reflected to
1329 * MCR0.
1330 */
1331 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1332 MCR1_EXCESS_COL_RETRY_16);
1333
1334 /* Initialize RX filter. */
1335 vte_rxfilter(sc);
1336
1337 /* Disable TX/RX interrupt moderation control. */
1338 CSR_WRITE_2(sc, VTE_MRICR, 0);
1339 CSR_WRITE_2(sc, VTE_MTICR, 0);
1340
1341 /* Enable MAC event counter interrupts. */
1342 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1343 /* Clear MAC statistics. */
1344 vte_stats_clear(sc);
1345
1346 /* Acknowledge all pending interrupts and clear it. */
1347 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1348 CSR_WRITE_2(sc, VTE_MISR, 0);
1349 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1350
1351 sc->vte_flags &= ~VTE_FLAG_LINK;
1352 ifp->if_flags |= IFF_RUNNING;
1353 ifp->if_flags &= ~IFF_OACTIVE;
1354
1355 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1356 error = 0;
1357 else if (error != 0) {
1358 aprint_error_dev(sc->vte_dev, "could not set media\n");
1359 splx(s);
1360 return error;
1361 }
1362
1363 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1364
1365 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1366 splx(s);
1367 return 0;
1368 }
1369
1370 static void
1371 vte_stop(struct ifnet *ifp, int disable)
1372 {
1373 struct vte_softc *sc = ifp->if_softc;
1374 struct vte_txdesc *txd;
1375 struct vte_rxdesc *rxd;
1376 int i;
1377
1378 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1379 if ((ifp->if_flags & IFF_RUNNING) == 0)
1380 return;
1381 /*
1382 * Mark the interface down and cancel the watchdog timer.
1383 */
1384 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1385 sc->vte_flags &= ~VTE_FLAG_LINK;
1386 callout_stop(&sc->vte_tick_ch);
1387 sc->vte_watchdog_timer = 0;
1388 vte_stats_update(sc);
1389 /* Disable interrupts. */
1390 CSR_WRITE_2(sc, VTE_MIER, 0);
1391 CSR_WRITE_2(sc, VTE_MECIER, 0);
1392 /* Stop RX/TX MACs. */
1393 vte_stop_mac(sc);
1394 /* Clear interrupts. */
1395 CSR_READ_2(sc, VTE_MISR);
1396 /*
1397 * Free TX/RX mbufs still in the queues.
1398 */
1399 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1400 rxd = &sc->vte_cdata.vte_rxdesc[i];
1401 if (rxd->rx_m != NULL) {
1402 bus_dmamap_sync(sc->vte_dmatag,
1403 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1404 BUS_DMASYNC_POSTREAD);
1405 bus_dmamap_unload(sc->vte_dmatag,
1406 rxd->rx_dmamap);
1407 m_freem(rxd->rx_m);
1408 rxd->rx_m = NULL;
1409 }
1410 }
1411 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1412 txd = &sc->vte_cdata.vte_txdesc[i];
1413 if (txd->tx_m != NULL) {
1414 bus_dmamap_sync(sc->vte_dmatag,
1415 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1416 BUS_DMASYNC_POSTWRITE);
1417 bus_dmamap_unload(sc->vte_dmatag,
1418 txd->tx_dmamap);
1419 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1420 m_freem(txd->tx_m);
1421 txd->tx_m = NULL;
1422 txd->tx_flags &= ~VTE_TXMBUF;
1423 }
1424 }
1425 /* Free TX mbuf pools used for deep copy. */
1426 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1427 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1428 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1429 sc->vte_cdata.vte_txmbufs[i] = NULL;
1430 }
1431 }
1432 }
1433
1434 static void
1435 vte_start_mac(struct vte_softc *sc)
1436 {
1437 struct ifnet *ifp = &sc->vte_if;
1438 uint16_t mcr;
1439 int i;
1440
1441 /* Enable RX/TX MACs. */
1442 mcr = CSR_READ_2(sc, VTE_MCR0);
1443 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1444 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1445 (ifp->if_flags & IFF_RUNNING) != 0) {
1446 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1447 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1448 for (i = VTE_TIMEOUT; i > 0; i--) {
1449 mcr = CSR_READ_2(sc, VTE_MCR0);
1450 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1451 (MCR0_RX_ENB | MCR0_TX_ENB))
1452 break;
1453 DELAY(10);
1454 }
1455 if (i == 0)
1456 aprint_error_dev(sc->vte_dev,
1457 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1458 }
1459 }
1460
1461 static void
1462 vte_stop_mac(struct vte_softc *sc)
1463 {
1464 uint16_t mcr;
1465 int i;
1466
1467 /* Disable RX/TX MACs. */
1468 mcr = CSR_READ_2(sc, VTE_MCR0);
1469 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1470 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1471 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1472 for (i = VTE_TIMEOUT; i > 0; i--) {
1473 mcr = CSR_READ_2(sc, VTE_MCR0);
1474 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1475 break;
1476 DELAY(10);
1477 }
1478 if (i == 0)
1479 aprint_error_dev(sc->vte_dev,
1480 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1481 }
1482 }
1483
1484 static int
1485 vte_init_tx_ring(struct vte_softc *sc)
1486 {
1487 struct vte_tx_desc *desc;
1488 struct vte_txdesc *txd;
1489 bus_addr_t addr;
1490 int i;
1491
1492 sc->vte_cdata.vte_tx_prod = 0;
1493 sc->vte_cdata.vte_tx_cons = 0;
1494 sc->vte_cdata.vte_tx_cnt = 0;
1495
1496 /* Pre-allocate TX mbufs for deep copy. */
1497 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1498 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1499 MT_DATA, M_PKTHDR);
1500 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1501 return (ENOBUFS);
1502 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1503 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1504 }
1505 desc = sc->vte_cdata.vte_tx_ring;
1506 bzero(desc, VTE_TX_RING_SZ);
1507 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1508 txd = &sc->vte_cdata.vte_txdesc[i];
1509 txd->tx_m = NULL;
1510 if (i != VTE_TX_RING_CNT - 1)
1511 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 sizeof(struct vte_tx_desc) * (i + 1);
1513 else
1514 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1515 sizeof(struct vte_tx_desc) * 0;
1516 desc = &sc->vte_cdata.vte_tx_ring[i];
1517 desc->dtnp = htole32(addr);
1518 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1519 txd->tx_desc = desc;
1520 }
1521
1522 bus_dmamap_sync(sc->vte_dmatag,
1523 sc->vte_cdata.vte_tx_ring_map, 0,
1524 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1525 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1526 return (0);
1527 }
1528
1529 static int
1530 vte_init_rx_ring(struct vte_softc *sc)
1531 {
1532 struct vte_rx_desc *desc;
1533 struct vte_rxdesc *rxd;
1534 bus_addr_t addr;
1535 int i;
1536
1537 sc->vte_cdata.vte_rx_cons = 0;
1538 desc = sc->vte_cdata.vte_rx_ring;
1539 bzero(desc, VTE_RX_RING_SZ);
1540 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1541 rxd = &sc->vte_cdata.vte_rxdesc[i];
1542 rxd->rx_m = NULL;
1543 if (i != VTE_RX_RING_CNT - 1)
1544 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 + sizeof(struct vte_rx_desc) * (i + 1);
1546 else
1547 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1548 + sizeof(struct vte_rx_desc) * 0;
1549 desc = &sc->vte_cdata.vte_rx_ring[i];
1550 desc->drnp = htole32(addr);
1551 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1552 rxd->rx_desc = desc;
1553 if (vte_newbuf(sc, rxd) != 0)
1554 return (ENOBUFS);
1555 }
1556
1557 bus_dmamap_sync(sc->vte_dmatag,
1558 sc->vte_cdata.vte_rx_ring_map, 0,
1559 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1560 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1561
1562 return (0);
1563 }
1564
1565 static void
1566 vte_rxfilter(struct vte_softc *sc)
1567 {
1568 struct ether_multistep step;
1569 struct ether_multi *enm;
1570 struct ifnet *ifp;
1571 uint8_t *eaddr;
1572 uint32_t crc;
1573 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1574 uint16_t mchash[4], mcr;
1575 int i, nperf;
1576
1577 ifp = &sc->vte_if;
1578
1579 DPRINTF(("vte_rxfilter\n"));
1580 bzero(mchash, sizeof(mchash));
1581 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1582 rxfilt_perf[i][0] = 0xFFFF;
1583 rxfilt_perf[i][1] = 0xFFFF;
1584 rxfilt_perf[i][2] = 0xFFFF;
1585 }
1586
1587 mcr = CSR_READ_2(sc, VTE_MCR0);
1588 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1589 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST | MCR0_MULTICAST);
1590 if ((ifp->if_flags & IFF_BROADCAST) != 0)
1591 mcr |= MCR0_BROADCAST;
1592 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1593 if ((ifp->if_flags & IFF_PROMISC) != 0)
1594 mcr |= MCR0_PROMISC;
1595 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1596 mcr |= MCR0_MULTICAST;
1597 mchash[0] = 0xFFFF;
1598 mchash[1] = 0xFFFF;
1599 mchash[2] = 0xFFFF;
1600 mchash[3] = 0xFFFF;
1601 goto chipit;
1602 }
1603
1604 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1605 nperf = 0;
1606 while (enm != NULL) {
1607 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1608 sc->vte_if.if_flags |= IFF_ALLMULTI;
1609 mcr |= MCR0_MULTICAST;
1610 mchash[0] = 0xFFFF;
1611 mchash[1] = 0xFFFF;
1612 mchash[2] = 0xFFFF;
1613 mchash[3] = 0xFFFF;
1614 goto chipit;
1615 }
1616 /*
1617 * Program the first 3 multicast groups into
1618 * the perfect filter. For all others, use the
1619 * hash table.
1620 */
1621 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1622 eaddr = enm->enm_addrlo;
1623 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1624 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1625 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1626 nperf++;
1627 continue;
1628 }
1629 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1630 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1631 ETHER_NEXT_MULTI(step, enm);
1632 }
1633 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1634 mchash[3] != 0)
1635 mcr |= MCR0_MULTICAST;
1636
1637 chipit:
1638 /* Program multicast hash table. */
1639 DPRINTF(("chipit write multicast\n"));
1640 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1641 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1642 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1643 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1644 /* Program perfect filter table. */
1645 DPRINTF(("chipit write perfect filter\n"));
1646 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1647 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1648 rxfilt_perf[i][0]);
1649 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1650 rxfilt_perf[i][1]);
1651 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1652 rxfilt_perf[i][2]);
1653 }
1654 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1655 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1656 DPRINTF(("chipit read mcro\n"));
1657 CSR_READ_2(sc, VTE_MCR0);
1658 DPRINTF(("chipit done\n"));
1659 }
1660
1661 /*
1662 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1663 * set up in vte_pci_attach()
1664 */
1665 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1666 {
1667 int rc;
1668 const struct sysctlnode *node;
1669
1670 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1671 0, CTLTYPE_NODE, "hw", NULL,
1672 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1673 goto err;
1674 }
1675
1676 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1677 0, CTLTYPE_NODE, "vte",
1678 SYSCTL_DESCR("vte interface controls"),
1679 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1680 goto err;
1681 }
1682
1683 vte_root_num = node->sysctl_num;
1684 return;
1685
1686 err:
1687 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1688 }
1689
1690 static int
1691 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1692 {
1693 int error, t;
1694 struct sysctlnode node;
1695 struct vte_softc *sc;
1696
1697 node = *rnode;
1698 sc = node.sysctl_data;
1699 t = sc->vte_int_rx_mod;
1700 node.sysctl_data = &t;
1701 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1702 if (error || newp == NULL)
1703 return error;
1704 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1705 return EINVAL;
1706
1707 sc->vte_int_rx_mod = t;
1708 vte_miibus_statchg(sc->vte_dev);
1709 return 0;
1710 }
1711
1712 static int
1713 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1714 {
1715 int error, t;
1716 struct sysctlnode node;
1717 struct vte_softc *sc;
1718
1719 node = *rnode;
1720 sc = node.sysctl_data;
1721 t = sc->vte_int_tx_mod;
1722 node.sysctl_data = &t;
1723 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1724 if (error || newp == NULL)
1725 return error;
1726
1727 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1728 return EINVAL;
1729 sc->vte_int_tx_mod = t;
1730 vte_miibus_statchg(sc->vte_dev);
1731 return 0;
1732 }
1733