if_vte.c revision 1.11.4.4 1
2 /*
3 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 /*-
27 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
28 * All rights reserved.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice unmodified, this list of conditions, and the following
35 * disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 */
52 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
53
54 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
55
56 #include <sys/cdefs.h>
57 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.11.4.4 2016/10/05 20:55:43 skrll Exp $");
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/mbuf.h>
62 #include <sys/protosw.h>
63 #include <sys/socket.h>
64 #include <sys/ioctl.h>
65 #include <sys/errno.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/device.h>
69 #include <sys/sysctl.h>
70
71 #include <net/if.h>
72 #include <net/if_media.h>
73 #include <net/if_types.h>
74 #include <net/if_dl.h>
75 #include <net/route.h>
76 #include <net/netisr.h>
77
78 #include <net/bpf.h>
79 #include <net/bpfdesc.h>
80
81 #include <sys/rndsource.h>
82
83 #include "opt_inet.h"
84 #include <net/if_ether.h>
85 #ifdef INET
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip.h>
90 #include <netinet/if_inarp.h>
91 #endif
92
93 #include <sys/bus.h>
94 #include <sys/intr.h>
95
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99
100 #include <dev/mii/mii.h>
101 #include <dev/mii/miivar.h>
102
103 #include <dev/pci/if_vtereg.h>
104 #include <dev/pci/if_vtevar.h>
105
106 static int vte_match(device_t, cfdata_t, void *);
107 static void vte_attach(device_t, device_t, void *);
108 static int vte_detach(device_t, int);
109 static int vte_dma_alloc(struct vte_softc *);
110 static void vte_dma_free(struct vte_softc *);
111 static struct vte_txdesc *
112 vte_encap(struct vte_softc *, struct mbuf **);
113 static void vte_get_macaddr(struct vte_softc *);
114 static int vte_init(struct ifnet *);
115 static int vte_init_rx_ring(struct vte_softc *);
116 static int vte_init_tx_ring(struct vte_softc *);
117 static int vte_intr(void *);
118 static int vte_ifioctl(struct ifnet *, u_long, void *);
119 static void vte_mac_config(struct vte_softc *);
120 static int vte_miibus_readreg(device_t, int, int);
121 static void vte_miibus_statchg(struct ifnet *);
122 static void vte_miibus_writereg(device_t, int, int, int);
123 static int vte_mediachange(struct ifnet *);
124 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
125 static void vte_reset(struct vte_softc *);
126 static void vte_rxeof(struct vte_softc *);
127 static void vte_rxfilter(struct vte_softc *);
128 static bool vte_shutdown(device_t, int);
129 static bool vte_suspend(device_t, const pmf_qual_t *);
130 static bool vte_resume(device_t, const pmf_qual_t *);
131 static void vte_ifstart(struct ifnet *);
132 static void vte_start_mac(struct vte_softc *);
133 static void vte_stats_clear(struct vte_softc *);
134 static void vte_stats_update(struct vte_softc *);
135 static void vte_stop(struct ifnet *, int);
136 static void vte_stop_mac(struct vte_softc *);
137 static void vte_tick(void *);
138 static void vte_txeof(struct vte_softc *);
139 static void vte_ifwatchdog(struct ifnet *);
140
141 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
142 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
143 static int vte_root_num;
144
145 #define DPRINTF(a)
146
147 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
148 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
149
150
151 static int
152 vte_match(device_t parent, cfdata_t cf, void *aux)
153 {
154 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
155
156 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
157 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
158 return 1;
159
160 return 0;
161 }
162
163 static void
164 vte_attach(device_t parent, device_t self, void *aux)
165 {
166 struct vte_softc *sc = device_private(self);
167 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
168 struct ifnet * const ifp = &sc->vte_if;
169 int h_valid;
170 pcireg_t reg, csr;
171 pci_intr_handle_t intrhandle;
172 const char *intrstr;
173 int error;
174 const struct sysctlnode *node;
175 int vte_nodenum;
176 char intrbuf[PCI_INTRSTR_LEN];
177
178 sc->vte_dev = self;
179
180 callout_init(&sc->vte_tick_ch, 0);
181
182 /* Map the device. */
183 h_valid = 0;
184 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 }
190 if (h_valid == 0) {
191 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 &sc->vte_bushandle, NULL, NULL) == 0);
196 }
197 }
198 if (h_valid == 0) {
199 aprint_error_dev(self, "unable to map device registers\n");
200 return;
201 }
202 sc->vte_dmatag = pa->pa_dmat;
203 /* Enable the device. */
204 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 csr | PCI_COMMAND_MASTER_ENABLE);
207
208 pci_aprint_devinfo(pa, NULL);
209
210 /* Reset the ethernet controller. */
211 vte_reset(sc);
212
213 if ((error = vte_dma_alloc(sc)) != 0)
214 return;
215
216 /* Load station address. */
217 vte_get_macaddr(sc);
218
219 aprint_normal_dev(self, "Ethernet address %s\n",
220 ether_sprintf(sc->vte_eaddr));
221
222 /* Map and establish interrupts */
223 if (pci_intr_map(pa, &intrhandle)) {
224 aprint_error_dev(self, "couldn't map interrupt\n");
225 return;
226 }
227 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
228 sizeof(intrbuf));
229 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
230 vte_intr, sc);
231 if (sc->vte_ih == NULL) {
232 aprint_error_dev(self, "couldn't establish interrupt");
233 if (intrstr != NULL)
234 aprint_error(" at %s", intrstr);
235 aprint_error("\n");
236 return;
237 }
238 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
239
240 sc->vte_if.if_softc = sc;
241 sc->vte_mii.mii_ifp = ifp;
242 sc->vte_mii.mii_readreg = vte_miibus_readreg;
243 sc->vte_mii.mii_writereg = vte_miibus_writereg;
244 sc->vte_mii.mii_statchg = vte_miibus_statchg;
245 sc->vte_ec.ec_mii = &sc->vte_mii;
246 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
247 ether_mediastatus);
248 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
249 MII_OFFSET_ANY, 0);
250 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
251 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
252 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
253 } else
254 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
255
256 /*
257 * We can support 802.1Q VLAN-sized frames.
258 */
259 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
260
261 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
262 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
263 ifp->if_ioctl = vte_ifioctl;
264 ifp->if_start = vte_ifstart;
265 ifp->if_watchdog = vte_ifwatchdog;
266 ifp->if_init = vte_init;
267 ifp->if_stop = vte_stop;
268 ifp->if_timer = 0;
269 IFQ_SET_READY(&ifp->if_snd);
270 if_attach(ifp);
271 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
272
273 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
274 pmf_class_network_register(self, ifp);
275 else
276 aprint_error_dev(self, "couldn't establish power handler\n");
277
278 rnd_attach_source(&sc->rnd_source, device_xname(self),
279 RND_TYPE_NET, RND_FLAG_DEFAULT);
280
281 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
282 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
283 SYSCTL_DESCR("vte per-controller controls"),
284 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
285 CTL_EOL) != 0) {
286 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
287 return;
288 }
289 vte_nodenum = node->sysctl_num;
290 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
291 CTLFLAG_READWRITE,
292 CTLTYPE_INT, "int_rxct",
293 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
294 vte_sysctl_intrxct, 0, (void *)sc,
295 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
296 CTL_EOL) != 0) {
297 aprint_normal_dev(sc->vte_dev,
298 "couldn't create int_rxct sysctl node\n");
299 }
300 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
301 CTLFLAG_READWRITE,
302 CTLTYPE_INT, "int_txct",
303 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
304 vte_sysctl_inttxct, 0, (void *)sc,
305 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
306 CTL_EOL) != 0) {
307 aprint_normal_dev(sc->vte_dev,
308 "couldn't create int_txct sysctl node\n");
309 }
310 }
311
312 static int
313 vte_detach(device_t dev, int flags __unused)
314 {
315 struct vte_softc *sc = device_private(dev);
316 struct ifnet *ifp = &sc->vte_if;
317 int s;
318
319 s = splnet();
320 /* Stop the interface. Callouts are stopped in it. */
321 vte_stop(ifp, 1);
322 splx(s);
323
324 pmf_device_deregister(dev);
325
326 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
327 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331
332 vte_dma_free(sc);
333
334 return (0);
335 }
336
337 static int
338 vte_miibus_readreg(device_t dev, int phy, int reg)
339 {
340 struct vte_softc *sc = device_private(dev);
341 int i;
342
343 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
344 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
345 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
346 DELAY(5);
347 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
348 break;
349 }
350
351 if (i == 0) {
352 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
353 return (0);
354 }
355
356 return (CSR_READ_2(sc, VTE_MMRD));
357 }
358
359 static void
360 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
361 {
362 struct vte_softc *sc = device_private(dev);
363 int i;
364
365 CSR_WRITE_2(sc, VTE_MMWD, val);
366 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
367 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
368 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
369 DELAY(5);
370 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
371 break;
372 }
373
374 if (i == 0)
375 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
376
377 }
378
379 static void
380 vte_miibus_statchg(struct ifnet *ifp)
381 {
382 struct vte_softc *sc = ifp->if_softc;
383 uint16_t val;
384
385 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
386 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
387
388 sc->vte_flags &= ~VTE_FLAG_LINK;
389 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
390 (IFM_ACTIVE | IFM_AVALID)) {
391 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
392 case IFM_10_T:
393 case IFM_100_TX:
394 sc->vte_flags |= VTE_FLAG_LINK;
395 break;
396 default:
397 break;
398 }
399 }
400
401 /* Stop RX/TX MACs. */
402 vte_stop_mac(sc);
403 /* Program MACs with resolved duplex and flow control. */
404 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
405 /*
406 * Timer waiting time : (63 + TIMER * 64) MII clock.
407 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
408 */
409 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
410 val = 18 << VTE_IM_TIMER_SHIFT;
411 else
412 val = 1 << VTE_IM_TIMER_SHIFT;
413 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
414 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
415 CSR_WRITE_2(sc, VTE_MRICR, val);
416
417 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
418 val = 18 << VTE_IM_TIMER_SHIFT;
419 else
420 val = 1 << VTE_IM_TIMER_SHIFT;
421 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
422 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
423 CSR_WRITE_2(sc, VTE_MTICR, val);
424
425 vte_mac_config(sc);
426 vte_start_mac(sc);
427 DPRINTF(("vte_miibus_statchg: link\n"));
428 }
429 }
430
431 static void
432 vte_get_macaddr(struct vte_softc *sc)
433 {
434 uint16_t mid;
435
436 /*
437 * It seems there is no way to reload station address and
438 * it is supposed to be set by BIOS.
439 */
440 mid = CSR_READ_2(sc, VTE_MID0L);
441 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
442 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
443 mid = CSR_READ_2(sc, VTE_MID0M);
444 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
445 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
446 mid = CSR_READ_2(sc, VTE_MID0H);
447 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
448 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
449 }
450
451
452 static int
453 vte_dma_alloc(struct vte_softc *sc)
454 {
455 struct vte_txdesc *txd;
456 struct vte_rxdesc *rxd;
457 int error, i, rseg;
458
459 /* create DMA map for TX ring */
460 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
461 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
462 &sc->vte_cdata.vte_tx_ring_map);
463 if (error) {
464 aprint_error_dev(sc->vte_dev,
465 "could not create dma map for TX ring (%d)\n",
466 error);
467 goto fail;
468 }
469 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
470 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
471 VTE_TX_RING_ALIGN, 0,
472 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
473 BUS_DMA_NOWAIT);
474 if (error != 0) {
475 aprint_error_dev(sc->vte_dev,
476 "could not allocate DMA'able memory for TX ring (%d).\n",
477 error);
478 goto fail;
479 }
480 KASSERT(rseg == 1);
481 error = bus_dmamem_map(sc->vte_dmatag,
482 sc->vte_cdata.vte_tx_ring_seg, 1,
483 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
484 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
485 if (error != 0) {
486 aprint_error_dev(sc->vte_dev,
487 "could not map DMA'able memory for TX ring (%d).\n",
488 error);
489 goto fail;
490 }
491 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
492 error = bus_dmamap_load(sc->vte_dmatag,
493 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
494 VTE_TX_RING_SZ, NULL,
495 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
496 if (error != 0) {
497 aprint_error_dev(sc->vte_dev,
498 "could not load DMA'able memory for TX ring.\n");
499 goto fail;
500 }
501
502 /* create DMA map for RX ring */
503 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
504 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
505 &sc->vte_cdata.vte_rx_ring_map);
506 if (error) {
507 aprint_error_dev(sc->vte_dev,
508 "could not create dma map for RX ring (%d)\n",
509 error);
510 goto fail;
511 }
512 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
513 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
514 VTE_RX_RING_ALIGN, 0,
515 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
516 BUS_DMA_NOWAIT);
517 if (error != 0) {
518 aprint_error_dev(sc->vte_dev,
519 "could not allocate DMA'able memory for RX ring (%d).\n",
520 error);
521 goto fail;
522 }
523 KASSERT(rseg == 1);
524 error = bus_dmamem_map(sc->vte_dmatag,
525 sc->vte_cdata.vte_rx_ring_seg, 1,
526 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
527 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
528 if (error != 0) {
529 aprint_error_dev(sc->vte_dev,
530 "could not map DMA'able memory for RX ring (%d).\n",
531 error);
532 goto fail;
533 }
534 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
535 error = bus_dmamap_load(sc->vte_dmatag,
536 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
537 VTE_RX_RING_SZ, NULL,
538 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
539 if (error != 0) {
540 aprint_error_dev(sc->vte_dev,
541 "could not load DMA'able memory for RX ring (%d).\n",
542 error);
543 goto fail;
544 }
545
546 /* Create DMA maps for TX buffers. */
547 for (i = 0; i < VTE_TX_RING_CNT; i++) {
548 txd = &sc->vte_cdata.vte_txdesc[i];
549 txd->tx_m = NULL;
550 txd->tx_dmamap = NULL;
551 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
552 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
553 &txd->tx_dmamap);
554 if (error != 0) {
555 aprint_error_dev(sc->vte_dev,
556 "could not create TX DMA map %d (%d).\n", i, error);
557 goto fail;
558 }
559 }
560 /* Create DMA maps for RX buffers. */
561 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
562 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
563 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
564 aprint_error_dev(sc->vte_dev,
565 "could not create spare RX dmamap (%d).\n", error);
566 goto fail;
567 }
568 for (i = 0; i < VTE_RX_RING_CNT; i++) {
569 rxd = &sc->vte_cdata.vte_rxdesc[i];
570 rxd->rx_m = NULL;
571 rxd->rx_dmamap = NULL;
572 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
573 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
574 &rxd->rx_dmamap);
575 if (error != 0) {
576 aprint_error_dev(sc->vte_dev,
577 "could not create RX dmamap %d (%d).\n", i, error);
578 goto fail;
579 }
580 }
581 return 0;
582
583 fail:
584 vte_dma_free(sc);
585 return (error);
586 }
587
588 static void
589 vte_dma_free(struct vte_softc *sc)
590 {
591 struct vte_txdesc *txd;
592 struct vte_rxdesc *rxd;
593 int i;
594
595 /* TX buffers. */
596 for (i = 0; i < VTE_TX_RING_CNT; i++) {
597 txd = &sc->vte_cdata.vte_txdesc[i];
598 if (txd->tx_dmamap != NULL) {
599 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
600 txd->tx_dmamap = NULL;
601 }
602 }
603 /* RX buffers */
604 for (i = 0; i < VTE_RX_RING_CNT; i++) {
605 rxd = &sc->vte_cdata.vte_rxdesc[i];
606 if (rxd->rx_dmamap != NULL) {
607 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
608 rxd->rx_dmamap = NULL;
609 }
610 }
611 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
612 bus_dmamap_destroy(sc->vte_dmatag,
613 sc->vte_cdata.vte_rx_sparemap);
614 sc->vte_cdata.vte_rx_sparemap = NULL;
615 }
616 /* TX descriptor ring. */
617 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
618 bus_dmamap_unload(sc->vte_dmatag,
619 sc->vte_cdata.vte_tx_ring_map);
620 bus_dmamap_destroy(sc->vte_dmatag,
621 sc->vte_cdata.vte_tx_ring_map);
622 }
623 if (sc->vte_cdata.vte_tx_ring != NULL) {
624 bus_dmamem_unmap(sc->vte_dmatag,
625 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
626 bus_dmamem_free(sc->vte_dmatag,
627 sc->vte_cdata.vte_tx_ring_seg, 1);
628 }
629 sc->vte_cdata.vte_tx_ring = NULL;
630 sc->vte_cdata.vte_tx_ring_map = NULL;
631 /* RX ring. */
632 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
633 bus_dmamap_unload(sc->vte_dmatag,
634 sc->vte_cdata.vte_rx_ring_map);
635 bus_dmamap_destroy(sc->vte_dmatag,
636 sc->vte_cdata.vte_rx_ring_map);
637 }
638 if (sc->vte_cdata.vte_rx_ring != NULL) {
639 bus_dmamem_unmap(sc->vte_dmatag,
640 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
641 bus_dmamem_free(sc->vte_dmatag,
642 sc->vte_cdata.vte_rx_ring_seg, 1);
643 }
644 sc->vte_cdata.vte_rx_ring = NULL;
645 sc->vte_cdata.vte_rx_ring_map = NULL;
646 }
647
648 static bool
649 vte_shutdown(device_t dev, int howto)
650 {
651
652 return (vte_suspend(dev, NULL));
653 }
654
655 static bool
656 vte_suspend(device_t dev, const pmf_qual_t *qual)
657 {
658 struct vte_softc *sc = device_private(dev);
659 struct ifnet *ifp = &sc->vte_if;
660
661 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
662 if ((ifp->if_flags & IFF_RUNNING) != 0)
663 vte_stop(ifp, 1);
664 return (0);
665 }
666
667 static bool
668 vte_resume(device_t dev, const pmf_qual_t *qual)
669 {
670 struct vte_softc *sc = device_private(dev);
671 struct ifnet *ifp;
672
673 ifp = &sc->vte_if;
674 if ((ifp->if_flags & IFF_UP) != 0) {
675 ifp->if_flags &= ~IFF_RUNNING;
676 vte_init(ifp);
677 }
678
679 return (0);
680 }
681
682 static struct vte_txdesc *
683 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
684 {
685 struct vte_txdesc *txd;
686 struct mbuf *m, *n;
687 int copy, error, padlen;
688
689 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
690 m = *m_head;
691 /*
692 * Controller doesn't auto-pad, so we have to make sure pad
693 * short frames out to the minimum frame length.
694 */
695 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
696 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
697 else
698 padlen = 0;
699
700 /*
701 * Controller does not support multi-fragmented TX buffers.
702 * Controller spends most of its TX processing time in
703 * de-fragmenting TX buffers. Either faster CPU or more
704 * advanced controller DMA engine is required to speed up
705 * TX path processing.
706 * To mitigate the de-fragmenting issue, perform deep copy
707 * from fragmented mbuf chains to a pre-allocated mbuf
708 * cluster with extra cost of kernel memory. For frames
709 * that is composed of single TX buffer, the deep copy is
710 * bypassed.
711 */
712 copy = 0;
713 if (m->m_next != NULL)
714 copy++;
715 if (padlen > 0 && (M_READONLY(m) ||
716 padlen > M_TRAILINGSPACE(m)))
717 copy++;
718 if (copy != 0) {
719 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
720 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
721 n->m_pkthdr.len = m->m_pkthdr.len;
722 n->m_len = m->m_pkthdr.len;
723 m = n;
724 txd->tx_flags |= VTE_TXMBUF;
725 }
726
727 if (padlen > 0) {
728 /* Zero out the bytes in the pad area. */
729 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
730 m->m_pkthdr.len += padlen;
731 m->m_len = m->m_pkthdr.len;
732 }
733
734 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
735 if (error != 0) {
736 txd->tx_flags &= ~VTE_TXMBUF;
737 return (NULL);
738 }
739 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
740 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
741 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
742
743 txd->tx_desc->dtlen =
744 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
745 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
746 sc->vte_cdata.vte_tx_cnt++;
747 /* Update producer index. */
748 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
749
750 /* Finally hand over ownership to controller. */
751 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
752 txd->tx_m = m;
753
754 return (txd);
755 }
756
757 static void
758 vte_ifstart(struct ifnet *ifp)
759 {
760 struct vte_softc *sc = ifp->if_softc;
761 struct vte_txdesc *txd;
762 struct mbuf *m_head, *m;
763 int enq;
764
765 ifp = &sc->vte_if;
766
767 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
768
769 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
770 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
771 return;
772
773 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
774 /* Reserve one free TX descriptor. */
775 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
776 ifp->if_flags |= IFF_OACTIVE;
777 break;
778 }
779 IFQ_POLL(&ifp->if_snd, m_head);
780 if (m_head == NULL)
781 break;
782 /*
783 * Pack the data into the transmit ring. If we
784 * don't have room, set the OACTIVE flag and wait
785 * for the NIC to drain the ring.
786 */
787 DPRINTF(("vte_encap:"));
788 if ((txd = vte_encap(sc, &m_head)) == NULL) {
789 DPRINTF((" failed\n"));
790 break;
791 }
792 DPRINTF((" ok\n"));
793 IFQ_DEQUEUE(&ifp->if_snd, m);
794 KASSERT(m == m_head);
795
796 enq++;
797 /*
798 * If there's a BPF listener, bounce a copy of this frame
799 * to him.
800 */
801 bpf_mtap(ifp, m_head);
802 /* Free consumed TX frame. */
803 if ((txd->tx_flags & VTE_TXMBUF) != 0)
804 m_freem(m_head);
805 }
806
807 if (enq > 0) {
808 bus_dmamap_sync(sc->vte_dmatag,
809 sc->vte_cdata.vte_tx_ring_map, 0,
810 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
811 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
812 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
813 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
814 }
815 }
816
817 static void
818 vte_ifwatchdog(struct ifnet *ifp)
819 {
820 struct vte_softc *sc = ifp->if_softc;
821
822 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
823 return;
824
825 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
826 ifp->if_oerrors++;
827 vte_init(ifp);
828 if (!IFQ_IS_EMPTY(&ifp->if_snd))
829 vte_ifstart(ifp);
830 }
831
832 static int
833 vte_mediachange(struct ifnet *ifp)
834 {
835 int error;
836 struct vte_softc *sc = ifp->if_softc;
837
838 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
839 error = 0;
840 else if (error != 0) {
841 aprint_error_dev(sc->vte_dev, "could not set media\n");
842 return error;
843 }
844 return 0;
845
846 }
847
848 static int
849 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
850 {
851 struct vte_softc *sc = ifp->if_softc;
852 int error, s;
853
854 s = splnet();
855 error = ether_ioctl(ifp, cmd, data);
856 if (error == ENETRESET) {
857 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
858 if (ifp->if_flags & IFF_RUNNING)
859 vte_rxfilter(sc);
860 error = 0;
861 }
862 splx(s);
863 return error;
864 }
865
866 static void
867 vte_mac_config(struct vte_softc *sc)
868 {
869 uint16_t mcr;
870
871 mcr = CSR_READ_2(sc, VTE_MCR0);
872 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
873 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
874 mcr |= MCR0_FULL_DUPLEX;
875 #ifdef notyet
876 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
877 mcr |= MCR0_FC_ENB;
878 /*
879 * The data sheet is not clear whether the controller
880 * honors received pause frames or not. The is no
881 * separate control bit for RX pause frame so just
882 * enable MCR0_FC_ENB bit.
883 */
884 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
885 mcr |= MCR0_FC_ENB;
886 #endif
887 }
888 CSR_WRITE_2(sc, VTE_MCR0, mcr);
889 }
890
891 static void
892 vte_stats_clear(struct vte_softc *sc)
893 {
894
895 /* Reading counter registers clears its contents. */
896 CSR_READ_2(sc, VTE_CNT_RX_DONE);
897 CSR_READ_2(sc, VTE_CNT_MECNT0);
898 CSR_READ_2(sc, VTE_CNT_MECNT1);
899 CSR_READ_2(sc, VTE_CNT_MECNT2);
900 CSR_READ_2(sc, VTE_CNT_MECNT3);
901 CSR_READ_2(sc, VTE_CNT_TX_DONE);
902 CSR_READ_2(sc, VTE_CNT_MECNT4);
903 CSR_READ_2(sc, VTE_CNT_PAUSE);
904 }
905
906 static void
907 vte_stats_update(struct vte_softc *sc)
908 {
909 struct vte_hw_stats *stat;
910 struct ifnet *ifp = &sc->vte_if;
911 uint16_t value;
912
913 stat = &sc->vte_stats;
914
915 CSR_READ_2(sc, VTE_MECISR);
916 /* RX stats. */
917 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
918 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
919 stat->rx_bcast_frames += (value >> 8);
920 stat->rx_mcast_frames += (value & 0xFF);
921 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
922 stat->rx_runts += (value >> 8);
923 stat->rx_crcerrs += (value & 0xFF);
924 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
925 stat->rx_long_frames += (value & 0xFF);
926 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
927 stat->rx_fifo_full += (value >> 8);
928 stat->rx_desc_unavail += (value & 0xFF);
929
930 /* TX stats. */
931 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
932 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
933 stat->tx_underruns += (value >> 8);
934 stat->tx_late_colls += (value & 0xFF);
935
936 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
937 stat->tx_pause_frames += (value >> 8);
938 stat->rx_pause_frames += (value & 0xFF);
939
940 /* Update ifp counters. */
941 ifp->if_opackets = stat->tx_frames;
942 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
943 ifp->if_ipackets = stat->rx_frames;
944 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
945 stat->rx_long_frames + stat->rx_fifo_full;
946 }
947
948 static int
949 vte_intr(void *arg)
950 {
951 struct vte_softc *sc = (struct vte_softc *)arg;
952 struct ifnet *ifp = &sc->vte_if;
953 uint16_t status;
954 int n;
955
956 /* Reading VTE_MISR acknowledges interrupts. */
957 status = CSR_READ_2(sc, VTE_MISR);
958 DPRINTF(("vte_intr status 0x%x\n", status));
959 if ((status & VTE_INTRS) == 0) {
960 /* Not ours. */
961 return 0;
962 }
963
964 /* Disable interrupts. */
965 CSR_WRITE_2(sc, VTE_MIER, 0);
966 for (n = 8; (status & VTE_INTRS) != 0;) {
967 if ((ifp->if_flags & IFF_RUNNING) == 0)
968 break;
969 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
970 MISR_RX_FIFO_FULL)) != 0)
971 vte_rxeof(sc);
972 if ((status & MISR_TX_DONE) != 0)
973 vte_txeof(sc);
974 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
975 vte_stats_update(sc);
976 if (!IFQ_IS_EMPTY(&ifp->if_snd))
977 vte_ifstart(ifp);
978 if (--n > 0)
979 status = CSR_READ_2(sc, VTE_MISR);
980 else
981 break;
982 }
983
984 if ((ifp->if_flags & IFF_RUNNING) != 0) {
985 /* Re-enable interrupts. */
986 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
987 }
988 return 1;
989 }
990
991 static void
992 vte_txeof(struct vte_softc *sc)
993 {
994 struct ifnet *ifp;
995 struct vte_txdesc *txd;
996 uint16_t status;
997 int cons, prog;
998
999 ifp = &sc->vte_if;
1000
1001 if (sc->vte_cdata.vte_tx_cnt == 0)
1002 return;
1003 bus_dmamap_sync(sc->vte_dmatag,
1004 sc->vte_cdata.vte_tx_ring_map, 0,
1005 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1006 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1007 cons = sc->vte_cdata.vte_tx_cons;
1008 /*
1009 * Go through our TX list and free mbufs for those
1010 * frames which have been transmitted.
1011 */
1012 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1013 txd = &sc->vte_cdata.vte_txdesc[cons];
1014 status = le16toh(txd->tx_desc->dtst);
1015 if ((status & VTE_DTST_TX_OWN) != 0)
1016 break;
1017 if ((status & VTE_DTST_TX_OK) != 0)
1018 ifp->if_collisions += (status & 0xf);
1019 sc->vte_cdata.vte_tx_cnt--;
1020 /* Reclaim transmitted mbufs. */
1021 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1022 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1023 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1024 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1025 m_freem(txd->tx_m);
1026 txd->tx_flags &= ~VTE_TXMBUF;
1027 txd->tx_m = NULL;
1028 prog++;
1029 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1030 }
1031
1032 if (prog > 0) {
1033 ifp->if_flags &= ~IFF_OACTIVE;
1034 sc->vte_cdata.vte_tx_cons = cons;
1035 /*
1036 * Unarm watchdog timer only when there is no pending
1037 * frames in TX queue.
1038 */
1039 if (sc->vte_cdata.vte_tx_cnt == 0)
1040 sc->vte_watchdog_timer = 0;
1041 }
1042 }
1043
1044 static int
1045 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1046 {
1047 struct mbuf *m;
1048 bus_dmamap_t map;
1049
1050 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1051 if (m == NULL)
1052 return (ENOBUFS);
1053 m->m_len = m->m_pkthdr.len = MCLBYTES;
1054 m_adj(m, sizeof(uint32_t));
1055
1056 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1057 sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1058 m_freem(m);
1059 return (ENOBUFS);
1060 }
1061 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1062
1063 if (rxd->rx_m != NULL) {
1064 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1065 0, rxd->rx_dmamap->dm_mapsize,
1066 BUS_DMASYNC_POSTREAD);
1067 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1068 }
1069 map = rxd->rx_dmamap;
1070 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1071 sc->vte_cdata.vte_rx_sparemap = map;
1072 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1073 0, rxd->rx_dmamap->dm_mapsize,
1074 BUS_DMASYNC_PREREAD);
1075 rxd->rx_m = m;
1076 rxd->rx_desc->drbp =
1077 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1078 rxd->rx_desc->drlen = htole16(
1079 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1080 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1081 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1082 rxd->rx_dmamap->dm_segs[0].ds_len));
1083 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1084
1085 return (0);
1086 }
1087
1088 static void
1089 vte_rxeof(struct vte_softc *sc)
1090 {
1091 struct ifnet *ifp;
1092 struct vte_rxdesc *rxd;
1093 struct mbuf *m;
1094 uint16_t status, total_len;
1095 int cons, prog;
1096
1097 bus_dmamap_sync(sc->vte_dmatag,
1098 sc->vte_cdata.vte_rx_ring_map, 0,
1099 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1100 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1101 cons = sc->vte_cdata.vte_rx_cons;
1102 ifp = &sc->vte_if;
1103 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1104 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1105 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1106 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1107 status = le16toh(rxd->rx_desc->drst);
1108 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1109 cons, rxd, rxd->rx_m, status,
1110 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1111 if ((status & VTE_DRST_RX_OWN) != 0)
1112 break;
1113 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1114 m = rxd->rx_m;
1115 if ((status & VTE_DRST_RX_OK) == 0) {
1116 /* Discard errored frame. */
1117 rxd->rx_desc->drlen =
1118 htole16(MCLBYTES - sizeof(uint32_t));
1119 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1120 continue;
1121 }
1122 if (vte_newbuf(sc, rxd) != 0) {
1123 DPRINTF(("vte_rxeof newbuf failed\n"));
1124 ifp->if_ierrors++;
1125 rxd->rx_desc->drlen =
1126 htole16(MCLBYTES - sizeof(uint32_t));
1127 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1128 continue;
1129 }
1130
1131 /*
1132 * It seems there is no way to strip FCS bytes.
1133 */
1134 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1135 m_set_rcvif(m, ifp);
1136 ifp->if_ipackets++;
1137 bpf_mtap(ifp, m);
1138 if_percpuq_enqueue(ifp->if_percpuq, m);
1139 }
1140
1141 if (prog > 0) {
1142 /* Update the consumer index. */
1143 sc->vte_cdata.vte_rx_cons = cons;
1144 /*
1145 * Sync updated RX descriptors such that controller see
1146 * modified RX buffer addresses.
1147 */
1148 bus_dmamap_sync(sc->vte_dmatag,
1149 sc->vte_cdata.vte_rx_ring_map, 0,
1150 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1151 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1152 #ifdef notyet
1153 /*
1154 * Update residue counter. Controller does not
1155 * keep track of number of available RX descriptors
1156 * such that driver should have to update VTE_MRDCR
1157 * to make controller know how many free RX
1158 * descriptors were added to controller. This is
1159 * a similar mechanism used in VIA velocity
1160 * controllers and it indicates controller just
1161 * polls OWN bit of current RX descriptor pointer.
1162 * A couple of severe issues were seen on sample
1163 * board where the controller continuously emits TX
1164 * pause frames once RX pause threshold crossed.
1165 * Once triggered it never recovered form that
1166 * state, I couldn't find a way to make it back to
1167 * work at least. This issue effectively
1168 * disconnected the system from network. Also, the
1169 * controller used 00:00:00:00:00:00 as source
1170 * station address of TX pause frame. Probably this
1171 * is one of reason why vendor recommends not to
1172 * enable flow control on R6040 controller.
1173 */
1174 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1175 (((VTE_RX_RING_CNT * 2) / 10) <<
1176 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1177 #endif
1178 rnd_add_uint32(&sc->rnd_source, prog);
1179 }
1180 }
1181
1182 static void
1183 vte_tick(void *arg)
1184 {
1185 struct vte_softc *sc;
1186 int s = splnet();
1187
1188 sc = (struct vte_softc *)arg;
1189
1190 mii_tick(&sc->vte_mii);
1191 vte_stats_update(sc);
1192 vte_txeof(sc);
1193 vte_ifwatchdog(&sc->vte_if);
1194 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1195 splx(s);
1196 }
1197
1198 static void
1199 vte_reset(struct vte_softc *sc)
1200 {
1201 uint16_t mcr;
1202 int i;
1203
1204 mcr = CSR_READ_2(sc, VTE_MCR1);
1205 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1206 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1207 DELAY(10);
1208 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1209 break;
1210 }
1211 if (i == 0)
1212 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1213 /*
1214 * Follow the guide of vendor recommended way to reset MAC.
1215 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1216 * not reliable so manually reset internal state machine.
1217 */
1218 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1219 CSR_WRITE_2(sc, VTE_MACSM, 0);
1220 DELAY(5000);
1221 }
1222
1223
1224 static int
1225 vte_init(struct ifnet *ifp)
1226 {
1227 struct vte_softc *sc = ifp->if_softc;
1228 bus_addr_t paddr;
1229 uint8_t eaddr[ETHER_ADDR_LEN];
1230 int s, error;
1231
1232 s = splnet();
1233 /*
1234 * Cancel any pending I/O.
1235 */
1236 vte_stop(ifp, 1);
1237 /*
1238 * Reset the chip to a known state.
1239 */
1240 vte_reset(sc);
1241
1242 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1243 splx(s);
1244 return 0;
1245 }
1246
1247 /* Initialize RX descriptors. */
1248 if (vte_init_rx_ring(sc) != 0) {
1249 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1250 vte_stop(ifp, 1);
1251 splx(s);
1252 return ENOMEM;
1253 }
1254 if (vte_init_tx_ring(sc) != 0) {
1255 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1256 vte_stop(ifp, 1);
1257 splx(s);
1258 return ENOMEM;
1259 }
1260
1261 /*
1262 * Reprogram the station address. Controller supports up
1263 * to 4 different station addresses so driver programs the
1264 * first station address as its own ethernet address and
1265 * configure the remaining three addresses as perfect
1266 * multicast addresses.
1267 */
1268 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1269 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1270 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1271 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1272
1273 /* Set TX descriptor base addresses. */
1274 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1275 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1276 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1277 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1278
1279 /* Set RX descriptor base addresses. */
1280 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1281 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1282 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1283 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1284 /*
1285 * Initialize RX descriptor residue counter and set RX
1286 * pause threshold to 20% of available RX descriptors.
1287 * See comments on vte_rxeof() for details on flow control
1288 * issues.
1289 */
1290 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1291 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1292
1293 /*
1294 * Always use maximum frame size that controller can
1295 * support. Otherwise received frames that has longer
1296 * frame length than vte(4) MTU would be silently dropped
1297 * in controller. This would break path-MTU discovery as
1298 * sender wouldn't get any responses from receiver. The
1299 * RX buffer size should be multiple of 4.
1300 * Note, jumbo frames are silently ignored by controller
1301 * and even MAC counters do not detect them.
1302 */
1303 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1304
1305 /* Configure FIFO. */
1306 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1307 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1308 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1309
1310 /*
1311 * Configure TX/RX MACs. Actual resolved duplex and flow
1312 * control configuration is done after detecting a valid
1313 * link. Note, we don't generate early interrupt here
1314 * as well since FreeBSD does not have interrupt latency
1315 * problems like Windows.
1316 */
1317 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1318 /*
1319 * We manually keep track of PHY status changes to
1320 * configure resolved duplex and flow control since only
1321 * duplex configuration can be automatically reflected to
1322 * MCR0.
1323 */
1324 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1325 MCR1_EXCESS_COL_RETRY_16);
1326
1327 /* Initialize RX filter. */
1328 vte_rxfilter(sc);
1329
1330 /* Disable TX/RX interrupt moderation control. */
1331 CSR_WRITE_2(sc, VTE_MRICR, 0);
1332 CSR_WRITE_2(sc, VTE_MTICR, 0);
1333
1334 /* Enable MAC event counter interrupts. */
1335 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1336 /* Clear MAC statistics. */
1337 vte_stats_clear(sc);
1338
1339 /* Acknowledge all pending interrupts and clear it. */
1340 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1341 CSR_WRITE_2(sc, VTE_MISR, 0);
1342 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1343 CSR_READ_2(sc, VTE_MISR)));
1344
1345 sc->vte_flags &= ~VTE_FLAG_LINK;
1346 ifp->if_flags |= IFF_RUNNING;
1347 ifp->if_flags &= ~IFF_OACTIVE;
1348
1349 /* calling mii_mediachg will call back vte_start_mac() */
1350 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1351 error = 0;
1352 else if (error != 0) {
1353 aprint_error_dev(sc->vte_dev, "could not set media\n");
1354 splx(s);
1355 return error;
1356 }
1357
1358 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1359
1360 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1361 CSR_READ_2(sc, VTE_MISR)));
1362 splx(s);
1363 return 0;
1364 }
1365
1366 static void
1367 vte_stop(struct ifnet *ifp, int disable)
1368 {
1369 struct vte_softc *sc = ifp->if_softc;
1370 struct vte_txdesc *txd;
1371 struct vte_rxdesc *rxd;
1372 int i;
1373
1374 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1375 if ((ifp->if_flags & IFF_RUNNING) == 0)
1376 return;
1377 /*
1378 * Mark the interface down and cancel the watchdog timer.
1379 */
1380 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1381 sc->vte_flags &= ~VTE_FLAG_LINK;
1382 callout_stop(&sc->vte_tick_ch);
1383 sc->vte_watchdog_timer = 0;
1384 vte_stats_update(sc);
1385 /* Disable interrupts. */
1386 CSR_WRITE_2(sc, VTE_MIER, 0);
1387 CSR_WRITE_2(sc, VTE_MECIER, 0);
1388 /* Stop RX/TX MACs. */
1389 vte_stop_mac(sc);
1390 /* Clear interrupts. */
1391 CSR_READ_2(sc, VTE_MISR);
1392 /*
1393 * Free TX/RX mbufs still in the queues.
1394 */
1395 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1396 rxd = &sc->vte_cdata.vte_rxdesc[i];
1397 if (rxd->rx_m != NULL) {
1398 bus_dmamap_sync(sc->vte_dmatag,
1399 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1400 BUS_DMASYNC_POSTREAD);
1401 bus_dmamap_unload(sc->vte_dmatag,
1402 rxd->rx_dmamap);
1403 m_freem(rxd->rx_m);
1404 rxd->rx_m = NULL;
1405 }
1406 }
1407 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1408 txd = &sc->vte_cdata.vte_txdesc[i];
1409 if (txd->tx_m != NULL) {
1410 bus_dmamap_sync(sc->vte_dmatag,
1411 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1412 BUS_DMASYNC_POSTWRITE);
1413 bus_dmamap_unload(sc->vte_dmatag,
1414 txd->tx_dmamap);
1415 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1416 m_freem(txd->tx_m);
1417 txd->tx_m = NULL;
1418 txd->tx_flags &= ~VTE_TXMBUF;
1419 }
1420 }
1421 /* Free TX mbuf pools used for deep copy. */
1422 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1423 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1424 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1425 sc->vte_cdata.vte_txmbufs[i] = NULL;
1426 }
1427 }
1428 }
1429
1430 static void
1431 vte_start_mac(struct vte_softc *sc)
1432 {
1433 struct ifnet *ifp = &sc->vte_if;
1434 uint16_t mcr;
1435 int i;
1436
1437 /* Enable RX/TX MACs. */
1438 mcr = CSR_READ_2(sc, VTE_MCR0);
1439 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1440 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1441 (ifp->if_flags & IFF_RUNNING) != 0) {
1442 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1443 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1444 for (i = VTE_TIMEOUT; i > 0; i--) {
1445 mcr = CSR_READ_2(sc, VTE_MCR0);
1446 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1447 (MCR0_RX_ENB | MCR0_TX_ENB))
1448 break;
1449 DELAY(10);
1450 }
1451 if (i == 0)
1452 aprint_error_dev(sc->vte_dev,
1453 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1454 }
1455 vte_rxfilter(sc);
1456 }
1457
1458 static void
1459 vte_stop_mac(struct vte_softc *sc)
1460 {
1461 uint16_t mcr;
1462 int i;
1463
1464 /* Disable RX/TX MACs. */
1465 mcr = CSR_READ_2(sc, VTE_MCR0);
1466 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1467 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1468 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1469 for (i = VTE_TIMEOUT; i > 0; i--) {
1470 mcr = CSR_READ_2(sc, VTE_MCR0);
1471 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1472 break;
1473 DELAY(10);
1474 }
1475 if (i == 0)
1476 aprint_error_dev(sc->vte_dev,
1477 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1478 }
1479 }
1480
1481 static int
1482 vte_init_tx_ring(struct vte_softc *sc)
1483 {
1484 struct vte_tx_desc *desc;
1485 struct vte_txdesc *txd;
1486 bus_addr_t addr;
1487 int i;
1488
1489 sc->vte_cdata.vte_tx_prod = 0;
1490 sc->vte_cdata.vte_tx_cons = 0;
1491 sc->vte_cdata.vte_tx_cnt = 0;
1492
1493 /* Pre-allocate TX mbufs for deep copy. */
1494 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1495 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1496 MT_DATA, M_PKTHDR);
1497 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1498 return (ENOBUFS);
1499 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1500 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1501 }
1502 desc = sc->vte_cdata.vte_tx_ring;
1503 bzero(desc, VTE_TX_RING_SZ);
1504 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1505 txd = &sc->vte_cdata.vte_txdesc[i];
1506 txd->tx_m = NULL;
1507 if (i != VTE_TX_RING_CNT - 1)
1508 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1509 sizeof(struct vte_tx_desc) * (i + 1);
1510 else
1511 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 sizeof(struct vte_tx_desc) * 0;
1513 desc = &sc->vte_cdata.vte_tx_ring[i];
1514 desc->dtnp = htole32(addr);
1515 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1516 txd->tx_desc = desc;
1517 }
1518
1519 bus_dmamap_sync(sc->vte_dmatag,
1520 sc->vte_cdata.vte_tx_ring_map, 0,
1521 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1522 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1523 return (0);
1524 }
1525
1526 static int
1527 vte_init_rx_ring(struct vte_softc *sc)
1528 {
1529 struct vte_rx_desc *desc;
1530 struct vte_rxdesc *rxd;
1531 bus_addr_t addr;
1532 int i;
1533
1534 sc->vte_cdata.vte_rx_cons = 0;
1535 desc = sc->vte_cdata.vte_rx_ring;
1536 bzero(desc, VTE_RX_RING_SZ);
1537 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1538 rxd = &sc->vte_cdata.vte_rxdesc[i];
1539 rxd->rx_m = NULL;
1540 if (i != VTE_RX_RING_CNT - 1)
1541 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1542 + sizeof(struct vte_rx_desc) * (i + 1);
1543 else
1544 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 + sizeof(struct vte_rx_desc) * 0;
1546 desc = &sc->vte_cdata.vte_rx_ring[i];
1547 desc->drnp = htole32(addr);
1548 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1549 rxd->rx_desc = desc;
1550 if (vte_newbuf(sc, rxd) != 0)
1551 return (ENOBUFS);
1552 }
1553
1554 bus_dmamap_sync(sc->vte_dmatag,
1555 sc->vte_cdata.vte_rx_ring_map, 0,
1556 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1557 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1558
1559 return (0);
1560 }
1561
1562 static void
1563 vte_rxfilter(struct vte_softc *sc)
1564 {
1565 struct ether_multistep step;
1566 struct ether_multi *enm;
1567 struct ifnet *ifp;
1568 uint8_t *eaddr;
1569 uint32_t crc;
1570 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1571 uint16_t mchash[4], mcr;
1572 int i, nperf;
1573
1574 ifp = &sc->vte_if;
1575
1576 DPRINTF(("vte_rxfilter\n"));
1577 memset(mchash, 0, sizeof(mchash));
1578 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1579 rxfilt_perf[i][0] = 0xFFFF;
1580 rxfilt_perf[i][1] = 0xFFFF;
1581 rxfilt_perf[i][2] = 0xFFFF;
1582 }
1583
1584 mcr = CSR_READ_2(sc, VTE_MCR0);
1585 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1586 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1587 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1588 mcr |= MCR0_BROADCAST_DIS;
1589 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1590 if ((ifp->if_flags & IFF_PROMISC) != 0)
1591 mcr |= MCR0_PROMISC;
1592 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1593 mcr |= MCR0_MULTICAST;
1594 mchash[0] = 0xFFFF;
1595 mchash[1] = 0xFFFF;
1596 mchash[2] = 0xFFFF;
1597 mchash[3] = 0xFFFF;
1598 goto chipit;
1599 }
1600
1601 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1602 nperf = 0;
1603 while (enm != NULL) {
1604 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1605 sc->vte_if.if_flags |= IFF_ALLMULTI;
1606 mcr |= MCR0_MULTICAST;
1607 mchash[0] = 0xFFFF;
1608 mchash[1] = 0xFFFF;
1609 mchash[2] = 0xFFFF;
1610 mchash[3] = 0xFFFF;
1611 goto chipit;
1612 }
1613 /*
1614 * Program the first 3 multicast groups into
1615 * the perfect filter. For all others, use the
1616 * hash table.
1617 */
1618 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1619 eaddr = enm->enm_addrlo;
1620 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1621 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1622 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1623 nperf++;
1624 } else {
1625 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1626 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1627 }
1628 ETHER_NEXT_MULTI(step, enm);
1629 }
1630 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1631 mchash[3] != 0)
1632 mcr |= MCR0_MULTICAST;
1633
1634 chipit:
1635 /* Program multicast hash table. */
1636 DPRINTF(("chipit write multicast\n"));
1637 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1638 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1639 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1640 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1641 /* Program perfect filter table. */
1642 DPRINTF(("chipit write perfect filter\n"));
1643 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1644 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1645 rxfilt_perf[i][0]);
1646 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1647 rxfilt_perf[i][1]);
1648 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1649 rxfilt_perf[i][2]);
1650 }
1651 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1652 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1653 DPRINTF(("chipit read mcro\n"));
1654 CSR_READ_2(sc, VTE_MCR0);
1655 DPRINTF(("chipit done\n"));
1656 }
1657
1658 /*
1659 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1660 * set up in vte_pci_attach()
1661 */
1662 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1663 {
1664 int rc;
1665 const struct sysctlnode *node;
1666
1667 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1668 0, CTLTYPE_NODE, "vte",
1669 SYSCTL_DESCR("vte interface controls"),
1670 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1671 goto err;
1672 }
1673
1674 vte_root_num = node->sysctl_num;
1675 return;
1676
1677 err:
1678 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1679 }
1680
1681 static int
1682 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1683 {
1684 int error, t;
1685 struct sysctlnode node;
1686 struct vte_softc *sc;
1687
1688 node = *rnode;
1689 sc = node.sysctl_data;
1690 t = sc->vte_int_rx_mod;
1691 node.sysctl_data = &t;
1692 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1693 if (error || newp == NULL)
1694 return error;
1695 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1696 return EINVAL;
1697
1698 sc->vte_int_rx_mod = t;
1699 vte_miibus_statchg(&sc->vte_if);
1700 return 0;
1701 }
1702
1703 static int
1704 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1705 {
1706 int error, t;
1707 struct sysctlnode node;
1708 struct vte_softc *sc;
1709
1710 node = *rnode;
1711 sc = node.sysctl_data;
1712 t = sc->vte_int_tx_mod;
1713 node.sysctl_data = &t;
1714 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1715 if (error || newp == NULL)
1716 return error;
1717
1718 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1719 return EINVAL;
1720 sc->vte_int_tx_mod = t;
1721 vte_miibus_statchg(&sc->vte_if);
1722 return 0;
1723 }
1724