if_vte.c revision 1.11.4.5 1 /* $NetBSD: if_vte.c,v 1.11.4.5 2017/02/05 13:40:30 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.11.4.5 2017/02/05 13:40:30 skrll Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81
82 #include <sys/rndsource.h>
83
84 #include "opt_inet.h"
85 #include <net/if_ether.h>
86 #ifdef INET
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/if_inarp.h>
92 #endif
93
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103
104 #include <dev/pci/if_vtereg.h>
105 #include <dev/pci/if_vtevar.h>
106
107 static int vte_match(device_t, cfdata_t, void *);
108 static void vte_attach(device_t, device_t, void *);
109 static int vte_detach(device_t, int);
110 static int vte_dma_alloc(struct vte_softc *);
111 static void vte_dma_free(struct vte_softc *);
112 static struct vte_txdesc *
113 vte_encap(struct vte_softc *, struct mbuf **);
114 static void vte_get_macaddr(struct vte_softc *);
115 static int vte_init(struct ifnet *);
116 static int vte_init_rx_ring(struct vte_softc *);
117 static int vte_init_tx_ring(struct vte_softc *);
118 static int vte_intr(void *);
119 static int vte_ifioctl(struct ifnet *, u_long, void *);
120 static void vte_mac_config(struct vte_softc *);
121 static int vte_miibus_readreg(device_t, int, int);
122 static void vte_miibus_statchg(struct ifnet *);
123 static void vte_miibus_writereg(device_t, int, int, int);
124 static int vte_mediachange(struct ifnet *);
125 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
126 static void vte_reset(struct vte_softc *);
127 static void vte_rxeof(struct vte_softc *);
128 static void vte_rxfilter(struct vte_softc *);
129 static bool vte_shutdown(device_t, int);
130 static bool vte_suspend(device_t, const pmf_qual_t *);
131 static bool vte_resume(device_t, const pmf_qual_t *);
132 static void vte_ifstart(struct ifnet *);
133 static void vte_start_mac(struct vte_softc *);
134 static void vte_stats_clear(struct vte_softc *);
135 static void vte_stats_update(struct vte_softc *);
136 static void vte_stop(struct ifnet *, int);
137 static void vte_stop_mac(struct vte_softc *);
138 static void vte_tick(void *);
139 static void vte_txeof(struct vte_softc *);
140 static void vte_ifwatchdog(struct ifnet *);
141
142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
144 static int vte_root_num;
145
146 #define DPRINTF(a)
147
148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
149 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
150
151
152 static int
153 vte_match(device_t parent, cfdata_t cf, void *aux)
154 {
155 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
156
157 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
158 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
159 return 1;
160
161 return 0;
162 }
163
164 static void
165 vte_attach(device_t parent, device_t self, void *aux)
166 {
167 struct vte_softc *sc = device_private(self);
168 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
169 struct ifnet * const ifp = &sc->vte_if;
170 int h_valid;
171 pcireg_t reg, csr;
172 pci_intr_handle_t intrhandle;
173 const char *intrstr;
174 int error;
175 const struct sysctlnode *node;
176 int vte_nodenum;
177 char intrbuf[PCI_INTRSTR_LEN];
178
179 sc->vte_dev = self;
180
181 callout_init(&sc->vte_tick_ch, 0);
182
183 /* Map the device. */
184 h_valid = 0;
185 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
186 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
187 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
188 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
189 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
190 }
191 if (h_valid == 0) {
192 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
193 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
194 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
195 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
196 &sc->vte_bushandle, NULL, NULL) == 0);
197 }
198 }
199 if (h_valid == 0) {
200 aprint_error_dev(self, "unable to map device registers\n");
201 return;
202 }
203 sc->vte_dmatag = pa->pa_dmat;
204 /* Enable the device. */
205 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
206 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
207 csr | PCI_COMMAND_MASTER_ENABLE);
208
209 pci_aprint_devinfo(pa, NULL);
210
211 /* Reset the ethernet controller. */
212 vte_reset(sc);
213
214 if ((error = vte_dma_alloc(sc)) != 0)
215 return;
216
217 /* Load station address. */
218 vte_get_macaddr(sc);
219
220 aprint_normal_dev(self, "Ethernet address %s\n",
221 ether_sprintf(sc->vte_eaddr));
222
223 /* Map and establish interrupts */
224 if (pci_intr_map(pa, &intrhandle)) {
225 aprint_error_dev(self, "couldn't map interrupt\n");
226 return;
227 }
228 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
229 sizeof(intrbuf));
230 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
231 vte_intr, sc);
232 if (sc->vte_ih == NULL) {
233 aprint_error_dev(self, "couldn't establish interrupt");
234 if (intrstr != NULL)
235 aprint_error(" at %s", intrstr);
236 aprint_error("\n");
237 return;
238 }
239 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
240
241 sc->vte_if.if_softc = sc;
242 sc->vte_mii.mii_ifp = ifp;
243 sc->vte_mii.mii_readreg = vte_miibus_readreg;
244 sc->vte_mii.mii_writereg = vte_miibus_writereg;
245 sc->vte_mii.mii_statchg = vte_miibus_statchg;
246 sc->vte_ec.ec_mii = &sc->vte_mii;
247 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
248 ether_mediastatus);
249 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
250 MII_OFFSET_ANY, 0);
251 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
252 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
254 } else
255 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
256
257 /*
258 * We can support 802.1Q VLAN-sized frames.
259 */
260 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
261
262 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
264 ifp->if_ioctl = vte_ifioctl;
265 ifp->if_start = vte_ifstart;
266 ifp->if_watchdog = vte_ifwatchdog;
267 ifp->if_init = vte_init;
268 ifp->if_stop = vte_stop;
269 ifp->if_timer = 0;
270 IFQ_SET_READY(&ifp->if_snd);
271 if_attach(ifp);
272 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
273
274 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
275 pmf_class_network_register(self, ifp);
276 else
277 aprint_error_dev(self, "couldn't establish power handler\n");
278
279 rnd_attach_source(&sc->rnd_source, device_xname(self),
280 RND_TYPE_NET, RND_FLAG_DEFAULT);
281
282 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
283 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
284 SYSCTL_DESCR("vte per-controller controls"),
285 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
286 CTL_EOL) != 0) {
287 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
288 return;
289 }
290 vte_nodenum = node->sysctl_num;
291 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
292 CTLFLAG_READWRITE,
293 CTLTYPE_INT, "int_rxct",
294 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
295 vte_sysctl_intrxct, 0, (void *)sc,
296 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
297 CTL_EOL) != 0) {
298 aprint_normal_dev(sc->vte_dev,
299 "couldn't create int_rxct sysctl node\n");
300 }
301 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
302 CTLFLAG_READWRITE,
303 CTLTYPE_INT, "int_txct",
304 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
305 vte_sysctl_inttxct, 0, (void *)sc,
306 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
307 CTL_EOL) != 0) {
308 aprint_normal_dev(sc->vte_dev,
309 "couldn't create int_txct sysctl node\n");
310 }
311 }
312
313 static int
314 vte_detach(device_t dev, int flags __unused)
315 {
316 struct vte_softc *sc = device_private(dev);
317 struct ifnet *ifp = &sc->vte_if;
318 int s;
319
320 s = splnet();
321 /* Stop the interface. Callouts are stopped in it. */
322 vte_stop(ifp, 1);
323 splx(s);
324
325 pmf_device_deregister(dev);
326
327 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
328 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
329
330 ether_ifdetach(ifp);
331 if_detach(ifp);
332
333 vte_dma_free(sc);
334
335 return (0);
336 }
337
338 static int
339 vte_miibus_readreg(device_t dev, int phy, int reg)
340 {
341 struct vte_softc *sc = device_private(dev);
342 int i;
343
344 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
345 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
346 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
347 DELAY(5);
348 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
349 break;
350 }
351
352 if (i == 0) {
353 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
354 return (0);
355 }
356
357 return (CSR_READ_2(sc, VTE_MMRD));
358 }
359
360 static void
361 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
362 {
363 struct vte_softc *sc = device_private(dev);
364 int i;
365
366 CSR_WRITE_2(sc, VTE_MMWD, val);
367 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
368 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
369 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
370 DELAY(5);
371 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
372 break;
373 }
374
375 if (i == 0)
376 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
377
378 }
379
380 static void
381 vte_miibus_statchg(struct ifnet *ifp)
382 {
383 struct vte_softc *sc = ifp->if_softc;
384 uint16_t val;
385
386 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
387 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
388
389 sc->vte_flags &= ~VTE_FLAG_LINK;
390 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
391 (IFM_ACTIVE | IFM_AVALID)) {
392 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
393 case IFM_10_T:
394 case IFM_100_TX:
395 sc->vte_flags |= VTE_FLAG_LINK;
396 break;
397 default:
398 break;
399 }
400 }
401
402 /* Stop RX/TX MACs. */
403 vte_stop_mac(sc);
404 /* Program MACs with resolved duplex and flow control. */
405 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
406 /*
407 * Timer waiting time : (63 + TIMER * 64) MII clock.
408 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
409 */
410 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
411 val = 18 << VTE_IM_TIMER_SHIFT;
412 else
413 val = 1 << VTE_IM_TIMER_SHIFT;
414 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
415 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
416 CSR_WRITE_2(sc, VTE_MRICR, val);
417
418 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
419 val = 18 << VTE_IM_TIMER_SHIFT;
420 else
421 val = 1 << VTE_IM_TIMER_SHIFT;
422 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
423 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
424 CSR_WRITE_2(sc, VTE_MTICR, val);
425
426 vte_mac_config(sc);
427 vte_start_mac(sc);
428 DPRINTF(("vte_miibus_statchg: link\n"));
429 }
430 }
431
432 static void
433 vte_get_macaddr(struct vte_softc *sc)
434 {
435 uint16_t mid;
436
437 /*
438 * It seems there is no way to reload station address and
439 * it is supposed to be set by BIOS.
440 */
441 mid = CSR_READ_2(sc, VTE_MID0L);
442 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
443 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
444 mid = CSR_READ_2(sc, VTE_MID0M);
445 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
446 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
447 mid = CSR_READ_2(sc, VTE_MID0H);
448 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
449 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
450 }
451
452
453 static int
454 vte_dma_alloc(struct vte_softc *sc)
455 {
456 struct vte_txdesc *txd;
457 struct vte_rxdesc *rxd;
458 int error, i, rseg;
459
460 /* create DMA map for TX ring */
461 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
462 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
463 &sc->vte_cdata.vte_tx_ring_map);
464 if (error) {
465 aprint_error_dev(sc->vte_dev,
466 "could not create dma map for TX ring (%d)\n",
467 error);
468 goto fail;
469 }
470 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
471 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
472 VTE_TX_RING_ALIGN, 0,
473 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
474 BUS_DMA_NOWAIT);
475 if (error != 0) {
476 aprint_error_dev(sc->vte_dev,
477 "could not allocate DMA'able memory for TX ring (%d).\n",
478 error);
479 goto fail;
480 }
481 KASSERT(rseg == 1);
482 error = bus_dmamem_map(sc->vte_dmatag,
483 sc->vte_cdata.vte_tx_ring_seg, 1,
484 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
485 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
486 if (error != 0) {
487 aprint_error_dev(sc->vte_dev,
488 "could not map DMA'able memory for TX ring (%d).\n",
489 error);
490 goto fail;
491 }
492 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
493 error = bus_dmamap_load(sc->vte_dmatag,
494 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
495 VTE_TX_RING_SZ, NULL,
496 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
497 if (error != 0) {
498 aprint_error_dev(sc->vte_dev,
499 "could not load DMA'able memory for TX ring.\n");
500 goto fail;
501 }
502
503 /* create DMA map for RX ring */
504 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
505 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
506 &sc->vte_cdata.vte_rx_ring_map);
507 if (error) {
508 aprint_error_dev(sc->vte_dev,
509 "could not create dma map for RX ring (%d)\n",
510 error);
511 goto fail;
512 }
513 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
514 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
515 VTE_RX_RING_ALIGN, 0,
516 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
517 BUS_DMA_NOWAIT);
518 if (error != 0) {
519 aprint_error_dev(sc->vte_dev,
520 "could not allocate DMA'able memory for RX ring (%d).\n",
521 error);
522 goto fail;
523 }
524 KASSERT(rseg == 1);
525 error = bus_dmamem_map(sc->vte_dmatag,
526 sc->vte_cdata.vte_rx_ring_seg, 1,
527 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
528 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
529 if (error != 0) {
530 aprint_error_dev(sc->vte_dev,
531 "could not map DMA'able memory for RX ring (%d).\n",
532 error);
533 goto fail;
534 }
535 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
536 error = bus_dmamap_load(sc->vte_dmatag,
537 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
538 VTE_RX_RING_SZ, NULL,
539 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
540 if (error != 0) {
541 aprint_error_dev(sc->vte_dev,
542 "could not load DMA'able memory for RX ring (%d).\n",
543 error);
544 goto fail;
545 }
546
547 /* Create DMA maps for TX buffers. */
548 for (i = 0; i < VTE_TX_RING_CNT; i++) {
549 txd = &sc->vte_cdata.vte_txdesc[i];
550 txd->tx_m = NULL;
551 txd->tx_dmamap = NULL;
552 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
553 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
554 &txd->tx_dmamap);
555 if (error != 0) {
556 aprint_error_dev(sc->vte_dev,
557 "could not create TX DMA map %d (%d).\n", i, error);
558 goto fail;
559 }
560 }
561 /* Create DMA maps for RX buffers. */
562 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
563 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
564 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
565 aprint_error_dev(sc->vte_dev,
566 "could not create spare RX dmamap (%d).\n", error);
567 goto fail;
568 }
569 for (i = 0; i < VTE_RX_RING_CNT; i++) {
570 rxd = &sc->vte_cdata.vte_rxdesc[i];
571 rxd->rx_m = NULL;
572 rxd->rx_dmamap = NULL;
573 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
574 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
575 &rxd->rx_dmamap);
576 if (error != 0) {
577 aprint_error_dev(sc->vte_dev,
578 "could not create RX dmamap %d (%d).\n", i, error);
579 goto fail;
580 }
581 }
582 return 0;
583
584 fail:
585 vte_dma_free(sc);
586 return (error);
587 }
588
589 static void
590 vte_dma_free(struct vte_softc *sc)
591 {
592 struct vte_txdesc *txd;
593 struct vte_rxdesc *rxd;
594 int i;
595
596 /* TX buffers. */
597 for (i = 0; i < VTE_TX_RING_CNT; i++) {
598 txd = &sc->vte_cdata.vte_txdesc[i];
599 if (txd->tx_dmamap != NULL) {
600 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
601 txd->tx_dmamap = NULL;
602 }
603 }
604 /* RX buffers */
605 for (i = 0; i < VTE_RX_RING_CNT; i++) {
606 rxd = &sc->vte_cdata.vte_rxdesc[i];
607 if (rxd->rx_dmamap != NULL) {
608 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
609 rxd->rx_dmamap = NULL;
610 }
611 }
612 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
613 bus_dmamap_destroy(sc->vte_dmatag,
614 sc->vte_cdata.vte_rx_sparemap);
615 sc->vte_cdata.vte_rx_sparemap = NULL;
616 }
617 /* TX descriptor ring. */
618 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
619 bus_dmamap_unload(sc->vte_dmatag,
620 sc->vte_cdata.vte_tx_ring_map);
621 bus_dmamap_destroy(sc->vte_dmatag,
622 sc->vte_cdata.vte_tx_ring_map);
623 }
624 if (sc->vte_cdata.vte_tx_ring != NULL) {
625 bus_dmamem_unmap(sc->vte_dmatag,
626 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
627 bus_dmamem_free(sc->vte_dmatag,
628 sc->vte_cdata.vte_tx_ring_seg, 1);
629 }
630 sc->vte_cdata.vte_tx_ring = NULL;
631 sc->vte_cdata.vte_tx_ring_map = NULL;
632 /* RX ring. */
633 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
634 bus_dmamap_unload(sc->vte_dmatag,
635 sc->vte_cdata.vte_rx_ring_map);
636 bus_dmamap_destroy(sc->vte_dmatag,
637 sc->vte_cdata.vte_rx_ring_map);
638 }
639 if (sc->vte_cdata.vte_rx_ring != NULL) {
640 bus_dmamem_unmap(sc->vte_dmatag,
641 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
642 bus_dmamem_free(sc->vte_dmatag,
643 sc->vte_cdata.vte_rx_ring_seg, 1);
644 }
645 sc->vte_cdata.vte_rx_ring = NULL;
646 sc->vte_cdata.vte_rx_ring_map = NULL;
647 }
648
649 static bool
650 vte_shutdown(device_t dev, int howto)
651 {
652
653 return (vte_suspend(dev, NULL));
654 }
655
656 static bool
657 vte_suspend(device_t dev, const pmf_qual_t *qual)
658 {
659 struct vte_softc *sc = device_private(dev);
660 struct ifnet *ifp = &sc->vte_if;
661
662 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
663 if ((ifp->if_flags & IFF_RUNNING) != 0)
664 vte_stop(ifp, 1);
665 return (0);
666 }
667
668 static bool
669 vte_resume(device_t dev, const pmf_qual_t *qual)
670 {
671 struct vte_softc *sc = device_private(dev);
672 struct ifnet *ifp;
673
674 ifp = &sc->vte_if;
675 if ((ifp->if_flags & IFF_UP) != 0) {
676 ifp->if_flags &= ~IFF_RUNNING;
677 vte_init(ifp);
678 }
679
680 return (0);
681 }
682
683 static struct vte_txdesc *
684 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
685 {
686 struct vte_txdesc *txd;
687 struct mbuf *m, *n;
688 int copy, error, padlen;
689
690 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
691 m = *m_head;
692 /*
693 * Controller doesn't auto-pad, so we have to make sure pad
694 * short frames out to the minimum frame length.
695 */
696 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
697 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
698 else
699 padlen = 0;
700
701 /*
702 * Controller does not support multi-fragmented TX buffers.
703 * Controller spends most of its TX processing time in
704 * de-fragmenting TX buffers. Either faster CPU or more
705 * advanced controller DMA engine is required to speed up
706 * TX path processing.
707 * To mitigate the de-fragmenting issue, perform deep copy
708 * from fragmented mbuf chains to a pre-allocated mbuf
709 * cluster with extra cost of kernel memory. For frames
710 * that is composed of single TX buffer, the deep copy is
711 * bypassed.
712 */
713 copy = 0;
714 if (m->m_next != NULL)
715 copy++;
716 if (padlen > 0 && (M_READONLY(m) ||
717 padlen > M_TRAILINGSPACE(m)))
718 copy++;
719 if (copy != 0) {
720 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
721 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
722 n->m_pkthdr.len = m->m_pkthdr.len;
723 n->m_len = m->m_pkthdr.len;
724 m = n;
725 txd->tx_flags |= VTE_TXMBUF;
726 }
727
728 if (padlen > 0) {
729 /* Zero out the bytes in the pad area. */
730 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
731 m->m_pkthdr.len += padlen;
732 m->m_len = m->m_pkthdr.len;
733 }
734
735 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
736 if (error != 0) {
737 txd->tx_flags &= ~VTE_TXMBUF;
738 return (NULL);
739 }
740 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
741 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
742 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
743
744 txd->tx_desc->dtlen =
745 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
746 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
747 sc->vte_cdata.vte_tx_cnt++;
748 /* Update producer index. */
749 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
750
751 /* Finally hand over ownership to controller. */
752 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
753 txd->tx_m = m;
754
755 return (txd);
756 }
757
758 static void
759 vte_ifstart(struct ifnet *ifp)
760 {
761 struct vte_softc *sc = ifp->if_softc;
762 struct vte_txdesc *txd;
763 struct mbuf *m_head, *m;
764 int enq;
765
766 ifp = &sc->vte_if;
767
768 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
769
770 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
771 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
772 return;
773
774 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
775 /* Reserve one free TX descriptor. */
776 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
777 ifp->if_flags |= IFF_OACTIVE;
778 break;
779 }
780 IFQ_POLL(&ifp->if_snd, m_head);
781 if (m_head == NULL)
782 break;
783 /*
784 * Pack the data into the transmit ring. If we
785 * don't have room, set the OACTIVE flag and wait
786 * for the NIC to drain the ring.
787 */
788 DPRINTF(("vte_encap:"));
789 if ((txd = vte_encap(sc, &m_head)) == NULL) {
790 DPRINTF((" failed\n"));
791 break;
792 }
793 DPRINTF((" ok\n"));
794 IFQ_DEQUEUE(&ifp->if_snd, m);
795 KASSERT(m == m_head);
796
797 enq++;
798 /*
799 * If there's a BPF listener, bounce a copy of this frame
800 * to him.
801 */
802 bpf_mtap(ifp, m_head);
803 /* Free consumed TX frame. */
804 if ((txd->tx_flags & VTE_TXMBUF) != 0)
805 m_freem(m_head);
806 }
807
808 if (enq > 0) {
809 bus_dmamap_sync(sc->vte_dmatag,
810 sc->vte_cdata.vte_tx_ring_map, 0,
811 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
812 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
813 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
814 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
815 }
816 }
817
818 static void
819 vte_ifwatchdog(struct ifnet *ifp)
820 {
821 struct vte_softc *sc = ifp->if_softc;
822
823 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
824 return;
825
826 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
827 ifp->if_oerrors++;
828 vte_init(ifp);
829 if (!IFQ_IS_EMPTY(&ifp->if_snd))
830 vte_ifstart(ifp);
831 }
832
833 static int
834 vte_mediachange(struct ifnet *ifp)
835 {
836 int error;
837 struct vte_softc *sc = ifp->if_softc;
838
839 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
840 error = 0;
841 else if (error != 0) {
842 aprint_error_dev(sc->vte_dev, "could not set media\n");
843 return error;
844 }
845 return 0;
846
847 }
848
849 static int
850 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
851 {
852 struct vte_softc *sc = ifp->if_softc;
853 int error, s;
854
855 s = splnet();
856 error = ether_ioctl(ifp, cmd, data);
857 if (error == ENETRESET) {
858 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
859 if (ifp->if_flags & IFF_RUNNING)
860 vte_rxfilter(sc);
861 error = 0;
862 }
863 splx(s);
864 return error;
865 }
866
867 static void
868 vte_mac_config(struct vte_softc *sc)
869 {
870 uint16_t mcr;
871
872 mcr = CSR_READ_2(sc, VTE_MCR0);
873 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
874 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
875 mcr |= MCR0_FULL_DUPLEX;
876 #ifdef notyet
877 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
878 mcr |= MCR0_FC_ENB;
879 /*
880 * The data sheet is not clear whether the controller
881 * honors received pause frames or not. The is no
882 * separate control bit for RX pause frame so just
883 * enable MCR0_FC_ENB bit.
884 */
885 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
886 mcr |= MCR0_FC_ENB;
887 #endif
888 }
889 CSR_WRITE_2(sc, VTE_MCR0, mcr);
890 }
891
892 static void
893 vte_stats_clear(struct vte_softc *sc)
894 {
895
896 /* Reading counter registers clears its contents. */
897 CSR_READ_2(sc, VTE_CNT_RX_DONE);
898 CSR_READ_2(sc, VTE_CNT_MECNT0);
899 CSR_READ_2(sc, VTE_CNT_MECNT1);
900 CSR_READ_2(sc, VTE_CNT_MECNT2);
901 CSR_READ_2(sc, VTE_CNT_MECNT3);
902 CSR_READ_2(sc, VTE_CNT_TX_DONE);
903 CSR_READ_2(sc, VTE_CNT_MECNT4);
904 CSR_READ_2(sc, VTE_CNT_PAUSE);
905 }
906
907 static void
908 vte_stats_update(struct vte_softc *sc)
909 {
910 struct vte_hw_stats *stat;
911 struct ifnet *ifp = &sc->vte_if;
912 uint16_t value;
913
914 stat = &sc->vte_stats;
915
916 CSR_READ_2(sc, VTE_MECISR);
917 /* RX stats. */
918 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
919 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
920 stat->rx_bcast_frames += (value >> 8);
921 stat->rx_mcast_frames += (value & 0xFF);
922 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
923 stat->rx_runts += (value >> 8);
924 stat->rx_crcerrs += (value & 0xFF);
925 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
926 stat->rx_long_frames += (value & 0xFF);
927 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
928 stat->rx_fifo_full += (value >> 8);
929 stat->rx_desc_unavail += (value & 0xFF);
930
931 /* TX stats. */
932 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
933 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
934 stat->tx_underruns += (value >> 8);
935 stat->tx_late_colls += (value & 0xFF);
936
937 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
938 stat->tx_pause_frames += (value >> 8);
939 stat->rx_pause_frames += (value & 0xFF);
940
941 /* Update ifp counters. */
942 ifp->if_opackets = stat->tx_frames;
943 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
944 ifp->if_ipackets = stat->rx_frames;
945 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
946 stat->rx_long_frames + stat->rx_fifo_full;
947 }
948
949 static int
950 vte_intr(void *arg)
951 {
952 struct vte_softc *sc = (struct vte_softc *)arg;
953 struct ifnet *ifp = &sc->vte_if;
954 uint16_t status;
955 int n;
956
957 /* Reading VTE_MISR acknowledges interrupts. */
958 status = CSR_READ_2(sc, VTE_MISR);
959 DPRINTF(("vte_intr status 0x%x\n", status));
960 if ((status & VTE_INTRS) == 0) {
961 /* Not ours. */
962 return 0;
963 }
964
965 /* Disable interrupts. */
966 CSR_WRITE_2(sc, VTE_MIER, 0);
967 for (n = 8; (status & VTE_INTRS) != 0;) {
968 if ((ifp->if_flags & IFF_RUNNING) == 0)
969 break;
970 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
971 MISR_RX_FIFO_FULL)) != 0)
972 vte_rxeof(sc);
973 if ((status & MISR_TX_DONE) != 0)
974 vte_txeof(sc);
975 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
976 vte_stats_update(sc);
977 if (!IFQ_IS_EMPTY(&ifp->if_snd))
978 vte_ifstart(ifp);
979 if (--n > 0)
980 status = CSR_READ_2(sc, VTE_MISR);
981 else
982 break;
983 }
984
985 if ((ifp->if_flags & IFF_RUNNING) != 0) {
986 /* Re-enable interrupts. */
987 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
988 }
989 return 1;
990 }
991
992 static void
993 vte_txeof(struct vte_softc *sc)
994 {
995 struct ifnet *ifp;
996 struct vte_txdesc *txd;
997 uint16_t status;
998 int cons, prog;
999
1000 ifp = &sc->vte_if;
1001
1002 if (sc->vte_cdata.vte_tx_cnt == 0)
1003 return;
1004 bus_dmamap_sync(sc->vte_dmatag,
1005 sc->vte_cdata.vte_tx_ring_map, 0,
1006 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1007 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1008 cons = sc->vte_cdata.vte_tx_cons;
1009 /*
1010 * Go through our TX list and free mbufs for those
1011 * frames which have been transmitted.
1012 */
1013 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1014 txd = &sc->vte_cdata.vte_txdesc[cons];
1015 status = le16toh(txd->tx_desc->dtst);
1016 if ((status & VTE_DTST_TX_OWN) != 0)
1017 break;
1018 if ((status & VTE_DTST_TX_OK) != 0)
1019 ifp->if_collisions += (status & 0xf);
1020 sc->vte_cdata.vte_tx_cnt--;
1021 /* Reclaim transmitted mbufs. */
1022 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1023 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1024 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1025 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1026 m_freem(txd->tx_m);
1027 txd->tx_flags &= ~VTE_TXMBUF;
1028 txd->tx_m = NULL;
1029 prog++;
1030 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1031 }
1032
1033 if (prog > 0) {
1034 ifp->if_flags &= ~IFF_OACTIVE;
1035 sc->vte_cdata.vte_tx_cons = cons;
1036 /*
1037 * Unarm watchdog timer only when there is no pending
1038 * frames in TX queue.
1039 */
1040 if (sc->vte_cdata.vte_tx_cnt == 0)
1041 sc->vte_watchdog_timer = 0;
1042 }
1043 }
1044
1045 static int
1046 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1047 {
1048 struct mbuf *m;
1049 bus_dmamap_t map;
1050
1051 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1052 if (m == NULL)
1053 return (ENOBUFS);
1054 m->m_len = m->m_pkthdr.len = MCLBYTES;
1055 m_adj(m, sizeof(uint32_t));
1056
1057 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1058 sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1059 m_freem(m);
1060 return (ENOBUFS);
1061 }
1062 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1063
1064 if (rxd->rx_m != NULL) {
1065 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1066 0, rxd->rx_dmamap->dm_mapsize,
1067 BUS_DMASYNC_POSTREAD);
1068 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1069 }
1070 map = rxd->rx_dmamap;
1071 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1072 sc->vte_cdata.vte_rx_sparemap = map;
1073 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1074 0, rxd->rx_dmamap->dm_mapsize,
1075 BUS_DMASYNC_PREREAD);
1076 rxd->rx_m = m;
1077 rxd->rx_desc->drbp =
1078 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1079 rxd->rx_desc->drlen = htole16(
1080 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1081 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1082 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1083 rxd->rx_dmamap->dm_segs[0].ds_len));
1084 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1085
1086 return (0);
1087 }
1088
1089 static void
1090 vte_rxeof(struct vte_softc *sc)
1091 {
1092 struct ifnet *ifp;
1093 struct vte_rxdesc *rxd;
1094 struct mbuf *m;
1095 uint16_t status, total_len;
1096 int cons, prog;
1097
1098 bus_dmamap_sync(sc->vte_dmatag,
1099 sc->vte_cdata.vte_rx_ring_map, 0,
1100 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1101 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1102 cons = sc->vte_cdata.vte_rx_cons;
1103 ifp = &sc->vte_if;
1104 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1105 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1106 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1107 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1108 status = le16toh(rxd->rx_desc->drst);
1109 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1110 cons, rxd, rxd->rx_m, status,
1111 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1112 if ((status & VTE_DRST_RX_OWN) != 0)
1113 break;
1114 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1115 m = rxd->rx_m;
1116 if ((status & VTE_DRST_RX_OK) == 0) {
1117 /* Discard errored frame. */
1118 rxd->rx_desc->drlen =
1119 htole16(MCLBYTES - sizeof(uint32_t));
1120 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1121 continue;
1122 }
1123 if (vte_newbuf(sc, rxd) != 0) {
1124 DPRINTF(("vte_rxeof newbuf failed\n"));
1125 ifp->if_ierrors++;
1126 rxd->rx_desc->drlen =
1127 htole16(MCLBYTES - sizeof(uint32_t));
1128 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1129 continue;
1130 }
1131
1132 /*
1133 * It seems there is no way to strip FCS bytes.
1134 */
1135 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1136 m_set_rcvif(m, ifp);
1137 if_percpuq_enqueue(ifp->if_percpuq, m);
1138 }
1139
1140 if (prog > 0) {
1141 /* Update the consumer index. */
1142 sc->vte_cdata.vte_rx_cons = cons;
1143 /*
1144 * Sync updated RX descriptors such that controller see
1145 * modified RX buffer addresses.
1146 */
1147 bus_dmamap_sync(sc->vte_dmatag,
1148 sc->vte_cdata.vte_rx_ring_map, 0,
1149 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1150 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1151 #ifdef notyet
1152 /*
1153 * Update residue counter. Controller does not
1154 * keep track of number of available RX descriptors
1155 * such that driver should have to update VTE_MRDCR
1156 * to make controller know how many free RX
1157 * descriptors were added to controller. This is
1158 * a similar mechanism used in VIA velocity
1159 * controllers and it indicates controller just
1160 * polls OWN bit of current RX descriptor pointer.
1161 * A couple of severe issues were seen on sample
1162 * board where the controller continuously emits TX
1163 * pause frames once RX pause threshold crossed.
1164 * Once triggered it never recovered form that
1165 * state, I couldn't find a way to make it back to
1166 * work at least. This issue effectively
1167 * disconnected the system from network. Also, the
1168 * controller used 00:00:00:00:00:00 as source
1169 * station address of TX pause frame. Probably this
1170 * is one of reason why vendor recommends not to
1171 * enable flow control on R6040 controller.
1172 */
1173 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1174 (((VTE_RX_RING_CNT * 2) / 10) <<
1175 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1176 #endif
1177 rnd_add_uint32(&sc->rnd_source, prog);
1178 }
1179 }
1180
1181 static void
1182 vte_tick(void *arg)
1183 {
1184 struct vte_softc *sc;
1185 int s = splnet();
1186
1187 sc = (struct vte_softc *)arg;
1188
1189 mii_tick(&sc->vte_mii);
1190 vte_stats_update(sc);
1191 vte_txeof(sc);
1192 vte_ifwatchdog(&sc->vte_if);
1193 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1194 splx(s);
1195 }
1196
1197 static void
1198 vte_reset(struct vte_softc *sc)
1199 {
1200 uint16_t mcr;
1201 int i;
1202
1203 mcr = CSR_READ_2(sc, VTE_MCR1);
1204 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1205 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1206 DELAY(10);
1207 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1208 break;
1209 }
1210 if (i == 0)
1211 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1212 /*
1213 * Follow the guide of vendor recommended way to reset MAC.
1214 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1215 * not reliable so manually reset internal state machine.
1216 */
1217 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1218 CSR_WRITE_2(sc, VTE_MACSM, 0);
1219 DELAY(5000);
1220 }
1221
1222
1223 static int
1224 vte_init(struct ifnet *ifp)
1225 {
1226 struct vte_softc *sc = ifp->if_softc;
1227 bus_addr_t paddr;
1228 uint8_t eaddr[ETHER_ADDR_LEN];
1229 int s, error;
1230
1231 s = splnet();
1232 /*
1233 * Cancel any pending I/O.
1234 */
1235 vte_stop(ifp, 1);
1236 /*
1237 * Reset the chip to a known state.
1238 */
1239 vte_reset(sc);
1240
1241 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1242 splx(s);
1243 return 0;
1244 }
1245
1246 /* Initialize RX descriptors. */
1247 if (vte_init_rx_ring(sc) != 0) {
1248 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1249 vte_stop(ifp, 1);
1250 splx(s);
1251 return ENOMEM;
1252 }
1253 if (vte_init_tx_ring(sc) != 0) {
1254 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1255 vte_stop(ifp, 1);
1256 splx(s);
1257 return ENOMEM;
1258 }
1259
1260 /*
1261 * Reprogram the station address. Controller supports up
1262 * to 4 different station addresses so driver programs the
1263 * first station address as its own ethernet address and
1264 * configure the remaining three addresses as perfect
1265 * multicast addresses.
1266 */
1267 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1268 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1269 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1270 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1271
1272 /* Set TX descriptor base addresses. */
1273 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1274 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1275 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1276 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1277
1278 /* Set RX descriptor base addresses. */
1279 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1280 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1281 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1282 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1283 /*
1284 * Initialize RX descriptor residue counter and set RX
1285 * pause threshold to 20% of available RX descriptors.
1286 * See comments on vte_rxeof() for details on flow control
1287 * issues.
1288 */
1289 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1290 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1291
1292 /*
1293 * Always use maximum frame size that controller can
1294 * support. Otherwise received frames that has longer
1295 * frame length than vte(4) MTU would be silently dropped
1296 * in controller. This would break path-MTU discovery as
1297 * sender wouldn't get any responses from receiver. The
1298 * RX buffer size should be multiple of 4.
1299 * Note, jumbo frames are silently ignored by controller
1300 * and even MAC counters do not detect them.
1301 */
1302 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1303
1304 /* Configure FIFO. */
1305 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1306 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1307 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1308
1309 /*
1310 * Configure TX/RX MACs. Actual resolved duplex and flow
1311 * control configuration is done after detecting a valid
1312 * link. Note, we don't generate early interrupt here
1313 * as well since FreeBSD does not have interrupt latency
1314 * problems like Windows.
1315 */
1316 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1317 /*
1318 * We manually keep track of PHY status changes to
1319 * configure resolved duplex and flow control since only
1320 * duplex configuration can be automatically reflected to
1321 * MCR0.
1322 */
1323 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1324 MCR1_EXCESS_COL_RETRY_16);
1325
1326 /* Initialize RX filter. */
1327 vte_rxfilter(sc);
1328
1329 /* Disable TX/RX interrupt moderation control. */
1330 CSR_WRITE_2(sc, VTE_MRICR, 0);
1331 CSR_WRITE_2(sc, VTE_MTICR, 0);
1332
1333 /* Enable MAC event counter interrupts. */
1334 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1335 /* Clear MAC statistics. */
1336 vte_stats_clear(sc);
1337
1338 /* Acknowledge all pending interrupts and clear it. */
1339 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1340 CSR_WRITE_2(sc, VTE_MISR, 0);
1341 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1342 CSR_READ_2(sc, VTE_MISR)));
1343
1344 sc->vte_flags &= ~VTE_FLAG_LINK;
1345 ifp->if_flags |= IFF_RUNNING;
1346 ifp->if_flags &= ~IFF_OACTIVE;
1347
1348 /* calling mii_mediachg will call back vte_start_mac() */
1349 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1350 error = 0;
1351 else if (error != 0) {
1352 aprint_error_dev(sc->vte_dev, "could not set media\n");
1353 splx(s);
1354 return error;
1355 }
1356
1357 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1358
1359 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1360 CSR_READ_2(sc, VTE_MISR)));
1361 splx(s);
1362 return 0;
1363 }
1364
1365 static void
1366 vte_stop(struct ifnet *ifp, int disable)
1367 {
1368 struct vte_softc *sc = ifp->if_softc;
1369 struct vte_txdesc *txd;
1370 struct vte_rxdesc *rxd;
1371 int i;
1372
1373 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1374 if ((ifp->if_flags & IFF_RUNNING) == 0)
1375 return;
1376 /*
1377 * Mark the interface down and cancel the watchdog timer.
1378 */
1379 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1380 sc->vte_flags &= ~VTE_FLAG_LINK;
1381 callout_stop(&sc->vte_tick_ch);
1382 sc->vte_watchdog_timer = 0;
1383 vte_stats_update(sc);
1384 /* Disable interrupts. */
1385 CSR_WRITE_2(sc, VTE_MIER, 0);
1386 CSR_WRITE_2(sc, VTE_MECIER, 0);
1387 /* Stop RX/TX MACs. */
1388 vte_stop_mac(sc);
1389 /* Clear interrupts. */
1390 CSR_READ_2(sc, VTE_MISR);
1391 /*
1392 * Free TX/RX mbufs still in the queues.
1393 */
1394 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1395 rxd = &sc->vte_cdata.vte_rxdesc[i];
1396 if (rxd->rx_m != NULL) {
1397 bus_dmamap_sync(sc->vte_dmatag,
1398 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1399 BUS_DMASYNC_POSTREAD);
1400 bus_dmamap_unload(sc->vte_dmatag,
1401 rxd->rx_dmamap);
1402 m_freem(rxd->rx_m);
1403 rxd->rx_m = NULL;
1404 }
1405 }
1406 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1407 txd = &sc->vte_cdata.vte_txdesc[i];
1408 if (txd->tx_m != NULL) {
1409 bus_dmamap_sync(sc->vte_dmatag,
1410 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1411 BUS_DMASYNC_POSTWRITE);
1412 bus_dmamap_unload(sc->vte_dmatag,
1413 txd->tx_dmamap);
1414 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1415 m_freem(txd->tx_m);
1416 txd->tx_m = NULL;
1417 txd->tx_flags &= ~VTE_TXMBUF;
1418 }
1419 }
1420 /* Free TX mbuf pools used for deep copy. */
1421 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1422 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1423 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1424 sc->vte_cdata.vte_txmbufs[i] = NULL;
1425 }
1426 }
1427 }
1428
1429 static void
1430 vte_start_mac(struct vte_softc *sc)
1431 {
1432 struct ifnet *ifp = &sc->vte_if;
1433 uint16_t mcr;
1434 int i;
1435
1436 /* Enable RX/TX MACs. */
1437 mcr = CSR_READ_2(sc, VTE_MCR0);
1438 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1439 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1440 (ifp->if_flags & IFF_RUNNING) != 0) {
1441 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1442 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1443 for (i = VTE_TIMEOUT; i > 0; i--) {
1444 mcr = CSR_READ_2(sc, VTE_MCR0);
1445 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1446 (MCR0_RX_ENB | MCR0_TX_ENB))
1447 break;
1448 DELAY(10);
1449 }
1450 if (i == 0)
1451 aprint_error_dev(sc->vte_dev,
1452 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1453 }
1454 vte_rxfilter(sc);
1455 }
1456
1457 static void
1458 vte_stop_mac(struct vte_softc *sc)
1459 {
1460 uint16_t mcr;
1461 int i;
1462
1463 /* Disable RX/TX MACs. */
1464 mcr = CSR_READ_2(sc, VTE_MCR0);
1465 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1466 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1467 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1468 for (i = VTE_TIMEOUT; i > 0; i--) {
1469 mcr = CSR_READ_2(sc, VTE_MCR0);
1470 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1471 break;
1472 DELAY(10);
1473 }
1474 if (i == 0)
1475 aprint_error_dev(sc->vte_dev,
1476 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1477 }
1478 }
1479
1480 static int
1481 vte_init_tx_ring(struct vte_softc *sc)
1482 {
1483 struct vte_tx_desc *desc;
1484 struct vte_txdesc *txd;
1485 bus_addr_t addr;
1486 int i;
1487
1488 sc->vte_cdata.vte_tx_prod = 0;
1489 sc->vte_cdata.vte_tx_cons = 0;
1490 sc->vte_cdata.vte_tx_cnt = 0;
1491
1492 /* Pre-allocate TX mbufs for deep copy. */
1493 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1494 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1495 MT_DATA, M_PKTHDR);
1496 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1497 return (ENOBUFS);
1498 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1499 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1500 }
1501 desc = sc->vte_cdata.vte_tx_ring;
1502 bzero(desc, VTE_TX_RING_SZ);
1503 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1504 txd = &sc->vte_cdata.vte_txdesc[i];
1505 txd->tx_m = NULL;
1506 if (i != VTE_TX_RING_CNT - 1)
1507 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1508 sizeof(struct vte_tx_desc) * (i + 1);
1509 else
1510 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1511 sizeof(struct vte_tx_desc) * 0;
1512 desc = &sc->vte_cdata.vte_tx_ring[i];
1513 desc->dtnp = htole32(addr);
1514 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1515 txd->tx_desc = desc;
1516 }
1517
1518 bus_dmamap_sync(sc->vte_dmatag,
1519 sc->vte_cdata.vte_tx_ring_map, 0,
1520 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1521 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1522 return (0);
1523 }
1524
1525 static int
1526 vte_init_rx_ring(struct vte_softc *sc)
1527 {
1528 struct vte_rx_desc *desc;
1529 struct vte_rxdesc *rxd;
1530 bus_addr_t addr;
1531 int i;
1532
1533 sc->vte_cdata.vte_rx_cons = 0;
1534 desc = sc->vte_cdata.vte_rx_ring;
1535 bzero(desc, VTE_RX_RING_SZ);
1536 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1537 rxd = &sc->vte_cdata.vte_rxdesc[i];
1538 rxd->rx_m = NULL;
1539 if (i != VTE_RX_RING_CNT - 1)
1540 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1541 + sizeof(struct vte_rx_desc) * (i + 1);
1542 else
1543 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1544 + sizeof(struct vte_rx_desc) * 0;
1545 desc = &sc->vte_cdata.vte_rx_ring[i];
1546 desc->drnp = htole32(addr);
1547 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1548 rxd->rx_desc = desc;
1549 if (vte_newbuf(sc, rxd) != 0)
1550 return (ENOBUFS);
1551 }
1552
1553 bus_dmamap_sync(sc->vte_dmatag,
1554 sc->vte_cdata.vte_rx_ring_map, 0,
1555 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1556 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1557
1558 return (0);
1559 }
1560
1561 static void
1562 vte_rxfilter(struct vte_softc *sc)
1563 {
1564 struct ether_multistep step;
1565 struct ether_multi *enm;
1566 struct ifnet *ifp;
1567 uint8_t *eaddr;
1568 uint32_t crc;
1569 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1570 uint16_t mchash[4], mcr;
1571 int i, nperf;
1572
1573 ifp = &sc->vte_if;
1574
1575 DPRINTF(("vte_rxfilter\n"));
1576 memset(mchash, 0, sizeof(mchash));
1577 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1578 rxfilt_perf[i][0] = 0xFFFF;
1579 rxfilt_perf[i][1] = 0xFFFF;
1580 rxfilt_perf[i][2] = 0xFFFF;
1581 }
1582
1583 mcr = CSR_READ_2(sc, VTE_MCR0);
1584 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1585 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1586 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1587 mcr |= MCR0_BROADCAST_DIS;
1588 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1589 if ((ifp->if_flags & IFF_PROMISC) != 0)
1590 mcr |= MCR0_PROMISC;
1591 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1592 mcr |= MCR0_MULTICAST;
1593 mchash[0] = 0xFFFF;
1594 mchash[1] = 0xFFFF;
1595 mchash[2] = 0xFFFF;
1596 mchash[3] = 0xFFFF;
1597 goto chipit;
1598 }
1599
1600 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1601 nperf = 0;
1602 while (enm != NULL) {
1603 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1604 sc->vte_if.if_flags |= IFF_ALLMULTI;
1605 mcr |= MCR0_MULTICAST;
1606 mchash[0] = 0xFFFF;
1607 mchash[1] = 0xFFFF;
1608 mchash[2] = 0xFFFF;
1609 mchash[3] = 0xFFFF;
1610 goto chipit;
1611 }
1612 /*
1613 * Program the first 3 multicast groups into
1614 * the perfect filter. For all others, use the
1615 * hash table.
1616 */
1617 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1618 eaddr = enm->enm_addrlo;
1619 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1620 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1621 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1622 nperf++;
1623 } else {
1624 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1625 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1626 }
1627 ETHER_NEXT_MULTI(step, enm);
1628 }
1629 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1630 mchash[3] != 0)
1631 mcr |= MCR0_MULTICAST;
1632
1633 chipit:
1634 /* Program multicast hash table. */
1635 DPRINTF(("chipit write multicast\n"));
1636 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1637 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1638 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1639 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1640 /* Program perfect filter table. */
1641 DPRINTF(("chipit write perfect filter\n"));
1642 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1643 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1644 rxfilt_perf[i][0]);
1645 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1646 rxfilt_perf[i][1]);
1647 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1648 rxfilt_perf[i][2]);
1649 }
1650 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1651 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1652 DPRINTF(("chipit read mcro\n"));
1653 CSR_READ_2(sc, VTE_MCR0);
1654 DPRINTF(("chipit done\n"));
1655 }
1656
1657 /*
1658 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1659 * set up in vte_pci_attach()
1660 */
1661 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1662 {
1663 int rc;
1664 const struct sysctlnode *node;
1665
1666 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1667 0, CTLTYPE_NODE, "vte",
1668 SYSCTL_DESCR("vte interface controls"),
1669 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1670 goto err;
1671 }
1672
1673 vte_root_num = node->sysctl_num;
1674 return;
1675
1676 err:
1677 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1678 }
1679
1680 static int
1681 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1682 {
1683 int error, t;
1684 struct sysctlnode node;
1685 struct vte_softc *sc;
1686
1687 node = *rnode;
1688 sc = node.sysctl_data;
1689 t = sc->vte_int_rx_mod;
1690 node.sysctl_data = &t;
1691 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1692 if (error || newp == NULL)
1693 return error;
1694 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1695 return EINVAL;
1696
1697 sc->vte_int_rx_mod = t;
1698 vte_miibus_statchg(&sc->vte_if);
1699 return 0;
1700 }
1701
1702 static int
1703 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1704 {
1705 int error, t;
1706 struct sysctlnode node;
1707 struct vte_softc *sc;
1708
1709 node = *rnode;
1710 sc = node.sysctl_data;
1711 t = sc->vte_int_tx_mod;
1712 node.sysctl_data = &t;
1713 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1714 if (error || newp == NULL)
1715 return error;
1716
1717 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1718 return EINVAL;
1719 sc->vte_int_tx_mod = t;
1720 vte_miibus_statchg(&sc->vte_if);
1721 return 0;
1722 }
1723