if_vte.c revision 1.11.4.6 1 /* $NetBSD: if_vte.c,v 1.11.4.6 2017/08/28 17:52:05 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.11.4.6 2017/08/28 17:52:05 skrll Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81
82 #include <sys/rndsource.h>
83
84 #include "opt_inet.h"
85 #include <net/if_ether.h>
86 #ifdef INET
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/if_inarp.h>
92 #endif
93
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103
104 #include <dev/pci/if_vtereg.h>
105 #include <dev/pci/if_vtevar.h>
106
107 static int vte_match(device_t, cfdata_t, void *);
108 static void vte_attach(device_t, device_t, void *);
109 static int vte_detach(device_t, int);
110 static int vte_dma_alloc(struct vte_softc *);
111 static void vte_dma_free(struct vte_softc *);
112 static struct vte_txdesc *
113 vte_encap(struct vte_softc *, struct mbuf **);
114 static void vte_get_macaddr(struct vte_softc *);
115 static int vte_init(struct ifnet *);
116 static int vte_init_rx_ring(struct vte_softc *);
117 static int vte_init_tx_ring(struct vte_softc *);
118 static int vte_intr(void *);
119 static int vte_ifioctl(struct ifnet *, u_long, void *);
120 static void vte_mac_config(struct vte_softc *);
121 static int vte_miibus_readreg(device_t, int, int);
122 static void vte_miibus_statchg(struct ifnet *);
123 static void vte_miibus_writereg(device_t, int, int, int);
124 static int vte_mediachange(struct ifnet *);
125 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
126 static void vte_reset(struct vte_softc *);
127 static void vte_rxeof(struct vte_softc *);
128 static void vte_rxfilter(struct vte_softc *);
129 static bool vte_shutdown(device_t, int);
130 static bool vte_suspend(device_t, const pmf_qual_t *);
131 static bool vte_resume(device_t, const pmf_qual_t *);
132 static void vte_ifstart(struct ifnet *);
133 static void vte_start_mac(struct vte_softc *);
134 static void vte_stats_clear(struct vte_softc *);
135 static void vte_stats_update(struct vte_softc *);
136 static void vte_stop(struct ifnet *, int);
137 static void vte_stop_mac(struct vte_softc *);
138 static void vte_tick(void *);
139 static void vte_txeof(struct vte_softc *);
140 static void vte_ifwatchdog(struct ifnet *);
141
142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
144 static int vte_root_num;
145
146 #define DPRINTF(a)
147
148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
149 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
150
151
152 static int
153 vte_match(device_t parent, cfdata_t cf, void *aux)
154 {
155 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
156
157 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
158 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
159 return 1;
160
161 return 0;
162 }
163
164 static void
165 vte_attach(device_t parent, device_t self, void *aux)
166 {
167 struct vte_softc *sc = device_private(self);
168 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
169 struct ifnet * const ifp = &sc->vte_if;
170 int h_valid;
171 pcireg_t reg, csr;
172 pci_intr_handle_t intrhandle;
173 const char *intrstr;
174 int error;
175 const struct sysctlnode *node;
176 int vte_nodenum;
177 char intrbuf[PCI_INTRSTR_LEN];
178
179 sc->vte_dev = self;
180
181 callout_init(&sc->vte_tick_ch, 0);
182
183 /* Map the device. */
184 h_valid = 0;
185 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
186 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
187 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
188 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
189 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
190 }
191 if (h_valid == 0) {
192 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
193 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
194 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
195 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
196 &sc->vte_bushandle, NULL, NULL) == 0);
197 }
198 }
199 if (h_valid == 0) {
200 aprint_error_dev(self, "unable to map device registers\n");
201 return;
202 }
203 sc->vte_dmatag = pa->pa_dmat;
204 /* Enable the device. */
205 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
206 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
207 csr | PCI_COMMAND_MASTER_ENABLE);
208
209 pci_aprint_devinfo(pa, NULL);
210
211 /* Reset the ethernet controller. */
212 vte_reset(sc);
213
214 if ((error = vte_dma_alloc(sc)) != 0)
215 return;
216
217 /* Load station address. */
218 vte_get_macaddr(sc);
219
220 aprint_normal_dev(self, "Ethernet address %s\n",
221 ether_sprintf(sc->vte_eaddr));
222
223 /* Map and establish interrupts */
224 if (pci_intr_map(pa, &intrhandle)) {
225 aprint_error_dev(self, "couldn't map interrupt\n");
226 return;
227 }
228 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
229 sizeof(intrbuf));
230 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
231 vte_intr, sc);
232 if (sc->vte_ih == NULL) {
233 aprint_error_dev(self, "couldn't establish interrupt");
234 if (intrstr != NULL)
235 aprint_error(" at %s", intrstr);
236 aprint_error("\n");
237 return;
238 }
239 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
240
241 sc->vte_if.if_softc = sc;
242 sc->vte_mii.mii_ifp = ifp;
243 sc->vte_mii.mii_readreg = vte_miibus_readreg;
244 sc->vte_mii.mii_writereg = vte_miibus_writereg;
245 sc->vte_mii.mii_statchg = vte_miibus_statchg;
246 sc->vte_ec.ec_mii = &sc->vte_mii;
247 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
248 ether_mediastatus);
249 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
250 MII_OFFSET_ANY, 0);
251 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
252 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
254 } else
255 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
256
257 /*
258 * We can support 802.1Q VLAN-sized frames.
259 */
260 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
261
262 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
264 ifp->if_ioctl = vte_ifioctl;
265 ifp->if_start = vte_ifstart;
266 ifp->if_watchdog = vte_ifwatchdog;
267 ifp->if_init = vte_init;
268 ifp->if_stop = vte_stop;
269 ifp->if_timer = 0;
270 IFQ_SET_READY(&ifp->if_snd);
271 if_attach(ifp);
272 if_deferred_start_init(ifp, NULL);
273 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
274
275 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
276 pmf_class_network_register(self, ifp);
277 else
278 aprint_error_dev(self, "couldn't establish power handler\n");
279
280 rnd_attach_source(&sc->rnd_source, device_xname(self),
281 RND_TYPE_NET, RND_FLAG_DEFAULT);
282
283 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
284 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
285 SYSCTL_DESCR("vte per-controller controls"),
286 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
287 CTL_EOL) != 0) {
288 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
289 return;
290 }
291 vte_nodenum = node->sysctl_num;
292 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
293 CTLFLAG_READWRITE,
294 CTLTYPE_INT, "int_rxct",
295 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
296 vte_sysctl_intrxct, 0, (void *)sc,
297 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
298 CTL_EOL) != 0) {
299 aprint_normal_dev(sc->vte_dev,
300 "couldn't create int_rxct sysctl node\n");
301 }
302 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
303 CTLFLAG_READWRITE,
304 CTLTYPE_INT, "int_txct",
305 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
306 vte_sysctl_inttxct, 0, (void *)sc,
307 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
308 CTL_EOL) != 0) {
309 aprint_normal_dev(sc->vte_dev,
310 "couldn't create int_txct sysctl node\n");
311 }
312 }
313
314 static int
315 vte_detach(device_t dev, int flags __unused)
316 {
317 struct vte_softc *sc = device_private(dev);
318 struct ifnet *ifp = &sc->vte_if;
319 int s;
320
321 s = splnet();
322 /* Stop the interface. Callouts are stopped in it. */
323 vte_stop(ifp, 1);
324 splx(s);
325
326 pmf_device_deregister(dev);
327
328 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
329 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
330
331 ether_ifdetach(ifp);
332 if_detach(ifp);
333
334 vte_dma_free(sc);
335
336 return (0);
337 }
338
339 static int
340 vte_miibus_readreg(device_t dev, int phy, int reg)
341 {
342 struct vte_softc *sc = device_private(dev);
343 int i;
344
345 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
346 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
347 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
348 DELAY(5);
349 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
350 break;
351 }
352
353 if (i == 0) {
354 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
355 return (0);
356 }
357
358 return (CSR_READ_2(sc, VTE_MMRD));
359 }
360
361 static void
362 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
363 {
364 struct vte_softc *sc = device_private(dev);
365 int i;
366
367 CSR_WRITE_2(sc, VTE_MMWD, val);
368 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
369 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
370 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
371 DELAY(5);
372 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
373 break;
374 }
375
376 if (i == 0)
377 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
378
379 }
380
381 static void
382 vte_miibus_statchg(struct ifnet *ifp)
383 {
384 struct vte_softc *sc = ifp->if_softc;
385 uint16_t val;
386
387 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
388 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
389
390 sc->vte_flags &= ~VTE_FLAG_LINK;
391 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
392 (IFM_ACTIVE | IFM_AVALID)) {
393 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
394 case IFM_10_T:
395 case IFM_100_TX:
396 sc->vte_flags |= VTE_FLAG_LINK;
397 break;
398 default:
399 break;
400 }
401 }
402
403 /* Stop RX/TX MACs. */
404 vte_stop_mac(sc);
405 /* Program MACs with resolved duplex and flow control. */
406 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
407 /*
408 * Timer waiting time : (63 + TIMER * 64) MII clock.
409 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
410 */
411 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
412 val = 18 << VTE_IM_TIMER_SHIFT;
413 else
414 val = 1 << VTE_IM_TIMER_SHIFT;
415 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
416 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
417 CSR_WRITE_2(sc, VTE_MRICR, val);
418
419 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
420 val = 18 << VTE_IM_TIMER_SHIFT;
421 else
422 val = 1 << VTE_IM_TIMER_SHIFT;
423 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
424 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
425 CSR_WRITE_2(sc, VTE_MTICR, val);
426
427 vte_mac_config(sc);
428 vte_start_mac(sc);
429 DPRINTF(("vte_miibus_statchg: link\n"));
430 }
431 }
432
433 static void
434 vte_get_macaddr(struct vte_softc *sc)
435 {
436 uint16_t mid;
437
438 /*
439 * It seems there is no way to reload station address and
440 * it is supposed to be set by BIOS.
441 */
442 mid = CSR_READ_2(sc, VTE_MID0L);
443 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
444 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
445 mid = CSR_READ_2(sc, VTE_MID0M);
446 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
447 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
448 mid = CSR_READ_2(sc, VTE_MID0H);
449 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
450 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
451 }
452
453
454 static int
455 vte_dma_alloc(struct vte_softc *sc)
456 {
457 struct vte_txdesc *txd;
458 struct vte_rxdesc *rxd;
459 int error, i, rseg;
460
461 /* create DMA map for TX ring */
462 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
463 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
464 &sc->vte_cdata.vte_tx_ring_map);
465 if (error) {
466 aprint_error_dev(sc->vte_dev,
467 "could not create dma map for TX ring (%d)\n",
468 error);
469 goto fail;
470 }
471 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
472 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
473 VTE_TX_RING_ALIGN, 0,
474 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
475 BUS_DMA_NOWAIT);
476 if (error != 0) {
477 aprint_error_dev(sc->vte_dev,
478 "could not allocate DMA'able memory for TX ring (%d).\n",
479 error);
480 goto fail;
481 }
482 KASSERT(rseg == 1);
483 error = bus_dmamem_map(sc->vte_dmatag,
484 sc->vte_cdata.vte_tx_ring_seg, 1,
485 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
486 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
487 if (error != 0) {
488 aprint_error_dev(sc->vte_dev,
489 "could not map DMA'able memory for TX ring (%d).\n",
490 error);
491 goto fail;
492 }
493 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
494 error = bus_dmamap_load(sc->vte_dmatag,
495 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
496 VTE_TX_RING_SZ, NULL,
497 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
498 if (error != 0) {
499 aprint_error_dev(sc->vte_dev,
500 "could not load DMA'able memory for TX ring.\n");
501 goto fail;
502 }
503
504 /* create DMA map for RX ring */
505 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
506 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
507 &sc->vte_cdata.vte_rx_ring_map);
508 if (error) {
509 aprint_error_dev(sc->vte_dev,
510 "could not create dma map for RX ring (%d)\n",
511 error);
512 goto fail;
513 }
514 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
515 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
516 VTE_RX_RING_ALIGN, 0,
517 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
518 BUS_DMA_NOWAIT);
519 if (error != 0) {
520 aprint_error_dev(sc->vte_dev,
521 "could not allocate DMA'able memory for RX ring (%d).\n",
522 error);
523 goto fail;
524 }
525 KASSERT(rseg == 1);
526 error = bus_dmamem_map(sc->vte_dmatag,
527 sc->vte_cdata.vte_rx_ring_seg, 1,
528 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
529 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
530 if (error != 0) {
531 aprint_error_dev(sc->vte_dev,
532 "could not map DMA'able memory for RX ring (%d).\n",
533 error);
534 goto fail;
535 }
536 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
537 error = bus_dmamap_load(sc->vte_dmatag,
538 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
539 VTE_RX_RING_SZ, NULL,
540 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
541 if (error != 0) {
542 aprint_error_dev(sc->vte_dev,
543 "could not load DMA'able memory for RX ring (%d).\n",
544 error);
545 goto fail;
546 }
547
548 /* Create DMA maps for TX buffers. */
549 for (i = 0; i < VTE_TX_RING_CNT; i++) {
550 txd = &sc->vte_cdata.vte_txdesc[i];
551 txd->tx_m = NULL;
552 txd->tx_dmamap = NULL;
553 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
554 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
555 &txd->tx_dmamap);
556 if (error != 0) {
557 aprint_error_dev(sc->vte_dev,
558 "could not create TX DMA map %d (%d).\n", i, error);
559 goto fail;
560 }
561 }
562 /* Create DMA maps for RX buffers. */
563 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
564 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
565 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
566 aprint_error_dev(sc->vte_dev,
567 "could not create spare RX dmamap (%d).\n", error);
568 goto fail;
569 }
570 for (i = 0; i < VTE_RX_RING_CNT; i++) {
571 rxd = &sc->vte_cdata.vte_rxdesc[i];
572 rxd->rx_m = NULL;
573 rxd->rx_dmamap = NULL;
574 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
575 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
576 &rxd->rx_dmamap);
577 if (error != 0) {
578 aprint_error_dev(sc->vte_dev,
579 "could not create RX dmamap %d (%d).\n", i, error);
580 goto fail;
581 }
582 }
583 return 0;
584
585 fail:
586 vte_dma_free(sc);
587 return (error);
588 }
589
590 static void
591 vte_dma_free(struct vte_softc *sc)
592 {
593 struct vte_txdesc *txd;
594 struct vte_rxdesc *rxd;
595 int i;
596
597 /* TX buffers. */
598 for (i = 0; i < VTE_TX_RING_CNT; i++) {
599 txd = &sc->vte_cdata.vte_txdesc[i];
600 if (txd->tx_dmamap != NULL) {
601 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
602 txd->tx_dmamap = NULL;
603 }
604 }
605 /* RX buffers */
606 for (i = 0; i < VTE_RX_RING_CNT; i++) {
607 rxd = &sc->vte_cdata.vte_rxdesc[i];
608 if (rxd->rx_dmamap != NULL) {
609 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
610 rxd->rx_dmamap = NULL;
611 }
612 }
613 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
614 bus_dmamap_destroy(sc->vte_dmatag,
615 sc->vte_cdata.vte_rx_sparemap);
616 sc->vte_cdata.vte_rx_sparemap = NULL;
617 }
618 /* TX descriptor ring. */
619 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
620 bus_dmamap_unload(sc->vte_dmatag,
621 sc->vte_cdata.vte_tx_ring_map);
622 bus_dmamap_destroy(sc->vte_dmatag,
623 sc->vte_cdata.vte_tx_ring_map);
624 }
625 if (sc->vte_cdata.vte_tx_ring != NULL) {
626 bus_dmamem_unmap(sc->vte_dmatag,
627 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
628 bus_dmamem_free(sc->vte_dmatag,
629 sc->vte_cdata.vte_tx_ring_seg, 1);
630 }
631 sc->vte_cdata.vte_tx_ring = NULL;
632 sc->vte_cdata.vte_tx_ring_map = NULL;
633 /* RX ring. */
634 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
635 bus_dmamap_unload(sc->vte_dmatag,
636 sc->vte_cdata.vte_rx_ring_map);
637 bus_dmamap_destroy(sc->vte_dmatag,
638 sc->vte_cdata.vte_rx_ring_map);
639 }
640 if (sc->vte_cdata.vte_rx_ring != NULL) {
641 bus_dmamem_unmap(sc->vte_dmatag,
642 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
643 bus_dmamem_free(sc->vte_dmatag,
644 sc->vte_cdata.vte_rx_ring_seg, 1);
645 }
646 sc->vte_cdata.vte_rx_ring = NULL;
647 sc->vte_cdata.vte_rx_ring_map = NULL;
648 }
649
650 static bool
651 vte_shutdown(device_t dev, int howto)
652 {
653
654 return (vte_suspend(dev, NULL));
655 }
656
657 static bool
658 vte_suspend(device_t dev, const pmf_qual_t *qual)
659 {
660 struct vte_softc *sc = device_private(dev);
661 struct ifnet *ifp = &sc->vte_if;
662
663 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
664 if ((ifp->if_flags & IFF_RUNNING) != 0)
665 vte_stop(ifp, 1);
666 return (0);
667 }
668
669 static bool
670 vte_resume(device_t dev, const pmf_qual_t *qual)
671 {
672 struct vte_softc *sc = device_private(dev);
673 struct ifnet *ifp;
674
675 ifp = &sc->vte_if;
676 if ((ifp->if_flags & IFF_UP) != 0) {
677 ifp->if_flags &= ~IFF_RUNNING;
678 vte_init(ifp);
679 }
680
681 return (0);
682 }
683
684 static struct vte_txdesc *
685 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
686 {
687 struct vte_txdesc *txd;
688 struct mbuf *m, *n;
689 int copy, error, padlen;
690
691 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
692 m = *m_head;
693 /*
694 * Controller doesn't auto-pad, so we have to make sure pad
695 * short frames out to the minimum frame length.
696 */
697 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
698 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
699 else
700 padlen = 0;
701
702 /*
703 * Controller does not support multi-fragmented TX buffers.
704 * Controller spends most of its TX processing time in
705 * de-fragmenting TX buffers. Either faster CPU or more
706 * advanced controller DMA engine is required to speed up
707 * TX path processing.
708 * To mitigate the de-fragmenting issue, perform deep copy
709 * from fragmented mbuf chains to a pre-allocated mbuf
710 * cluster with extra cost of kernel memory. For frames
711 * that is composed of single TX buffer, the deep copy is
712 * bypassed.
713 */
714 copy = 0;
715 if (m->m_next != NULL)
716 copy++;
717 if (padlen > 0 && (M_READONLY(m) ||
718 padlen > M_TRAILINGSPACE(m)))
719 copy++;
720 if (copy != 0) {
721 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
722 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
723 n->m_pkthdr.len = m->m_pkthdr.len;
724 n->m_len = m->m_pkthdr.len;
725 m = n;
726 txd->tx_flags |= VTE_TXMBUF;
727 }
728
729 if (padlen > 0) {
730 /* Zero out the bytes in the pad area. */
731 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
732 m->m_pkthdr.len += padlen;
733 m->m_len = m->m_pkthdr.len;
734 }
735
736 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
737 BUS_DMA_NOWAIT);
738 if (error != 0) {
739 txd->tx_flags &= ~VTE_TXMBUF;
740 return (NULL);
741 }
742 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
743 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
744 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
745
746 txd->tx_desc->dtlen =
747 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
748 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
749 sc->vte_cdata.vte_tx_cnt++;
750 /* Update producer index. */
751 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
752
753 /* Finally hand over ownership to controller. */
754 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
755 txd->tx_m = m;
756
757 return (txd);
758 }
759
760 static void
761 vte_ifstart(struct ifnet *ifp)
762 {
763 struct vte_softc *sc = ifp->if_softc;
764 struct vte_txdesc *txd;
765 struct mbuf *m_head, *m;
766 int enq;
767
768 ifp = &sc->vte_if;
769
770 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
771
772 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
773 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
774 return;
775
776 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
777 /* Reserve one free TX descriptor. */
778 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
779 ifp->if_flags |= IFF_OACTIVE;
780 break;
781 }
782 IFQ_POLL(&ifp->if_snd, m_head);
783 if (m_head == NULL)
784 break;
785 /*
786 * Pack the data into the transmit ring. If we
787 * don't have room, set the OACTIVE flag and wait
788 * for the NIC to drain the ring.
789 */
790 DPRINTF(("vte_encap:"));
791 if ((txd = vte_encap(sc, &m_head)) == NULL) {
792 DPRINTF((" failed\n"));
793 break;
794 }
795 DPRINTF((" ok\n"));
796 IFQ_DEQUEUE(&ifp->if_snd, m);
797 KASSERT(m == m_head);
798
799 enq++;
800 /*
801 * If there's a BPF listener, bounce a copy of this frame
802 * to him.
803 */
804 bpf_mtap(ifp, m_head);
805 /* Free consumed TX frame. */
806 if ((txd->tx_flags & VTE_TXMBUF) != 0)
807 m_freem(m_head);
808 }
809
810 if (enq > 0) {
811 bus_dmamap_sync(sc->vte_dmatag,
812 sc->vte_cdata.vte_tx_ring_map, 0,
813 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
814 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
816 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
817 }
818 }
819
820 static void
821 vte_ifwatchdog(struct ifnet *ifp)
822 {
823 struct vte_softc *sc = ifp->if_softc;
824
825 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
826 return;
827
828 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
829 ifp->if_oerrors++;
830 vte_init(ifp);
831 if (!IFQ_IS_EMPTY(&ifp->if_snd))
832 vte_ifstart(ifp);
833 }
834
835 static int
836 vte_mediachange(struct ifnet *ifp)
837 {
838 int error;
839 struct vte_softc *sc = ifp->if_softc;
840
841 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
842 error = 0;
843 else if (error != 0) {
844 aprint_error_dev(sc->vte_dev, "could not set media\n");
845 return error;
846 }
847 return 0;
848
849 }
850
851 static int
852 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
853 {
854 struct vte_softc *sc = ifp->if_softc;
855 int error, s;
856
857 s = splnet();
858 error = ether_ioctl(ifp, cmd, data);
859 if (error == ENETRESET) {
860 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
861 if (ifp->if_flags & IFF_RUNNING)
862 vte_rxfilter(sc);
863 error = 0;
864 }
865 splx(s);
866 return error;
867 }
868
869 static void
870 vte_mac_config(struct vte_softc *sc)
871 {
872 uint16_t mcr;
873
874 mcr = CSR_READ_2(sc, VTE_MCR0);
875 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
876 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
877 mcr |= MCR0_FULL_DUPLEX;
878 #ifdef notyet
879 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
880 mcr |= MCR0_FC_ENB;
881 /*
882 * The data sheet is not clear whether the controller
883 * honors received pause frames or not. The is no
884 * separate control bit for RX pause frame so just
885 * enable MCR0_FC_ENB bit.
886 */
887 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
888 mcr |= MCR0_FC_ENB;
889 #endif
890 }
891 CSR_WRITE_2(sc, VTE_MCR0, mcr);
892 }
893
894 static void
895 vte_stats_clear(struct vte_softc *sc)
896 {
897
898 /* Reading counter registers clears its contents. */
899 CSR_READ_2(sc, VTE_CNT_RX_DONE);
900 CSR_READ_2(sc, VTE_CNT_MECNT0);
901 CSR_READ_2(sc, VTE_CNT_MECNT1);
902 CSR_READ_2(sc, VTE_CNT_MECNT2);
903 CSR_READ_2(sc, VTE_CNT_MECNT3);
904 CSR_READ_2(sc, VTE_CNT_TX_DONE);
905 CSR_READ_2(sc, VTE_CNT_MECNT4);
906 CSR_READ_2(sc, VTE_CNT_PAUSE);
907 }
908
909 static void
910 vte_stats_update(struct vte_softc *sc)
911 {
912 struct vte_hw_stats *stat;
913 struct ifnet *ifp = &sc->vte_if;
914 uint16_t value;
915
916 stat = &sc->vte_stats;
917
918 CSR_READ_2(sc, VTE_MECISR);
919 /* RX stats. */
920 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
921 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
922 stat->rx_bcast_frames += (value >> 8);
923 stat->rx_mcast_frames += (value & 0xFF);
924 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
925 stat->rx_runts += (value >> 8);
926 stat->rx_crcerrs += (value & 0xFF);
927 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
928 stat->rx_long_frames += (value & 0xFF);
929 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
930 stat->rx_fifo_full += (value >> 8);
931 stat->rx_desc_unavail += (value & 0xFF);
932
933 /* TX stats. */
934 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
935 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
936 stat->tx_underruns += (value >> 8);
937 stat->tx_late_colls += (value & 0xFF);
938
939 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
940 stat->tx_pause_frames += (value >> 8);
941 stat->rx_pause_frames += (value & 0xFF);
942
943 /* Update ifp counters. */
944 ifp->if_opackets = stat->tx_frames;
945 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
946 ifp->if_ipackets = stat->rx_frames;
947 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
948 stat->rx_long_frames + stat->rx_fifo_full;
949 }
950
951 static int
952 vte_intr(void *arg)
953 {
954 struct vte_softc *sc = (struct vte_softc *)arg;
955 struct ifnet *ifp = &sc->vte_if;
956 uint16_t status;
957 int n;
958
959 /* Reading VTE_MISR acknowledges interrupts. */
960 status = CSR_READ_2(sc, VTE_MISR);
961 DPRINTF(("vte_intr status 0x%x\n", status));
962 if ((status & VTE_INTRS) == 0) {
963 /* Not ours. */
964 return 0;
965 }
966
967 /* Disable interrupts. */
968 CSR_WRITE_2(sc, VTE_MIER, 0);
969 for (n = 8; (status & VTE_INTRS) != 0;) {
970 if ((ifp->if_flags & IFF_RUNNING) == 0)
971 break;
972 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
973 MISR_RX_FIFO_FULL)) != 0)
974 vte_rxeof(sc);
975 if ((status & MISR_TX_DONE) != 0)
976 vte_txeof(sc);
977 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
978 vte_stats_update(sc);
979 if_schedule_deferred_start(ifp);
980 if (--n > 0)
981 status = CSR_READ_2(sc, VTE_MISR);
982 else
983 break;
984 }
985
986 if ((ifp->if_flags & IFF_RUNNING) != 0) {
987 /* Re-enable interrupts. */
988 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
989 }
990 return 1;
991 }
992
993 static void
994 vte_txeof(struct vte_softc *sc)
995 {
996 struct ifnet *ifp;
997 struct vte_txdesc *txd;
998 uint16_t status;
999 int cons, prog;
1000
1001 ifp = &sc->vte_if;
1002
1003 if (sc->vte_cdata.vte_tx_cnt == 0)
1004 return;
1005 bus_dmamap_sync(sc->vte_dmatag,
1006 sc->vte_cdata.vte_tx_ring_map, 0,
1007 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1008 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1009 cons = sc->vte_cdata.vte_tx_cons;
1010 /*
1011 * Go through our TX list and free mbufs for those
1012 * frames which have been transmitted.
1013 */
1014 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1015 txd = &sc->vte_cdata.vte_txdesc[cons];
1016 status = le16toh(txd->tx_desc->dtst);
1017 if ((status & VTE_DTST_TX_OWN) != 0)
1018 break;
1019 if ((status & VTE_DTST_TX_OK) != 0)
1020 ifp->if_collisions += (status & 0xf);
1021 sc->vte_cdata.vte_tx_cnt--;
1022 /* Reclaim transmitted mbufs. */
1023 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1024 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1025 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1026 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1027 m_freem(txd->tx_m);
1028 txd->tx_flags &= ~VTE_TXMBUF;
1029 txd->tx_m = NULL;
1030 prog++;
1031 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1032 }
1033
1034 if (prog > 0) {
1035 ifp->if_flags &= ~IFF_OACTIVE;
1036 sc->vte_cdata.vte_tx_cons = cons;
1037 /*
1038 * Unarm watchdog timer only when there is no pending
1039 * frames in TX queue.
1040 */
1041 if (sc->vte_cdata.vte_tx_cnt == 0)
1042 sc->vte_watchdog_timer = 0;
1043 }
1044 }
1045
1046 static int
1047 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1048 {
1049 struct mbuf *m;
1050 bus_dmamap_t map;
1051
1052 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1053 if (m == NULL)
1054 return (ENOBUFS);
1055 m->m_len = m->m_pkthdr.len = MCLBYTES;
1056 m_adj(m, sizeof(uint32_t));
1057
1058 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1059 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1060 m_freem(m);
1061 return (ENOBUFS);
1062 }
1063 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1064
1065 if (rxd->rx_m != NULL) {
1066 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1067 0, rxd->rx_dmamap->dm_mapsize,
1068 BUS_DMASYNC_POSTREAD);
1069 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1070 }
1071 map = rxd->rx_dmamap;
1072 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1073 sc->vte_cdata.vte_rx_sparemap = map;
1074 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1075 0, rxd->rx_dmamap->dm_mapsize,
1076 BUS_DMASYNC_PREREAD);
1077 rxd->rx_m = m;
1078 rxd->rx_desc->drbp =
1079 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1080 rxd->rx_desc->drlen = htole16(
1081 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1082 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1083 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1084 rxd->rx_dmamap->dm_segs[0].ds_len));
1085 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1086
1087 return (0);
1088 }
1089
1090 static void
1091 vte_rxeof(struct vte_softc *sc)
1092 {
1093 struct ifnet *ifp;
1094 struct vte_rxdesc *rxd;
1095 struct mbuf *m;
1096 uint16_t status, total_len;
1097 int cons, prog;
1098
1099 bus_dmamap_sync(sc->vte_dmatag,
1100 sc->vte_cdata.vte_rx_ring_map, 0,
1101 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1102 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1103 cons = sc->vte_cdata.vte_rx_cons;
1104 ifp = &sc->vte_if;
1105 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1106 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1107 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1108 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1109 status = le16toh(rxd->rx_desc->drst);
1110 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1111 cons, rxd, rxd->rx_m, status,
1112 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1113 if ((status & VTE_DRST_RX_OWN) != 0)
1114 break;
1115 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1116 m = rxd->rx_m;
1117 if ((status & VTE_DRST_RX_OK) == 0) {
1118 /* Discard errored frame. */
1119 rxd->rx_desc->drlen =
1120 htole16(MCLBYTES - sizeof(uint32_t));
1121 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1122 continue;
1123 }
1124 if (vte_newbuf(sc, rxd) != 0) {
1125 DPRINTF(("vte_rxeof newbuf failed\n"));
1126 ifp->if_ierrors++;
1127 rxd->rx_desc->drlen =
1128 htole16(MCLBYTES - sizeof(uint32_t));
1129 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1130 continue;
1131 }
1132
1133 /*
1134 * It seems there is no way to strip FCS bytes.
1135 */
1136 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1137 m_set_rcvif(m, ifp);
1138 if_percpuq_enqueue(ifp->if_percpuq, m);
1139 }
1140
1141 if (prog > 0) {
1142 /* Update the consumer index. */
1143 sc->vte_cdata.vte_rx_cons = cons;
1144 /*
1145 * Sync updated RX descriptors such that controller see
1146 * modified RX buffer addresses.
1147 */
1148 bus_dmamap_sync(sc->vte_dmatag,
1149 sc->vte_cdata.vte_rx_ring_map, 0,
1150 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1151 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1152 #ifdef notyet
1153 /*
1154 * Update residue counter. Controller does not
1155 * keep track of number of available RX descriptors
1156 * such that driver should have to update VTE_MRDCR
1157 * to make controller know how many free RX
1158 * descriptors were added to controller. This is
1159 * a similar mechanism used in VIA velocity
1160 * controllers and it indicates controller just
1161 * polls OWN bit of current RX descriptor pointer.
1162 * A couple of severe issues were seen on sample
1163 * board where the controller continuously emits TX
1164 * pause frames once RX pause threshold crossed.
1165 * Once triggered it never recovered form that
1166 * state, I couldn't find a way to make it back to
1167 * work at least. This issue effectively
1168 * disconnected the system from network. Also, the
1169 * controller used 00:00:00:00:00:00 as source
1170 * station address of TX pause frame. Probably this
1171 * is one of reason why vendor recommends not to
1172 * enable flow control on R6040 controller.
1173 */
1174 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1175 (((VTE_RX_RING_CNT * 2) / 10) <<
1176 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1177 #endif
1178 rnd_add_uint32(&sc->rnd_source, prog);
1179 }
1180 }
1181
1182 static void
1183 vte_tick(void *arg)
1184 {
1185 struct vte_softc *sc;
1186 int s = splnet();
1187
1188 sc = (struct vte_softc *)arg;
1189
1190 mii_tick(&sc->vte_mii);
1191 vte_stats_update(sc);
1192 vte_txeof(sc);
1193 vte_ifwatchdog(&sc->vte_if);
1194 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1195 splx(s);
1196 }
1197
1198 static void
1199 vte_reset(struct vte_softc *sc)
1200 {
1201 uint16_t mcr;
1202 int i;
1203
1204 mcr = CSR_READ_2(sc, VTE_MCR1);
1205 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1206 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1207 DELAY(10);
1208 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1209 break;
1210 }
1211 if (i == 0)
1212 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1213 /*
1214 * Follow the guide of vendor recommended way to reset MAC.
1215 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1216 * not reliable so manually reset internal state machine.
1217 */
1218 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1219 CSR_WRITE_2(sc, VTE_MACSM, 0);
1220 DELAY(5000);
1221 }
1222
1223
1224 static int
1225 vte_init(struct ifnet *ifp)
1226 {
1227 struct vte_softc *sc = ifp->if_softc;
1228 bus_addr_t paddr;
1229 uint8_t eaddr[ETHER_ADDR_LEN];
1230 int s, error;
1231
1232 s = splnet();
1233 /*
1234 * Cancel any pending I/O.
1235 */
1236 vte_stop(ifp, 1);
1237 /*
1238 * Reset the chip to a known state.
1239 */
1240 vte_reset(sc);
1241
1242 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1243 splx(s);
1244 return 0;
1245 }
1246
1247 /* Initialize RX descriptors. */
1248 if (vte_init_rx_ring(sc) != 0) {
1249 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1250 vte_stop(ifp, 1);
1251 splx(s);
1252 return ENOMEM;
1253 }
1254 if (vte_init_tx_ring(sc) != 0) {
1255 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1256 vte_stop(ifp, 1);
1257 splx(s);
1258 return ENOMEM;
1259 }
1260
1261 /*
1262 * Reprogram the station address. Controller supports up
1263 * to 4 different station addresses so driver programs the
1264 * first station address as its own ethernet address and
1265 * configure the remaining three addresses as perfect
1266 * multicast addresses.
1267 */
1268 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1269 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1270 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1271 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1272
1273 /* Set TX descriptor base addresses. */
1274 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1275 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1276 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1277 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1278
1279 /* Set RX descriptor base addresses. */
1280 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1281 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1282 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1283 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1284 /*
1285 * Initialize RX descriptor residue counter and set RX
1286 * pause threshold to 20% of available RX descriptors.
1287 * See comments on vte_rxeof() for details on flow control
1288 * issues.
1289 */
1290 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1291 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1292
1293 /*
1294 * Always use maximum frame size that controller can
1295 * support. Otherwise received frames that has longer
1296 * frame length than vte(4) MTU would be silently dropped
1297 * in controller. This would break path-MTU discovery as
1298 * sender wouldn't get any responses from receiver. The
1299 * RX buffer size should be multiple of 4.
1300 * Note, jumbo frames are silently ignored by controller
1301 * and even MAC counters do not detect them.
1302 */
1303 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1304
1305 /* Configure FIFO. */
1306 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1307 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1308 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1309
1310 /*
1311 * Configure TX/RX MACs. Actual resolved duplex and flow
1312 * control configuration is done after detecting a valid
1313 * link. Note, we don't generate early interrupt here
1314 * as well since FreeBSD does not have interrupt latency
1315 * problems like Windows.
1316 */
1317 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1318 /*
1319 * We manually keep track of PHY status changes to
1320 * configure resolved duplex and flow control since only
1321 * duplex configuration can be automatically reflected to
1322 * MCR0.
1323 */
1324 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1325 MCR1_EXCESS_COL_RETRY_16);
1326
1327 /* Initialize RX filter. */
1328 vte_rxfilter(sc);
1329
1330 /* Disable TX/RX interrupt moderation control. */
1331 CSR_WRITE_2(sc, VTE_MRICR, 0);
1332 CSR_WRITE_2(sc, VTE_MTICR, 0);
1333
1334 /* Enable MAC event counter interrupts. */
1335 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1336 /* Clear MAC statistics. */
1337 vte_stats_clear(sc);
1338
1339 /* Acknowledge all pending interrupts and clear it. */
1340 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1341 CSR_WRITE_2(sc, VTE_MISR, 0);
1342 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1343 CSR_READ_2(sc, VTE_MISR)));
1344
1345 sc->vte_flags &= ~VTE_FLAG_LINK;
1346 ifp->if_flags |= IFF_RUNNING;
1347 ifp->if_flags &= ~IFF_OACTIVE;
1348
1349 /* calling mii_mediachg will call back vte_start_mac() */
1350 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1351 error = 0;
1352 else if (error != 0) {
1353 aprint_error_dev(sc->vte_dev, "could not set media\n");
1354 splx(s);
1355 return error;
1356 }
1357
1358 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1359
1360 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1361 CSR_READ_2(sc, VTE_MISR)));
1362 splx(s);
1363 return 0;
1364 }
1365
1366 static void
1367 vte_stop(struct ifnet *ifp, int disable)
1368 {
1369 struct vte_softc *sc = ifp->if_softc;
1370 struct vte_txdesc *txd;
1371 struct vte_rxdesc *rxd;
1372 int i;
1373
1374 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1375 if ((ifp->if_flags & IFF_RUNNING) == 0)
1376 return;
1377 /*
1378 * Mark the interface down and cancel the watchdog timer.
1379 */
1380 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1381 sc->vte_flags &= ~VTE_FLAG_LINK;
1382 callout_stop(&sc->vte_tick_ch);
1383 sc->vte_watchdog_timer = 0;
1384 vte_stats_update(sc);
1385 /* Disable interrupts. */
1386 CSR_WRITE_2(sc, VTE_MIER, 0);
1387 CSR_WRITE_2(sc, VTE_MECIER, 0);
1388 /* Stop RX/TX MACs. */
1389 vte_stop_mac(sc);
1390 /* Clear interrupts. */
1391 CSR_READ_2(sc, VTE_MISR);
1392 /*
1393 * Free TX/RX mbufs still in the queues.
1394 */
1395 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1396 rxd = &sc->vte_cdata.vte_rxdesc[i];
1397 if (rxd->rx_m != NULL) {
1398 bus_dmamap_sync(sc->vte_dmatag,
1399 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1400 BUS_DMASYNC_POSTREAD);
1401 bus_dmamap_unload(sc->vte_dmatag,
1402 rxd->rx_dmamap);
1403 m_freem(rxd->rx_m);
1404 rxd->rx_m = NULL;
1405 }
1406 }
1407 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1408 txd = &sc->vte_cdata.vte_txdesc[i];
1409 if (txd->tx_m != NULL) {
1410 bus_dmamap_sync(sc->vte_dmatag,
1411 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1412 BUS_DMASYNC_POSTWRITE);
1413 bus_dmamap_unload(sc->vte_dmatag,
1414 txd->tx_dmamap);
1415 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1416 m_freem(txd->tx_m);
1417 txd->tx_m = NULL;
1418 txd->tx_flags &= ~VTE_TXMBUF;
1419 }
1420 }
1421 /* Free TX mbuf pools used for deep copy. */
1422 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1423 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1424 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1425 sc->vte_cdata.vte_txmbufs[i] = NULL;
1426 }
1427 }
1428 }
1429
1430 static void
1431 vte_start_mac(struct vte_softc *sc)
1432 {
1433 struct ifnet *ifp = &sc->vte_if;
1434 uint16_t mcr;
1435 int i;
1436
1437 /* Enable RX/TX MACs. */
1438 mcr = CSR_READ_2(sc, VTE_MCR0);
1439 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1440 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1441 (ifp->if_flags & IFF_RUNNING) != 0) {
1442 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1443 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1444 for (i = VTE_TIMEOUT; i > 0; i--) {
1445 mcr = CSR_READ_2(sc, VTE_MCR0);
1446 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1447 (MCR0_RX_ENB | MCR0_TX_ENB))
1448 break;
1449 DELAY(10);
1450 }
1451 if (i == 0)
1452 aprint_error_dev(sc->vte_dev,
1453 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1454 }
1455 vte_rxfilter(sc);
1456 }
1457
1458 static void
1459 vte_stop_mac(struct vte_softc *sc)
1460 {
1461 uint16_t mcr;
1462 int i;
1463
1464 /* Disable RX/TX MACs. */
1465 mcr = CSR_READ_2(sc, VTE_MCR0);
1466 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1467 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1468 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1469 for (i = VTE_TIMEOUT; i > 0; i--) {
1470 mcr = CSR_READ_2(sc, VTE_MCR0);
1471 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1472 break;
1473 DELAY(10);
1474 }
1475 if (i == 0)
1476 aprint_error_dev(sc->vte_dev,
1477 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1478 }
1479 }
1480
1481 static int
1482 vte_init_tx_ring(struct vte_softc *sc)
1483 {
1484 struct vte_tx_desc *desc;
1485 struct vte_txdesc *txd;
1486 bus_addr_t addr;
1487 int i;
1488
1489 sc->vte_cdata.vte_tx_prod = 0;
1490 sc->vte_cdata.vte_tx_cons = 0;
1491 sc->vte_cdata.vte_tx_cnt = 0;
1492
1493 /* Pre-allocate TX mbufs for deep copy. */
1494 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1495 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1496 MT_DATA, M_PKTHDR);
1497 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1498 return (ENOBUFS);
1499 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1500 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1501 }
1502 desc = sc->vte_cdata.vte_tx_ring;
1503 bzero(desc, VTE_TX_RING_SZ);
1504 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1505 txd = &sc->vte_cdata.vte_txdesc[i];
1506 txd->tx_m = NULL;
1507 if (i != VTE_TX_RING_CNT - 1)
1508 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1509 sizeof(struct vte_tx_desc) * (i + 1);
1510 else
1511 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 sizeof(struct vte_tx_desc) * 0;
1513 desc = &sc->vte_cdata.vte_tx_ring[i];
1514 desc->dtnp = htole32(addr);
1515 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1516 txd->tx_desc = desc;
1517 }
1518
1519 bus_dmamap_sync(sc->vte_dmatag,
1520 sc->vte_cdata.vte_tx_ring_map, 0,
1521 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1522 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1523 return (0);
1524 }
1525
1526 static int
1527 vte_init_rx_ring(struct vte_softc *sc)
1528 {
1529 struct vte_rx_desc *desc;
1530 struct vte_rxdesc *rxd;
1531 bus_addr_t addr;
1532 int i;
1533
1534 sc->vte_cdata.vte_rx_cons = 0;
1535 desc = sc->vte_cdata.vte_rx_ring;
1536 bzero(desc, VTE_RX_RING_SZ);
1537 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1538 rxd = &sc->vte_cdata.vte_rxdesc[i];
1539 rxd->rx_m = NULL;
1540 if (i != VTE_RX_RING_CNT - 1)
1541 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1542 + sizeof(struct vte_rx_desc) * (i + 1);
1543 else
1544 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 + sizeof(struct vte_rx_desc) * 0;
1546 desc = &sc->vte_cdata.vte_rx_ring[i];
1547 desc->drnp = htole32(addr);
1548 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1549 rxd->rx_desc = desc;
1550 if (vte_newbuf(sc, rxd) != 0)
1551 return (ENOBUFS);
1552 }
1553
1554 bus_dmamap_sync(sc->vte_dmatag,
1555 sc->vte_cdata.vte_rx_ring_map, 0,
1556 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1557 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1558
1559 return (0);
1560 }
1561
1562 static void
1563 vte_rxfilter(struct vte_softc *sc)
1564 {
1565 struct ether_multistep step;
1566 struct ether_multi *enm;
1567 struct ifnet *ifp;
1568 uint8_t *eaddr;
1569 uint32_t crc;
1570 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1571 uint16_t mchash[4], mcr;
1572 int i, nperf;
1573
1574 ifp = &sc->vte_if;
1575
1576 DPRINTF(("vte_rxfilter\n"));
1577 memset(mchash, 0, sizeof(mchash));
1578 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1579 rxfilt_perf[i][0] = 0xFFFF;
1580 rxfilt_perf[i][1] = 0xFFFF;
1581 rxfilt_perf[i][2] = 0xFFFF;
1582 }
1583
1584 mcr = CSR_READ_2(sc, VTE_MCR0);
1585 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1586 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1587 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1588 mcr |= MCR0_BROADCAST_DIS;
1589 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1590 if ((ifp->if_flags & IFF_PROMISC) != 0)
1591 mcr |= MCR0_PROMISC;
1592 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1593 mcr |= MCR0_MULTICAST;
1594 mchash[0] = 0xFFFF;
1595 mchash[1] = 0xFFFF;
1596 mchash[2] = 0xFFFF;
1597 mchash[3] = 0xFFFF;
1598 goto chipit;
1599 }
1600
1601 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1602 nperf = 0;
1603 while (enm != NULL) {
1604 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1605 sc->vte_if.if_flags |= IFF_ALLMULTI;
1606 mcr |= MCR0_MULTICAST;
1607 mchash[0] = 0xFFFF;
1608 mchash[1] = 0xFFFF;
1609 mchash[2] = 0xFFFF;
1610 mchash[3] = 0xFFFF;
1611 goto chipit;
1612 }
1613 /*
1614 * Program the first 3 multicast groups into
1615 * the perfect filter. For all others, use the
1616 * hash table.
1617 */
1618 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1619 eaddr = enm->enm_addrlo;
1620 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1621 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1622 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1623 nperf++;
1624 } else {
1625 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1626 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1627 }
1628 ETHER_NEXT_MULTI(step, enm);
1629 }
1630 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1631 mchash[3] != 0)
1632 mcr |= MCR0_MULTICAST;
1633
1634 chipit:
1635 /* Program multicast hash table. */
1636 DPRINTF(("chipit write multicast\n"));
1637 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1638 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1639 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1640 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1641 /* Program perfect filter table. */
1642 DPRINTF(("chipit write perfect filter\n"));
1643 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1644 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1645 rxfilt_perf[i][0]);
1646 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1647 rxfilt_perf[i][1]);
1648 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1649 rxfilt_perf[i][2]);
1650 }
1651 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1652 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1653 DPRINTF(("chipit read mcro\n"));
1654 CSR_READ_2(sc, VTE_MCR0);
1655 DPRINTF(("chipit done\n"));
1656 }
1657
1658 /*
1659 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1660 * set up in vte_pci_attach()
1661 */
1662 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1663 {
1664 int rc;
1665 const struct sysctlnode *node;
1666
1667 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1668 0, CTLTYPE_NODE, "vte",
1669 SYSCTL_DESCR("vte interface controls"),
1670 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1671 goto err;
1672 }
1673
1674 vte_root_num = node->sysctl_num;
1675 return;
1676
1677 err:
1678 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1679 }
1680
1681 static int
1682 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1683 {
1684 int error, t;
1685 struct sysctlnode node;
1686 struct vte_softc *sc;
1687
1688 node = *rnode;
1689 sc = node.sysctl_data;
1690 t = sc->vte_int_rx_mod;
1691 node.sysctl_data = &t;
1692 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1693 if (error || newp == NULL)
1694 return error;
1695 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1696 return EINVAL;
1697
1698 sc->vte_int_rx_mod = t;
1699 vte_miibus_statchg(&sc->vte_if);
1700 return 0;
1701 }
1702
1703 static int
1704 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1705 {
1706 int error, t;
1707 struct sysctlnode node;
1708 struct vte_softc *sc;
1709
1710 node = *rnode;
1711 sc = node.sysctl_data;
1712 t = sc->vte_int_tx_mod;
1713 node.sysctl_data = &t;
1714 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1715 if (error || newp == NULL)
1716 return error;
1717
1718 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1719 return EINVAL;
1720 sc->vte_int_tx_mod = t;
1721 vte_miibus_statchg(&sc->vte_if);
1722 return 0;
1723 }
1724