Home | History | Annotate | Line # | Download | only in pci
if_vte.c revision 1.17
      1 /*	$NetBSD: if_vte.c,v 1.17 2017/05/23 02:19:14 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*-
     28  * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
     29  * All rights reserved.
     30  *
     31  * Redistribution and use in source and binary forms, with or without
     32  * modification, are permitted provided that the following conditions
     33  * are met:
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice unmodified, this list of conditions, and the following
     36  *    disclaimer.
     37  * 2. Redistributions in binary form must reproduce the above copyright
     38  *    notice, this list of conditions and the following disclaimer in the
     39  *    documentation and/or other materials provided with the distribution.
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  */
     53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
     54 
     55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.17 2017/05/23 02:19:14 ozaki-r Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/protosw.h>
     64 #include <sys/socket.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/errno.h>
     67 #include <sys/malloc.h>
     68 #include <sys/kernel.h>
     69 #include <sys/device.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include <net/if.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_dl.h>
     76 #include <net/route.h>
     77 #include <net/netisr.h>
     78 
     79 #include <net/bpf.h>
     80 #include <net/bpfdesc.h>
     81 
     82 #include <sys/rndsource.h>
     83 
     84 #include "opt_inet.h"
     85 #include <net/if_ether.h>
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #include <netinet/in_systm.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip.h>
     91 #include <netinet/if_inarp.h>
     92 #endif
     93 
     94 #include <sys/bus.h>
     95 #include <sys/intr.h>
     96 
     97 #include <dev/pci/pcireg.h>
     98 #include <dev/pci/pcivar.h>
     99 #include <dev/pci/pcidevs.h>
    100 
    101 #include <dev/mii/mii.h>
    102 #include <dev/mii/miivar.h>
    103 
    104 #include <dev/pci/if_vtereg.h>
    105 #include <dev/pci/if_vtevar.h>
    106 
    107 static int	vte_match(device_t, cfdata_t, void *);
    108 static void	vte_attach(device_t, device_t, void *);
    109 static int	vte_detach(device_t, int);
    110 static int	vte_dma_alloc(struct vte_softc *);
    111 static void	vte_dma_free(struct vte_softc *);
    112 static struct vte_txdesc *
    113 		vte_encap(struct vte_softc *, struct mbuf **);
    114 static void	vte_get_macaddr(struct vte_softc *);
    115 static int	vte_init(struct ifnet *);
    116 static int	vte_init_rx_ring(struct vte_softc *);
    117 static int	vte_init_tx_ring(struct vte_softc *);
    118 static int	vte_intr(void *);
    119 static int	vte_ifioctl(struct ifnet *, u_long, void *);
    120 static void	vte_mac_config(struct vte_softc *);
    121 static int	vte_miibus_readreg(device_t, int, int);
    122 static void	vte_miibus_statchg(struct ifnet *);
    123 static void	vte_miibus_writereg(device_t, int, int, int);
    124 static int	vte_mediachange(struct ifnet *);
    125 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
    126 static void	vte_reset(struct vte_softc *);
    127 static void	vte_rxeof(struct vte_softc *);
    128 static void	vte_rxfilter(struct vte_softc *);
    129 static bool	vte_shutdown(device_t, int);
    130 static bool	vte_suspend(device_t, const pmf_qual_t *);
    131 static bool	vte_resume(device_t, const pmf_qual_t *);
    132 static void	vte_ifstart(struct ifnet *);
    133 static void	vte_start_mac(struct vte_softc *);
    134 static void	vte_stats_clear(struct vte_softc *);
    135 static void	vte_stats_update(struct vte_softc *);
    136 static void	vte_stop(struct ifnet *, int);
    137 static void	vte_stop_mac(struct vte_softc *);
    138 static void	vte_tick(void *);
    139 static void	vte_txeof(struct vte_softc *);
    140 static void	vte_ifwatchdog(struct ifnet *);
    141 
    142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
    143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
    144 static int vte_root_num;
    145 
    146 #define DPRINTF(a)
    147 
    148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
    149     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    150 
    151 
    152 static int
    153 vte_match(device_t parent, cfdata_t cf, void *aux)
    154 {
    155 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    156 
    157 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
    158 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
    159 		return 1;
    160 
    161 	return 0;
    162 }
    163 
    164 static void
    165 vte_attach(device_t parent, device_t self, void *aux)
    166 {
    167 	struct vte_softc *sc = device_private(self);
    168 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
    169 	struct ifnet * const ifp = &sc->vte_if;
    170 	int h_valid;
    171 	pcireg_t reg, csr;
    172 	pci_intr_handle_t intrhandle;
    173 	const char *intrstr;
    174 	int error;
    175 	const struct sysctlnode *node;
    176 	int vte_nodenum;
    177 	char intrbuf[PCI_INTRSTR_LEN];
    178 
    179 	sc->vte_dev = self;
    180 
    181 	callout_init(&sc->vte_tick_ch, 0);
    182 
    183 	/* Map the device. */
    184 	h_valid = 0;
    185 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
    186 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
    187 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
    188 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    189 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
    190 	}
    191 	if (h_valid == 0) {
    192 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
    193 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    194 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
    195 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
    196 			    &sc->vte_bushandle, NULL, NULL) == 0);
    197 		}
    198 	}
    199 	if (h_valid == 0) {
    200 		aprint_error_dev(self, "unable to map device registers\n");
    201 		return;
    202 	}
    203 	sc->vte_dmatag = pa->pa_dmat;
    204 	/* Enable the device. */
    205 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    206 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    207 	    csr | PCI_COMMAND_MASTER_ENABLE);
    208 
    209 	pci_aprint_devinfo(pa, NULL);
    210 
    211 	/* Reset the ethernet controller. */
    212 	vte_reset(sc);
    213 
    214 	if ((error = vte_dma_alloc(sc)) != 0)
    215 		return;
    216 
    217 	/* Load station address. */
    218 	vte_get_macaddr(sc);
    219 
    220 	aprint_normal_dev(self, "Ethernet address %s\n",
    221 	    ether_sprintf(sc->vte_eaddr));
    222 
    223 	/* Map and establish interrupts */
    224 	if (pci_intr_map(pa, &intrhandle)) {
    225 		aprint_error_dev(self, "couldn't map interrupt\n");
    226 		return;
    227 	}
    228 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
    229 	    sizeof(intrbuf));
    230 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
    231 	    vte_intr, sc);
    232 	if (sc->vte_ih == NULL) {
    233 		aprint_error_dev(self, "couldn't establish interrupt");
    234 		if (intrstr != NULL)
    235 			aprint_error(" at %s", intrstr);
    236 		aprint_error("\n");
    237 		return;
    238 	}
    239 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    240 
    241 	sc->vte_if.if_softc = sc;
    242 	sc->vte_mii.mii_ifp = ifp;
    243 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
    244 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
    245 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
    246 	sc->vte_ec.ec_mii = &sc->vte_mii;
    247 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
    248 	    ether_mediastatus);
    249 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
    250 	    MII_OFFSET_ANY, 0);
    251 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
    252 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    253 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
    254 	} else
    255 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
    256 
    257 	/*
    258 	 * We can support 802.1Q VLAN-sized frames.
    259 	 */
    260 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    261 
    262         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    263         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
    264         ifp->if_ioctl = vte_ifioctl;
    265         ifp->if_start = vte_ifstart;
    266         ifp->if_watchdog = vte_ifwatchdog;
    267         ifp->if_init = vte_init;
    268         ifp->if_stop = vte_stop;
    269         ifp->if_timer = 0;
    270         IFQ_SET_READY(&ifp->if_snd);
    271         if_attach(ifp);
    272 	if_deferred_start_init(ifp, NULL);
    273         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
    274 
    275 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
    276 		pmf_class_network_register(self, ifp);
    277 	else
    278 		aprint_error_dev(self, "couldn't establish power handler\n");
    279 
    280         rnd_attach_source(&sc->rnd_source, device_xname(self),
    281             RND_TYPE_NET, RND_FLAG_DEFAULT);
    282 
    283 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    284 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
    285 	    SYSCTL_DESCR("vte per-controller controls"),
    286 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
    287 	    CTL_EOL) != 0) {
    288 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
    289 		return;
    290 	}
    291 	vte_nodenum = node->sysctl_num;
    292 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    293 	    CTLFLAG_READWRITE,
    294 	    CTLTYPE_INT, "int_rxct",
    295 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
    296 	    vte_sysctl_intrxct, 0, (void *)sc,
    297 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    298 	    CTL_EOL) != 0) {
    299 		aprint_normal_dev(sc->vte_dev,
    300 		    "couldn't create int_rxct sysctl node\n");
    301 	}
    302 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    303 	    CTLFLAG_READWRITE,
    304 	    CTLTYPE_INT, "int_txct",
    305 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
    306 	    vte_sysctl_inttxct, 0, (void *)sc,
    307 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    308 	    CTL_EOL) != 0) {
    309 		aprint_normal_dev(sc->vte_dev,
    310 		    "couldn't create int_txct sysctl node\n");
    311 	}
    312 }
    313 
    314 static int
    315 vte_detach(device_t dev, int flags __unused)
    316 {
    317 	struct vte_softc *sc = device_private(dev);
    318 	struct ifnet *ifp = &sc->vte_if;
    319 	int s;
    320 
    321 	s = splnet();
    322 	/* Stop the interface. Callouts are stopped in it. */
    323 	vte_stop(ifp, 1);
    324 	splx(s);
    325 
    326 	pmf_device_deregister(dev);
    327 
    328 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    329 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
    330 
    331 	ether_ifdetach(ifp);
    332 	if_detach(ifp);
    333 
    334 	vte_dma_free(sc);
    335 
    336 	return (0);
    337 }
    338 
    339 static int
    340 vte_miibus_readreg(device_t dev, int phy, int reg)
    341 {
    342 	struct vte_softc *sc = device_private(dev);
    343 	int i;
    344 
    345 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
    346 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    347 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    348 		DELAY(5);
    349 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
    350 			break;
    351 	}
    352 
    353 	if (i == 0) {
    354 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
    355 		return (0);
    356 	}
    357 
    358 	return (CSR_READ_2(sc, VTE_MMRD));
    359 }
    360 
    361 static void
    362 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
    363 {
    364 	struct vte_softc *sc = device_private(dev);
    365 	int i;
    366 
    367 	CSR_WRITE_2(sc, VTE_MMWD, val);
    368 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
    369 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    370 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    371 		DELAY(5);
    372 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
    373 			break;
    374 	}
    375 
    376 	if (i == 0)
    377 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
    378 
    379 }
    380 
    381 static void
    382 vte_miibus_statchg(struct ifnet *ifp)
    383 {
    384 	struct vte_softc *sc = ifp->if_softc;
    385 	uint16_t val;
    386 
    387 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
    388 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
    389 
    390 	sc->vte_flags &= ~VTE_FLAG_LINK;
    391 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    392 	    (IFM_ACTIVE | IFM_AVALID)) {
    393 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
    394 		case IFM_10_T:
    395 		case IFM_100_TX:
    396 			sc->vte_flags |= VTE_FLAG_LINK;
    397 			break;
    398 		default:
    399 			break;
    400 		}
    401 	}
    402 
    403 	/* Stop RX/TX MACs. */
    404 	vte_stop_mac(sc);
    405 	/* Program MACs with resolved duplex and flow control. */
    406 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
    407 		/*
    408 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
    409 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
    410 		 */
    411 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    412 			val = 18 << VTE_IM_TIMER_SHIFT;
    413 		else
    414 			val = 1 << VTE_IM_TIMER_SHIFT;
    415 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
    416 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    417 		CSR_WRITE_2(sc, VTE_MRICR, val);
    418 
    419 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    420 			val = 18 << VTE_IM_TIMER_SHIFT;
    421 		else
    422 			val = 1 << VTE_IM_TIMER_SHIFT;
    423 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
    424 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    425 		CSR_WRITE_2(sc, VTE_MTICR, val);
    426 
    427 		vte_mac_config(sc);
    428 		vte_start_mac(sc);
    429 		DPRINTF(("vte_miibus_statchg: link\n"));
    430 	}
    431 }
    432 
    433 static void
    434 vte_get_macaddr(struct vte_softc *sc)
    435 {
    436 	uint16_t mid;
    437 
    438 	/*
    439 	 * It seems there is no way to reload station address and
    440 	 * it is supposed to be set by BIOS.
    441 	 */
    442 	mid = CSR_READ_2(sc, VTE_MID0L);
    443 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
    444 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
    445 	mid = CSR_READ_2(sc, VTE_MID0M);
    446 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
    447 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
    448 	mid = CSR_READ_2(sc, VTE_MID0H);
    449 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
    450 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
    451 }
    452 
    453 
    454 static int
    455 vte_dma_alloc(struct vte_softc *sc)
    456 {
    457 	struct vte_txdesc *txd;
    458 	struct vte_rxdesc *rxd;
    459 	int error, i, rseg;
    460 
    461 	/* create DMA map for TX ring */
    462 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
    463 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    464 	    &sc->vte_cdata.vte_tx_ring_map);
    465 	if (error) {
    466 		aprint_error_dev(sc->vte_dev,
    467 		    "could not create dma map for TX ring (%d)\n",
    468 		    error);
    469 		goto fail;
    470 	}
    471 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
    472 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
    473 	    VTE_TX_RING_ALIGN, 0,
    474 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
    475 	    BUS_DMA_NOWAIT);
    476 	if (error != 0) {
    477 		aprint_error_dev(sc->vte_dev,
    478 		    "could not allocate DMA'able memory for TX ring (%d).\n",
    479 		    error);
    480 		goto fail;
    481 	}
    482 	KASSERT(rseg == 1);
    483 	error = bus_dmamem_map(sc->vte_dmatag,
    484 	    sc->vte_cdata.vte_tx_ring_seg, 1,
    485 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
    486 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    487 	if (error != 0) {
    488 		aprint_error_dev(sc->vte_dev,
    489 		    "could not map DMA'able memory for TX ring (%d).\n",
    490 		    error);
    491 		goto fail;
    492 	}
    493 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
    494 	error = bus_dmamap_load(sc->vte_dmatag,
    495 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
    496 	    VTE_TX_RING_SZ, NULL,
    497 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    498 	if (error != 0) {
    499 		aprint_error_dev(sc->vte_dev,
    500 		    "could not load DMA'able memory for TX ring.\n");
    501 		goto fail;
    502 	}
    503 
    504 	/* create DMA map for RX ring */
    505 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
    506 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    507 	    &sc->vte_cdata.vte_rx_ring_map);
    508 	if (error) {
    509 		aprint_error_dev(sc->vte_dev,
    510 		    "could not create dma map for RX ring (%d)\n",
    511 		    error);
    512 		goto fail;
    513 	}
    514 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
    515 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
    516 	    VTE_RX_RING_ALIGN, 0,
    517 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
    518 	    BUS_DMA_NOWAIT);
    519 	if (error != 0) {
    520 		aprint_error_dev(sc->vte_dev,
    521 		    "could not allocate DMA'able memory for RX ring (%d).\n",
    522 		    error);
    523 		goto fail;
    524 	}
    525 	KASSERT(rseg == 1);
    526 	error = bus_dmamem_map(sc->vte_dmatag,
    527 	    sc->vte_cdata.vte_rx_ring_seg, 1,
    528 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
    529 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    530 	if (error != 0) {
    531 		aprint_error_dev(sc->vte_dev,
    532 		    "could not map DMA'able memory for RX ring (%d).\n",
    533 		    error);
    534 		goto fail;
    535 	}
    536 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
    537 	error = bus_dmamap_load(sc->vte_dmatag,
    538 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
    539 	    VTE_RX_RING_SZ, NULL,
    540 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    541 	if (error != 0) {
    542 		aprint_error_dev(sc->vte_dev,
    543 		    "could not load DMA'able memory for RX ring (%d).\n",
    544 		    error);
    545 		goto fail;
    546 	}
    547 
    548 	/* Create DMA maps for TX buffers. */
    549 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    550 		txd = &sc->vte_cdata.vte_txdesc[i];
    551 		txd->tx_m = NULL;
    552 		txd->tx_dmamap = NULL;
    553 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    554 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    555 		    &txd->tx_dmamap);
    556 		if (error != 0) {
    557 			aprint_error_dev(sc->vte_dev,
    558 			    "could not create TX DMA map %d (%d).\n", i, error);
    559 			goto fail;
    560 		}
    561 	}
    562 	/* Create DMA maps for RX buffers. */
    563 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    564 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    565 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
    566 		aprint_error_dev(sc->vte_dev,
    567 		    "could not create spare RX dmamap (%d).\n", error);
    568 		goto fail;
    569 	}
    570 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    571 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    572 		rxd->rx_m = NULL;
    573 		rxd->rx_dmamap = NULL;
    574 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    575 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    576 		    &rxd->rx_dmamap);
    577 		if (error != 0) {
    578 			aprint_error_dev(sc->vte_dev,
    579 			    "could not create RX dmamap %d (%d).\n", i, error);
    580 			goto fail;
    581 		}
    582 	}
    583 	return 0;
    584 
    585 fail:
    586 	vte_dma_free(sc);
    587 	return (error);
    588 }
    589 
    590 static void
    591 vte_dma_free(struct vte_softc *sc)
    592 {
    593 	struct vte_txdesc *txd;
    594 	struct vte_rxdesc *rxd;
    595 	int i;
    596 
    597 	/* TX buffers. */
    598 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    599 		txd = &sc->vte_cdata.vte_txdesc[i];
    600 		if (txd->tx_dmamap != NULL) {
    601 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
    602 			txd->tx_dmamap = NULL;
    603 		}
    604 	}
    605 	/* RX buffers */
    606 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    607 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    608 		if (rxd->rx_dmamap != NULL) {
    609 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
    610 			rxd->rx_dmamap = NULL;
    611 		}
    612 	}
    613 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
    614 		bus_dmamap_destroy(sc->vte_dmatag,
    615 		    sc->vte_cdata.vte_rx_sparemap);
    616 		sc->vte_cdata.vte_rx_sparemap = NULL;
    617 	}
    618 	/* TX descriptor ring. */
    619 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
    620 		bus_dmamap_unload(sc->vte_dmatag,
    621 		    sc->vte_cdata.vte_tx_ring_map);
    622 		bus_dmamap_destroy(sc->vte_dmatag,
    623 		    sc->vte_cdata.vte_tx_ring_map);
    624 	}
    625 	if (sc->vte_cdata.vte_tx_ring != NULL) {
    626 		bus_dmamem_unmap(sc->vte_dmatag,
    627 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
    628 		bus_dmamem_free(sc->vte_dmatag,
    629 		    sc->vte_cdata.vte_tx_ring_seg, 1);
    630 	}
    631 	sc->vte_cdata.vte_tx_ring = NULL;
    632 	sc->vte_cdata.vte_tx_ring_map = NULL;
    633 	/* RX ring. */
    634 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
    635 		bus_dmamap_unload(sc->vte_dmatag,
    636 		    sc->vte_cdata.vte_rx_ring_map);
    637 		bus_dmamap_destroy(sc->vte_dmatag,
    638 		    sc->vte_cdata.vte_rx_ring_map);
    639 	}
    640 	if (sc->vte_cdata.vte_rx_ring != NULL) {
    641 		bus_dmamem_unmap(sc->vte_dmatag,
    642 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
    643 		bus_dmamem_free(sc->vte_dmatag,
    644 		    sc->vte_cdata.vte_rx_ring_seg, 1);
    645 	}
    646 	sc->vte_cdata.vte_rx_ring = NULL;
    647 	sc->vte_cdata.vte_rx_ring_map = NULL;
    648 }
    649 
    650 static bool
    651 vte_shutdown(device_t dev, int howto)
    652 {
    653 
    654 	return (vte_suspend(dev, NULL));
    655 }
    656 
    657 static bool
    658 vte_suspend(device_t dev, const pmf_qual_t *qual)
    659 {
    660 	struct vte_softc *sc = device_private(dev);
    661 	struct ifnet *ifp = &sc->vte_if;
    662 
    663 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
    664 	if ((ifp->if_flags & IFF_RUNNING) != 0)
    665 		vte_stop(ifp, 1);
    666 	return (0);
    667 }
    668 
    669 static bool
    670 vte_resume(device_t dev, const pmf_qual_t *qual)
    671 {
    672 	struct vte_softc *sc = device_private(dev);
    673 	struct ifnet *ifp;
    674 
    675 	ifp = &sc->vte_if;
    676 	if ((ifp->if_flags & IFF_UP) != 0) {
    677 		ifp->if_flags &= ~IFF_RUNNING;
    678 		vte_init(ifp);
    679 	}
    680 
    681 	return (0);
    682 }
    683 
    684 static struct vte_txdesc *
    685 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
    686 {
    687 	struct vte_txdesc *txd;
    688 	struct mbuf *m, *n;
    689 	int copy, error, padlen;
    690 
    691 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
    692 	m = *m_head;
    693 	/*
    694 	 * Controller doesn't auto-pad, so we have to make sure pad
    695 	 * short frames out to the minimum frame length.
    696 	 */
    697 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
    698 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
    699 	else
    700 		padlen = 0;
    701 
    702 	/*
    703 	 * Controller does not support multi-fragmented TX buffers.
    704 	 * Controller spends most of its TX processing time in
    705 	 * de-fragmenting TX buffers.  Either faster CPU or more
    706 	 * advanced controller DMA engine is required to speed up
    707 	 * TX path processing.
    708 	 * To mitigate the de-fragmenting issue, perform deep copy
    709 	 * from fragmented mbuf chains to a pre-allocated mbuf
    710 	 * cluster with extra cost of kernel memory.  For frames
    711 	 * that is composed of single TX buffer, the deep copy is
    712 	 * bypassed.
    713 	 */
    714 	copy = 0;
    715 	if (m->m_next != NULL)
    716 		copy++;
    717 	if (padlen > 0 && (M_READONLY(m) ||
    718 	    padlen > M_TRAILINGSPACE(m)))
    719 		copy++;
    720 	if (copy != 0) {
    721 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
    722 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
    723 		n->m_pkthdr.len = m->m_pkthdr.len;
    724 		n->m_len = m->m_pkthdr.len;
    725 		m = n;
    726 		txd->tx_flags |= VTE_TXMBUF;
    727 	}
    728 
    729 	if (padlen > 0) {
    730 		/* Zero out the bytes in the pad area. */
    731 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
    732 		m->m_pkthdr.len += padlen;
    733 		m->m_len = m->m_pkthdr.len;
    734 	}
    735 
    736 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
    737 	if (error != 0) {
    738 		txd->tx_flags &= ~VTE_TXMBUF;
    739 		return (NULL);
    740 	}
    741 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
    742 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
    743 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    744 
    745 	txd->tx_desc->dtlen =
    746 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
    747 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
    748 	sc->vte_cdata.vte_tx_cnt++;
    749 	/* Update producer index. */
    750 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
    751 
    752 	/* Finally hand over ownership to controller. */
    753 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
    754 	txd->tx_m = m;
    755 
    756 	return (txd);
    757 }
    758 
    759 static void
    760 vte_ifstart(struct ifnet *ifp)
    761 {
    762 	struct vte_softc *sc = ifp->if_softc;
    763 	struct vte_txdesc *txd;
    764 	struct mbuf *m_head, *m;
    765 	int enq;
    766 
    767 	ifp = &sc->vte_if;
    768 
    769 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
    770 
    771 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
    772 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
    773 		return;
    774 
    775 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
    776 		/* Reserve one free TX descriptor. */
    777 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
    778 			ifp->if_flags |= IFF_OACTIVE;
    779 			break;
    780 		}
    781 		IFQ_POLL(&ifp->if_snd, m_head);
    782 		if (m_head == NULL)
    783 			break;
    784 		/*
    785 		 * Pack the data into the transmit ring. If we
    786 		 * don't have room, set the OACTIVE flag and wait
    787 		 * for the NIC to drain the ring.
    788 		 */
    789 		DPRINTF(("vte_encap:"));
    790 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
    791 			DPRINTF((" failed\n"));
    792 			break;
    793 		}
    794 		DPRINTF((" ok\n"));
    795 		IFQ_DEQUEUE(&ifp->if_snd, m);
    796 		KASSERT(m == m_head);
    797 
    798 		enq++;
    799 		/*
    800 		 * If there's a BPF listener, bounce a copy of this frame
    801 		 * to him.
    802 		 */
    803 		bpf_mtap(ifp, m_head);
    804 		/* Free consumed TX frame. */
    805 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
    806 			m_freem(m_head);
    807 	}
    808 
    809 	if (enq > 0) {
    810 		bus_dmamap_sync(sc->vte_dmatag,
    811 		    sc->vte_cdata.vte_tx_ring_map, 0,
    812 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
    813 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    814 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
    815 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
    816 	}
    817 }
    818 
    819 static void
    820 vte_ifwatchdog(struct ifnet *ifp)
    821 {
    822 	struct vte_softc *sc = ifp->if_softc;
    823 
    824 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
    825 		return;
    826 
    827 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
    828 	ifp->if_oerrors++;
    829 	vte_init(ifp);
    830 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
    831 		vte_ifstart(ifp);
    832 }
    833 
    834 static int
    835 vte_mediachange(struct ifnet *ifp)
    836 {
    837 	int error;
    838 	struct vte_softc *sc = ifp->if_softc;
    839 
    840 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
    841 		error = 0;
    842 	else if (error != 0) {
    843 		aprint_error_dev(sc->vte_dev, "could not set media\n");
    844 		return error;
    845 	}
    846 											return 0;
    847 
    848 }
    849 
    850 static int
    851 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    852 {
    853 	struct vte_softc *sc = ifp->if_softc;
    854 	int error, s;
    855 
    856 	s = splnet();
    857 	error = ether_ioctl(ifp, cmd, data);
    858 	if (error == ENETRESET) {
    859 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
    860 		if (ifp->if_flags & IFF_RUNNING)
    861 			vte_rxfilter(sc);
    862 		error = 0;
    863 	}
    864 	splx(s);
    865 	return error;
    866 }
    867 
    868 static void
    869 vte_mac_config(struct vte_softc *sc)
    870 {
    871 	uint16_t mcr;
    872 
    873 	mcr = CSR_READ_2(sc, VTE_MCR0);
    874 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
    875 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
    876 		mcr |= MCR0_FULL_DUPLEX;
    877 #ifdef notyet
    878 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
    879 			mcr |= MCR0_FC_ENB;
    880 		/*
    881 		 * The data sheet is not clear whether the controller
    882 		 * honors received pause frames or not.  The is no
    883 		 * separate control bit for RX pause frame so just
    884 		 * enable MCR0_FC_ENB bit.
    885 		 */
    886 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
    887 			mcr |= MCR0_FC_ENB;
    888 #endif
    889 	}
    890 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
    891 }
    892 
    893 static void
    894 vte_stats_clear(struct vte_softc *sc)
    895 {
    896 
    897 	/* Reading counter registers clears its contents. */
    898 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
    899 	CSR_READ_2(sc, VTE_CNT_MECNT0);
    900 	CSR_READ_2(sc, VTE_CNT_MECNT1);
    901 	CSR_READ_2(sc, VTE_CNT_MECNT2);
    902 	CSR_READ_2(sc, VTE_CNT_MECNT3);
    903 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
    904 	CSR_READ_2(sc, VTE_CNT_MECNT4);
    905 	CSR_READ_2(sc, VTE_CNT_PAUSE);
    906 }
    907 
    908 static void
    909 vte_stats_update(struct vte_softc *sc)
    910 {
    911 	struct vte_hw_stats *stat;
    912 	struct ifnet *ifp = &sc->vte_if;
    913 	uint16_t value;
    914 
    915 	stat = &sc->vte_stats;
    916 
    917 	CSR_READ_2(sc, VTE_MECISR);
    918 	/* RX stats. */
    919 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
    920 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
    921 	stat->rx_bcast_frames += (value >> 8);
    922 	stat->rx_mcast_frames += (value & 0xFF);
    923 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
    924 	stat->rx_runts += (value >> 8);
    925 	stat->rx_crcerrs += (value & 0xFF);
    926 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
    927 	stat->rx_long_frames += (value & 0xFF);
    928 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
    929 	stat->rx_fifo_full += (value >> 8);
    930 	stat->rx_desc_unavail += (value & 0xFF);
    931 
    932 	/* TX stats. */
    933 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
    934 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
    935 	stat->tx_underruns += (value >> 8);
    936 	stat->tx_late_colls += (value & 0xFF);
    937 
    938 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
    939 	stat->tx_pause_frames += (value >> 8);
    940 	stat->rx_pause_frames += (value & 0xFF);
    941 
    942 	/* Update ifp counters. */
    943 	ifp->if_opackets = stat->tx_frames;
    944 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
    945 	ifp->if_ipackets = stat->rx_frames;
    946 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
    947 	    stat->rx_long_frames + stat->rx_fifo_full;
    948 }
    949 
    950 static int
    951 vte_intr(void *arg)
    952 {
    953 	struct vte_softc *sc = (struct vte_softc *)arg;
    954 	struct ifnet *ifp = &sc->vte_if;
    955 	uint16_t status;
    956 	int n;
    957 
    958 	/* Reading VTE_MISR acknowledges interrupts. */
    959 	status = CSR_READ_2(sc, VTE_MISR);
    960 	DPRINTF(("vte_intr status 0x%x\n", status));
    961 	if ((status & VTE_INTRS) == 0) {
    962 		/* Not ours. */
    963 		return 0;
    964 	}
    965 
    966 	/* Disable interrupts. */
    967 	CSR_WRITE_2(sc, VTE_MIER, 0);
    968 	for (n = 8; (status & VTE_INTRS) != 0;) {
    969 		if ((ifp->if_flags & IFF_RUNNING) == 0)
    970 			break;
    971 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
    972 		    MISR_RX_FIFO_FULL)) != 0)
    973 			vte_rxeof(sc);
    974 		if ((status & MISR_TX_DONE) != 0)
    975 			vte_txeof(sc);
    976 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
    977 			vte_stats_update(sc);
    978 		if_schedule_deferred_start(ifp);
    979 		if (--n > 0)
    980 			status = CSR_READ_2(sc, VTE_MISR);
    981 		else
    982 			break;
    983 	}
    984 
    985 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
    986 		/* Re-enable interrupts. */
    987 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
    988 	}
    989 	return 1;
    990 }
    991 
    992 static void
    993 vte_txeof(struct vte_softc *sc)
    994 {
    995 	struct ifnet *ifp;
    996 	struct vte_txdesc *txd;
    997 	uint16_t status;
    998 	int cons, prog;
    999 
   1000 	ifp = &sc->vte_if;
   1001 
   1002 	if (sc->vte_cdata.vte_tx_cnt == 0)
   1003 		return;
   1004 	bus_dmamap_sync(sc->vte_dmatag,
   1005 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1006 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1007 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1008 	cons = sc->vte_cdata.vte_tx_cons;
   1009 	/*
   1010 	 * Go through our TX list and free mbufs for those
   1011 	 * frames which have been transmitted.
   1012 	 */
   1013 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
   1014 		txd = &sc->vte_cdata.vte_txdesc[cons];
   1015 		status = le16toh(txd->tx_desc->dtst);
   1016 		if ((status & VTE_DTST_TX_OWN) != 0)
   1017 			break;
   1018 		if ((status & VTE_DTST_TX_OK) != 0)
   1019 			ifp->if_collisions += (status & 0xf);
   1020 		sc->vte_cdata.vte_tx_cnt--;
   1021 		/* Reclaim transmitted mbufs. */
   1022 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
   1023 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1024 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
   1025 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1026 			m_freem(txd->tx_m);
   1027 		txd->tx_flags &= ~VTE_TXMBUF;
   1028 		txd->tx_m = NULL;
   1029 		prog++;
   1030 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
   1031 	}
   1032 
   1033 	if (prog > 0) {
   1034 		ifp->if_flags &= ~IFF_OACTIVE;
   1035 		sc->vte_cdata.vte_tx_cons = cons;
   1036 		/*
   1037 		 * Unarm watchdog timer only when there is no pending
   1038 		 * frames in TX queue.
   1039 		 */
   1040 		if (sc->vte_cdata.vte_tx_cnt == 0)
   1041 			sc->vte_watchdog_timer = 0;
   1042 	}
   1043 }
   1044 
   1045 static int
   1046 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
   1047 {
   1048 	struct mbuf *m;
   1049 	bus_dmamap_t map;
   1050 
   1051 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   1052 	if (m == NULL)
   1053 		return (ENOBUFS);
   1054 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1055 	m_adj(m, sizeof(uint32_t));
   1056 
   1057 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
   1058 	    sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
   1059 		m_freem(m);
   1060 		return (ENOBUFS);
   1061 	}
   1062 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
   1063 
   1064 	if (rxd->rx_m != NULL) {
   1065 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1066 		    0, rxd->rx_dmamap->dm_mapsize,
   1067 		    BUS_DMASYNC_POSTREAD);
   1068 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
   1069 	}
   1070 	map = rxd->rx_dmamap;
   1071 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
   1072 	sc->vte_cdata.vte_rx_sparemap = map;
   1073 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1074 	    0, rxd->rx_dmamap->dm_mapsize,
   1075 	    BUS_DMASYNC_PREREAD);
   1076 	rxd->rx_m = m;
   1077 	rxd->rx_desc->drbp =
   1078 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1079 	rxd->rx_desc->drlen = htole16(
   1080 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
   1081 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
   1082 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
   1083 		rxd->rx_dmamap->dm_segs[0].ds_len));
   1084 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1085 
   1086 	return (0);
   1087 }
   1088 
   1089 static void
   1090 vte_rxeof(struct vte_softc *sc)
   1091 {
   1092 	struct ifnet *ifp;
   1093 	struct vte_rxdesc *rxd;
   1094 	struct mbuf *m;
   1095 	uint16_t status, total_len;
   1096 	int cons, prog;
   1097 
   1098 	bus_dmamap_sync(sc->vte_dmatag,
   1099 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1100 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1101 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1102 	cons = sc->vte_cdata.vte_rx_cons;
   1103 	ifp = &sc->vte_if;
   1104 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
   1105 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
   1106 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
   1107 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
   1108 		status = le16toh(rxd->rx_desc->drst);
   1109 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
   1110 			cons, rxd, rxd->rx_m, status,
   1111 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
   1112 		if ((status & VTE_DRST_RX_OWN) != 0)
   1113 			break;
   1114 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
   1115 		m = rxd->rx_m;
   1116 		if ((status & VTE_DRST_RX_OK) == 0) {
   1117 			/* Discard errored frame. */
   1118 			rxd->rx_desc->drlen =
   1119 			    htole16(MCLBYTES - sizeof(uint32_t));
   1120 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1121 			continue;
   1122 		}
   1123 		if (vte_newbuf(sc, rxd) != 0) {
   1124 			DPRINTF(("vte_rxeof newbuf failed\n"));
   1125 			ifp->if_ierrors++;
   1126 			rxd->rx_desc->drlen =
   1127 			    htole16(MCLBYTES - sizeof(uint32_t));
   1128 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1129 			continue;
   1130 		}
   1131 
   1132 		/*
   1133 		 * It seems there is no way to strip FCS bytes.
   1134 		 */
   1135 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1136 		m_set_rcvif(m, ifp);
   1137 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1138 	}
   1139 
   1140 	if (prog > 0) {
   1141 		/* Update the consumer index. */
   1142 		sc->vte_cdata.vte_rx_cons = cons;
   1143 		/*
   1144 		 * Sync updated RX descriptors such that controller see
   1145 		 * modified RX buffer addresses.
   1146 		 */
   1147 		bus_dmamap_sync(sc->vte_dmatag,
   1148 		    sc->vte_cdata.vte_rx_ring_map, 0,
   1149 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1150 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1151 #ifdef notyet
   1152 		/*
   1153 		 * Update residue counter.  Controller does not
   1154 		 * keep track of number of available RX descriptors
   1155 		 * such that driver should have to update VTE_MRDCR
   1156 		 * to make controller know how many free RX
   1157 		 * descriptors were added to controller.  This is
   1158 		 * a similar mechanism used in VIA velocity
   1159 		 * controllers and it indicates controller just
   1160 		 * polls OWN bit of current RX descriptor pointer.
   1161 		 * A couple of severe issues were seen on sample
   1162 		 * board where the controller continuously emits TX
   1163 		 * pause frames once RX pause threshold crossed.
   1164 		 * Once triggered it never recovered form that
   1165 		 * state, I couldn't find a way to make it back to
   1166 		 * work at least.  This issue effectively
   1167 		 * disconnected the system from network.  Also, the
   1168 		 * controller used 00:00:00:00:00:00 as source
   1169 		 * station address of TX pause frame. Probably this
   1170 		 * is one of reason why vendor recommends not to
   1171 		 * enable flow control on R6040 controller.
   1172 		 */
   1173 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
   1174 		    (((VTE_RX_RING_CNT * 2) / 10) <<
   1175 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1176 #endif
   1177 	rnd_add_uint32(&sc->rnd_source, prog);
   1178 	}
   1179 }
   1180 
   1181 static void
   1182 vte_tick(void *arg)
   1183 {
   1184 	struct vte_softc *sc;
   1185 	int s = splnet();
   1186 
   1187 	sc = (struct vte_softc *)arg;
   1188 
   1189 	mii_tick(&sc->vte_mii);
   1190 	vte_stats_update(sc);
   1191 	vte_txeof(sc);
   1192 	vte_ifwatchdog(&sc->vte_if);
   1193 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1194 	splx(s);
   1195 }
   1196 
   1197 static void
   1198 vte_reset(struct vte_softc *sc)
   1199 {
   1200 	uint16_t mcr;
   1201 	int i;
   1202 
   1203 	mcr = CSR_READ_2(sc, VTE_MCR1);
   1204 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
   1205 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
   1206 		DELAY(10);
   1207 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
   1208 			break;
   1209 	}
   1210 	if (i == 0)
   1211 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
   1212 	/*
   1213 	 * Follow the guide of vendor recommended way to reset MAC.
   1214 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
   1215 	 * not reliable so manually reset internal state machine.
   1216 	 */
   1217 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
   1218 	CSR_WRITE_2(sc, VTE_MACSM, 0);
   1219 	DELAY(5000);
   1220 }
   1221 
   1222 
   1223 static int
   1224 vte_init(struct ifnet *ifp)
   1225 {
   1226 	struct vte_softc *sc = ifp->if_softc;
   1227 	bus_addr_t paddr;
   1228 	uint8_t eaddr[ETHER_ADDR_LEN];
   1229 	int s, error;
   1230 
   1231 	s = splnet();
   1232 	/*
   1233 	 * Cancel any pending I/O.
   1234 	 */
   1235 	vte_stop(ifp, 1);
   1236 	/*
   1237 	 * Reset the chip to a known state.
   1238 	 */
   1239 	vte_reset(sc);
   1240 
   1241 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
   1242 		splx(s);
   1243 		return 0;
   1244 	}
   1245 
   1246 	/* Initialize RX descriptors. */
   1247 	if (vte_init_rx_ring(sc) != 0) {
   1248 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
   1249 		vte_stop(ifp, 1);
   1250 		splx(s);
   1251 		return ENOMEM;
   1252 	}
   1253 	if (vte_init_tx_ring(sc) != 0) {
   1254 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
   1255 		vte_stop(ifp, 1);
   1256 		splx(s);
   1257 		return ENOMEM;
   1258 	}
   1259 
   1260 	/*
   1261 	 * Reprogram the station address.  Controller supports up
   1262 	 * to 4 different station addresses so driver programs the
   1263 	 * first station address as its own ethernet address and
   1264 	 * configure the remaining three addresses as perfect
   1265 	 * multicast addresses.
   1266 	 */
   1267 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1268 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
   1269 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
   1270 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
   1271 
   1272 	/* Set TX descriptor base addresses. */
   1273 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
   1274 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
   1275 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
   1276 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
   1277 
   1278 	/* Set RX descriptor base addresses. */
   1279 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
   1280 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
   1281 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
   1282 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
   1283 	/*
   1284 	 * Initialize RX descriptor residue counter and set RX
   1285 	 * pause threshold to 20% of available RX descriptors.
   1286 	 * See comments on vte_rxeof() for details on flow control
   1287 	 * issues.
   1288 	 */
   1289 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
   1290 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1291 
   1292 	/*
   1293 	 * Always use maximum frame size that controller can
   1294 	 * support.  Otherwise received frames that has longer
   1295 	 * frame length than vte(4) MTU would be silently dropped
   1296 	 * in controller.  This would break path-MTU discovery as
   1297 	 * sender wouldn't get any responses from receiver. The
   1298 	 * RX buffer size should be multiple of 4.
   1299 	 * Note, jumbo frames are silently ignored by controller
   1300 	 * and even MAC counters do not detect them.
   1301 	 */
   1302 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
   1303 
   1304 	/* Configure FIFO. */
   1305 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
   1306 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
   1307 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
   1308 
   1309 	/*
   1310 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
   1311 	 * control configuration is done after detecting a valid
   1312 	 * link.  Note, we don't generate early interrupt here
   1313 	 * as well since FreeBSD does not have interrupt latency
   1314 	 * problems like Windows.
   1315 	 */
   1316 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
   1317 	/*
   1318 	 * We manually keep track of PHY status changes to
   1319 	 * configure resolved duplex and flow control since only
   1320 	 * duplex configuration can be automatically reflected to
   1321 	 * MCR0.
   1322 	 */
   1323 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
   1324 	    MCR1_EXCESS_COL_RETRY_16);
   1325 
   1326 	/* Initialize RX filter. */
   1327 	vte_rxfilter(sc);
   1328 
   1329 	/* Disable TX/RX interrupt moderation control. */
   1330 	CSR_WRITE_2(sc, VTE_MRICR, 0);
   1331 	CSR_WRITE_2(sc, VTE_MTICR, 0);
   1332 
   1333 	/* Enable MAC event counter interrupts. */
   1334 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
   1335 	/* Clear MAC statistics. */
   1336 	vte_stats_clear(sc);
   1337 
   1338 	/* Acknowledge all pending interrupts and clear it. */
   1339 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1340 	CSR_WRITE_2(sc, VTE_MISR, 0);
   1341 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1342 		CSR_READ_2(sc, VTE_MISR)));
   1343 
   1344 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1345 	ifp->if_flags |= IFF_RUNNING;
   1346 	ifp->if_flags &= ~IFF_OACTIVE;
   1347 
   1348 	/* calling mii_mediachg will call back vte_start_mac() */
   1349 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
   1350 		error = 0;
   1351 	else if (error != 0) {
   1352 		aprint_error_dev(sc->vte_dev, "could not set media\n");
   1353 		splx(s);
   1354 		return error;
   1355 	}
   1356 
   1357 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1358 
   1359 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1360 		CSR_READ_2(sc, VTE_MISR)));
   1361 	splx(s);
   1362 	return 0;
   1363 }
   1364 
   1365 static void
   1366 vte_stop(struct ifnet *ifp, int disable)
   1367 {
   1368 	struct vte_softc *sc = ifp->if_softc;
   1369 	struct vte_txdesc *txd;
   1370 	struct vte_rxdesc *rxd;
   1371 	int i;
   1372 
   1373 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
   1374 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1375 		return;
   1376 	/*
   1377 	 * Mark the interface down and cancel the watchdog timer.
   1378 	 */
   1379 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1380 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1381 	callout_stop(&sc->vte_tick_ch);
   1382 	sc->vte_watchdog_timer = 0;
   1383 	vte_stats_update(sc);
   1384 	/* Disable interrupts. */
   1385 	CSR_WRITE_2(sc, VTE_MIER, 0);
   1386 	CSR_WRITE_2(sc, VTE_MECIER, 0);
   1387 	/* Stop RX/TX MACs. */
   1388 	vte_stop_mac(sc);
   1389 	/* Clear interrupts. */
   1390 	CSR_READ_2(sc, VTE_MISR);
   1391 	/*
   1392 	 * Free TX/RX mbufs still in the queues.
   1393 	 */
   1394 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1395 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1396 		if (rxd->rx_m != NULL) {
   1397 			bus_dmamap_sync(sc->vte_dmatag,
   1398 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
   1399 			    BUS_DMASYNC_POSTREAD);
   1400 			bus_dmamap_unload(sc->vte_dmatag,
   1401 			    rxd->rx_dmamap);
   1402 			m_freem(rxd->rx_m);
   1403 			rxd->rx_m = NULL;
   1404 		}
   1405 	}
   1406 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1407 		txd = &sc->vte_cdata.vte_txdesc[i];
   1408 		if (txd->tx_m != NULL) {
   1409 			bus_dmamap_sync(sc->vte_dmatag,
   1410 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
   1411 			    BUS_DMASYNC_POSTWRITE);
   1412 			bus_dmamap_unload(sc->vte_dmatag,
   1413 			    txd->tx_dmamap);
   1414 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1415 				m_freem(txd->tx_m);
   1416 			txd->tx_m = NULL;
   1417 			txd->tx_flags &= ~VTE_TXMBUF;
   1418 		}
   1419 	}
   1420 	/* Free TX mbuf pools used for deep copy. */
   1421 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1422 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
   1423 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
   1424 			sc->vte_cdata.vte_txmbufs[i] = NULL;
   1425 		}
   1426 	}
   1427 }
   1428 
   1429 static void
   1430 vte_start_mac(struct vte_softc *sc)
   1431 {
   1432 	struct ifnet *ifp = &sc->vte_if;
   1433 	uint16_t mcr;
   1434 	int i;
   1435 
   1436 	/* Enable RX/TX MACs. */
   1437 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1438 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
   1439 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
   1440 	    (ifp->if_flags & IFF_RUNNING) != 0) {
   1441 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
   1442 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1443 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1444 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1445 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
   1446 			    (MCR0_RX_ENB | MCR0_TX_ENB))
   1447 				break;
   1448 			DELAY(10);
   1449 		}
   1450 		if (i == 0)
   1451 			aprint_error_dev(sc->vte_dev,
   1452 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
   1453 	}
   1454 	vte_rxfilter(sc);
   1455 }
   1456 
   1457 static void
   1458 vte_stop_mac(struct vte_softc *sc)
   1459 {
   1460 	uint16_t mcr;
   1461 	int i;
   1462 
   1463 	/* Disable RX/TX MACs. */
   1464 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1465 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
   1466 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
   1467 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1468 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1469 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1470 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
   1471 				break;
   1472 			DELAY(10);
   1473 		}
   1474 		if (i == 0)
   1475 			aprint_error_dev(sc->vte_dev,
   1476 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
   1477 	}
   1478 }
   1479 
   1480 static int
   1481 vte_init_tx_ring(struct vte_softc *sc)
   1482 {
   1483 	struct vte_tx_desc *desc;
   1484 	struct vte_txdesc *txd;
   1485 	bus_addr_t addr;
   1486 	int i;
   1487 
   1488 	sc->vte_cdata.vte_tx_prod = 0;
   1489 	sc->vte_cdata.vte_tx_cons = 0;
   1490 	sc->vte_cdata.vte_tx_cnt = 0;
   1491 
   1492 	/* Pre-allocate TX mbufs for deep copy. */
   1493 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1494 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
   1495 		    MT_DATA, M_PKTHDR);
   1496 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
   1497 			return (ENOBUFS);
   1498 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
   1499 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
   1500 	}
   1501 	desc = sc->vte_cdata.vte_tx_ring;
   1502 	bzero(desc, VTE_TX_RING_SZ);
   1503 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1504 		txd = &sc->vte_cdata.vte_txdesc[i];
   1505 		txd->tx_m = NULL;
   1506 		if (i != VTE_TX_RING_CNT - 1)
   1507 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1508 			    sizeof(struct vte_tx_desc) * (i + 1);
   1509 		else
   1510 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1511 			    sizeof(struct vte_tx_desc) * 0;
   1512 		desc = &sc->vte_cdata.vte_tx_ring[i];
   1513 		desc->dtnp = htole32(addr);
   1514 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1515 		txd->tx_desc = desc;
   1516 	}
   1517 
   1518 	bus_dmamap_sync(sc->vte_dmatag,
   1519 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1520 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1521 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1522 	return (0);
   1523 }
   1524 
   1525 static int
   1526 vte_init_rx_ring(struct vte_softc *sc)
   1527 {
   1528 	struct vte_rx_desc *desc;
   1529 	struct vte_rxdesc *rxd;
   1530 	bus_addr_t addr;
   1531 	int i;
   1532 
   1533 	sc->vte_cdata.vte_rx_cons = 0;
   1534 	desc = sc->vte_cdata.vte_rx_ring;
   1535 	bzero(desc, VTE_RX_RING_SZ);
   1536 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1537 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1538 		rxd->rx_m = NULL;
   1539 		if (i != VTE_RX_RING_CNT - 1)
   1540 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1541 			    + sizeof(struct vte_rx_desc) * (i + 1);
   1542 		else
   1543 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1544 			    + sizeof(struct vte_rx_desc) * 0;
   1545 		desc = &sc->vte_cdata.vte_rx_ring[i];
   1546 		desc->drnp = htole32(addr);
   1547 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1548 		rxd->rx_desc = desc;
   1549 		if (vte_newbuf(sc, rxd) != 0)
   1550 			return (ENOBUFS);
   1551 	}
   1552 
   1553 	bus_dmamap_sync(sc->vte_dmatag,
   1554 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1555 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1556 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1557 
   1558 	return (0);
   1559 }
   1560 
   1561 static void
   1562 vte_rxfilter(struct vte_softc *sc)
   1563 {
   1564 	struct ether_multistep step;
   1565 	struct ether_multi *enm;
   1566 	struct ifnet *ifp;
   1567 	uint8_t *eaddr;
   1568 	uint32_t crc;
   1569 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
   1570 	uint16_t mchash[4], mcr;
   1571 	int i, nperf;
   1572 
   1573 	ifp = &sc->vte_if;
   1574 
   1575 	DPRINTF(("vte_rxfilter\n"));
   1576 	memset(mchash, 0, sizeof(mchash));
   1577 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1578 		rxfilt_perf[i][0] = 0xFFFF;
   1579 		rxfilt_perf[i][1] = 0xFFFF;
   1580 		rxfilt_perf[i][2] = 0xFFFF;
   1581 	}
   1582 
   1583 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1584 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
   1585 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
   1586 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1587 		mcr |= MCR0_BROADCAST_DIS;
   1588 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1589 		if ((ifp->if_flags & IFF_PROMISC) != 0)
   1590 			mcr |= MCR0_PROMISC;
   1591 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
   1592 			mcr |= MCR0_MULTICAST;
   1593 		mchash[0] = 0xFFFF;
   1594 		mchash[1] = 0xFFFF;
   1595 		mchash[2] = 0xFFFF;
   1596 		mchash[3] = 0xFFFF;
   1597 		goto chipit;
   1598 	}
   1599 
   1600 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
   1601 	nperf = 0;
   1602 	while (enm != NULL) {
   1603 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1604 			sc->vte_if.if_flags |= IFF_ALLMULTI;
   1605 			mcr |= MCR0_MULTICAST;
   1606 			mchash[0] = 0xFFFF;
   1607 			mchash[1] = 0xFFFF;
   1608 			mchash[2] = 0xFFFF;
   1609 			mchash[3] = 0xFFFF;
   1610 			goto chipit;
   1611 		}
   1612 		/*
   1613 		 * Program the first 3 multicast groups into
   1614 		 * the perfect filter.  For all others, use the
   1615 		 * hash table.
   1616 		 */
   1617 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
   1618 			eaddr = enm->enm_addrlo;
   1619 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
   1620 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
   1621 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
   1622 			nperf++;
   1623 		} else {
   1624 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1625 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
   1626 		}
   1627 		ETHER_NEXT_MULTI(step, enm);
   1628 	}
   1629 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
   1630 	    mchash[3] != 0)
   1631 		mcr |= MCR0_MULTICAST;
   1632 
   1633 chipit:
   1634 	/* Program multicast hash table. */
   1635 	DPRINTF(("chipit write multicast\n"));
   1636 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
   1637 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
   1638 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
   1639 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
   1640 	/* Program perfect filter table. */
   1641 	DPRINTF(("chipit write perfect filter\n"));
   1642 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1643 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
   1644 		    rxfilt_perf[i][0]);
   1645 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
   1646 		    rxfilt_perf[i][1]);
   1647 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
   1648 		    rxfilt_perf[i][2]);
   1649 	}
   1650 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
   1651 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1652 	DPRINTF(("chipit read mcro\n"));
   1653 	CSR_READ_2(sc, VTE_MCR0);
   1654 	DPRINTF(("chipit done\n"));
   1655 }
   1656 
   1657 /*
   1658  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
   1659  * set up in vte_pci_attach()
   1660  */
   1661 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
   1662 {
   1663 	int rc;
   1664 	const struct sysctlnode *node;
   1665 
   1666 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1667 	    0, CTLTYPE_NODE, "vte",
   1668 	    SYSCTL_DESCR("vte interface controls"),
   1669 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1670 		goto err;
   1671 	}
   1672 
   1673 	vte_root_num = node->sysctl_num;
   1674 	return;
   1675 
   1676 err:
   1677 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   1678 }
   1679 
   1680 static int
   1681 vte_sysctl_intrxct(SYSCTLFN_ARGS)
   1682 {
   1683 	int error, t;
   1684 	struct sysctlnode node;
   1685 	struct vte_softc *sc;
   1686 
   1687 	node = *rnode;
   1688 	sc = node.sysctl_data;
   1689 	t = sc->vte_int_rx_mod;
   1690 	node.sysctl_data = &t;
   1691 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1692 	if (error || newp == NULL)
   1693 		return error;
   1694 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1695 		return EINVAL;
   1696 
   1697 	sc->vte_int_rx_mod = t;
   1698 	vte_miibus_statchg(&sc->vte_if);
   1699 	return 0;
   1700 }
   1701 
   1702 static int
   1703 vte_sysctl_inttxct(SYSCTLFN_ARGS)
   1704 {
   1705 	int error, t;
   1706 	struct sysctlnode node;
   1707 	struct vte_softc *sc;
   1708 
   1709 	node = *rnode;
   1710 	sc = node.sysctl_data;
   1711 	t = sc->vte_int_tx_mod;
   1712 	node.sysctl_data = &t;
   1713 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1714 	if (error || newp == NULL)
   1715 		return error;
   1716 
   1717 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1718 		return EINVAL;
   1719 	sc->vte_int_tx_mod = t;
   1720 	vte_miibus_statchg(&sc->vte_if);
   1721 	return 0;
   1722 }
   1723