Home | History | Annotate | Line # | Download | only in pci
if_vte.c revision 1.17.2.1
      1 /*	$NetBSD: if_vte.c,v 1.17.2.1 2018/07/26 23:55:30 snj Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*-
     28  * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
     29  * All rights reserved.
     30  *
     31  * Redistribution and use in source and binary forms, with or without
     32  * modification, are permitted provided that the following conditions
     33  * are met:
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice unmodified, this list of conditions, and the following
     36  *    disclaimer.
     37  * 2. Redistributions in binary form must reproduce the above copyright
     38  *    notice, this list of conditions and the following disclaimer in the
     39  *    documentation and/or other materials provided with the distribution.
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  */
     53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
     54 
     55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.17.2.1 2018/07/26 23:55:30 snj Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/protosw.h>
     64 #include <sys/socket.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/errno.h>
     67 #include <sys/malloc.h>
     68 #include <sys/kernel.h>
     69 #include <sys/device.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include <net/if.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_dl.h>
     76 #include <net/route.h>
     77 #include <net/netisr.h>
     78 #include <net/bpf.h>
     79 
     80 #include <sys/rndsource.h>
     81 
     82 #include "opt_inet.h"
     83 #include <net/if_ether.h>
     84 #ifdef INET
     85 #include <netinet/in.h>
     86 #include <netinet/in_systm.h>
     87 #include <netinet/in_var.h>
     88 #include <netinet/ip.h>
     89 #include <netinet/if_inarp.h>
     90 #endif
     91 
     92 #include <sys/bus.h>
     93 #include <sys/intr.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/mii/mii.h>
    100 #include <dev/mii/miivar.h>
    101 
    102 #include <dev/pci/if_vtereg.h>
    103 #include <dev/pci/if_vtevar.h>
    104 
    105 static int	vte_match(device_t, cfdata_t, void *);
    106 static void	vte_attach(device_t, device_t, void *);
    107 static int	vte_detach(device_t, int);
    108 static int	vte_dma_alloc(struct vte_softc *);
    109 static void	vte_dma_free(struct vte_softc *);
    110 static struct vte_txdesc *
    111 		vte_encap(struct vte_softc *, struct mbuf **);
    112 static void	vte_get_macaddr(struct vte_softc *);
    113 static int	vte_init(struct ifnet *);
    114 static int	vte_init_rx_ring(struct vte_softc *);
    115 static int	vte_init_tx_ring(struct vte_softc *);
    116 static int	vte_intr(void *);
    117 static int	vte_ifioctl(struct ifnet *, u_long, void *);
    118 static void	vte_mac_config(struct vte_softc *);
    119 static int	vte_miibus_readreg(device_t, int, int);
    120 static void	vte_miibus_statchg(struct ifnet *);
    121 static void	vte_miibus_writereg(device_t, int, int, int);
    122 static int	vte_mediachange(struct ifnet *);
    123 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
    124 static void	vte_reset(struct vte_softc *);
    125 static void	vte_rxeof(struct vte_softc *);
    126 static void	vte_rxfilter(struct vte_softc *);
    127 static bool	vte_shutdown(device_t, int);
    128 static bool	vte_suspend(device_t, const pmf_qual_t *);
    129 static bool	vte_resume(device_t, const pmf_qual_t *);
    130 static void	vte_ifstart(struct ifnet *);
    131 static void	vte_start_mac(struct vte_softc *);
    132 static void	vte_stats_clear(struct vte_softc *);
    133 static void	vte_stats_update(struct vte_softc *);
    134 static void	vte_stop(struct ifnet *, int);
    135 static void	vte_stop_mac(struct vte_softc *);
    136 static void	vte_tick(void *);
    137 static void	vte_txeof(struct vte_softc *);
    138 static void	vte_ifwatchdog(struct ifnet *);
    139 
    140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
    141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
    142 static int vte_root_num;
    143 
    144 #define DPRINTF(a)
    145 
    146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
    147     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    148 
    149 
    150 static int
    151 vte_match(device_t parent, cfdata_t cf, void *aux)
    152 {
    153 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    154 
    155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
    156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
    157 		return 1;
    158 
    159 	return 0;
    160 }
    161 
    162 static void
    163 vte_attach(device_t parent, device_t self, void *aux)
    164 {
    165 	struct vte_softc *sc = device_private(self);
    166 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
    167 	struct ifnet * const ifp = &sc->vte_if;
    168 	int h_valid;
    169 	pcireg_t reg, csr;
    170 	pci_intr_handle_t intrhandle;
    171 	const char *intrstr;
    172 	int error;
    173 	const struct sysctlnode *node;
    174 	int vte_nodenum;
    175 	char intrbuf[PCI_INTRSTR_LEN];
    176 
    177 	sc->vte_dev = self;
    178 
    179 	callout_init(&sc->vte_tick_ch, 0);
    180 
    181 	/* Map the device. */
    182 	h_valid = 0;
    183 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
    184 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
    185 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
    186 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    187 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
    188 	}
    189 	if (h_valid == 0) {
    190 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
    191 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    192 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
    193 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
    194 			    &sc->vte_bushandle, NULL, NULL) == 0);
    195 		}
    196 	}
    197 	if (h_valid == 0) {
    198 		aprint_error_dev(self, "unable to map device registers\n");
    199 		return;
    200 	}
    201 	sc->vte_dmatag = pa->pa_dmat;
    202 	/* Enable the device. */
    203 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    204 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    205 	    csr | PCI_COMMAND_MASTER_ENABLE);
    206 
    207 	pci_aprint_devinfo(pa, NULL);
    208 
    209 	/* Reset the ethernet controller. */
    210 	vte_reset(sc);
    211 
    212 	if ((error = vte_dma_alloc(sc)) != 0)
    213 		return;
    214 
    215 	/* Load station address. */
    216 	vte_get_macaddr(sc);
    217 
    218 	aprint_normal_dev(self, "Ethernet address %s\n",
    219 	    ether_sprintf(sc->vte_eaddr));
    220 
    221 	/* Map and establish interrupts */
    222 	if (pci_intr_map(pa, &intrhandle)) {
    223 		aprint_error_dev(self, "couldn't map interrupt\n");
    224 		return;
    225 	}
    226 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
    227 	    sizeof(intrbuf));
    228 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
    229 	    vte_intr, sc);
    230 	if (sc->vte_ih == NULL) {
    231 		aprint_error_dev(self, "couldn't establish interrupt");
    232 		if (intrstr != NULL)
    233 			aprint_error(" at %s", intrstr);
    234 		aprint_error("\n");
    235 		return;
    236 	}
    237 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    238 
    239 	sc->vte_if.if_softc = sc;
    240 	sc->vte_mii.mii_ifp = ifp;
    241 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
    242 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
    243 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
    244 	sc->vte_ec.ec_mii = &sc->vte_mii;
    245 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
    246 	    ether_mediastatus);
    247 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
    248 	    MII_OFFSET_ANY, 0);
    249 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
    250 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    251 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
    252 	} else
    253 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
    254 
    255 	/*
    256 	 * We can support 802.1Q VLAN-sized frames.
    257 	 */
    258 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    259 
    260         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    261         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
    262         ifp->if_ioctl = vte_ifioctl;
    263         ifp->if_start = vte_ifstart;
    264         ifp->if_watchdog = vte_ifwatchdog;
    265         ifp->if_init = vte_init;
    266         ifp->if_stop = vte_stop;
    267         ifp->if_timer = 0;
    268         IFQ_SET_READY(&ifp->if_snd);
    269         if_attach(ifp);
    270 	if_deferred_start_init(ifp, NULL);
    271         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
    272 
    273 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
    274 		pmf_class_network_register(self, ifp);
    275 	else
    276 		aprint_error_dev(self, "couldn't establish power handler\n");
    277 
    278         rnd_attach_source(&sc->rnd_source, device_xname(self),
    279             RND_TYPE_NET, RND_FLAG_DEFAULT);
    280 
    281 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    282 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
    283 	    SYSCTL_DESCR("vte per-controller controls"),
    284 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
    285 	    CTL_EOL) != 0) {
    286 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
    287 		return;
    288 	}
    289 	vte_nodenum = node->sysctl_num;
    290 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    291 	    CTLFLAG_READWRITE,
    292 	    CTLTYPE_INT, "int_rxct",
    293 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
    294 	    vte_sysctl_intrxct, 0, (void *)sc,
    295 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    296 	    CTL_EOL) != 0) {
    297 		aprint_normal_dev(sc->vte_dev,
    298 		    "couldn't create int_rxct sysctl node\n");
    299 	}
    300 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    301 	    CTLFLAG_READWRITE,
    302 	    CTLTYPE_INT, "int_txct",
    303 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
    304 	    vte_sysctl_inttxct, 0, (void *)sc,
    305 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    306 	    CTL_EOL) != 0) {
    307 		aprint_normal_dev(sc->vte_dev,
    308 		    "couldn't create int_txct sysctl node\n");
    309 	}
    310 }
    311 
    312 static int
    313 vte_detach(device_t dev, int flags __unused)
    314 {
    315 	struct vte_softc *sc = device_private(dev);
    316 	struct ifnet *ifp = &sc->vte_if;
    317 	int s;
    318 
    319 	s = splnet();
    320 	/* Stop the interface. Callouts are stopped in it. */
    321 	vte_stop(ifp, 1);
    322 	splx(s);
    323 
    324 	pmf_device_deregister(dev);
    325 
    326 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    327 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
    328 
    329 	ether_ifdetach(ifp);
    330 	if_detach(ifp);
    331 
    332 	vte_dma_free(sc);
    333 
    334 	return (0);
    335 }
    336 
    337 static int
    338 vte_miibus_readreg(device_t dev, int phy, int reg)
    339 {
    340 	struct vte_softc *sc = device_private(dev);
    341 	int i;
    342 
    343 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
    344 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    345 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    346 		DELAY(5);
    347 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
    348 			break;
    349 	}
    350 
    351 	if (i == 0) {
    352 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
    353 		return (0);
    354 	}
    355 
    356 	return (CSR_READ_2(sc, VTE_MMRD));
    357 }
    358 
    359 static void
    360 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
    361 {
    362 	struct vte_softc *sc = device_private(dev);
    363 	int i;
    364 
    365 	CSR_WRITE_2(sc, VTE_MMWD, val);
    366 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
    367 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    368 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    369 		DELAY(5);
    370 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
    371 			break;
    372 	}
    373 
    374 	if (i == 0)
    375 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
    376 
    377 }
    378 
    379 static void
    380 vte_miibus_statchg(struct ifnet *ifp)
    381 {
    382 	struct vte_softc *sc = ifp->if_softc;
    383 	uint16_t val;
    384 
    385 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
    386 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
    387 
    388 	sc->vte_flags &= ~VTE_FLAG_LINK;
    389 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    390 	    (IFM_ACTIVE | IFM_AVALID)) {
    391 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
    392 		case IFM_10_T:
    393 		case IFM_100_TX:
    394 			sc->vte_flags |= VTE_FLAG_LINK;
    395 			break;
    396 		default:
    397 			break;
    398 		}
    399 	}
    400 
    401 	/* Stop RX/TX MACs. */
    402 	vte_stop_mac(sc);
    403 	/* Program MACs with resolved duplex and flow control. */
    404 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
    405 		/*
    406 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
    407 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
    408 		 */
    409 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    410 			val = 18 << VTE_IM_TIMER_SHIFT;
    411 		else
    412 			val = 1 << VTE_IM_TIMER_SHIFT;
    413 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
    414 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    415 		CSR_WRITE_2(sc, VTE_MRICR, val);
    416 
    417 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    418 			val = 18 << VTE_IM_TIMER_SHIFT;
    419 		else
    420 			val = 1 << VTE_IM_TIMER_SHIFT;
    421 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
    422 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    423 		CSR_WRITE_2(sc, VTE_MTICR, val);
    424 
    425 		vte_mac_config(sc);
    426 		vte_start_mac(sc);
    427 		DPRINTF(("vte_miibus_statchg: link\n"));
    428 	}
    429 }
    430 
    431 static void
    432 vte_get_macaddr(struct vte_softc *sc)
    433 {
    434 	uint16_t mid;
    435 
    436 	/*
    437 	 * It seems there is no way to reload station address and
    438 	 * it is supposed to be set by BIOS.
    439 	 */
    440 	mid = CSR_READ_2(sc, VTE_MID0L);
    441 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
    442 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
    443 	mid = CSR_READ_2(sc, VTE_MID0M);
    444 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
    445 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
    446 	mid = CSR_READ_2(sc, VTE_MID0H);
    447 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
    448 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
    449 }
    450 
    451 
    452 static int
    453 vte_dma_alloc(struct vte_softc *sc)
    454 {
    455 	struct vte_txdesc *txd;
    456 	struct vte_rxdesc *rxd;
    457 	int error, i, rseg;
    458 
    459 	/* create DMA map for TX ring */
    460 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
    461 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    462 	    &sc->vte_cdata.vte_tx_ring_map);
    463 	if (error) {
    464 		aprint_error_dev(sc->vte_dev,
    465 		    "could not create dma map for TX ring (%d)\n",
    466 		    error);
    467 		goto fail;
    468 	}
    469 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
    470 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
    471 	    VTE_TX_RING_ALIGN, 0,
    472 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
    473 	    BUS_DMA_NOWAIT);
    474 	if (error != 0) {
    475 		aprint_error_dev(sc->vte_dev,
    476 		    "could not allocate DMA'able memory for TX ring (%d).\n",
    477 		    error);
    478 		goto fail;
    479 	}
    480 	KASSERT(rseg == 1);
    481 	error = bus_dmamem_map(sc->vte_dmatag,
    482 	    sc->vte_cdata.vte_tx_ring_seg, 1,
    483 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
    484 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    485 	if (error != 0) {
    486 		aprint_error_dev(sc->vte_dev,
    487 		    "could not map DMA'able memory for TX ring (%d).\n",
    488 		    error);
    489 		goto fail;
    490 	}
    491 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
    492 	error = bus_dmamap_load(sc->vte_dmatag,
    493 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
    494 	    VTE_TX_RING_SZ, NULL,
    495 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    496 	if (error != 0) {
    497 		aprint_error_dev(sc->vte_dev,
    498 		    "could not load DMA'able memory for TX ring.\n");
    499 		goto fail;
    500 	}
    501 
    502 	/* create DMA map for RX ring */
    503 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
    504 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    505 	    &sc->vte_cdata.vte_rx_ring_map);
    506 	if (error) {
    507 		aprint_error_dev(sc->vte_dev,
    508 		    "could not create dma map for RX ring (%d)\n",
    509 		    error);
    510 		goto fail;
    511 	}
    512 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
    513 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
    514 	    VTE_RX_RING_ALIGN, 0,
    515 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
    516 	    BUS_DMA_NOWAIT);
    517 	if (error != 0) {
    518 		aprint_error_dev(sc->vte_dev,
    519 		    "could not allocate DMA'able memory for RX ring (%d).\n",
    520 		    error);
    521 		goto fail;
    522 	}
    523 	KASSERT(rseg == 1);
    524 	error = bus_dmamem_map(sc->vte_dmatag,
    525 	    sc->vte_cdata.vte_rx_ring_seg, 1,
    526 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
    527 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    528 	if (error != 0) {
    529 		aprint_error_dev(sc->vte_dev,
    530 		    "could not map DMA'able memory for RX ring (%d).\n",
    531 		    error);
    532 		goto fail;
    533 	}
    534 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
    535 	error = bus_dmamap_load(sc->vte_dmatag,
    536 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
    537 	    VTE_RX_RING_SZ, NULL,
    538 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    539 	if (error != 0) {
    540 		aprint_error_dev(sc->vte_dev,
    541 		    "could not load DMA'able memory for RX ring (%d).\n",
    542 		    error);
    543 		goto fail;
    544 	}
    545 
    546 	/* Create DMA maps for TX buffers. */
    547 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    548 		txd = &sc->vte_cdata.vte_txdesc[i];
    549 		txd->tx_m = NULL;
    550 		txd->tx_dmamap = NULL;
    551 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    552 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    553 		    &txd->tx_dmamap);
    554 		if (error != 0) {
    555 			aprint_error_dev(sc->vte_dev,
    556 			    "could not create TX DMA map %d (%d).\n", i, error);
    557 			goto fail;
    558 		}
    559 	}
    560 	/* Create DMA maps for RX buffers. */
    561 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    562 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    563 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
    564 		aprint_error_dev(sc->vte_dev,
    565 		    "could not create spare RX dmamap (%d).\n", error);
    566 		goto fail;
    567 	}
    568 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    569 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    570 		rxd->rx_m = NULL;
    571 		rxd->rx_dmamap = NULL;
    572 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    573 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    574 		    &rxd->rx_dmamap);
    575 		if (error != 0) {
    576 			aprint_error_dev(sc->vte_dev,
    577 			    "could not create RX dmamap %d (%d).\n", i, error);
    578 			goto fail;
    579 		}
    580 	}
    581 	return 0;
    582 
    583 fail:
    584 	vte_dma_free(sc);
    585 	return (error);
    586 }
    587 
    588 static void
    589 vte_dma_free(struct vte_softc *sc)
    590 {
    591 	struct vte_txdesc *txd;
    592 	struct vte_rxdesc *rxd;
    593 	int i;
    594 
    595 	/* TX buffers. */
    596 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    597 		txd = &sc->vte_cdata.vte_txdesc[i];
    598 		if (txd->tx_dmamap != NULL) {
    599 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
    600 			txd->tx_dmamap = NULL;
    601 		}
    602 	}
    603 	/* RX buffers */
    604 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    605 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    606 		if (rxd->rx_dmamap != NULL) {
    607 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
    608 			rxd->rx_dmamap = NULL;
    609 		}
    610 	}
    611 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
    612 		bus_dmamap_destroy(sc->vte_dmatag,
    613 		    sc->vte_cdata.vte_rx_sparemap);
    614 		sc->vte_cdata.vte_rx_sparemap = NULL;
    615 	}
    616 	/* TX descriptor ring. */
    617 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
    618 		bus_dmamap_unload(sc->vte_dmatag,
    619 		    sc->vte_cdata.vte_tx_ring_map);
    620 		bus_dmamap_destroy(sc->vte_dmatag,
    621 		    sc->vte_cdata.vte_tx_ring_map);
    622 	}
    623 	if (sc->vte_cdata.vte_tx_ring != NULL) {
    624 		bus_dmamem_unmap(sc->vte_dmatag,
    625 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
    626 		bus_dmamem_free(sc->vte_dmatag,
    627 		    sc->vte_cdata.vte_tx_ring_seg, 1);
    628 	}
    629 	sc->vte_cdata.vte_tx_ring = NULL;
    630 	sc->vte_cdata.vte_tx_ring_map = NULL;
    631 	/* RX ring. */
    632 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
    633 		bus_dmamap_unload(sc->vte_dmatag,
    634 		    sc->vte_cdata.vte_rx_ring_map);
    635 		bus_dmamap_destroy(sc->vte_dmatag,
    636 		    sc->vte_cdata.vte_rx_ring_map);
    637 	}
    638 	if (sc->vte_cdata.vte_rx_ring != NULL) {
    639 		bus_dmamem_unmap(sc->vte_dmatag,
    640 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
    641 		bus_dmamem_free(sc->vte_dmatag,
    642 		    sc->vte_cdata.vte_rx_ring_seg, 1);
    643 	}
    644 	sc->vte_cdata.vte_rx_ring = NULL;
    645 	sc->vte_cdata.vte_rx_ring_map = NULL;
    646 }
    647 
    648 static bool
    649 vte_shutdown(device_t dev, int howto)
    650 {
    651 
    652 	return (vte_suspend(dev, NULL));
    653 }
    654 
    655 static bool
    656 vte_suspend(device_t dev, const pmf_qual_t *qual)
    657 {
    658 	struct vte_softc *sc = device_private(dev);
    659 	struct ifnet *ifp = &sc->vte_if;
    660 
    661 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
    662 	if ((ifp->if_flags & IFF_RUNNING) != 0)
    663 		vte_stop(ifp, 1);
    664 	return (0);
    665 }
    666 
    667 static bool
    668 vte_resume(device_t dev, const pmf_qual_t *qual)
    669 {
    670 	struct vte_softc *sc = device_private(dev);
    671 	struct ifnet *ifp;
    672 
    673 	ifp = &sc->vte_if;
    674 	if ((ifp->if_flags & IFF_UP) != 0) {
    675 		ifp->if_flags &= ~IFF_RUNNING;
    676 		vte_init(ifp);
    677 	}
    678 
    679 	return (0);
    680 }
    681 
    682 static struct vte_txdesc *
    683 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
    684 {
    685 	struct vte_txdesc *txd;
    686 	struct mbuf *m, *n;
    687 	int copy, error, padlen;
    688 
    689 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
    690 	m = *m_head;
    691 	/*
    692 	 * Controller doesn't auto-pad, so we have to make sure pad
    693 	 * short frames out to the minimum frame length.
    694 	 */
    695 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
    696 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
    697 	else
    698 		padlen = 0;
    699 
    700 	/*
    701 	 * Controller does not support multi-fragmented TX buffers.
    702 	 * Controller spends most of its TX processing time in
    703 	 * de-fragmenting TX buffers.  Either faster CPU or more
    704 	 * advanced controller DMA engine is required to speed up
    705 	 * TX path processing.
    706 	 * To mitigate the de-fragmenting issue, perform deep copy
    707 	 * from fragmented mbuf chains to a pre-allocated mbuf
    708 	 * cluster with extra cost of kernel memory.  For frames
    709 	 * that is composed of single TX buffer, the deep copy is
    710 	 * bypassed.
    711 	 */
    712 	copy = 0;
    713 	if (m->m_next != NULL)
    714 		copy++;
    715 	if (padlen > 0 && (M_READONLY(m) ||
    716 	    padlen > M_TRAILINGSPACE(m)))
    717 		copy++;
    718 	if (copy != 0) {
    719 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
    720 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
    721 		n->m_pkthdr.len = m->m_pkthdr.len;
    722 		n->m_len = m->m_pkthdr.len;
    723 		m = n;
    724 		txd->tx_flags |= VTE_TXMBUF;
    725 	}
    726 
    727 	if (padlen > 0) {
    728 		/* Zero out the bytes in the pad area. */
    729 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
    730 		m->m_pkthdr.len += padlen;
    731 		m->m_len = m->m_pkthdr.len;
    732 	}
    733 
    734 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
    735 	if (error != 0) {
    736 		txd->tx_flags &= ~VTE_TXMBUF;
    737 		return (NULL);
    738 	}
    739 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
    740 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
    741 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    742 
    743 	txd->tx_desc->dtlen =
    744 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
    745 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
    746 	sc->vte_cdata.vte_tx_cnt++;
    747 	/* Update producer index. */
    748 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
    749 
    750 	/* Finally hand over ownership to controller. */
    751 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
    752 	txd->tx_m = m;
    753 
    754 	return (txd);
    755 }
    756 
    757 static void
    758 vte_ifstart(struct ifnet *ifp)
    759 {
    760 	struct vte_softc *sc = ifp->if_softc;
    761 	struct vte_txdesc *txd;
    762 	struct mbuf *m_head, *m;
    763 	int enq;
    764 
    765 	ifp = &sc->vte_if;
    766 
    767 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
    768 
    769 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
    770 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
    771 		return;
    772 
    773 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
    774 		/* Reserve one free TX descriptor. */
    775 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
    776 			ifp->if_flags |= IFF_OACTIVE;
    777 			break;
    778 		}
    779 		IFQ_POLL(&ifp->if_snd, m_head);
    780 		if (m_head == NULL)
    781 			break;
    782 		/*
    783 		 * Pack the data into the transmit ring. If we
    784 		 * don't have room, set the OACTIVE flag and wait
    785 		 * for the NIC to drain the ring.
    786 		 */
    787 		DPRINTF(("vte_encap:"));
    788 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
    789 			DPRINTF((" failed\n"));
    790 			break;
    791 		}
    792 		DPRINTF((" ok\n"));
    793 		IFQ_DEQUEUE(&ifp->if_snd, m);
    794 		KASSERT(m == m_head);
    795 
    796 		enq++;
    797 		/*
    798 		 * If there's a BPF listener, bounce a copy of this frame
    799 		 * to him.
    800 		 */
    801 		bpf_mtap(ifp, m_head);
    802 		/* Free consumed TX frame. */
    803 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
    804 			m_freem(m_head);
    805 	}
    806 
    807 	if (enq > 0) {
    808 		bus_dmamap_sync(sc->vte_dmatag,
    809 		    sc->vte_cdata.vte_tx_ring_map, 0,
    810 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
    811 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    812 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
    813 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
    814 	}
    815 }
    816 
    817 static void
    818 vte_ifwatchdog(struct ifnet *ifp)
    819 {
    820 	struct vte_softc *sc = ifp->if_softc;
    821 
    822 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
    823 		return;
    824 
    825 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
    826 	ifp->if_oerrors++;
    827 	vte_init(ifp);
    828 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
    829 		vte_ifstart(ifp);
    830 }
    831 
    832 static int
    833 vte_mediachange(struct ifnet *ifp)
    834 {
    835 	int error;
    836 	struct vte_softc *sc = ifp->if_softc;
    837 
    838 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
    839 		error = 0;
    840 	else if (error != 0) {
    841 		aprint_error_dev(sc->vte_dev, "could not set media\n");
    842 		return error;
    843 	}
    844 											return 0;
    845 
    846 }
    847 
    848 static int
    849 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    850 {
    851 	struct vte_softc *sc = ifp->if_softc;
    852 	int error, s;
    853 
    854 	s = splnet();
    855 	error = ether_ioctl(ifp, cmd, data);
    856 	if (error == ENETRESET) {
    857 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
    858 		if (ifp->if_flags & IFF_RUNNING)
    859 			vte_rxfilter(sc);
    860 		error = 0;
    861 	}
    862 	splx(s);
    863 	return error;
    864 }
    865 
    866 static void
    867 vte_mac_config(struct vte_softc *sc)
    868 {
    869 	uint16_t mcr;
    870 
    871 	mcr = CSR_READ_2(sc, VTE_MCR0);
    872 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
    873 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
    874 		mcr |= MCR0_FULL_DUPLEX;
    875 #ifdef notyet
    876 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
    877 			mcr |= MCR0_FC_ENB;
    878 		/*
    879 		 * The data sheet is not clear whether the controller
    880 		 * honors received pause frames or not.  The is no
    881 		 * separate control bit for RX pause frame so just
    882 		 * enable MCR0_FC_ENB bit.
    883 		 */
    884 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
    885 			mcr |= MCR0_FC_ENB;
    886 #endif
    887 	}
    888 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
    889 }
    890 
    891 static void
    892 vte_stats_clear(struct vte_softc *sc)
    893 {
    894 
    895 	/* Reading counter registers clears its contents. */
    896 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
    897 	CSR_READ_2(sc, VTE_CNT_MECNT0);
    898 	CSR_READ_2(sc, VTE_CNT_MECNT1);
    899 	CSR_READ_2(sc, VTE_CNT_MECNT2);
    900 	CSR_READ_2(sc, VTE_CNT_MECNT3);
    901 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
    902 	CSR_READ_2(sc, VTE_CNT_MECNT4);
    903 	CSR_READ_2(sc, VTE_CNT_PAUSE);
    904 }
    905 
    906 static void
    907 vte_stats_update(struct vte_softc *sc)
    908 {
    909 	struct vte_hw_stats *stat;
    910 	struct ifnet *ifp = &sc->vte_if;
    911 	uint16_t value;
    912 
    913 	stat = &sc->vte_stats;
    914 
    915 	CSR_READ_2(sc, VTE_MECISR);
    916 	/* RX stats. */
    917 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
    918 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
    919 	stat->rx_bcast_frames += (value >> 8);
    920 	stat->rx_mcast_frames += (value & 0xFF);
    921 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
    922 	stat->rx_runts += (value >> 8);
    923 	stat->rx_crcerrs += (value & 0xFF);
    924 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
    925 	stat->rx_long_frames += (value & 0xFF);
    926 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
    927 	stat->rx_fifo_full += (value >> 8);
    928 	stat->rx_desc_unavail += (value & 0xFF);
    929 
    930 	/* TX stats. */
    931 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
    932 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
    933 	stat->tx_underruns += (value >> 8);
    934 	stat->tx_late_colls += (value & 0xFF);
    935 
    936 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
    937 	stat->tx_pause_frames += (value >> 8);
    938 	stat->rx_pause_frames += (value & 0xFF);
    939 
    940 	/* Update ifp counters. */
    941 	ifp->if_opackets = stat->tx_frames;
    942 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
    943 	ifp->if_ipackets = stat->rx_frames;
    944 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
    945 	    stat->rx_long_frames + stat->rx_fifo_full;
    946 }
    947 
    948 static int
    949 vte_intr(void *arg)
    950 {
    951 	struct vte_softc *sc = (struct vte_softc *)arg;
    952 	struct ifnet *ifp = &sc->vte_if;
    953 	uint16_t status;
    954 	int n;
    955 
    956 	/* Reading VTE_MISR acknowledges interrupts. */
    957 	status = CSR_READ_2(sc, VTE_MISR);
    958 	DPRINTF(("vte_intr status 0x%x\n", status));
    959 	if ((status & VTE_INTRS) == 0) {
    960 		/* Not ours. */
    961 		return 0;
    962 	}
    963 
    964 	/* Disable interrupts. */
    965 	CSR_WRITE_2(sc, VTE_MIER, 0);
    966 	for (n = 8; (status & VTE_INTRS) != 0;) {
    967 		if ((ifp->if_flags & IFF_RUNNING) == 0)
    968 			break;
    969 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
    970 		    MISR_RX_FIFO_FULL)) != 0)
    971 			vte_rxeof(sc);
    972 		if ((status & MISR_TX_DONE) != 0)
    973 			vte_txeof(sc);
    974 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
    975 			vte_stats_update(sc);
    976 		if_schedule_deferred_start(ifp);
    977 		if (--n > 0)
    978 			status = CSR_READ_2(sc, VTE_MISR);
    979 		else
    980 			break;
    981 	}
    982 
    983 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
    984 		/* Re-enable interrupts. */
    985 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
    986 	}
    987 	return 1;
    988 }
    989 
    990 static void
    991 vte_txeof(struct vte_softc *sc)
    992 {
    993 	struct ifnet *ifp;
    994 	struct vte_txdesc *txd;
    995 	uint16_t status;
    996 	int cons, prog;
    997 
    998 	ifp = &sc->vte_if;
    999 
   1000 	if (sc->vte_cdata.vte_tx_cnt == 0)
   1001 		return;
   1002 	bus_dmamap_sync(sc->vte_dmatag,
   1003 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1004 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1005 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1006 	cons = sc->vte_cdata.vte_tx_cons;
   1007 	/*
   1008 	 * Go through our TX list and free mbufs for those
   1009 	 * frames which have been transmitted.
   1010 	 */
   1011 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
   1012 		txd = &sc->vte_cdata.vte_txdesc[cons];
   1013 		status = le16toh(txd->tx_desc->dtst);
   1014 		if ((status & VTE_DTST_TX_OWN) != 0)
   1015 			break;
   1016 		if ((status & VTE_DTST_TX_OK) != 0)
   1017 			ifp->if_collisions += (status & 0xf);
   1018 		sc->vte_cdata.vte_tx_cnt--;
   1019 		/* Reclaim transmitted mbufs. */
   1020 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
   1021 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1022 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
   1023 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1024 			m_freem(txd->tx_m);
   1025 		txd->tx_flags &= ~VTE_TXMBUF;
   1026 		txd->tx_m = NULL;
   1027 		prog++;
   1028 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
   1029 	}
   1030 
   1031 	if (prog > 0) {
   1032 		ifp->if_flags &= ~IFF_OACTIVE;
   1033 		sc->vte_cdata.vte_tx_cons = cons;
   1034 		/*
   1035 		 * Unarm watchdog timer only when there is no pending
   1036 		 * frames in TX queue.
   1037 		 */
   1038 		if (sc->vte_cdata.vte_tx_cnt == 0)
   1039 			sc->vte_watchdog_timer = 0;
   1040 	}
   1041 }
   1042 
   1043 static int
   1044 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
   1045 {
   1046 	struct mbuf *m;
   1047 	bus_dmamap_t map;
   1048 
   1049 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   1050 	if (m == NULL)
   1051 		return (ENOBUFS);
   1052 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1053 	m_adj(m, sizeof(uint32_t));
   1054 
   1055 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
   1056 	    sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
   1057 		m_freem(m);
   1058 		return (ENOBUFS);
   1059 	}
   1060 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
   1061 
   1062 	if (rxd->rx_m != NULL) {
   1063 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1064 		    0, rxd->rx_dmamap->dm_mapsize,
   1065 		    BUS_DMASYNC_POSTREAD);
   1066 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
   1067 	}
   1068 	map = rxd->rx_dmamap;
   1069 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
   1070 	sc->vte_cdata.vte_rx_sparemap = map;
   1071 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1072 	    0, rxd->rx_dmamap->dm_mapsize,
   1073 	    BUS_DMASYNC_PREREAD);
   1074 	rxd->rx_m = m;
   1075 	rxd->rx_desc->drbp =
   1076 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1077 	rxd->rx_desc->drlen = htole16(
   1078 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
   1079 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
   1080 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
   1081 		rxd->rx_dmamap->dm_segs[0].ds_len));
   1082 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1083 
   1084 	return (0);
   1085 }
   1086 
   1087 static void
   1088 vte_rxeof(struct vte_softc *sc)
   1089 {
   1090 	struct ifnet *ifp;
   1091 	struct vte_rxdesc *rxd;
   1092 	struct mbuf *m;
   1093 	uint16_t status, total_len;
   1094 	int cons, prog;
   1095 
   1096 	bus_dmamap_sync(sc->vte_dmatag,
   1097 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1098 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1099 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1100 	cons = sc->vte_cdata.vte_rx_cons;
   1101 	ifp = &sc->vte_if;
   1102 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
   1103 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
   1104 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
   1105 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
   1106 		status = le16toh(rxd->rx_desc->drst);
   1107 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
   1108 			cons, rxd, rxd->rx_m, status,
   1109 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
   1110 		if ((status & VTE_DRST_RX_OWN) != 0)
   1111 			break;
   1112 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
   1113 		m = rxd->rx_m;
   1114 		if ((status & VTE_DRST_RX_OK) == 0) {
   1115 			/* Discard errored frame. */
   1116 			rxd->rx_desc->drlen =
   1117 			    htole16(MCLBYTES - sizeof(uint32_t));
   1118 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1119 			continue;
   1120 		}
   1121 		if (vte_newbuf(sc, rxd) != 0) {
   1122 			DPRINTF(("vte_rxeof newbuf failed\n"));
   1123 			ifp->if_ierrors++;
   1124 			rxd->rx_desc->drlen =
   1125 			    htole16(MCLBYTES - sizeof(uint32_t));
   1126 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1127 			continue;
   1128 		}
   1129 
   1130 		/*
   1131 		 * It seems there is no way to strip FCS bytes.
   1132 		 */
   1133 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1134 		m_set_rcvif(m, ifp);
   1135 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1136 	}
   1137 
   1138 	if (prog > 0) {
   1139 		/* Update the consumer index. */
   1140 		sc->vte_cdata.vte_rx_cons = cons;
   1141 		/*
   1142 		 * Sync updated RX descriptors such that controller see
   1143 		 * modified RX buffer addresses.
   1144 		 */
   1145 		bus_dmamap_sync(sc->vte_dmatag,
   1146 		    sc->vte_cdata.vte_rx_ring_map, 0,
   1147 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1148 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1149 #ifdef notyet
   1150 		/*
   1151 		 * Update residue counter.  Controller does not
   1152 		 * keep track of number of available RX descriptors
   1153 		 * such that driver should have to update VTE_MRDCR
   1154 		 * to make controller know how many free RX
   1155 		 * descriptors were added to controller.  This is
   1156 		 * a similar mechanism used in VIA velocity
   1157 		 * controllers and it indicates controller just
   1158 		 * polls OWN bit of current RX descriptor pointer.
   1159 		 * A couple of severe issues were seen on sample
   1160 		 * board where the controller continuously emits TX
   1161 		 * pause frames once RX pause threshold crossed.
   1162 		 * Once triggered it never recovered form that
   1163 		 * state, I couldn't find a way to make it back to
   1164 		 * work at least.  This issue effectively
   1165 		 * disconnected the system from network.  Also, the
   1166 		 * controller used 00:00:00:00:00:00 as source
   1167 		 * station address of TX pause frame. Probably this
   1168 		 * is one of reason why vendor recommends not to
   1169 		 * enable flow control on R6040 controller.
   1170 		 */
   1171 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
   1172 		    (((VTE_RX_RING_CNT * 2) / 10) <<
   1173 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1174 #endif
   1175 	rnd_add_uint32(&sc->rnd_source, prog);
   1176 	}
   1177 }
   1178 
   1179 static void
   1180 vte_tick(void *arg)
   1181 {
   1182 	struct vte_softc *sc;
   1183 	int s = splnet();
   1184 
   1185 	sc = (struct vte_softc *)arg;
   1186 
   1187 	mii_tick(&sc->vte_mii);
   1188 	vte_stats_update(sc);
   1189 	vte_txeof(sc);
   1190 	vte_ifwatchdog(&sc->vte_if);
   1191 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1192 	splx(s);
   1193 }
   1194 
   1195 static void
   1196 vte_reset(struct vte_softc *sc)
   1197 {
   1198 	uint16_t mcr;
   1199 	int i;
   1200 
   1201 	mcr = CSR_READ_2(sc, VTE_MCR1);
   1202 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
   1203 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
   1204 		DELAY(10);
   1205 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
   1206 			break;
   1207 	}
   1208 	if (i == 0)
   1209 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
   1210 	/*
   1211 	 * Follow the guide of vendor recommended way to reset MAC.
   1212 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
   1213 	 * not reliable so manually reset internal state machine.
   1214 	 */
   1215 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
   1216 	CSR_WRITE_2(sc, VTE_MACSM, 0);
   1217 	DELAY(5000);
   1218 }
   1219 
   1220 
   1221 static int
   1222 vte_init(struct ifnet *ifp)
   1223 {
   1224 	struct vte_softc *sc = ifp->if_softc;
   1225 	bus_addr_t paddr;
   1226 	uint8_t eaddr[ETHER_ADDR_LEN];
   1227 	int s, error;
   1228 
   1229 	s = splnet();
   1230 	/*
   1231 	 * Cancel any pending I/O.
   1232 	 */
   1233 	vte_stop(ifp, 1);
   1234 	/*
   1235 	 * Reset the chip to a known state.
   1236 	 */
   1237 	vte_reset(sc);
   1238 
   1239 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
   1240 		splx(s);
   1241 		return 0;
   1242 	}
   1243 
   1244 	/* Initialize RX descriptors. */
   1245 	if (vte_init_rx_ring(sc) != 0) {
   1246 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
   1247 		vte_stop(ifp, 1);
   1248 		splx(s);
   1249 		return ENOMEM;
   1250 	}
   1251 	if (vte_init_tx_ring(sc) != 0) {
   1252 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
   1253 		vte_stop(ifp, 1);
   1254 		splx(s);
   1255 		return ENOMEM;
   1256 	}
   1257 
   1258 	/*
   1259 	 * Reprogram the station address.  Controller supports up
   1260 	 * to 4 different station addresses so driver programs the
   1261 	 * first station address as its own ethernet address and
   1262 	 * configure the remaining three addresses as perfect
   1263 	 * multicast addresses.
   1264 	 */
   1265 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1266 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
   1267 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
   1268 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
   1269 
   1270 	/* Set TX descriptor base addresses. */
   1271 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
   1272 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
   1273 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
   1274 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
   1275 
   1276 	/* Set RX descriptor base addresses. */
   1277 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
   1278 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
   1279 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
   1280 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
   1281 	/*
   1282 	 * Initialize RX descriptor residue counter and set RX
   1283 	 * pause threshold to 20% of available RX descriptors.
   1284 	 * See comments on vte_rxeof() for details on flow control
   1285 	 * issues.
   1286 	 */
   1287 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
   1288 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1289 
   1290 	/*
   1291 	 * Always use maximum frame size that controller can
   1292 	 * support.  Otherwise received frames that has longer
   1293 	 * frame length than vte(4) MTU would be silently dropped
   1294 	 * in controller.  This would break path-MTU discovery as
   1295 	 * sender wouldn't get any responses from receiver. The
   1296 	 * RX buffer size should be multiple of 4.
   1297 	 * Note, jumbo frames are silently ignored by controller
   1298 	 * and even MAC counters do not detect them.
   1299 	 */
   1300 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
   1301 
   1302 	/* Configure FIFO. */
   1303 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
   1304 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
   1305 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
   1306 
   1307 	/*
   1308 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
   1309 	 * control configuration is done after detecting a valid
   1310 	 * link.  Note, we don't generate early interrupt here
   1311 	 * as well since FreeBSD does not have interrupt latency
   1312 	 * problems like Windows.
   1313 	 */
   1314 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
   1315 	/*
   1316 	 * We manually keep track of PHY status changes to
   1317 	 * configure resolved duplex and flow control since only
   1318 	 * duplex configuration can be automatically reflected to
   1319 	 * MCR0.
   1320 	 */
   1321 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
   1322 	    MCR1_EXCESS_COL_RETRY_16);
   1323 
   1324 	/* Initialize RX filter. */
   1325 	vte_rxfilter(sc);
   1326 
   1327 	/* Disable TX/RX interrupt moderation control. */
   1328 	CSR_WRITE_2(sc, VTE_MRICR, 0);
   1329 	CSR_WRITE_2(sc, VTE_MTICR, 0);
   1330 
   1331 	/* Enable MAC event counter interrupts. */
   1332 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
   1333 	/* Clear MAC statistics. */
   1334 	vte_stats_clear(sc);
   1335 
   1336 	/* Acknowledge all pending interrupts and clear it. */
   1337 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1338 	CSR_WRITE_2(sc, VTE_MISR, 0);
   1339 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1340 		CSR_READ_2(sc, VTE_MISR)));
   1341 
   1342 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1343 	ifp->if_flags |= IFF_RUNNING;
   1344 	ifp->if_flags &= ~IFF_OACTIVE;
   1345 
   1346 	/* calling mii_mediachg will call back vte_start_mac() */
   1347 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
   1348 		error = 0;
   1349 	else if (error != 0) {
   1350 		aprint_error_dev(sc->vte_dev, "could not set media\n");
   1351 		splx(s);
   1352 		return error;
   1353 	}
   1354 
   1355 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1356 
   1357 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1358 		CSR_READ_2(sc, VTE_MISR)));
   1359 	splx(s);
   1360 	return 0;
   1361 }
   1362 
   1363 static void
   1364 vte_stop(struct ifnet *ifp, int disable)
   1365 {
   1366 	struct vte_softc *sc = ifp->if_softc;
   1367 	struct vte_txdesc *txd;
   1368 	struct vte_rxdesc *rxd;
   1369 	int i;
   1370 
   1371 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
   1372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1373 		return;
   1374 	/*
   1375 	 * Mark the interface down and cancel the watchdog timer.
   1376 	 */
   1377 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1378 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1379 	callout_stop(&sc->vte_tick_ch);
   1380 	sc->vte_watchdog_timer = 0;
   1381 	vte_stats_update(sc);
   1382 	/* Disable interrupts. */
   1383 	CSR_WRITE_2(sc, VTE_MIER, 0);
   1384 	CSR_WRITE_2(sc, VTE_MECIER, 0);
   1385 	/* Stop RX/TX MACs. */
   1386 	vte_stop_mac(sc);
   1387 	/* Clear interrupts. */
   1388 	CSR_READ_2(sc, VTE_MISR);
   1389 	/*
   1390 	 * Free TX/RX mbufs still in the queues.
   1391 	 */
   1392 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1393 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1394 		if (rxd->rx_m != NULL) {
   1395 			bus_dmamap_sync(sc->vte_dmatag,
   1396 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
   1397 			    BUS_DMASYNC_POSTREAD);
   1398 			bus_dmamap_unload(sc->vte_dmatag,
   1399 			    rxd->rx_dmamap);
   1400 			m_freem(rxd->rx_m);
   1401 			rxd->rx_m = NULL;
   1402 		}
   1403 	}
   1404 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1405 		txd = &sc->vte_cdata.vte_txdesc[i];
   1406 		if (txd->tx_m != NULL) {
   1407 			bus_dmamap_sync(sc->vte_dmatag,
   1408 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
   1409 			    BUS_DMASYNC_POSTWRITE);
   1410 			bus_dmamap_unload(sc->vte_dmatag,
   1411 			    txd->tx_dmamap);
   1412 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1413 				m_freem(txd->tx_m);
   1414 			txd->tx_m = NULL;
   1415 			txd->tx_flags &= ~VTE_TXMBUF;
   1416 		}
   1417 	}
   1418 	/* Free TX mbuf pools used for deep copy. */
   1419 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1420 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
   1421 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
   1422 			sc->vte_cdata.vte_txmbufs[i] = NULL;
   1423 		}
   1424 	}
   1425 }
   1426 
   1427 static void
   1428 vte_start_mac(struct vte_softc *sc)
   1429 {
   1430 	struct ifnet *ifp = &sc->vte_if;
   1431 	uint16_t mcr;
   1432 	int i;
   1433 
   1434 	/* Enable RX/TX MACs. */
   1435 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1436 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
   1437 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
   1438 	    (ifp->if_flags & IFF_RUNNING) != 0) {
   1439 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
   1440 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1441 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1442 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1443 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
   1444 			    (MCR0_RX_ENB | MCR0_TX_ENB))
   1445 				break;
   1446 			DELAY(10);
   1447 		}
   1448 		if (i == 0)
   1449 			aprint_error_dev(sc->vte_dev,
   1450 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
   1451 	}
   1452 	vte_rxfilter(sc);
   1453 }
   1454 
   1455 static void
   1456 vte_stop_mac(struct vte_softc *sc)
   1457 {
   1458 	uint16_t mcr;
   1459 	int i;
   1460 
   1461 	/* Disable RX/TX MACs. */
   1462 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1463 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
   1464 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
   1465 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1466 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1467 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1468 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
   1469 				break;
   1470 			DELAY(10);
   1471 		}
   1472 		if (i == 0)
   1473 			aprint_error_dev(sc->vte_dev,
   1474 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
   1475 	}
   1476 }
   1477 
   1478 static int
   1479 vte_init_tx_ring(struct vte_softc *sc)
   1480 {
   1481 	struct vte_tx_desc *desc;
   1482 	struct vte_txdesc *txd;
   1483 	bus_addr_t addr;
   1484 	int i;
   1485 
   1486 	sc->vte_cdata.vte_tx_prod = 0;
   1487 	sc->vte_cdata.vte_tx_cons = 0;
   1488 	sc->vte_cdata.vte_tx_cnt = 0;
   1489 
   1490 	/* Pre-allocate TX mbufs for deep copy. */
   1491 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1492 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
   1493 		    MT_DATA, M_PKTHDR);
   1494 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
   1495 			return (ENOBUFS);
   1496 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
   1497 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
   1498 	}
   1499 	desc = sc->vte_cdata.vte_tx_ring;
   1500 	bzero(desc, VTE_TX_RING_SZ);
   1501 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1502 		txd = &sc->vte_cdata.vte_txdesc[i];
   1503 		txd->tx_m = NULL;
   1504 		if (i != VTE_TX_RING_CNT - 1)
   1505 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1506 			    sizeof(struct vte_tx_desc) * (i + 1);
   1507 		else
   1508 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1509 			    sizeof(struct vte_tx_desc) * 0;
   1510 		desc = &sc->vte_cdata.vte_tx_ring[i];
   1511 		desc->dtnp = htole32(addr);
   1512 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1513 		txd->tx_desc = desc;
   1514 	}
   1515 
   1516 	bus_dmamap_sync(sc->vte_dmatag,
   1517 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1518 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1519 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1520 	return (0);
   1521 }
   1522 
   1523 static int
   1524 vte_init_rx_ring(struct vte_softc *sc)
   1525 {
   1526 	struct vte_rx_desc *desc;
   1527 	struct vte_rxdesc *rxd;
   1528 	bus_addr_t addr;
   1529 	int i;
   1530 
   1531 	sc->vte_cdata.vte_rx_cons = 0;
   1532 	desc = sc->vte_cdata.vte_rx_ring;
   1533 	bzero(desc, VTE_RX_RING_SZ);
   1534 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1535 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1536 		rxd->rx_m = NULL;
   1537 		if (i != VTE_RX_RING_CNT - 1)
   1538 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1539 			    + sizeof(struct vte_rx_desc) * (i + 1);
   1540 		else
   1541 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1542 			    + sizeof(struct vte_rx_desc) * 0;
   1543 		desc = &sc->vte_cdata.vte_rx_ring[i];
   1544 		desc->drnp = htole32(addr);
   1545 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1546 		rxd->rx_desc = desc;
   1547 		if (vte_newbuf(sc, rxd) != 0)
   1548 			return (ENOBUFS);
   1549 	}
   1550 
   1551 	bus_dmamap_sync(sc->vte_dmatag,
   1552 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1553 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1554 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1555 
   1556 	return (0);
   1557 }
   1558 
   1559 static void
   1560 vte_rxfilter(struct vte_softc *sc)
   1561 {
   1562 	struct ether_multistep step;
   1563 	struct ether_multi *enm;
   1564 	struct ifnet *ifp;
   1565 	uint8_t *eaddr;
   1566 	uint32_t crc;
   1567 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
   1568 	uint16_t mchash[4], mcr;
   1569 	int i, nperf;
   1570 
   1571 	ifp = &sc->vte_if;
   1572 
   1573 	DPRINTF(("vte_rxfilter\n"));
   1574 	memset(mchash, 0, sizeof(mchash));
   1575 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1576 		rxfilt_perf[i][0] = 0xFFFF;
   1577 		rxfilt_perf[i][1] = 0xFFFF;
   1578 		rxfilt_perf[i][2] = 0xFFFF;
   1579 	}
   1580 
   1581 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1582 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
   1583 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
   1584 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1585 		mcr |= MCR0_BROADCAST_DIS;
   1586 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1587 		if ((ifp->if_flags & IFF_PROMISC) != 0)
   1588 			mcr |= MCR0_PROMISC;
   1589 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
   1590 			mcr |= MCR0_MULTICAST;
   1591 		mchash[0] = 0xFFFF;
   1592 		mchash[1] = 0xFFFF;
   1593 		mchash[2] = 0xFFFF;
   1594 		mchash[3] = 0xFFFF;
   1595 		goto chipit;
   1596 	}
   1597 
   1598 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
   1599 	nperf = 0;
   1600 	while (enm != NULL) {
   1601 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1602 			sc->vte_if.if_flags |= IFF_ALLMULTI;
   1603 			mcr |= MCR0_MULTICAST;
   1604 			mchash[0] = 0xFFFF;
   1605 			mchash[1] = 0xFFFF;
   1606 			mchash[2] = 0xFFFF;
   1607 			mchash[3] = 0xFFFF;
   1608 			goto chipit;
   1609 		}
   1610 		/*
   1611 		 * Program the first 3 multicast groups into
   1612 		 * the perfect filter.  For all others, use the
   1613 		 * hash table.
   1614 		 */
   1615 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
   1616 			eaddr = enm->enm_addrlo;
   1617 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
   1618 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
   1619 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
   1620 			nperf++;
   1621 		} else {
   1622 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1623 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
   1624 		}
   1625 		ETHER_NEXT_MULTI(step, enm);
   1626 	}
   1627 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
   1628 	    mchash[3] != 0)
   1629 		mcr |= MCR0_MULTICAST;
   1630 
   1631 chipit:
   1632 	/* Program multicast hash table. */
   1633 	DPRINTF(("chipit write multicast\n"));
   1634 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
   1635 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
   1636 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
   1637 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
   1638 	/* Program perfect filter table. */
   1639 	DPRINTF(("chipit write perfect filter\n"));
   1640 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1641 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
   1642 		    rxfilt_perf[i][0]);
   1643 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
   1644 		    rxfilt_perf[i][1]);
   1645 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
   1646 		    rxfilt_perf[i][2]);
   1647 	}
   1648 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
   1649 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1650 	DPRINTF(("chipit read mcro\n"));
   1651 	CSR_READ_2(sc, VTE_MCR0);
   1652 	DPRINTF(("chipit done\n"));
   1653 }
   1654 
   1655 /*
   1656  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
   1657  * set up in vte_pci_attach()
   1658  */
   1659 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
   1660 {
   1661 	int rc;
   1662 	const struct sysctlnode *node;
   1663 
   1664 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1665 	    0, CTLTYPE_NODE, "vte",
   1666 	    SYSCTL_DESCR("vte interface controls"),
   1667 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1668 		goto err;
   1669 	}
   1670 
   1671 	vte_root_num = node->sysctl_num;
   1672 	return;
   1673 
   1674 err:
   1675 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   1676 }
   1677 
   1678 static int
   1679 vte_sysctl_intrxct(SYSCTLFN_ARGS)
   1680 {
   1681 	int error, t;
   1682 	struct sysctlnode node;
   1683 	struct vte_softc *sc;
   1684 
   1685 	node = *rnode;
   1686 	sc = node.sysctl_data;
   1687 	t = sc->vte_int_rx_mod;
   1688 	node.sysctl_data = &t;
   1689 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1690 	if (error || newp == NULL)
   1691 		return error;
   1692 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1693 		return EINVAL;
   1694 
   1695 	sc->vte_int_rx_mod = t;
   1696 	vte_miibus_statchg(&sc->vte_if);
   1697 	return 0;
   1698 }
   1699 
   1700 static int
   1701 vte_sysctl_inttxct(SYSCTLFN_ARGS)
   1702 {
   1703 	int error, t;
   1704 	struct sysctlnode node;
   1705 	struct vte_softc *sc;
   1706 
   1707 	node = *rnode;
   1708 	sc = node.sysctl_data;
   1709 	t = sc->vte_int_tx_mod;
   1710 	node.sysctl_data = &t;
   1711 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1712 	if (error || newp == NULL)
   1713 		return error;
   1714 
   1715 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1716 		return EINVAL;
   1717 	sc->vte_int_tx_mod = t;
   1718 	vte_miibus_statchg(&sc->vte_if);
   1719 	return 0;
   1720 }
   1721