if_vte.c revision 1.18.4.2 1 /* $NetBSD: if_vte.c,v 1.18.4.2 2018/07/28 04:37:46 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.18.4.2 2018/07/28 04:37:46 pgoyette Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79
80 #include <sys/rndsource.h>
81
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104
105 static int vte_match(device_t, cfdata_t, void *);
106 static void vte_attach(device_t, device_t, void *);
107 static int vte_detach(device_t, int);
108 static int vte_dma_alloc(struct vte_softc *);
109 static void vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 vte_encap(struct vte_softc *, struct mbuf **);
112 static void vte_get_macaddr(struct vte_softc *);
113 static int vte_init(struct ifnet *);
114 static int vte_init_rx_ring(struct vte_softc *);
115 static int vte_init_tx_ring(struct vte_softc *);
116 static int vte_intr(void *);
117 static int vte_ifioctl(struct ifnet *, u_long, void *);
118 static void vte_mac_config(struct vte_softc *);
119 static int vte_miibus_readreg(device_t, int, int);
120 static void vte_miibus_statchg(struct ifnet *);
121 static void vte_miibus_writereg(device_t, int, int, int);
122 static int vte_mediachange(struct ifnet *);
123 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void vte_reset(struct vte_softc *);
125 static void vte_rxeof(struct vte_softc *);
126 static void vte_rxfilter(struct vte_softc *);
127 static bool vte_shutdown(device_t, int);
128 static bool vte_suspend(device_t, const pmf_qual_t *);
129 static bool vte_resume(device_t, const pmf_qual_t *);
130 static void vte_ifstart(struct ifnet *);
131 static void vte_start_mac(struct vte_softc *);
132 static void vte_stats_clear(struct vte_softc *);
133 static void vte_stats_update(struct vte_softc *);
134 static void vte_stop(struct ifnet *, int);
135 static void vte_stop_mac(struct vte_softc *);
136 static void vte_tick(void *);
137 static void vte_txeof(struct vte_softc *);
138 static void vte_ifwatchdog(struct ifnet *);
139
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143
144 #define DPRINTF(a)
145
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148
149
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154
155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 return 1;
158
159 return 0;
160 }
161
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 struct vte_softc *sc = device_private(self);
166 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 struct ifnet * const ifp = &sc->vte_if;
168 int h_valid;
169 pcireg_t reg, csr;
170 pci_intr_handle_t intrhandle;
171 const char *intrstr;
172 int error;
173 const struct sysctlnode *node;
174 int vte_nodenum;
175 char intrbuf[PCI_INTRSTR_LEN];
176
177 sc->vte_dev = self;
178
179 callout_init(&sc->vte_tick_ch, 0);
180
181 /* Map the device. */
182 h_valid = 0;
183 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
184 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
185 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
186 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
187 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
188 }
189 if (h_valid == 0) {
190 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
191 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
192 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
193 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
194 &sc->vte_bushandle, NULL, NULL) == 0);
195 }
196 }
197 if (h_valid == 0) {
198 aprint_error_dev(self, "unable to map device registers\n");
199 return;
200 }
201 sc->vte_dmatag = pa->pa_dmat;
202 /* Enable the device. */
203 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
204 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
205 csr | PCI_COMMAND_MASTER_ENABLE);
206
207 pci_aprint_devinfo(pa, NULL);
208
209 /* Reset the ethernet controller. */
210 vte_reset(sc);
211
212 if ((error = vte_dma_alloc(sc)) != 0)
213 return;
214
215 /* Load station address. */
216 vte_get_macaddr(sc);
217
218 aprint_normal_dev(self, "Ethernet address %s\n",
219 ether_sprintf(sc->vte_eaddr));
220
221 /* Map and establish interrupts */
222 if (pci_intr_map(pa, &intrhandle)) {
223 aprint_error_dev(self, "couldn't map interrupt\n");
224 return;
225 }
226 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
227 sizeof(intrbuf));
228 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
229 vte_intr, sc);
230 if (sc->vte_ih == NULL) {
231 aprint_error_dev(self, "couldn't establish interrupt");
232 if (intrstr != NULL)
233 aprint_error(" at %s", intrstr);
234 aprint_error("\n");
235 return;
236 }
237 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
238
239 sc->vte_if.if_softc = sc;
240 sc->vte_mii.mii_ifp = ifp;
241 sc->vte_mii.mii_readreg = vte_miibus_readreg;
242 sc->vte_mii.mii_writereg = vte_miibus_writereg;
243 sc->vte_mii.mii_statchg = vte_miibus_statchg;
244 sc->vte_ec.ec_mii = &sc->vte_mii;
245 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
246 ether_mediastatus);
247 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
248 MII_OFFSET_ANY, 0);
249 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
250 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
251 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
252 } else
253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
254
255 /*
256 * We can support 802.1Q VLAN-sized frames.
257 */
258 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
259
260 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
261 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
262 ifp->if_ioctl = vte_ifioctl;
263 ifp->if_start = vte_ifstart;
264 ifp->if_watchdog = vte_ifwatchdog;
265 ifp->if_init = vte_init;
266 ifp->if_stop = vte_stop;
267 ifp->if_timer = 0;
268 IFQ_SET_READY(&ifp->if_snd);
269 if_attach(ifp);
270 if_deferred_start_init(ifp, NULL);
271 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
272
273 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
274 pmf_class_network_register(self, ifp);
275 else
276 aprint_error_dev(self, "couldn't establish power handler\n");
277
278 rnd_attach_source(&sc->rnd_source, device_xname(self),
279 RND_TYPE_NET, RND_FLAG_DEFAULT);
280
281 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
282 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
283 SYSCTL_DESCR("vte per-controller controls"),
284 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
285 CTL_EOL) != 0) {
286 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
287 return;
288 }
289 vte_nodenum = node->sysctl_num;
290 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
291 CTLFLAG_READWRITE,
292 CTLTYPE_INT, "int_rxct",
293 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
294 vte_sysctl_intrxct, 0, (void *)sc,
295 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
296 CTL_EOL) != 0) {
297 aprint_normal_dev(sc->vte_dev,
298 "couldn't create int_rxct sysctl node\n");
299 }
300 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
301 CTLFLAG_READWRITE,
302 CTLTYPE_INT, "int_txct",
303 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
304 vte_sysctl_inttxct, 0, (void *)sc,
305 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
306 CTL_EOL) != 0) {
307 aprint_normal_dev(sc->vte_dev,
308 "couldn't create int_txct sysctl node\n");
309 }
310 }
311
312 static int
313 vte_detach(device_t dev, int flags __unused)
314 {
315 struct vte_softc *sc = device_private(dev);
316 struct ifnet *ifp = &sc->vte_if;
317 int s;
318
319 s = splnet();
320 /* Stop the interface. Callouts are stopped in it. */
321 vte_stop(ifp, 1);
322 splx(s);
323
324 pmf_device_deregister(dev);
325
326 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
327 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331
332 vte_dma_free(sc);
333
334 return (0);
335 }
336
337 static int
338 vte_miibus_readreg(device_t dev, int phy, int reg)
339 {
340 struct vte_softc *sc = device_private(dev);
341 int i;
342
343 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
344 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
345 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
346 DELAY(5);
347 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
348 break;
349 }
350
351 if (i == 0) {
352 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
353 return (0);
354 }
355
356 return (CSR_READ_2(sc, VTE_MMRD));
357 }
358
359 static void
360 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
361 {
362 struct vte_softc *sc = device_private(dev);
363 int i;
364
365 CSR_WRITE_2(sc, VTE_MMWD, val);
366 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
367 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
368 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
369 DELAY(5);
370 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
371 break;
372 }
373
374 if (i == 0)
375 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
376
377 }
378
379 static void
380 vte_miibus_statchg(struct ifnet *ifp)
381 {
382 struct vte_softc *sc = ifp->if_softc;
383 uint16_t val;
384
385 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
386 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
387
388 sc->vte_flags &= ~VTE_FLAG_LINK;
389 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
390 (IFM_ACTIVE | IFM_AVALID)) {
391 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
392 case IFM_10_T:
393 case IFM_100_TX:
394 sc->vte_flags |= VTE_FLAG_LINK;
395 break;
396 default:
397 break;
398 }
399 }
400
401 /* Stop RX/TX MACs. */
402 vte_stop_mac(sc);
403 /* Program MACs with resolved duplex and flow control. */
404 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
405 /*
406 * Timer waiting time : (63 + TIMER * 64) MII clock.
407 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
408 */
409 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
410 val = 18 << VTE_IM_TIMER_SHIFT;
411 else
412 val = 1 << VTE_IM_TIMER_SHIFT;
413 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
414 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
415 CSR_WRITE_2(sc, VTE_MRICR, val);
416
417 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
418 val = 18 << VTE_IM_TIMER_SHIFT;
419 else
420 val = 1 << VTE_IM_TIMER_SHIFT;
421 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
422 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
423 CSR_WRITE_2(sc, VTE_MTICR, val);
424
425 vte_mac_config(sc);
426 vte_start_mac(sc);
427 DPRINTF(("vte_miibus_statchg: link\n"));
428 }
429 }
430
431 static void
432 vte_get_macaddr(struct vte_softc *sc)
433 {
434 uint16_t mid;
435
436 /*
437 * It seems there is no way to reload station address and
438 * it is supposed to be set by BIOS.
439 */
440 mid = CSR_READ_2(sc, VTE_MID0L);
441 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
442 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
443 mid = CSR_READ_2(sc, VTE_MID0M);
444 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
445 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
446 mid = CSR_READ_2(sc, VTE_MID0H);
447 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
448 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
449 }
450
451
452 static int
453 vte_dma_alloc(struct vte_softc *sc)
454 {
455 struct vte_txdesc *txd;
456 struct vte_rxdesc *rxd;
457 int error, i, rseg;
458
459 /* create DMA map for TX ring */
460 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
461 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
462 &sc->vte_cdata.vte_tx_ring_map);
463 if (error) {
464 aprint_error_dev(sc->vte_dev,
465 "could not create dma map for TX ring (%d)\n",
466 error);
467 goto fail;
468 }
469 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
470 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
471 VTE_TX_RING_ALIGN, 0,
472 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
473 BUS_DMA_NOWAIT);
474 if (error != 0) {
475 aprint_error_dev(sc->vte_dev,
476 "could not allocate DMA'able memory for TX ring (%d).\n",
477 error);
478 goto fail;
479 }
480 KASSERT(rseg == 1);
481 error = bus_dmamem_map(sc->vte_dmatag,
482 sc->vte_cdata.vte_tx_ring_seg, 1,
483 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
484 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
485 if (error != 0) {
486 aprint_error_dev(sc->vte_dev,
487 "could not map DMA'able memory for TX ring (%d).\n",
488 error);
489 goto fail;
490 }
491 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
492 error = bus_dmamap_load(sc->vte_dmatag,
493 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
494 VTE_TX_RING_SZ, NULL,
495 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
496 if (error != 0) {
497 aprint_error_dev(sc->vte_dev,
498 "could not load DMA'able memory for TX ring.\n");
499 goto fail;
500 }
501
502 /* create DMA map for RX ring */
503 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
504 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
505 &sc->vte_cdata.vte_rx_ring_map);
506 if (error) {
507 aprint_error_dev(sc->vte_dev,
508 "could not create dma map for RX ring (%d)\n",
509 error);
510 goto fail;
511 }
512 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
513 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
514 VTE_RX_RING_ALIGN, 0,
515 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
516 BUS_DMA_NOWAIT);
517 if (error != 0) {
518 aprint_error_dev(sc->vte_dev,
519 "could not allocate DMA'able memory for RX ring (%d).\n",
520 error);
521 goto fail;
522 }
523 KASSERT(rseg == 1);
524 error = bus_dmamem_map(sc->vte_dmatag,
525 sc->vte_cdata.vte_rx_ring_seg, 1,
526 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
527 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
528 if (error != 0) {
529 aprint_error_dev(sc->vte_dev,
530 "could not map DMA'able memory for RX ring (%d).\n",
531 error);
532 goto fail;
533 }
534 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
535 error = bus_dmamap_load(sc->vte_dmatag,
536 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
537 VTE_RX_RING_SZ, NULL,
538 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
539 if (error != 0) {
540 aprint_error_dev(sc->vte_dev,
541 "could not load DMA'able memory for RX ring (%d).\n",
542 error);
543 goto fail;
544 }
545
546 /* Create DMA maps for TX buffers. */
547 for (i = 0; i < VTE_TX_RING_CNT; i++) {
548 txd = &sc->vte_cdata.vte_txdesc[i];
549 txd->tx_m = NULL;
550 txd->tx_dmamap = NULL;
551 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
552 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
553 &txd->tx_dmamap);
554 if (error != 0) {
555 aprint_error_dev(sc->vte_dev,
556 "could not create TX DMA map %d (%d).\n", i, error);
557 goto fail;
558 }
559 }
560 /* Create DMA maps for RX buffers. */
561 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
562 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
563 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
564 aprint_error_dev(sc->vte_dev,
565 "could not create spare RX dmamap (%d).\n", error);
566 goto fail;
567 }
568 for (i = 0; i < VTE_RX_RING_CNT; i++) {
569 rxd = &sc->vte_cdata.vte_rxdesc[i];
570 rxd->rx_m = NULL;
571 rxd->rx_dmamap = NULL;
572 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
573 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
574 &rxd->rx_dmamap);
575 if (error != 0) {
576 aprint_error_dev(sc->vte_dev,
577 "could not create RX dmamap %d (%d).\n", i, error);
578 goto fail;
579 }
580 }
581 return 0;
582
583 fail:
584 vte_dma_free(sc);
585 return (error);
586 }
587
588 static void
589 vte_dma_free(struct vte_softc *sc)
590 {
591 struct vte_txdesc *txd;
592 struct vte_rxdesc *rxd;
593 int i;
594
595 /* TX buffers. */
596 for (i = 0; i < VTE_TX_RING_CNT; i++) {
597 txd = &sc->vte_cdata.vte_txdesc[i];
598 if (txd->tx_dmamap != NULL) {
599 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
600 txd->tx_dmamap = NULL;
601 }
602 }
603 /* RX buffers */
604 for (i = 0; i < VTE_RX_RING_CNT; i++) {
605 rxd = &sc->vte_cdata.vte_rxdesc[i];
606 if (rxd->rx_dmamap != NULL) {
607 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
608 rxd->rx_dmamap = NULL;
609 }
610 }
611 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
612 bus_dmamap_destroy(sc->vte_dmatag,
613 sc->vte_cdata.vte_rx_sparemap);
614 sc->vte_cdata.vte_rx_sparemap = NULL;
615 }
616 /* TX descriptor ring. */
617 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
618 bus_dmamap_unload(sc->vte_dmatag,
619 sc->vte_cdata.vte_tx_ring_map);
620 bus_dmamap_destroy(sc->vte_dmatag,
621 sc->vte_cdata.vte_tx_ring_map);
622 }
623 if (sc->vte_cdata.vte_tx_ring != NULL) {
624 bus_dmamem_unmap(sc->vte_dmatag,
625 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
626 bus_dmamem_free(sc->vte_dmatag,
627 sc->vte_cdata.vte_tx_ring_seg, 1);
628 }
629 sc->vte_cdata.vte_tx_ring = NULL;
630 sc->vte_cdata.vte_tx_ring_map = NULL;
631 /* RX ring. */
632 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
633 bus_dmamap_unload(sc->vte_dmatag,
634 sc->vte_cdata.vte_rx_ring_map);
635 bus_dmamap_destroy(sc->vte_dmatag,
636 sc->vte_cdata.vte_rx_ring_map);
637 }
638 if (sc->vte_cdata.vte_rx_ring != NULL) {
639 bus_dmamem_unmap(sc->vte_dmatag,
640 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
641 bus_dmamem_free(sc->vte_dmatag,
642 sc->vte_cdata.vte_rx_ring_seg, 1);
643 }
644 sc->vte_cdata.vte_rx_ring = NULL;
645 sc->vte_cdata.vte_rx_ring_map = NULL;
646 }
647
648 static bool
649 vte_shutdown(device_t dev, int howto)
650 {
651
652 return (vte_suspend(dev, NULL));
653 }
654
655 static bool
656 vte_suspend(device_t dev, const pmf_qual_t *qual)
657 {
658 struct vte_softc *sc = device_private(dev);
659 struct ifnet *ifp = &sc->vte_if;
660
661 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
662 if ((ifp->if_flags & IFF_RUNNING) != 0)
663 vte_stop(ifp, 1);
664 return (0);
665 }
666
667 static bool
668 vte_resume(device_t dev, const pmf_qual_t *qual)
669 {
670 struct vte_softc *sc = device_private(dev);
671 struct ifnet *ifp;
672
673 ifp = &sc->vte_if;
674 if ((ifp->if_flags & IFF_UP) != 0) {
675 ifp->if_flags &= ~IFF_RUNNING;
676 vte_init(ifp);
677 }
678
679 return (0);
680 }
681
682 static struct vte_txdesc *
683 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
684 {
685 struct vte_txdesc *txd;
686 struct mbuf *m, *n;
687 int copy, error, padlen;
688
689 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
690 m = *m_head;
691 /*
692 * Controller doesn't auto-pad, so we have to make sure pad
693 * short frames out to the minimum frame length.
694 */
695 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
696 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
697 else
698 padlen = 0;
699
700 /*
701 * Controller does not support multi-fragmented TX buffers.
702 * Controller spends most of its TX processing time in
703 * de-fragmenting TX buffers. Either faster CPU or more
704 * advanced controller DMA engine is required to speed up
705 * TX path processing.
706 * To mitigate the de-fragmenting issue, perform deep copy
707 * from fragmented mbuf chains to a pre-allocated mbuf
708 * cluster with extra cost of kernel memory. For frames
709 * that is composed of single TX buffer, the deep copy is
710 * bypassed.
711 */
712 copy = 0;
713 if (m->m_next != NULL)
714 copy++;
715 if (padlen > 0 && (M_READONLY(m) ||
716 padlen > M_TRAILINGSPACE(m)))
717 copy++;
718 if (copy != 0) {
719 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
720 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
721 n->m_pkthdr.len = m->m_pkthdr.len;
722 n->m_len = m->m_pkthdr.len;
723 m = n;
724 txd->tx_flags |= VTE_TXMBUF;
725 }
726
727 if (padlen > 0) {
728 /* Zero out the bytes in the pad area. */
729 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
730 m->m_pkthdr.len += padlen;
731 m->m_len = m->m_pkthdr.len;
732 }
733
734 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
735 BUS_DMA_NOWAIT);
736 if (error != 0) {
737 txd->tx_flags &= ~VTE_TXMBUF;
738 return (NULL);
739 }
740 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
741 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
742 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
743
744 txd->tx_desc->dtlen =
745 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
746 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
747 sc->vte_cdata.vte_tx_cnt++;
748 /* Update producer index. */
749 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
750
751 /* Finally hand over ownership to controller. */
752 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
753 txd->tx_m = m;
754
755 return (txd);
756 }
757
758 static void
759 vte_ifstart(struct ifnet *ifp)
760 {
761 struct vte_softc *sc = ifp->if_softc;
762 struct vte_txdesc *txd;
763 struct mbuf *m_head, *m;
764 int enq;
765
766 ifp = &sc->vte_if;
767
768 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
769
770 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
771 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
772 return;
773
774 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
775 /* Reserve one free TX descriptor. */
776 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
777 ifp->if_flags |= IFF_OACTIVE;
778 break;
779 }
780 IFQ_POLL(&ifp->if_snd, m_head);
781 if (m_head == NULL)
782 break;
783 /*
784 * Pack the data into the transmit ring. If we
785 * don't have room, set the OACTIVE flag and wait
786 * for the NIC to drain the ring.
787 */
788 DPRINTF(("vte_encap:"));
789 if ((txd = vte_encap(sc, &m_head)) == NULL) {
790 DPRINTF((" failed\n"));
791 break;
792 }
793 DPRINTF((" ok\n"));
794 IFQ_DEQUEUE(&ifp->if_snd, m);
795 KASSERT(m == m_head);
796
797 enq++;
798 /*
799 * If there's a BPF listener, bounce a copy of this frame
800 * to him.
801 */
802 bpf_mtap(ifp, m_head, BPF_D_OUT);
803 /* Free consumed TX frame. */
804 if ((txd->tx_flags & VTE_TXMBUF) != 0)
805 m_freem(m_head);
806 }
807
808 if (enq > 0) {
809 bus_dmamap_sync(sc->vte_dmatag,
810 sc->vte_cdata.vte_tx_ring_map, 0,
811 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
812 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
813 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
814 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
815 }
816 }
817
818 static void
819 vte_ifwatchdog(struct ifnet *ifp)
820 {
821 struct vte_softc *sc = ifp->if_softc;
822
823 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
824 return;
825
826 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
827 ifp->if_oerrors++;
828 vte_init(ifp);
829 if (!IFQ_IS_EMPTY(&ifp->if_snd))
830 vte_ifstart(ifp);
831 }
832
833 static int
834 vte_mediachange(struct ifnet *ifp)
835 {
836 int error;
837 struct vte_softc *sc = ifp->if_softc;
838
839 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
840 error = 0;
841 else if (error != 0) {
842 aprint_error_dev(sc->vte_dev, "could not set media\n");
843 return error;
844 }
845 return 0;
846
847 }
848
849 static int
850 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
851 {
852 struct vte_softc *sc = ifp->if_softc;
853 int error, s;
854
855 s = splnet();
856 error = ether_ioctl(ifp, cmd, data);
857 if (error == ENETRESET) {
858 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
859 if (ifp->if_flags & IFF_RUNNING)
860 vte_rxfilter(sc);
861 error = 0;
862 }
863 splx(s);
864 return error;
865 }
866
867 static void
868 vte_mac_config(struct vte_softc *sc)
869 {
870 uint16_t mcr;
871
872 mcr = CSR_READ_2(sc, VTE_MCR0);
873 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
874 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
875 mcr |= MCR0_FULL_DUPLEX;
876 #ifdef notyet
877 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
878 mcr |= MCR0_FC_ENB;
879 /*
880 * The data sheet is not clear whether the controller
881 * honors received pause frames or not. The is no
882 * separate control bit for RX pause frame so just
883 * enable MCR0_FC_ENB bit.
884 */
885 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
886 mcr |= MCR0_FC_ENB;
887 #endif
888 }
889 CSR_WRITE_2(sc, VTE_MCR0, mcr);
890 }
891
892 static void
893 vte_stats_clear(struct vte_softc *sc)
894 {
895
896 /* Reading counter registers clears its contents. */
897 CSR_READ_2(sc, VTE_CNT_RX_DONE);
898 CSR_READ_2(sc, VTE_CNT_MECNT0);
899 CSR_READ_2(sc, VTE_CNT_MECNT1);
900 CSR_READ_2(sc, VTE_CNT_MECNT2);
901 CSR_READ_2(sc, VTE_CNT_MECNT3);
902 CSR_READ_2(sc, VTE_CNT_TX_DONE);
903 CSR_READ_2(sc, VTE_CNT_MECNT4);
904 CSR_READ_2(sc, VTE_CNT_PAUSE);
905 }
906
907 static void
908 vte_stats_update(struct vte_softc *sc)
909 {
910 struct vte_hw_stats *stat;
911 struct ifnet *ifp = &sc->vte_if;
912 uint16_t value;
913
914 stat = &sc->vte_stats;
915
916 CSR_READ_2(sc, VTE_MECISR);
917 /* RX stats. */
918 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
919 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
920 stat->rx_bcast_frames += (value >> 8);
921 stat->rx_mcast_frames += (value & 0xFF);
922 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
923 stat->rx_runts += (value >> 8);
924 stat->rx_crcerrs += (value & 0xFF);
925 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
926 stat->rx_long_frames += (value & 0xFF);
927 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
928 stat->rx_fifo_full += (value >> 8);
929 stat->rx_desc_unavail += (value & 0xFF);
930
931 /* TX stats. */
932 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
933 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
934 stat->tx_underruns += (value >> 8);
935 stat->tx_late_colls += (value & 0xFF);
936
937 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
938 stat->tx_pause_frames += (value >> 8);
939 stat->rx_pause_frames += (value & 0xFF);
940
941 /* Update ifp counters. */
942 ifp->if_opackets = stat->tx_frames;
943 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
944 ifp->if_ipackets = stat->rx_frames;
945 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
946 stat->rx_long_frames + stat->rx_fifo_full;
947 }
948
949 static int
950 vte_intr(void *arg)
951 {
952 struct vte_softc *sc = (struct vte_softc *)arg;
953 struct ifnet *ifp = &sc->vte_if;
954 uint16_t status;
955 int n;
956
957 /* Reading VTE_MISR acknowledges interrupts. */
958 status = CSR_READ_2(sc, VTE_MISR);
959 DPRINTF(("vte_intr status 0x%x\n", status));
960 if ((status & VTE_INTRS) == 0) {
961 /* Not ours. */
962 return 0;
963 }
964
965 /* Disable interrupts. */
966 CSR_WRITE_2(sc, VTE_MIER, 0);
967 for (n = 8; (status & VTE_INTRS) != 0;) {
968 if ((ifp->if_flags & IFF_RUNNING) == 0)
969 break;
970 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
971 MISR_RX_FIFO_FULL)) != 0)
972 vte_rxeof(sc);
973 if ((status & MISR_TX_DONE) != 0)
974 vte_txeof(sc);
975 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
976 vte_stats_update(sc);
977 if_schedule_deferred_start(ifp);
978 if (--n > 0)
979 status = CSR_READ_2(sc, VTE_MISR);
980 else
981 break;
982 }
983
984 if ((ifp->if_flags & IFF_RUNNING) != 0) {
985 /* Re-enable interrupts. */
986 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
987 }
988 return 1;
989 }
990
991 static void
992 vte_txeof(struct vte_softc *sc)
993 {
994 struct ifnet *ifp;
995 struct vte_txdesc *txd;
996 uint16_t status;
997 int cons, prog;
998
999 ifp = &sc->vte_if;
1000
1001 if (sc->vte_cdata.vte_tx_cnt == 0)
1002 return;
1003 bus_dmamap_sync(sc->vte_dmatag,
1004 sc->vte_cdata.vte_tx_ring_map, 0,
1005 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1006 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1007 cons = sc->vte_cdata.vte_tx_cons;
1008 /*
1009 * Go through our TX list and free mbufs for those
1010 * frames which have been transmitted.
1011 */
1012 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1013 txd = &sc->vte_cdata.vte_txdesc[cons];
1014 status = le16toh(txd->tx_desc->dtst);
1015 if ((status & VTE_DTST_TX_OWN) != 0)
1016 break;
1017 if ((status & VTE_DTST_TX_OK) != 0)
1018 ifp->if_collisions += (status & 0xf);
1019 sc->vte_cdata.vte_tx_cnt--;
1020 /* Reclaim transmitted mbufs. */
1021 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1022 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1023 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1024 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1025 m_freem(txd->tx_m);
1026 txd->tx_flags &= ~VTE_TXMBUF;
1027 txd->tx_m = NULL;
1028 prog++;
1029 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1030 }
1031
1032 if (prog > 0) {
1033 ifp->if_flags &= ~IFF_OACTIVE;
1034 sc->vte_cdata.vte_tx_cons = cons;
1035 /*
1036 * Unarm watchdog timer only when there is no pending
1037 * frames in TX queue.
1038 */
1039 if (sc->vte_cdata.vte_tx_cnt == 0)
1040 sc->vte_watchdog_timer = 0;
1041 }
1042 }
1043
1044 static int
1045 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1046 {
1047 struct mbuf *m;
1048 bus_dmamap_t map;
1049
1050 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1051 if (m == NULL)
1052 return (ENOBUFS);
1053 m->m_len = m->m_pkthdr.len = MCLBYTES;
1054 m_adj(m, sizeof(uint32_t));
1055
1056 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1057 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1058 m_freem(m);
1059 return (ENOBUFS);
1060 }
1061 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1062
1063 if (rxd->rx_m != NULL) {
1064 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1065 0, rxd->rx_dmamap->dm_mapsize,
1066 BUS_DMASYNC_POSTREAD);
1067 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1068 }
1069 map = rxd->rx_dmamap;
1070 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1071 sc->vte_cdata.vte_rx_sparemap = map;
1072 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1073 0, rxd->rx_dmamap->dm_mapsize,
1074 BUS_DMASYNC_PREREAD);
1075 rxd->rx_m = m;
1076 rxd->rx_desc->drbp =
1077 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1078 rxd->rx_desc->drlen = htole16(
1079 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1080 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1081 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1082 rxd->rx_dmamap->dm_segs[0].ds_len));
1083 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1084
1085 return (0);
1086 }
1087
1088 static void
1089 vte_rxeof(struct vte_softc *sc)
1090 {
1091 struct ifnet *ifp;
1092 struct vte_rxdesc *rxd;
1093 struct mbuf *m;
1094 uint16_t status, total_len;
1095 int cons, prog;
1096
1097 bus_dmamap_sync(sc->vte_dmatag,
1098 sc->vte_cdata.vte_rx_ring_map, 0,
1099 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1100 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1101 cons = sc->vte_cdata.vte_rx_cons;
1102 ifp = &sc->vte_if;
1103 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1104 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1105 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1106 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1107 status = le16toh(rxd->rx_desc->drst);
1108 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1109 cons, rxd, rxd->rx_m, status,
1110 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1111 if ((status & VTE_DRST_RX_OWN) != 0)
1112 break;
1113 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1114 m = rxd->rx_m;
1115 if ((status & VTE_DRST_RX_OK) == 0) {
1116 /* Discard errored frame. */
1117 rxd->rx_desc->drlen =
1118 htole16(MCLBYTES - sizeof(uint32_t));
1119 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1120 continue;
1121 }
1122 if (vte_newbuf(sc, rxd) != 0) {
1123 DPRINTF(("vte_rxeof newbuf failed\n"));
1124 ifp->if_ierrors++;
1125 rxd->rx_desc->drlen =
1126 htole16(MCLBYTES - sizeof(uint32_t));
1127 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1128 continue;
1129 }
1130
1131 /*
1132 * It seems there is no way to strip FCS bytes.
1133 */
1134 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1135 m_set_rcvif(m, ifp);
1136 if_percpuq_enqueue(ifp->if_percpuq, m);
1137 }
1138
1139 if (prog > 0) {
1140 /* Update the consumer index. */
1141 sc->vte_cdata.vte_rx_cons = cons;
1142 /*
1143 * Sync updated RX descriptors such that controller see
1144 * modified RX buffer addresses.
1145 */
1146 bus_dmamap_sync(sc->vte_dmatag,
1147 sc->vte_cdata.vte_rx_ring_map, 0,
1148 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1149 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150 #ifdef notyet
1151 /*
1152 * Update residue counter. Controller does not
1153 * keep track of number of available RX descriptors
1154 * such that driver should have to update VTE_MRDCR
1155 * to make controller know how many free RX
1156 * descriptors were added to controller. This is
1157 * a similar mechanism used in VIA velocity
1158 * controllers and it indicates controller just
1159 * polls OWN bit of current RX descriptor pointer.
1160 * A couple of severe issues were seen on sample
1161 * board where the controller continuously emits TX
1162 * pause frames once RX pause threshold crossed.
1163 * Once triggered it never recovered form that
1164 * state, I couldn't find a way to make it back to
1165 * work at least. This issue effectively
1166 * disconnected the system from network. Also, the
1167 * controller used 00:00:00:00:00:00 as source
1168 * station address of TX pause frame. Probably this
1169 * is one of reason why vendor recommends not to
1170 * enable flow control on R6040 controller.
1171 */
1172 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1173 (((VTE_RX_RING_CNT * 2) / 10) <<
1174 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1175 #endif
1176 rnd_add_uint32(&sc->rnd_source, prog);
1177 }
1178 }
1179
1180 static void
1181 vte_tick(void *arg)
1182 {
1183 struct vte_softc *sc;
1184 int s = splnet();
1185
1186 sc = (struct vte_softc *)arg;
1187
1188 mii_tick(&sc->vte_mii);
1189 vte_stats_update(sc);
1190 vte_txeof(sc);
1191 vte_ifwatchdog(&sc->vte_if);
1192 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1193 splx(s);
1194 }
1195
1196 static void
1197 vte_reset(struct vte_softc *sc)
1198 {
1199 uint16_t mcr;
1200 int i;
1201
1202 mcr = CSR_READ_2(sc, VTE_MCR1);
1203 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1204 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1205 DELAY(10);
1206 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1207 break;
1208 }
1209 if (i == 0)
1210 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1211 /*
1212 * Follow the guide of vendor recommended way to reset MAC.
1213 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1214 * not reliable so manually reset internal state machine.
1215 */
1216 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1217 CSR_WRITE_2(sc, VTE_MACSM, 0);
1218 DELAY(5000);
1219 }
1220
1221
1222 static int
1223 vte_init(struct ifnet *ifp)
1224 {
1225 struct vte_softc *sc = ifp->if_softc;
1226 bus_addr_t paddr;
1227 uint8_t eaddr[ETHER_ADDR_LEN];
1228 int s, error;
1229
1230 s = splnet();
1231 /*
1232 * Cancel any pending I/O.
1233 */
1234 vte_stop(ifp, 1);
1235 /*
1236 * Reset the chip to a known state.
1237 */
1238 vte_reset(sc);
1239
1240 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1241 splx(s);
1242 return 0;
1243 }
1244
1245 /* Initialize RX descriptors. */
1246 if (vte_init_rx_ring(sc) != 0) {
1247 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1248 vte_stop(ifp, 1);
1249 splx(s);
1250 return ENOMEM;
1251 }
1252 if (vte_init_tx_ring(sc) != 0) {
1253 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1254 vte_stop(ifp, 1);
1255 splx(s);
1256 return ENOMEM;
1257 }
1258
1259 /*
1260 * Reprogram the station address. Controller supports up
1261 * to 4 different station addresses so driver programs the
1262 * first station address as its own ethernet address and
1263 * configure the remaining three addresses as perfect
1264 * multicast addresses.
1265 */
1266 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1267 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1268 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1269 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1270
1271 /* Set TX descriptor base addresses. */
1272 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1273 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1274 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1275 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1276
1277 /* Set RX descriptor base addresses. */
1278 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1279 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1280 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1281 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1282 /*
1283 * Initialize RX descriptor residue counter and set RX
1284 * pause threshold to 20% of available RX descriptors.
1285 * See comments on vte_rxeof() for details on flow control
1286 * issues.
1287 */
1288 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1289 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1290
1291 /*
1292 * Always use maximum frame size that controller can
1293 * support. Otherwise received frames that has longer
1294 * frame length than vte(4) MTU would be silently dropped
1295 * in controller. This would break path-MTU discovery as
1296 * sender wouldn't get any responses from receiver. The
1297 * RX buffer size should be multiple of 4.
1298 * Note, jumbo frames are silently ignored by controller
1299 * and even MAC counters do not detect them.
1300 */
1301 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1302
1303 /* Configure FIFO. */
1304 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1305 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1306 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1307
1308 /*
1309 * Configure TX/RX MACs. Actual resolved duplex and flow
1310 * control configuration is done after detecting a valid
1311 * link. Note, we don't generate early interrupt here
1312 * as well since FreeBSD does not have interrupt latency
1313 * problems like Windows.
1314 */
1315 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1316 /*
1317 * We manually keep track of PHY status changes to
1318 * configure resolved duplex and flow control since only
1319 * duplex configuration can be automatically reflected to
1320 * MCR0.
1321 */
1322 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1323 MCR1_EXCESS_COL_RETRY_16);
1324
1325 /* Initialize RX filter. */
1326 vte_rxfilter(sc);
1327
1328 /* Disable TX/RX interrupt moderation control. */
1329 CSR_WRITE_2(sc, VTE_MRICR, 0);
1330 CSR_WRITE_2(sc, VTE_MTICR, 0);
1331
1332 /* Enable MAC event counter interrupts. */
1333 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1334 /* Clear MAC statistics. */
1335 vte_stats_clear(sc);
1336
1337 /* Acknowledge all pending interrupts and clear it. */
1338 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1339 CSR_WRITE_2(sc, VTE_MISR, 0);
1340 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1341 CSR_READ_2(sc, VTE_MISR)));
1342
1343 sc->vte_flags &= ~VTE_FLAG_LINK;
1344 ifp->if_flags |= IFF_RUNNING;
1345 ifp->if_flags &= ~IFF_OACTIVE;
1346
1347 /* calling mii_mediachg will call back vte_start_mac() */
1348 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1349 error = 0;
1350 else if (error != 0) {
1351 aprint_error_dev(sc->vte_dev, "could not set media\n");
1352 splx(s);
1353 return error;
1354 }
1355
1356 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1357
1358 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1359 CSR_READ_2(sc, VTE_MISR)));
1360 splx(s);
1361 return 0;
1362 }
1363
1364 static void
1365 vte_stop(struct ifnet *ifp, int disable)
1366 {
1367 struct vte_softc *sc = ifp->if_softc;
1368 struct vte_txdesc *txd;
1369 struct vte_rxdesc *rxd;
1370 int i;
1371
1372 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1373 if ((ifp->if_flags & IFF_RUNNING) == 0)
1374 return;
1375 /*
1376 * Mark the interface down and cancel the watchdog timer.
1377 */
1378 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1379 sc->vte_flags &= ~VTE_FLAG_LINK;
1380 callout_stop(&sc->vte_tick_ch);
1381 sc->vte_watchdog_timer = 0;
1382 vte_stats_update(sc);
1383 /* Disable interrupts. */
1384 CSR_WRITE_2(sc, VTE_MIER, 0);
1385 CSR_WRITE_2(sc, VTE_MECIER, 0);
1386 /* Stop RX/TX MACs. */
1387 vte_stop_mac(sc);
1388 /* Clear interrupts. */
1389 CSR_READ_2(sc, VTE_MISR);
1390 /*
1391 * Free TX/RX mbufs still in the queues.
1392 */
1393 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1394 rxd = &sc->vte_cdata.vte_rxdesc[i];
1395 if (rxd->rx_m != NULL) {
1396 bus_dmamap_sync(sc->vte_dmatag,
1397 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1398 BUS_DMASYNC_POSTREAD);
1399 bus_dmamap_unload(sc->vte_dmatag,
1400 rxd->rx_dmamap);
1401 m_freem(rxd->rx_m);
1402 rxd->rx_m = NULL;
1403 }
1404 }
1405 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1406 txd = &sc->vte_cdata.vte_txdesc[i];
1407 if (txd->tx_m != NULL) {
1408 bus_dmamap_sync(sc->vte_dmatag,
1409 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1410 BUS_DMASYNC_POSTWRITE);
1411 bus_dmamap_unload(sc->vte_dmatag,
1412 txd->tx_dmamap);
1413 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1414 m_freem(txd->tx_m);
1415 txd->tx_m = NULL;
1416 txd->tx_flags &= ~VTE_TXMBUF;
1417 }
1418 }
1419 /* Free TX mbuf pools used for deep copy. */
1420 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1421 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1422 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1423 sc->vte_cdata.vte_txmbufs[i] = NULL;
1424 }
1425 }
1426 }
1427
1428 static void
1429 vte_start_mac(struct vte_softc *sc)
1430 {
1431 struct ifnet *ifp = &sc->vte_if;
1432 uint16_t mcr;
1433 int i;
1434
1435 /* Enable RX/TX MACs. */
1436 mcr = CSR_READ_2(sc, VTE_MCR0);
1437 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1438 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1439 (ifp->if_flags & IFF_RUNNING) != 0) {
1440 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1441 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1442 for (i = VTE_TIMEOUT; i > 0; i--) {
1443 mcr = CSR_READ_2(sc, VTE_MCR0);
1444 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1445 (MCR0_RX_ENB | MCR0_TX_ENB))
1446 break;
1447 DELAY(10);
1448 }
1449 if (i == 0)
1450 aprint_error_dev(sc->vte_dev,
1451 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1452 }
1453 vte_rxfilter(sc);
1454 }
1455
1456 static void
1457 vte_stop_mac(struct vte_softc *sc)
1458 {
1459 uint16_t mcr;
1460 int i;
1461
1462 /* Disable RX/TX MACs. */
1463 mcr = CSR_READ_2(sc, VTE_MCR0);
1464 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1465 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1466 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1467 for (i = VTE_TIMEOUT; i > 0; i--) {
1468 mcr = CSR_READ_2(sc, VTE_MCR0);
1469 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1470 break;
1471 DELAY(10);
1472 }
1473 if (i == 0)
1474 aprint_error_dev(sc->vte_dev,
1475 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1476 }
1477 }
1478
1479 static int
1480 vte_init_tx_ring(struct vte_softc *sc)
1481 {
1482 struct vte_tx_desc *desc;
1483 struct vte_txdesc *txd;
1484 bus_addr_t addr;
1485 int i;
1486
1487 sc->vte_cdata.vte_tx_prod = 0;
1488 sc->vte_cdata.vte_tx_cons = 0;
1489 sc->vte_cdata.vte_tx_cnt = 0;
1490
1491 /* Pre-allocate TX mbufs for deep copy. */
1492 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1493 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1494 MT_DATA, M_PKTHDR);
1495 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1496 return (ENOBUFS);
1497 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1498 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1499 }
1500 desc = sc->vte_cdata.vte_tx_ring;
1501 bzero(desc, VTE_TX_RING_SZ);
1502 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1503 txd = &sc->vte_cdata.vte_txdesc[i];
1504 txd->tx_m = NULL;
1505 if (i != VTE_TX_RING_CNT - 1)
1506 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1507 sizeof(struct vte_tx_desc) * (i + 1);
1508 else
1509 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1510 sizeof(struct vte_tx_desc) * 0;
1511 desc = &sc->vte_cdata.vte_tx_ring[i];
1512 desc->dtnp = htole32(addr);
1513 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1514 txd->tx_desc = desc;
1515 }
1516
1517 bus_dmamap_sync(sc->vte_dmatag,
1518 sc->vte_cdata.vte_tx_ring_map, 0,
1519 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1520 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1521 return (0);
1522 }
1523
1524 static int
1525 vte_init_rx_ring(struct vte_softc *sc)
1526 {
1527 struct vte_rx_desc *desc;
1528 struct vte_rxdesc *rxd;
1529 bus_addr_t addr;
1530 int i;
1531
1532 sc->vte_cdata.vte_rx_cons = 0;
1533 desc = sc->vte_cdata.vte_rx_ring;
1534 bzero(desc, VTE_RX_RING_SZ);
1535 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1536 rxd = &sc->vte_cdata.vte_rxdesc[i];
1537 rxd->rx_m = NULL;
1538 if (i != VTE_RX_RING_CNT - 1)
1539 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1540 + sizeof(struct vte_rx_desc) * (i + 1);
1541 else
1542 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1543 + sizeof(struct vte_rx_desc) * 0;
1544 desc = &sc->vte_cdata.vte_rx_ring[i];
1545 desc->drnp = htole32(addr);
1546 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1547 rxd->rx_desc = desc;
1548 if (vte_newbuf(sc, rxd) != 0)
1549 return (ENOBUFS);
1550 }
1551
1552 bus_dmamap_sync(sc->vte_dmatag,
1553 sc->vte_cdata.vte_rx_ring_map, 0,
1554 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1555 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1556
1557 return (0);
1558 }
1559
1560 static void
1561 vte_rxfilter(struct vte_softc *sc)
1562 {
1563 struct ether_multistep step;
1564 struct ether_multi *enm;
1565 struct ifnet *ifp;
1566 uint8_t *eaddr;
1567 uint32_t crc;
1568 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1569 uint16_t mchash[4], mcr;
1570 int i, nperf;
1571
1572 ifp = &sc->vte_if;
1573
1574 DPRINTF(("vte_rxfilter\n"));
1575 memset(mchash, 0, sizeof(mchash));
1576 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1577 rxfilt_perf[i][0] = 0xFFFF;
1578 rxfilt_perf[i][1] = 0xFFFF;
1579 rxfilt_perf[i][2] = 0xFFFF;
1580 }
1581
1582 mcr = CSR_READ_2(sc, VTE_MCR0);
1583 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1584 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1585 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1586 mcr |= MCR0_BROADCAST_DIS;
1587 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1588 if ((ifp->if_flags & IFF_PROMISC) != 0)
1589 mcr |= MCR0_PROMISC;
1590 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1591 mcr |= MCR0_MULTICAST;
1592 mchash[0] = 0xFFFF;
1593 mchash[1] = 0xFFFF;
1594 mchash[2] = 0xFFFF;
1595 mchash[3] = 0xFFFF;
1596 goto chipit;
1597 }
1598
1599 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1600 nperf = 0;
1601 while (enm != NULL) {
1602 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1603 sc->vte_if.if_flags |= IFF_ALLMULTI;
1604 mcr |= MCR0_MULTICAST;
1605 mchash[0] = 0xFFFF;
1606 mchash[1] = 0xFFFF;
1607 mchash[2] = 0xFFFF;
1608 mchash[3] = 0xFFFF;
1609 goto chipit;
1610 }
1611 /*
1612 * Program the first 3 multicast groups into
1613 * the perfect filter. For all others, use the
1614 * hash table.
1615 */
1616 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1617 eaddr = enm->enm_addrlo;
1618 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1619 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1620 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1621 nperf++;
1622 } else {
1623 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1624 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1625 }
1626 ETHER_NEXT_MULTI(step, enm);
1627 }
1628 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1629 mchash[3] != 0)
1630 mcr |= MCR0_MULTICAST;
1631
1632 chipit:
1633 /* Program multicast hash table. */
1634 DPRINTF(("chipit write multicast\n"));
1635 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1636 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1637 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1638 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1639 /* Program perfect filter table. */
1640 DPRINTF(("chipit write perfect filter\n"));
1641 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1642 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1643 rxfilt_perf[i][0]);
1644 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1645 rxfilt_perf[i][1]);
1646 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1647 rxfilt_perf[i][2]);
1648 }
1649 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1650 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1651 DPRINTF(("chipit read mcro\n"));
1652 CSR_READ_2(sc, VTE_MCR0);
1653 DPRINTF(("chipit done\n"));
1654 }
1655
1656 /*
1657 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1658 * set up in vte_pci_attach()
1659 */
1660 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1661 {
1662 int rc;
1663 const struct sysctlnode *node;
1664
1665 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1666 0, CTLTYPE_NODE, "vte",
1667 SYSCTL_DESCR("vte interface controls"),
1668 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1669 goto err;
1670 }
1671
1672 vte_root_num = node->sysctl_num;
1673 return;
1674
1675 err:
1676 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1677 }
1678
1679 static int
1680 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1681 {
1682 int error, t;
1683 struct sysctlnode node;
1684 struct vte_softc *sc;
1685
1686 node = *rnode;
1687 sc = node.sysctl_data;
1688 t = sc->vte_int_rx_mod;
1689 node.sysctl_data = &t;
1690 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1691 if (error || newp == NULL)
1692 return error;
1693 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1694 return EINVAL;
1695
1696 sc->vte_int_rx_mod = t;
1697 vte_miibus_statchg(&sc->vte_if);
1698 return 0;
1699 }
1700
1701 static int
1702 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1703 {
1704 int error, t;
1705 struct sysctlnode node;
1706 struct vte_softc *sc;
1707
1708 node = *rnode;
1709 sc = node.sysctl_data;
1710 t = sc->vte_int_tx_mod;
1711 node.sysctl_data = &t;
1712 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1713 if (error || newp == NULL)
1714 return error;
1715
1716 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1717 return EINVAL;
1718 sc->vte_int_tx_mod = t;
1719 vte_miibus_statchg(&sc->vte_if);
1720 return 0;
1721 }
1722