if_vte.c revision 1.20.2.2 1 /* $NetBSD: if_vte.c,v 1.20.2.2 2020/04/13 08:04:26 martin Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.20.2.2 2020/04/13 08:04:26 martin Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79
80 #include <sys/rndsource.h>
81
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104
105 static int vte_match(device_t, cfdata_t, void *);
106 static void vte_attach(device_t, device_t, void *);
107 static int vte_detach(device_t, int);
108 static int vte_dma_alloc(struct vte_softc *);
109 static void vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 vte_encap(struct vte_softc *, struct mbuf **);
112 static void vte_get_macaddr(struct vte_softc *);
113 static int vte_init(struct ifnet *);
114 static int vte_init_rx_ring(struct vte_softc *);
115 static int vte_init_tx_ring(struct vte_softc *);
116 static int vte_intr(void *);
117 static int vte_ifioctl(struct ifnet *, u_long, void *);
118 static void vte_mac_config(struct vte_softc *);
119 static int vte_miibus_readreg(device_t, int, int, uint16_t *);
120 static void vte_miibus_statchg(struct ifnet *);
121 static int vte_miibus_writereg(device_t, int, int, uint16_t);
122 static int vte_mediachange(struct ifnet *);
123 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void vte_reset(struct vte_softc *);
125 static void vte_rxeof(struct vte_softc *);
126 static void vte_rxfilter(struct vte_softc *);
127 static bool vte_shutdown(device_t, int);
128 static bool vte_suspend(device_t, const pmf_qual_t *);
129 static bool vte_resume(device_t, const pmf_qual_t *);
130 static void vte_ifstart(struct ifnet *);
131 static void vte_start_mac(struct vte_softc *);
132 static void vte_stats_clear(struct vte_softc *);
133 static void vte_stats_update(struct vte_softc *);
134 static void vte_stop(struct ifnet *, int);
135 static void vte_stop_mac(struct vte_softc *);
136 static void vte_tick(void *);
137 static void vte_txeof(struct vte_softc *);
138 static void vte_ifwatchdog(struct ifnet *);
139
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143
144 #define DPRINTF(a)
145
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148
149
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154
155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 return 1;
158
159 return 0;
160 }
161
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 struct vte_softc *sc = device_private(self);
166 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 struct ifnet * const ifp = &sc->vte_if;
168 struct mii_data * const mii = &sc->vte_mii;
169 int h_valid;
170 pcireg_t reg, csr;
171 pci_intr_handle_t intrhandle;
172 const char *intrstr;
173 int error;
174 const struct sysctlnode *node;
175 int vte_nodenum;
176 char intrbuf[PCI_INTRSTR_LEN];
177
178 sc->vte_dev = self;
179
180 callout_init(&sc->vte_tick_ch, 0);
181 callout_setfunc(&sc->vte_tick_ch, vte_tick, sc);
182
183 /* Map the device. */
184 h_valid = 0;
185 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
186 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
187 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
188 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
189 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
190 }
191 if (h_valid == 0) {
192 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
193 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
194 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
195 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
196 &sc->vte_bushandle, NULL, NULL) == 0);
197 }
198 }
199 if (h_valid == 0) {
200 aprint_error_dev(self, "unable to map device registers\n");
201 return;
202 }
203 sc->vte_dmatag = pa->pa_dmat;
204 /* Enable the device. */
205 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
206 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
207 csr | PCI_COMMAND_MASTER_ENABLE);
208
209 pci_aprint_devinfo(pa, NULL);
210
211 /* Reset the ethernet controller. */
212 vte_reset(sc);
213
214 if ((error = vte_dma_alloc(sc)) != 0)
215 return;
216
217 /* Load station address. */
218 vte_get_macaddr(sc);
219
220 aprint_normal_dev(self, "Ethernet address %s\n",
221 ether_sprintf(sc->vte_eaddr));
222
223 /* Map and establish interrupts */
224 if (pci_intr_map(pa, &intrhandle)) {
225 aprint_error_dev(self, "couldn't map interrupt\n");
226 return;
227 }
228 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
229 sizeof(intrbuf));
230 sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
231 vte_intr, sc, device_xname(self));
232 if (sc->vte_ih == NULL) {
233 aprint_error_dev(self, "couldn't establish interrupt");
234 if (intrstr != NULL)
235 aprint_error(" at %s", intrstr);
236 aprint_error("\n");
237 return;
238 }
239 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
240
241 sc->vte_if.if_softc = sc;
242 mii->mii_ifp = ifp;
243 mii->mii_readreg = vte_miibus_readreg;
244 mii->mii_writereg = vte_miibus_writereg;
245 mii->mii_statchg = vte_miibus_statchg;
246 sc->vte_ec.ec_mii = mii;
247 ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
248 ether_mediastatus);
249 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
250 MII_OFFSET_ANY, 0);
251 if (LIST_FIRST(&mii->mii_phys) == NULL) {
252 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
253 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
254 } else
255 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
256
257 /*
258 * We can support 802.1Q VLAN-sized frames.
259 */
260 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
261
262 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
264 ifp->if_ioctl = vte_ifioctl;
265 ifp->if_start = vte_ifstart;
266 ifp->if_watchdog = vte_ifwatchdog;
267 ifp->if_init = vte_init;
268 ifp->if_stop = vte_stop;
269 ifp->if_timer = 0;
270 IFQ_SET_READY(&ifp->if_snd);
271 if_attach(ifp);
272 if_deferred_start_init(ifp, NULL);
273 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
274
275 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
276 pmf_class_network_register(self, ifp);
277 else
278 aprint_error_dev(self, "couldn't establish power handler\n");
279
280 rnd_attach_source(&sc->rnd_source, device_xname(self),
281 RND_TYPE_NET, RND_FLAG_DEFAULT);
282
283 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
284 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
285 SYSCTL_DESCR("vte per-controller controls"),
286 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
287 CTL_EOL) != 0) {
288 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
289 return;
290 }
291 vte_nodenum = node->sysctl_num;
292 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
293 CTLFLAG_READWRITE,
294 CTLTYPE_INT, "int_rxct",
295 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
296 vte_sysctl_intrxct, 0, (void *)sc,
297 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
298 CTL_EOL) != 0) {
299 aprint_normal_dev(sc->vte_dev,
300 "couldn't create int_rxct sysctl node\n");
301 }
302 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
303 CTLFLAG_READWRITE,
304 CTLTYPE_INT, "int_txct",
305 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
306 vte_sysctl_inttxct, 0, (void *)sc,
307 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
308 CTL_EOL) != 0) {
309 aprint_normal_dev(sc->vte_dev,
310 "couldn't create int_txct sysctl node\n");
311 }
312 }
313
314 static int
315 vte_detach(device_t dev, int flags __unused)
316 {
317 struct vte_softc *sc = device_private(dev);
318 struct ifnet *ifp = &sc->vte_if;
319 int s;
320
321 s = splnet();
322 /* Stop the interface. Callouts are stopped in it. */
323 vte_stop(ifp, 1);
324 splx(s);
325
326 pmf_device_deregister(dev);
327
328 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
329
330 ether_ifdetach(ifp);
331 if_detach(ifp);
332 ifmedia_fini(&sc->vte_mii.mii_media);
333
334 vte_dma_free(sc);
335
336 return (0);
337 }
338
339 static int
340 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
341 {
342 struct vte_softc *sc = device_private(dev);
343 int i;
344
345 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
346 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
347 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
348 DELAY(5);
349 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
350 break;
351 }
352
353 if (i == 0) {
354 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
355 return ETIMEDOUT;
356 }
357
358 *val = CSR_READ_2(sc, VTE_MMRD);
359 return 0;
360 }
361
362 static int
363 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
364 {
365 struct vte_softc *sc = device_private(dev);
366 int i;
367
368 CSR_WRITE_2(sc, VTE_MMWD, val);
369 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
370 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
371 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
372 DELAY(5);
373 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
374 break;
375 }
376
377 if (i == 0) {
378 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
379 return ETIMEDOUT;
380 }
381
382 return 0;
383 }
384
385 static void
386 vte_miibus_statchg(struct ifnet *ifp)
387 {
388 struct vte_softc *sc = ifp->if_softc;
389 uint16_t val;
390
391 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
392 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
393
394 sc->vte_flags &= ~VTE_FLAG_LINK;
395 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
396 (IFM_ACTIVE | IFM_AVALID)) {
397 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
398 case IFM_10_T:
399 case IFM_100_TX:
400 sc->vte_flags |= VTE_FLAG_LINK;
401 break;
402 default:
403 break;
404 }
405 }
406
407 /* Stop RX/TX MACs. */
408 vte_stop_mac(sc);
409 /* Program MACs with resolved duplex and flow control. */
410 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
411 /*
412 * Timer waiting time : (63 + TIMER * 64) MII clock.
413 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
414 */
415 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
416 val = 18 << VTE_IM_TIMER_SHIFT;
417 else
418 val = 1 << VTE_IM_TIMER_SHIFT;
419 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
420 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
421 CSR_WRITE_2(sc, VTE_MRICR, val);
422
423 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
424 val = 18 << VTE_IM_TIMER_SHIFT;
425 else
426 val = 1 << VTE_IM_TIMER_SHIFT;
427 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
428 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
429 CSR_WRITE_2(sc, VTE_MTICR, val);
430
431 vte_mac_config(sc);
432 vte_start_mac(sc);
433 DPRINTF(("vte_miibus_statchg: link\n"));
434 }
435 }
436
437 static void
438 vte_get_macaddr(struct vte_softc *sc)
439 {
440 uint16_t mid;
441
442 /*
443 * It seems there is no way to reload station address and
444 * it is supposed to be set by BIOS.
445 */
446 mid = CSR_READ_2(sc, VTE_MID0L);
447 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
448 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
449 mid = CSR_READ_2(sc, VTE_MID0M);
450 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
451 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
452 mid = CSR_READ_2(sc, VTE_MID0H);
453 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
454 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
455 }
456
457
458 static int
459 vte_dma_alloc(struct vte_softc *sc)
460 {
461 struct vte_txdesc *txd;
462 struct vte_rxdesc *rxd;
463 int error, i, rseg;
464
465 /* create DMA map for TX ring */
466 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
467 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
468 &sc->vte_cdata.vte_tx_ring_map);
469 if (error) {
470 aprint_error_dev(sc->vte_dev,
471 "could not create dma map for TX ring (%d)\n",
472 error);
473 goto fail;
474 }
475 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
476 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
477 VTE_TX_RING_ALIGN, 0,
478 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
479 BUS_DMA_NOWAIT);
480 if (error != 0) {
481 aprint_error_dev(sc->vte_dev,
482 "could not allocate DMA'able memory for TX ring (%d).\n",
483 error);
484 goto fail;
485 }
486 KASSERT(rseg == 1);
487 error = bus_dmamem_map(sc->vte_dmatag,
488 sc->vte_cdata.vte_tx_ring_seg, 1,
489 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
490 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
491 if (error != 0) {
492 aprint_error_dev(sc->vte_dev,
493 "could not map DMA'able memory for TX ring (%d).\n",
494 error);
495 goto fail;
496 }
497 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
498 error = bus_dmamap_load(sc->vte_dmatag,
499 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
500 VTE_TX_RING_SZ, NULL,
501 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
502 if (error != 0) {
503 aprint_error_dev(sc->vte_dev,
504 "could not load DMA'able memory for TX ring.\n");
505 goto fail;
506 }
507
508 /* create DMA map for RX ring */
509 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
510 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
511 &sc->vte_cdata.vte_rx_ring_map);
512 if (error) {
513 aprint_error_dev(sc->vte_dev,
514 "could not create dma map for RX ring (%d)\n",
515 error);
516 goto fail;
517 }
518 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
519 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
520 VTE_RX_RING_ALIGN, 0,
521 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
522 BUS_DMA_NOWAIT);
523 if (error != 0) {
524 aprint_error_dev(sc->vte_dev,
525 "could not allocate DMA'able memory for RX ring (%d).\n",
526 error);
527 goto fail;
528 }
529 KASSERT(rseg == 1);
530 error = bus_dmamem_map(sc->vte_dmatag,
531 sc->vte_cdata.vte_rx_ring_seg, 1,
532 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
533 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
534 if (error != 0) {
535 aprint_error_dev(sc->vte_dev,
536 "could not map DMA'able memory for RX ring (%d).\n",
537 error);
538 goto fail;
539 }
540 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
541 error = bus_dmamap_load(sc->vte_dmatag,
542 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
543 VTE_RX_RING_SZ, NULL,
544 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
545 if (error != 0) {
546 aprint_error_dev(sc->vte_dev,
547 "could not load DMA'able memory for RX ring (%d).\n",
548 error);
549 goto fail;
550 }
551
552 /* Create DMA maps for TX buffers. */
553 for (i = 0; i < VTE_TX_RING_CNT; i++) {
554 txd = &sc->vte_cdata.vte_txdesc[i];
555 txd->tx_m = NULL;
556 txd->tx_dmamap = NULL;
557 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
558 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
559 &txd->tx_dmamap);
560 if (error != 0) {
561 aprint_error_dev(sc->vte_dev,
562 "could not create TX DMA map %d (%d).\n", i, error);
563 goto fail;
564 }
565 }
566 /* Create DMA maps for RX buffers. */
567 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
568 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
569 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
570 aprint_error_dev(sc->vte_dev,
571 "could not create spare RX dmamap (%d).\n", error);
572 goto fail;
573 }
574 for (i = 0; i < VTE_RX_RING_CNT; i++) {
575 rxd = &sc->vte_cdata.vte_rxdesc[i];
576 rxd->rx_m = NULL;
577 rxd->rx_dmamap = NULL;
578 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
579 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
580 &rxd->rx_dmamap);
581 if (error != 0) {
582 aprint_error_dev(sc->vte_dev,
583 "could not create RX dmamap %d (%d).\n", i, error);
584 goto fail;
585 }
586 }
587 return 0;
588
589 fail:
590 vte_dma_free(sc);
591 return (error);
592 }
593
594 static void
595 vte_dma_free(struct vte_softc *sc)
596 {
597 struct vte_txdesc *txd;
598 struct vte_rxdesc *rxd;
599 int i;
600
601 /* TX buffers. */
602 for (i = 0; i < VTE_TX_RING_CNT; i++) {
603 txd = &sc->vte_cdata.vte_txdesc[i];
604 if (txd->tx_dmamap != NULL) {
605 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
606 txd->tx_dmamap = NULL;
607 }
608 }
609 /* RX buffers */
610 for (i = 0; i < VTE_RX_RING_CNT; i++) {
611 rxd = &sc->vte_cdata.vte_rxdesc[i];
612 if (rxd->rx_dmamap != NULL) {
613 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
614 rxd->rx_dmamap = NULL;
615 }
616 }
617 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
618 bus_dmamap_destroy(sc->vte_dmatag,
619 sc->vte_cdata.vte_rx_sparemap);
620 sc->vte_cdata.vte_rx_sparemap = NULL;
621 }
622 /* TX descriptor ring. */
623 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
624 bus_dmamap_unload(sc->vte_dmatag,
625 sc->vte_cdata.vte_tx_ring_map);
626 bus_dmamap_destroy(sc->vte_dmatag,
627 sc->vte_cdata.vte_tx_ring_map);
628 }
629 if (sc->vte_cdata.vte_tx_ring != NULL) {
630 bus_dmamem_unmap(sc->vte_dmatag,
631 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
632 bus_dmamem_free(sc->vte_dmatag,
633 sc->vte_cdata.vte_tx_ring_seg, 1);
634 }
635 sc->vte_cdata.vte_tx_ring = NULL;
636 sc->vte_cdata.vte_tx_ring_map = NULL;
637 /* RX ring. */
638 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
639 bus_dmamap_unload(sc->vte_dmatag,
640 sc->vte_cdata.vte_rx_ring_map);
641 bus_dmamap_destroy(sc->vte_dmatag,
642 sc->vte_cdata.vte_rx_ring_map);
643 }
644 if (sc->vte_cdata.vte_rx_ring != NULL) {
645 bus_dmamem_unmap(sc->vte_dmatag,
646 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
647 bus_dmamem_free(sc->vte_dmatag,
648 sc->vte_cdata.vte_rx_ring_seg, 1);
649 }
650 sc->vte_cdata.vte_rx_ring = NULL;
651 sc->vte_cdata.vte_rx_ring_map = NULL;
652 }
653
654 static bool
655 vte_shutdown(device_t dev, int howto)
656 {
657
658 return (vte_suspend(dev, NULL));
659 }
660
661 static bool
662 vte_suspend(device_t dev, const pmf_qual_t *qual)
663 {
664 struct vte_softc *sc = device_private(dev);
665 struct ifnet *ifp = &sc->vte_if;
666
667 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
668 if ((ifp->if_flags & IFF_RUNNING) != 0)
669 vte_stop(ifp, 1);
670 return (0);
671 }
672
673 static bool
674 vte_resume(device_t dev, const pmf_qual_t *qual)
675 {
676 struct vte_softc *sc = device_private(dev);
677 struct ifnet *ifp;
678
679 ifp = &sc->vte_if;
680 if ((ifp->if_flags & IFF_UP) != 0) {
681 ifp->if_flags &= ~IFF_RUNNING;
682 vte_init(ifp);
683 }
684
685 return (0);
686 }
687
688 static struct vte_txdesc *
689 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
690 {
691 struct vte_txdesc *txd;
692 struct mbuf *m, *n;
693 int copy, error, padlen;
694
695 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
696 m = *m_head;
697 /*
698 * Controller doesn't auto-pad, so we have to make sure pad
699 * short frames out to the minimum frame length.
700 */
701 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
702 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
703 else
704 padlen = 0;
705
706 /*
707 * Controller does not support multi-fragmented TX buffers.
708 * Controller spends most of its TX processing time in
709 * de-fragmenting TX buffers. Either faster CPU or more
710 * advanced controller DMA engine is required to speed up
711 * TX path processing.
712 * To mitigate the de-fragmenting issue, perform deep copy
713 * from fragmented mbuf chains to a pre-allocated mbuf
714 * cluster with extra cost of kernel memory. For frames
715 * that is composed of single TX buffer, the deep copy is
716 * bypassed.
717 */
718 copy = 0;
719 if (m->m_next != NULL)
720 copy++;
721 if (padlen > 0 && (M_READONLY(m) ||
722 padlen > M_TRAILINGSPACE(m)))
723 copy++;
724 if (copy != 0) {
725 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
726 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
727 n->m_pkthdr.len = m->m_pkthdr.len;
728 n->m_len = m->m_pkthdr.len;
729 m = n;
730 txd->tx_flags |= VTE_TXMBUF;
731 }
732
733 if (padlen > 0) {
734 /* Zero out the bytes in the pad area. */
735 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
736 m->m_pkthdr.len += padlen;
737 m->m_len = m->m_pkthdr.len;
738 }
739
740 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
741 BUS_DMA_NOWAIT);
742 if (error != 0) {
743 txd->tx_flags &= ~VTE_TXMBUF;
744 return (NULL);
745 }
746 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
747 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
748 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
749
750 txd->tx_desc->dtlen =
751 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
752 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
753 sc->vte_cdata.vte_tx_cnt++;
754 /* Update producer index. */
755 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
756
757 /* Finally hand over ownership to controller. */
758 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
759 txd->tx_m = m;
760
761 return (txd);
762 }
763
764 static void
765 vte_ifstart(struct ifnet *ifp)
766 {
767 struct vte_softc *sc = ifp->if_softc;
768 struct vte_txdesc *txd;
769 struct mbuf *m_head, *m;
770 int enq;
771
772 ifp = &sc->vte_if;
773
774 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
775
776 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
777 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
778 return;
779
780 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
781 /* Reserve one free TX descriptor. */
782 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
783 ifp->if_flags |= IFF_OACTIVE;
784 break;
785 }
786 IFQ_POLL(&ifp->if_snd, m_head);
787 if (m_head == NULL)
788 break;
789 /*
790 * Pack the data into the transmit ring. If we
791 * don't have room, set the OACTIVE flag and wait
792 * for the NIC to drain the ring.
793 */
794 DPRINTF(("vte_encap:"));
795 if ((txd = vte_encap(sc, &m_head)) == NULL) {
796 DPRINTF((" failed\n"));
797 break;
798 }
799 DPRINTF((" ok\n"));
800 IFQ_DEQUEUE(&ifp->if_snd, m);
801 KASSERT(m == m_head);
802
803 enq++;
804 /*
805 * If there's a BPF listener, bounce a copy of this frame
806 * to him.
807 */
808 bpf_mtap(ifp, m_head, BPF_D_OUT);
809 /* Free consumed TX frame. */
810 if ((txd->tx_flags & VTE_TXMBUF) != 0)
811 m_freem(m_head);
812 }
813
814 if (enq > 0) {
815 bus_dmamap_sync(sc->vte_dmatag,
816 sc->vte_cdata.vte_tx_ring_map, 0,
817 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
818 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
819 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
820 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
821 }
822 }
823
824 static void
825 vte_ifwatchdog(struct ifnet *ifp)
826 {
827 struct vte_softc *sc = ifp->if_softc;
828
829 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
830 return;
831
832 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
833 if_statinc(ifp, if_oerrors);
834 vte_init(ifp);
835 if (!IFQ_IS_EMPTY(&ifp->if_snd))
836 vte_ifstart(ifp);
837 }
838
839 static int
840 vte_mediachange(struct ifnet *ifp)
841 {
842 int error;
843 struct vte_softc *sc = ifp->if_softc;
844
845 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
846 error = 0;
847 else if (error != 0) {
848 aprint_error_dev(sc->vte_dev, "could not set media\n");
849 return error;
850 }
851 return 0;
852
853 }
854
855 static int
856 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
857 {
858 struct vte_softc *sc = ifp->if_softc;
859 int error, s;
860
861 s = splnet();
862 error = ether_ioctl(ifp, cmd, data);
863 if (error == ENETRESET) {
864 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
865 if (ifp->if_flags & IFF_RUNNING)
866 vte_rxfilter(sc);
867 error = 0;
868 }
869 splx(s);
870 return error;
871 }
872
873 static void
874 vte_mac_config(struct vte_softc *sc)
875 {
876 uint16_t mcr;
877
878 mcr = CSR_READ_2(sc, VTE_MCR0);
879 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
880 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
881 mcr |= MCR0_FULL_DUPLEX;
882 #ifdef notyet
883 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
884 mcr |= MCR0_FC_ENB;
885 /*
886 * The data sheet is not clear whether the controller
887 * honors received pause frames or not. The is no
888 * separate control bit for RX pause frame so just
889 * enable MCR0_FC_ENB bit.
890 */
891 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
892 mcr |= MCR0_FC_ENB;
893 #endif
894 }
895 CSR_WRITE_2(sc, VTE_MCR0, mcr);
896 }
897
898 static void
899 vte_stats_clear(struct vte_softc *sc)
900 {
901
902 /* Reading counter registers clears its contents. */
903 CSR_READ_2(sc, VTE_CNT_RX_DONE);
904 CSR_READ_2(sc, VTE_CNT_MECNT0);
905 CSR_READ_2(sc, VTE_CNT_MECNT1);
906 CSR_READ_2(sc, VTE_CNT_MECNT2);
907 CSR_READ_2(sc, VTE_CNT_MECNT3);
908 CSR_READ_2(sc, VTE_CNT_TX_DONE);
909 CSR_READ_2(sc, VTE_CNT_MECNT4);
910 CSR_READ_2(sc, VTE_CNT_PAUSE);
911 }
912
913 static void
914 vte_stats_update(struct vte_softc *sc)
915 {
916 struct vte_hw_stats *stat;
917 struct ifnet *ifp = &sc->vte_if;
918 uint16_t value;
919
920 stat = &sc->vte_stats;
921
922 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
923
924 CSR_READ_2(sc, VTE_MECISR);
925
926 /* RX stats. */
927 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
928
929 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
930 stat->rx_bcast_frames += (value >> 8);
931 stat->rx_mcast_frames += (value & 0xFF);
932
933 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
934 if_statadd_ref(nsr, if_ierrors,
935 (value >> 8) + /* rx_runts */
936 (value & 0xFF)); /* rx_crcerrs */
937
938 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
939 if_statadd_ref(nsr, if_ierrors,
940 (value & 0xFF)); /* rx_long_frames */
941
942 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
943 if_statadd_ref(nsr, if_ierrors,
944 (value >> 8)); /* rx_fifo_full */
945 stat->rx_desc_unavail += (value & 0xFF);
946
947 /* TX stats. */
948 if_statadd_ref(nsr, if_opackets,
949 CSR_READ_2(sc, VTE_CNT_TX_DONE)); /* tx_frames */
950
951 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
952 if_statadd_ref(nsr, if_oerrors,
953 (value >> 8) + /* tx_underruns */
954 (value & 0xFF)); /* tx_late_colls */
955
956 /* Pause stats. */
957 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
958 stat->tx_pause_frames += (value >> 8);
959 stat->rx_pause_frames += (value & 0xFF);
960
961 IF_STAT_PUTREF(ifp);
962 }
963
964 static int
965 vte_intr(void *arg)
966 {
967 struct vte_softc *sc = (struct vte_softc *)arg;
968 struct ifnet *ifp = &sc->vte_if;
969 uint16_t status;
970 int n;
971
972 /* Reading VTE_MISR acknowledges interrupts. */
973 status = CSR_READ_2(sc, VTE_MISR);
974 DPRINTF(("vte_intr status 0x%x\n", status));
975 if ((status & VTE_INTRS) == 0) {
976 /* Not ours. */
977 return 0;
978 }
979
980 /* Disable interrupts. */
981 CSR_WRITE_2(sc, VTE_MIER, 0);
982 for (n = 8; (status & VTE_INTRS) != 0;) {
983 if ((ifp->if_flags & IFF_RUNNING) == 0)
984 break;
985 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
986 MISR_RX_FIFO_FULL)) != 0)
987 vte_rxeof(sc);
988 if ((status & MISR_TX_DONE) != 0)
989 vte_txeof(sc);
990 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
991 vte_stats_update(sc);
992 if_schedule_deferred_start(ifp);
993 if (--n > 0)
994 status = CSR_READ_2(sc, VTE_MISR);
995 else
996 break;
997 }
998
999 if ((ifp->if_flags & IFF_RUNNING) != 0) {
1000 /* Re-enable interrupts. */
1001 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1002 }
1003 return 1;
1004 }
1005
1006 static void
1007 vte_txeof(struct vte_softc *sc)
1008 {
1009 struct ifnet *ifp;
1010 struct vte_txdesc *txd;
1011 uint16_t status;
1012 int cons, prog;
1013
1014 ifp = &sc->vte_if;
1015
1016 if (sc->vte_cdata.vte_tx_cnt == 0)
1017 return;
1018 bus_dmamap_sync(sc->vte_dmatag,
1019 sc->vte_cdata.vte_tx_ring_map, 0,
1020 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1021 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1022 cons = sc->vte_cdata.vte_tx_cons;
1023 /*
1024 * Go through our TX list and free mbufs for those
1025 * frames which have been transmitted.
1026 */
1027 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1028 txd = &sc->vte_cdata.vte_txdesc[cons];
1029 status = le16toh(txd->tx_desc->dtst);
1030 if ((status & VTE_DTST_TX_OWN) != 0)
1031 break;
1032 if ((status & VTE_DTST_TX_OK) != 0)
1033 if_statadd(ifp, if_collisions, (status & 0xf));
1034 sc->vte_cdata.vte_tx_cnt--;
1035 /* Reclaim transmitted mbufs. */
1036 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1037 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1038 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1039 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1040 m_freem(txd->tx_m);
1041 txd->tx_flags &= ~VTE_TXMBUF;
1042 txd->tx_m = NULL;
1043 prog++;
1044 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1045 }
1046
1047 if (prog > 0) {
1048 ifp->if_flags &= ~IFF_OACTIVE;
1049 sc->vte_cdata.vte_tx_cons = cons;
1050 /*
1051 * Unarm watchdog timer only when there is no pending
1052 * frames in TX queue.
1053 */
1054 if (sc->vte_cdata.vte_tx_cnt == 0)
1055 sc->vte_watchdog_timer = 0;
1056 }
1057 }
1058
1059 static int
1060 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1061 {
1062 struct mbuf *m;
1063 bus_dmamap_t map;
1064
1065 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1066 if (m == NULL)
1067 return (ENOBUFS);
1068 m->m_len = m->m_pkthdr.len = MCLBYTES;
1069 m_adj(m, sizeof(uint32_t));
1070
1071 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1072 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1073 m_freem(m);
1074 return (ENOBUFS);
1075 }
1076 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1077
1078 if (rxd->rx_m != NULL) {
1079 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1080 0, rxd->rx_dmamap->dm_mapsize,
1081 BUS_DMASYNC_POSTREAD);
1082 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1083 }
1084 map = rxd->rx_dmamap;
1085 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1086 sc->vte_cdata.vte_rx_sparemap = map;
1087 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1088 0, rxd->rx_dmamap->dm_mapsize,
1089 BUS_DMASYNC_PREREAD);
1090 rxd->rx_m = m;
1091 rxd->rx_desc->drbp =
1092 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1093 rxd->rx_desc->drlen = htole16(
1094 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1095 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1096 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1097 rxd->rx_dmamap->dm_segs[0].ds_len));
1098 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1099
1100 return (0);
1101 }
1102
1103 static void
1104 vte_rxeof(struct vte_softc *sc)
1105 {
1106 struct ifnet *ifp;
1107 struct vte_rxdesc *rxd;
1108 struct mbuf *m;
1109 uint16_t status, total_len;
1110 int cons, prog;
1111
1112 bus_dmamap_sync(sc->vte_dmatag,
1113 sc->vte_cdata.vte_rx_ring_map, 0,
1114 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1115 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1116 cons = sc->vte_cdata.vte_rx_cons;
1117 ifp = &sc->vte_if;
1118 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1119 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1120 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1121 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1122 status = le16toh(rxd->rx_desc->drst);
1123 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1124 cons, rxd, rxd->rx_m, status,
1125 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1126 if ((status & VTE_DRST_RX_OWN) != 0)
1127 break;
1128 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1129 m = rxd->rx_m;
1130 if ((status & VTE_DRST_RX_OK) == 0) {
1131 /* Discard errored frame. */
1132 rxd->rx_desc->drlen =
1133 htole16(MCLBYTES - sizeof(uint32_t));
1134 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1135 continue;
1136 }
1137 if (vte_newbuf(sc, rxd) != 0) {
1138 DPRINTF(("vte_rxeof newbuf failed\n"));
1139 if_statinc(ifp, if_ierrors);
1140 rxd->rx_desc->drlen =
1141 htole16(MCLBYTES - sizeof(uint32_t));
1142 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1143 continue;
1144 }
1145
1146 /*
1147 * It seems there is no way to strip FCS bytes.
1148 */
1149 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1150 m_set_rcvif(m, ifp);
1151 if_percpuq_enqueue(ifp->if_percpuq, m);
1152 }
1153
1154 if (prog > 0) {
1155 /* Update the consumer index. */
1156 sc->vte_cdata.vte_rx_cons = cons;
1157 /*
1158 * Sync updated RX descriptors such that controller see
1159 * modified RX buffer addresses.
1160 */
1161 bus_dmamap_sync(sc->vte_dmatag,
1162 sc->vte_cdata.vte_rx_ring_map, 0,
1163 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1164 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1165 #ifdef notyet
1166 /*
1167 * Update residue counter. Controller does not
1168 * keep track of number of available RX descriptors
1169 * such that driver should have to update VTE_MRDCR
1170 * to make controller know how many free RX
1171 * descriptors were added to controller. This is
1172 * a similar mechanism used in VIA velocity
1173 * controllers and it indicates controller just
1174 * polls OWN bit of current RX descriptor pointer.
1175 * A couple of severe issues were seen on sample
1176 * board where the controller continuously emits TX
1177 * pause frames once RX pause threshold crossed.
1178 * Once triggered it never recovered form that
1179 * state, I couldn't find a way to make it back to
1180 * work at least. This issue effectively
1181 * disconnected the system from network. Also, the
1182 * controller used 00:00:00:00:00:00 as source
1183 * station address of TX pause frame. Probably this
1184 * is one of reason why vendor recommends not to
1185 * enable flow control on R6040 controller.
1186 */
1187 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1188 (((VTE_RX_RING_CNT * 2) / 10) <<
1189 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1190 #endif
1191 rnd_add_uint32(&sc->rnd_source, prog);
1192 }
1193 }
1194
1195 static void
1196 vte_tick(void *arg)
1197 {
1198 struct vte_softc *sc;
1199 int s = splnet();
1200
1201 sc = (struct vte_softc *)arg;
1202
1203 mii_tick(&sc->vte_mii);
1204 vte_stats_update(sc);
1205 vte_txeof(sc);
1206 vte_ifwatchdog(&sc->vte_if);
1207 callout_schedule(&sc->vte_tick_ch, hz);
1208 splx(s);
1209 }
1210
1211 static void
1212 vte_reset(struct vte_softc *sc)
1213 {
1214 uint16_t mcr;
1215 int i;
1216
1217 mcr = CSR_READ_2(sc, VTE_MCR1);
1218 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1219 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1220 DELAY(10);
1221 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1222 break;
1223 }
1224 if (i == 0)
1225 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1226 /*
1227 * Follow the guide of vendor recommended way to reset MAC.
1228 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1229 * not reliable so manually reset internal state machine.
1230 */
1231 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1232 CSR_WRITE_2(sc, VTE_MACSM, 0);
1233 DELAY(5000);
1234 }
1235
1236
1237 static int
1238 vte_init(struct ifnet *ifp)
1239 {
1240 struct vte_softc *sc = ifp->if_softc;
1241 bus_addr_t paddr;
1242 uint8_t eaddr[ETHER_ADDR_LEN];
1243 int s, error;
1244
1245 s = splnet();
1246 /*
1247 * Cancel any pending I/O.
1248 */
1249 vte_stop(ifp, 1);
1250 /*
1251 * Reset the chip to a known state.
1252 */
1253 vte_reset(sc);
1254
1255 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1256 splx(s);
1257 return 0;
1258 }
1259
1260 /* Initialize RX descriptors. */
1261 if (vte_init_rx_ring(sc) != 0) {
1262 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1263 vte_stop(ifp, 1);
1264 splx(s);
1265 return ENOMEM;
1266 }
1267 if (vte_init_tx_ring(sc) != 0) {
1268 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1269 vte_stop(ifp, 1);
1270 splx(s);
1271 return ENOMEM;
1272 }
1273
1274 /*
1275 * Reprogram the station address. Controller supports up
1276 * to 4 different station addresses so driver programs the
1277 * first station address as its own ethernet address and
1278 * configure the remaining three addresses as perfect
1279 * multicast addresses.
1280 */
1281 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1282 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1283 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1284 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1285
1286 /* Set TX descriptor base addresses. */
1287 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1288 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1289 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1290 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1291
1292 /* Set RX descriptor base addresses. */
1293 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1294 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1295 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1296 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1297 /*
1298 * Initialize RX descriptor residue counter and set RX
1299 * pause threshold to 20% of available RX descriptors.
1300 * See comments on vte_rxeof() for details on flow control
1301 * issues.
1302 */
1303 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1304 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1305
1306 /*
1307 * Always use maximum frame size that controller can
1308 * support. Otherwise received frames that has longer
1309 * frame length than vte(4) MTU would be silently dropped
1310 * in controller. This would break path-MTU discovery as
1311 * sender wouldn't get any responses from receiver. The
1312 * RX buffer size should be multiple of 4.
1313 * Note, jumbo frames are silently ignored by controller
1314 * and even MAC counters do not detect them.
1315 */
1316 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1317
1318 /* Configure FIFO. */
1319 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1320 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1321 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1322
1323 /*
1324 * Configure TX/RX MACs. Actual resolved duplex and flow
1325 * control configuration is done after detecting a valid
1326 * link. Note, we don't generate early interrupt here
1327 * as well since FreeBSD does not have interrupt latency
1328 * problems like Windows.
1329 */
1330 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1331 /*
1332 * We manually keep track of PHY status changes to
1333 * configure resolved duplex and flow control since only
1334 * duplex configuration can be automatically reflected to
1335 * MCR0.
1336 */
1337 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1338 MCR1_EXCESS_COL_RETRY_16);
1339
1340 /* Initialize RX filter. */
1341 vte_rxfilter(sc);
1342
1343 /* Disable TX/RX interrupt moderation control. */
1344 CSR_WRITE_2(sc, VTE_MRICR, 0);
1345 CSR_WRITE_2(sc, VTE_MTICR, 0);
1346
1347 /* Enable MAC event counter interrupts. */
1348 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1349 /* Clear MAC statistics. */
1350 vte_stats_clear(sc);
1351
1352 /* Acknowledge all pending interrupts and clear it. */
1353 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1354 CSR_WRITE_2(sc, VTE_MISR, 0);
1355 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1356 CSR_READ_2(sc, VTE_MISR)));
1357
1358 sc->vte_flags &= ~VTE_FLAG_LINK;
1359 ifp->if_flags |= IFF_RUNNING;
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361
1362 /* calling mii_mediachg will call back vte_start_mac() */
1363 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1364 error = 0;
1365 else if (error != 0) {
1366 aprint_error_dev(sc->vte_dev, "could not set media\n");
1367 splx(s);
1368 return error;
1369 }
1370
1371 callout_schedule(&sc->vte_tick_ch, hz);
1372
1373 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1374 CSR_READ_2(sc, VTE_MISR)));
1375 splx(s);
1376 return 0;
1377 }
1378
1379 static void
1380 vte_stop(struct ifnet *ifp, int disable)
1381 {
1382 struct vte_softc *sc = ifp->if_softc;
1383 struct vte_txdesc *txd;
1384 struct vte_rxdesc *rxd;
1385 int i;
1386
1387 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1388 if ((ifp->if_flags & IFF_RUNNING) == 0)
1389 return;
1390 /*
1391 * Mark the interface down and cancel the watchdog timer.
1392 */
1393 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1394 sc->vte_flags &= ~VTE_FLAG_LINK;
1395 callout_stop(&sc->vte_tick_ch);
1396 sc->vte_watchdog_timer = 0;
1397 vte_stats_update(sc);
1398 /* Disable interrupts. */
1399 CSR_WRITE_2(sc, VTE_MIER, 0);
1400 CSR_WRITE_2(sc, VTE_MECIER, 0);
1401 /* Stop RX/TX MACs. */
1402 vte_stop_mac(sc);
1403 /* Clear interrupts. */
1404 CSR_READ_2(sc, VTE_MISR);
1405 /*
1406 * Free TX/RX mbufs still in the queues.
1407 */
1408 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1409 rxd = &sc->vte_cdata.vte_rxdesc[i];
1410 if (rxd->rx_m != NULL) {
1411 bus_dmamap_sync(sc->vte_dmatag,
1412 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1413 BUS_DMASYNC_POSTREAD);
1414 bus_dmamap_unload(sc->vte_dmatag,
1415 rxd->rx_dmamap);
1416 m_freem(rxd->rx_m);
1417 rxd->rx_m = NULL;
1418 }
1419 }
1420 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1421 txd = &sc->vte_cdata.vte_txdesc[i];
1422 if (txd->tx_m != NULL) {
1423 bus_dmamap_sync(sc->vte_dmatag,
1424 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1425 BUS_DMASYNC_POSTWRITE);
1426 bus_dmamap_unload(sc->vte_dmatag,
1427 txd->tx_dmamap);
1428 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1429 m_freem(txd->tx_m);
1430 txd->tx_m = NULL;
1431 txd->tx_flags &= ~VTE_TXMBUF;
1432 }
1433 }
1434 /* Free TX mbuf pools used for deep copy. */
1435 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1436 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1437 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1438 sc->vte_cdata.vte_txmbufs[i] = NULL;
1439 }
1440 }
1441 }
1442
1443 static void
1444 vte_start_mac(struct vte_softc *sc)
1445 {
1446 struct ifnet *ifp = &sc->vte_if;
1447 uint16_t mcr;
1448 int i;
1449
1450 /* Enable RX/TX MACs. */
1451 mcr = CSR_READ_2(sc, VTE_MCR0);
1452 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1453 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1454 (ifp->if_flags & IFF_RUNNING) != 0) {
1455 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1456 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1457 for (i = VTE_TIMEOUT; i > 0; i--) {
1458 mcr = CSR_READ_2(sc, VTE_MCR0);
1459 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1460 (MCR0_RX_ENB | MCR0_TX_ENB))
1461 break;
1462 DELAY(10);
1463 }
1464 if (i == 0)
1465 aprint_error_dev(sc->vte_dev,
1466 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1467 }
1468 vte_rxfilter(sc);
1469 }
1470
1471 static void
1472 vte_stop_mac(struct vte_softc *sc)
1473 {
1474 uint16_t mcr;
1475 int i;
1476
1477 /* Disable RX/TX MACs. */
1478 mcr = CSR_READ_2(sc, VTE_MCR0);
1479 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1480 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1481 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1482 for (i = VTE_TIMEOUT; i > 0; i--) {
1483 mcr = CSR_READ_2(sc, VTE_MCR0);
1484 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1485 break;
1486 DELAY(10);
1487 }
1488 if (i == 0)
1489 aprint_error_dev(sc->vte_dev,
1490 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1491 }
1492 }
1493
1494 static int
1495 vte_init_tx_ring(struct vte_softc *sc)
1496 {
1497 struct vte_tx_desc *desc;
1498 struct vte_txdesc *txd;
1499 bus_addr_t addr;
1500 int i;
1501
1502 sc->vte_cdata.vte_tx_prod = 0;
1503 sc->vte_cdata.vte_tx_cons = 0;
1504 sc->vte_cdata.vte_tx_cnt = 0;
1505
1506 /* Pre-allocate TX mbufs for deep copy. */
1507 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1508 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1509 MT_DATA, M_PKTHDR);
1510 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1511 return (ENOBUFS);
1512 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1513 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1514 }
1515 desc = sc->vte_cdata.vte_tx_ring;
1516 bzero(desc, VTE_TX_RING_SZ);
1517 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1518 txd = &sc->vte_cdata.vte_txdesc[i];
1519 txd->tx_m = NULL;
1520 if (i != VTE_TX_RING_CNT - 1)
1521 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1522 sizeof(struct vte_tx_desc) * (i + 1);
1523 else
1524 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1525 sizeof(struct vte_tx_desc) * 0;
1526 desc = &sc->vte_cdata.vte_tx_ring[i];
1527 desc->dtnp = htole32(addr);
1528 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1529 txd->tx_desc = desc;
1530 }
1531
1532 bus_dmamap_sync(sc->vte_dmatag,
1533 sc->vte_cdata.vte_tx_ring_map, 0,
1534 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1535 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1536 return (0);
1537 }
1538
1539 static int
1540 vte_init_rx_ring(struct vte_softc *sc)
1541 {
1542 struct vte_rx_desc *desc;
1543 struct vte_rxdesc *rxd;
1544 bus_addr_t addr;
1545 int i;
1546
1547 sc->vte_cdata.vte_rx_cons = 0;
1548 desc = sc->vte_cdata.vte_rx_ring;
1549 bzero(desc, VTE_RX_RING_SZ);
1550 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1551 rxd = &sc->vte_cdata.vte_rxdesc[i];
1552 rxd->rx_m = NULL;
1553 if (i != VTE_RX_RING_CNT - 1)
1554 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1555 + sizeof(struct vte_rx_desc) * (i + 1);
1556 else
1557 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1558 + sizeof(struct vte_rx_desc) * 0;
1559 desc = &sc->vte_cdata.vte_rx_ring[i];
1560 desc->drnp = htole32(addr);
1561 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1562 rxd->rx_desc = desc;
1563 if (vte_newbuf(sc, rxd) != 0)
1564 return (ENOBUFS);
1565 }
1566
1567 bus_dmamap_sync(sc->vte_dmatag,
1568 sc->vte_cdata.vte_rx_ring_map, 0,
1569 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1570 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1571
1572 return (0);
1573 }
1574
1575 static void
1576 vte_rxfilter(struct vte_softc *sc)
1577 {
1578 struct ethercom *ec = &sc->vte_ec;
1579 struct ether_multistep step;
1580 struct ether_multi *enm;
1581 struct ifnet *ifp;
1582 uint8_t *eaddr;
1583 uint32_t crc;
1584 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1585 uint16_t mchash[4], mcr;
1586 int i, nperf;
1587
1588 ifp = &sc->vte_if;
1589
1590 DPRINTF(("vte_rxfilter\n"));
1591 memset(mchash, 0, sizeof(mchash));
1592 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1593 rxfilt_perf[i][0] = 0xFFFF;
1594 rxfilt_perf[i][1] = 0xFFFF;
1595 rxfilt_perf[i][2] = 0xFFFF;
1596 }
1597
1598 mcr = CSR_READ_2(sc, VTE_MCR0);
1599 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1600 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1601 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1602 mcr |= MCR0_BROADCAST_DIS;
1603 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1604 if ((ifp->if_flags & IFF_PROMISC) != 0)
1605 mcr |= MCR0_PROMISC;
1606 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1607 mcr |= MCR0_MULTICAST;
1608 mchash[0] = 0xFFFF;
1609 mchash[1] = 0xFFFF;
1610 mchash[2] = 0xFFFF;
1611 mchash[3] = 0xFFFF;
1612 goto chipit;
1613 }
1614
1615 ETHER_LOCK(ec);
1616 ETHER_FIRST_MULTI(step, ec, enm);
1617 nperf = 0;
1618 while (enm != NULL) {
1619 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
1620 != 0) {
1621 sc->vte_if.if_flags |= IFF_ALLMULTI;
1622 mcr |= MCR0_MULTICAST;
1623 mchash[0] = 0xFFFF;
1624 mchash[1] = 0xFFFF;
1625 mchash[2] = 0xFFFF;
1626 mchash[3] = 0xFFFF;
1627 ETHER_UNLOCK(ec);
1628 goto chipit;
1629 }
1630 /*
1631 * Program the first 3 multicast groups into
1632 * the perfect filter. For all others, use the
1633 * hash table.
1634 */
1635 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1636 eaddr = enm->enm_addrlo;
1637 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1638 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1639 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1640 nperf++;
1641 } else {
1642 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1643 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1644 }
1645 ETHER_NEXT_MULTI(step, enm);
1646 }
1647 ETHER_UNLOCK(ec);
1648 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1649 mchash[3] != 0)
1650 mcr |= MCR0_MULTICAST;
1651
1652 chipit:
1653 /* Program multicast hash table. */
1654 DPRINTF(("chipit write multicast\n"));
1655 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1656 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1657 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1658 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1659 /* Program perfect filter table. */
1660 DPRINTF(("chipit write perfect filter\n"));
1661 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1662 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1663 rxfilt_perf[i][0]);
1664 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1665 rxfilt_perf[i][1]);
1666 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1667 rxfilt_perf[i][2]);
1668 }
1669 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1670 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1671 DPRINTF(("chipit read mcro\n"));
1672 CSR_READ_2(sc, VTE_MCR0);
1673 DPRINTF(("chipit done\n"));
1674 }
1675
1676 /*
1677 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1678 * set up in vte_pci_attach()
1679 */
1680 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1681 {
1682 int rc;
1683 const struct sysctlnode *node;
1684
1685 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1686 0, CTLTYPE_NODE, "vte",
1687 SYSCTL_DESCR("vte interface controls"),
1688 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1689 goto err;
1690 }
1691
1692 vte_root_num = node->sysctl_num;
1693 return;
1694
1695 err:
1696 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1697 }
1698
1699 static int
1700 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1701 {
1702 int error, t;
1703 struct sysctlnode node;
1704 struct vte_softc *sc;
1705
1706 node = *rnode;
1707 sc = node.sysctl_data;
1708 t = sc->vte_int_rx_mod;
1709 node.sysctl_data = &t;
1710 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1711 if (error || newp == NULL)
1712 return error;
1713 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1714 return EINVAL;
1715
1716 sc->vte_int_rx_mod = t;
1717 vte_miibus_statchg(&sc->vte_if);
1718 return 0;
1719 }
1720
1721 static int
1722 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1723 {
1724 int error, t;
1725 struct sysctlnode node;
1726 struct vte_softc *sc;
1727
1728 node = *rnode;
1729 sc = node.sysctl_data;
1730 t = sc->vte_int_tx_mod;
1731 node.sysctl_data = &t;
1732 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1733 if (error || newp == NULL)
1734 return error;
1735
1736 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1737 return EINVAL;
1738 sc->vte_int_tx_mod = t;
1739 vte_miibus_statchg(&sc->vte_if);
1740 return 0;
1741 }
1742