Home | History | Annotate | Line # | Download | only in pci
if_vte.c revision 1.20.2.2
      1 /*	$NetBSD: if_vte.c,v 1.20.2.2 2020/04/13 08:04:26 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*-
     28  * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
     29  * All rights reserved.
     30  *
     31  * Redistribution and use in source and binary forms, with or without
     32  * modification, are permitted provided that the following conditions
     33  * are met:
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice unmodified, this list of conditions, and the following
     36  *    disclaimer.
     37  * 2. Redistributions in binary form must reproduce the above copyright
     38  *    notice, this list of conditions and the following disclaimer in the
     39  *    documentation and/or other materials provided with the distribution.
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  */
     53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
     54 
     55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.20.2.2 2020/04/13 08:04:26 martin Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/protosw.h>
     64 #include <sys/socket.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/errno.h>
     67 #include <sys/malloc.h>
     68 #include <sys/kernel.h>
     69 #include <sys/device.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include <net/if.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_dl.h>
     76 #include <net/route.h>
     77 #include <net/netisr.h>
     78 #include <net/bpf.h>
     79 
     80 #include <sys/rndsource.h>
     81 
     82 #include "opt_inet.h"
     83 #include <net/if_ether.h>
     84 #ifdef INET
     85 #include <netinet/in.h>
     86 #include <netinet/in_systm.h>
     87 #include <netinet/in_var.h>
     88 #include <netinet/ip.h>
     89 #include <netinet/if_inarp.h>
     90 #endif
     91 
     92 #include <sys/bus.h>
     93 #include <sys/intr.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/mii/mii.h>
    100 #include <dev/mii/miivar.h>
    101 
    102 #include <dev/pci/if_vtereg.h>
    103 #include <dev/pci/if_vtevar.h>
    104 
    105 static int	vte_match(device_t, cfdata_t, void *);
    106 static void	vte_attach(device_t, device_t, void *);
    107 static int	vte_detach(device_t, int);
    108 static int	vte_dma_alloc(struct vte_softc *);
    109 static void	vte_dma_free(struct vte_softc *);
    110 static struct vte_txdesc *
    111 		vte_encap(struct vte_softc *, struct mbuf **);
    112 static void	vte_get_macaddr(struct vte_softc *);
    113 static int	vte_init(struct ifnet *);
    114 static int	vte_init_rx_ring(struct vte_softc *);
    115 static int	vte_init_tx_ring(struct vte_softc *);
    116 static int	vte_intr(void *);
    117 static int	vte_ifioctl(struct ifnet *, u_long, void *);
    118 static void	vte_mac_config(struct vte_softc *);
    119 static int	vte_miibus_readreg(device_t, int, int, uint16_t *);
    120 static void	vte_miibus_statchg(struct ifnet *);
    121 static int	vte_miibus_writereg(device_t, int, int, uint16_t);
    122 static int	vte_mediachange(struct ifnet *);
    123 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
    124 static void	vte_reset(struct vte_softc *);
    125 static void	vte_rxeof(struct vte_softc *);
    126 static void	vte_rxfilter(struct vte_softc *);
    127 static bool	vte_shutdown(device_t, int);
    128 static bool	vte_suspend(device_t, const pmf_qual_t *);
    129 static bool	vte_resume(device_t, const pmf_qual_t *);
    130 static void	vte_ifstart(struct ifnet *);
    131 static void	vte_start_mac(struct vte_softc *);
    132 static void	vte_stats_clear(struct vte_softc *);
    133 static void	vte_stats_update(struct vte_softc *);
    134 static void	vte_stop(struct ifnet *, int);
    135 static void	vte_stop_mac(struct vte_softc *);
    136 static void	vte_tick(void *);
    137 static void	vte_txeof(struct vte_softc *);
    138 static void	vte_ifwatchdog(struct ifnet *);
    139 
    140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
    141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
    142 static int vte_root_num;
    143 
    144 #define DPRINTF(a)
    145 
    146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
    147     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    148 
    149 
    150 static int
    151 vte_match(device_t parent, cfdata_t cf, void *aux)
    152 {
    153 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    154 
    155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
    156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
    157 		return 1;
    158 
    159 	return 0;
    160 }
    161 
    162 static void
    163 vte_attach(device_t parent, device_t self, void *aux)
    164 {
    165 	struct vte_softc *sc = device_private(self);
    166 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
    167 	struct ifnet * const ifp = &sc->vte_if;
    168 	struct mii_data * const mii = &sc->vte_mii;
    169 	int h_valid;
    170 	pcireg_t reg, csr;
    171 	pci_intr_handle_t intrhandle;
    172 	const char *intrstr;
    173 	int error;
    174 	const struct sysctlnode *node;
    175 	int vte_nodenum;
    176 	char intrbuf[PCI_INTRSTR_LEN];
    177 
    178 	sc->vte_dev = self;
    179 
    180 	callout_init(&sc->vte_tick_ch, 0);
    181 	callout_setfunc(&sc->vte_tick_ch, vte_tick, sc);
    182 
    183 	/* Map the device. */
    184 	h_valid = 0;
    185 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
    186 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
    187 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
    188 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    189 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
    190 	}
    191 	if (h_valid == 0) {
    192 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
    193 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    194 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
    195 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
    196 			    &sc->vte_bushandle, NULL, NULL) == 0);
    197 		}
    198 	}
    199 	if (h_valid == 0) {
    200 		aprint_error_dev(self, "unable to map device registers\n");
    201 		return;
    202 	}
    203 	sc->vte_dmatag = pa->pa_dmat;
    204 	/* Enable the device. */
    205 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    206 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    207 	    csr | PCI_COMMAND_MASTER_ENABLE);
    208 
    209 	pci_aprint_devinfo(pa, NULL);
    210 
    211 	/* Reset the ethernet controller. */
    212 	vte_reset(sc);
    213 
    214 	if ((error = vte_dma_alloc(sc)) != 0)
    215 		return;
    216 
    217 	/* Load station address. */
    218 	vte_get_macaddr(sc);
    219 
    220 	aprint_normal_dev(self, "Ethernet address %s\n",
    221 	    ether_sprintf(sc->vte_eaddr));
    222 
    223 	/* Map and establish interrupts */
    224 	if (pci_intr_map(pa, &intrhandle)) {
    225 		aprint_error_dev(self, "couldn't map interrupt\n");
    226 		return;
    227 	}
    228 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
    229 	    sizeof(intrbuf));
    230 	sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
    231 	    vte_intr, sc, device_xname(self));
    232 	if (sc->vte_ih == NULL) {
    233 		aprint_error_dev(self, "couldn't establish interrupt");
    234 		if (intrstr != NULL)
    235 			aprint_error(" at %s", intrstr);
    236 		aprint_error("\n");
    237 		return;
    238 	}
    239 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    240 
    241 	sc->vte_if.if_softc = sc;
    242 	mii->mii_ifp = ifp;
    243 	mii->mii_readreg = vte_miibus_readreg;
    244 	mii->mii_writereg = vte_miibus_writereg;
    245 	mii->mii_statchg = vte_miibus_statchg;
    246 	sc->vte_ec.ec_mii = mii;
    247 	ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
    248 	    ether_mediastatus);
    249 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    250 	    MII_OFFSET_ANY, 0);
    251 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    252 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    253 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    254 	} else
    255 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    256 
    257 	/*
    258 	 * We can support 802.1Q VLAN-sized frames.
    259 	 */
    260 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    261 
    262 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    263 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    264 	ifp->if_ioctl = vte_ifioctl;
    265 	ifp->if_start = vte_ifstart;
    266 	ifp->if_watchdog = vte_ifwatchdog;
    267 	ifp->if_init = vte_init;
    268 	ifp->if_stop = vte_stop;
    269 	ifp->if_timer = 0;
    270 	IFQ_SET_READY(&ifp->if_snd);
    271 	if_attach(ifp);
    272 	if_deferred_start_init(ifp, NULL);
    273 	ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
    274 
    275 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
    276 		pmf_class_network_register(self, ifp);
    277 	else
    278 		aprint_error_dev(self, "couldn't establish power handler\n");
    279 
    280 	rnd_attach_source(&sc->rnd_source, device_xname(self),
    281 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    282 
    283 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    284 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
    285 	    SYSCTL_DESCR("vte per-controller controls"),
    286 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
    287 	    CTL_EOL) != 0) {
    288 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
    289 		return;
    290 	}
    291 	vte_nodenum = node->sysctl_num;
    292 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    293 	    CTLFLAG_READWRITE,
    294 	    CTLTYPE_INT, "int_rxct",
    295 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
    296 	    vte_sysctl_intrxct, 0, (void *)sc,
    297 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    298 	    CTL_EOL) != 0) {
    299 		aprint_normal_dev(sc->vte_dev,
    300 		    "couldn't create int_rxct sysctl node\n");
    301 	}
    302 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    303 	    CTLFLAG_READWRITE,
    304 	    CTLTYPE_INT, "int_txct",
    305 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
    306 	    vte_sysctl_inttxct, 0, (void *)sc,
    307 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    308 	    CTL_EOL) != 0) {
    309 		aprint_normal_dev(sc->vte_dev,
    310 		    "couldn't create int_txct sysctl node\n");
    311 	}
    312 }
    313 
    314 static int
    315 vte_detach(device_t dev, int flags __unused)
    316 {
    317 	struct vte_softc *sc = device_private(dev);
    318 	struct ifnet *ifp = &sc->vte_if;
    319 	int s;
    320 
    321 	s = splnet();
    322 	/* Stop the interface. Callouts are stopped in it. */
    323 	vte_stop(ifp, 1);
    324 	splx(s);
    325 
    326 	pmf_device_deregister(dev);
    327 
    328 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    329 
    330 	ether_ifdetach(ifp);
    331 	if_detach(ifp);
    332 	ifmedia_fini(&sc->vte_mii.mii_media);
    333 
    334 	vte_dma_free(sc);
    335 
    336 	return (0);
    337 }
    338 
    339 static int
    340 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    341 {
    342 	struct vte_softc *sc = device_private(dev);
    343 	int i;
    344 
    345 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
    346 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    347 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    348 		DELAY(5);
    349 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
    350 			break;
    351 	}
    352 
    353 	if (i == 0) {
    354 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
    355 		return ETIMEDOUT;
    356 	}
    357 
    358 	*val = CSR_READ_2(sc, VTE_MMRD);
    359 	return 0;
    360 }
    361 
    362 static int
    363 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    364 {
    365 	struct vte_softc *sc = device_private(dev);
    366 	int i;
    367 
    368 	CSR_WRITE_2(sc, VTE_MMWD, val);
    369 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
    370 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    371 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    372 		DELAY(5);
    373 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
    374 			break;
    375 	}
    376 
    377 	if (i == 0) {
    378 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
    379 		return ETIMEDOUT;
    380 	}
    381 
    382 	return 0;
    383 }
    384 
    385 static void
    386 vte_miibus_statchg(struct ifnet *ifp)
    387 {
    388 	struct vte_softc *sc = ifp->if_softc;
    389 	uint16_t val;
    390 
    391 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
    392 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
    393 
    394 	sc->vte_flags &= ~VTE_FLAG_LINK;
    395 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    396 	    (IFM_ACTIVE | IFM_AVALID)) {
    397 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
    398 		case IFM_10_T:
    399 		case IFM_100_TX:
    400 			sc->vte_flags |= VTE_FLAG_LINK;
    401 			break;
    402 		default:
    403 			break;
    404 		}
    405 	}
    406 
    407 	/* Stop RX/TX MACs. */
    408 	vte_stop_mac(sc);
    409 	/* Program MACs with resolved duplex and flow control. */
    410 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
    411 		/*
    412 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
    413 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
    414 		 */
    415 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    416 			val = 18 << VTE_IM_TIMER_SHIFT;
    417 		else
    418 			val = 1 << VTE_IM_TIMER_SHIFT;
    419 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
    420 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    421 		CSR_WRITE_2(sc, VTE_MRICR, val);
    422 
    423 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    424 			val = 18 << VTE_IM_TIMER_SHIFT;
    425 		else
    426 			val = 1 << VTE_IM_TIMER_SHIFT;
    427 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
    428 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    429 		CSR_WRITE_2(sc, VTE_MTICR, val);
    430 
    431 		vte_mac_config(sc);
    432 		vte_start_mac(sc);
    433 		DPRINTF(("vte_miibus_statchg: link\n"));
    434 	}
    435 }
    436 
    437 static void
    438 vte_get_macaddr(struct vte_softc *sc)
    439 {
    440 	uint16_t mid;
    441 
    442 	/*
    443 	 * It seems there is no way to reload station address and
    444 	 * it is supposed to be set by BIOS.
    445 	 */
    446 	mid = CSR_READ_2(sc, VTE_MID0L);
    447 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
    448 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
    449 	mid = CSR_READ_2(sc, VTE_MID0M);
    450 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
    451 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
    452 	mid = CSR_READ_2(sc, VTE_MID0H);
    453 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
    454 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
    455 }
    456 
    457 
    458 static int
    459 vte_dma_alloc(struct vte_softc *sc)
    460 {
    461 	struct vte_txdesc *txd;
    462 	struct vte_rxdesc *rxd;
    463 	int error, i, rseg;
    464 
    465 	/* create DMA map for TX ring */
    466 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
    467 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    468 	    &sc->vte_cdata.vte_tx_ring_map);
    469 	if (error) {
    470 		aprint_error_dev(sc->vte_dev,
    471 		    "could not create dma map for TX ring (%d)\n",
    472 		    error);
    473 		goto fail;
    474 	}
    475 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
    476 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
    477 	    VTE_TX_RING_ALIGN, 0,
    478 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
    479 	    BUS_DMA_NOWAIT);
    480 	if (error != 0) {
    481 		aprint_error_dev(sc->vte_dev,
    482 		    "could not allocate DMA'able memory for TX ring (%d).\n",
    483 		    error);
    484 		goto fail;
    485 	}
    486 	KASSERT(rseg == 1);
    487 	error = bus_dmamem_map(sc->vte_dmatag,
    488 	    sc->vte_cdata.vte_tx_ring_seg, 1,
    489 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
    490 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    491 	if (error != 0) {
    492 		aprint_error_dev(sc->vte_dev,
    493 		    "could not map DMA'able memory for TX ring (%d).\n",
    494 		    error);
    495 		goto fail;
    496 	}
    497 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
    498 	error = bus_dmamap_load(sc->vte_dmatag,
    499 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
    500 	    VTE_TX_RING_SZ, NULL,
    501 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    502 	if (error != 0) {
    503 		aprint_error_dev(sc->vte_dev,
    504 		    "could not load DMA'able memory for TX ring.\n");
    505 		goto fail;
    506 	}
    507 
    508 	/* create DMA map for RX ring */
    509 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
    510 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    511 	    &sc->vte_cdata.vte_rx_ring_map);
    512 	if (error) {
    513 		aprint_error_dev(sc->vte_dev,
    514 		    "could not create dma map for RX ring (%d)\n",
    515 		    error);
    516 		goto fail;
    517 	}
    518 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
    519 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
    520 	    VTE_RX_RING_ALIGN, 0,
    521 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
    522 	    BUS_DMA_NOWAIT);
    523 	if (error != 0) {
    524 		aprint_error_dev(sc->vte_dev,
    525 		    "could not allocate DMA'able memory for RX ring (%d).\n",
    526 		    error);
    527 		goto fail;
    528 	}
    529 	KASSERT(rseg == 1);
    530 	error = bus_dmamem_map(sc->vte_dmatag,
    531 	    sc->vte_cdata.vte_rx_ring_seg, 1,
    532 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
    533 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    534 	if (error != 0) {
    535 		aprint_error_dev(sc->vte_dev,
    536 		    "could not map DMA'able memory for RX ring (%d).\n",
    537 		    error);
    538 		goto fail;
    539 	}
    540 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
    541 	error = bus_dmamap_load(sc->vte_dmatag,
    542 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
    543 	    VTE_RX_RING_SZ, NULL,
    544 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    545 	if (error != 0) {
    546 		aprint_error_dev(sc->vte_dev,
    547 		    "could not load DMA'able memory for RX ring (%d).\n",
    548 		    error);
    549 		goto fail;
    550 	}
    551 
    552 	/* Create DMA maps for TX buffers. */
    553 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    554 		txd = &sc->vte_cdata.vte_txdesc[i];
    555 		txd->tx_m = NULL;
    556 		txd->tx_dmamap = NULL;
    557 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    558 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    559 		    &txd->tx_dmamap);
    560 		if (error != 0) {
    561 			aprint_error_dev(sc->vte_dev,
    562 			    "could not create TX DMA map %d (%d).\n", i, error);
    563 			goto fail;
    564 		}
    565 	}
    566 	/* Create DMA maps for RX buffers. */
    567 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    568 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    569 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
    570 		aprint_error_dev(sc->vte_dev,
    571 		    "could not create spare RX dmamap (%d).\n", error);
    572 		goto fail;
    573 	}
    574 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    575 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    576 		rxd->rx_m = NULL;
    577 		rxd->rx_dmamap = NULL;
    578 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    579 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    580 		    &rxd->rx_dmamap);
    581 		if (error != 0) {
    582 			aprint_error_dev(sc->vte_dev,
    583 			    "could not create RX dmamap %d (%d).\n", i, error);
    584 			goto fail;
    585 		}
    586 	}
    587 	return 0;
    588 
    589 fail:
    590 	vte_dma_free(sc);
    591 	return (error);
    592 }
    593 
    594 static void
    595 vte_dma_free(struct vte_softc *sc)
    596 {
    597 	struct vte_txdesc *txd;
    598 	struct vte_rxdesc *rxd;
    599 	int i;
    600 
    601 	/* TX buffers. */
    602 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    603 		txd = &sc->vte_cdata.vte_txdesc[i];
    604 		if (txd->tx_dmamap != NULL) {
    605 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
    606 			txd->tx_dmamap = NULL;
    607 		}
    608 	}
    609 	/* RX buffers */
    610 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    611 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    612 		if (rxd->rx_dmamap != NULL) {
    613 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
    614 			rxd->rx_dmamap = NULL;
    615 		}
    616 	}
    617 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
    618 		bus_dmamap_destroy(sc->vte_dmatag,
    619 		    sc->vte_cdata.vte_rx_sparemap);
    620 		sc->vte_cdata.vte_rx_sparemap = NULL;
    621 	}
    622 	/* TX descriptor ring. */
    623 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
    624 		bus_dmamap_unload(sc->vte_dmatag,
    625 		    sc->vte_cdata.vte_tx_ring_map);
    626 		bus_dmamap_destroy(sc->vte_dmatag,
    627 		    sc->vte_cdata.vte_tx_ring_map);
    628 	}
    629 	if (sc->vte_cdata.vte_tx_ring != NULL) {
    630 		bus_dmamem_unmap(sc->vte_dmatag,
    631 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
    632 		bus_dmamem_free(sc->vte_dmatag,
    633 		    sc->vte_cdata.vte_tx_ring_seg, 1);
    634 	}
    635 	sc->vte_cdata.vte_tx_ring = NULL;
    636 	sc->vte_cdata.vte_tx_ring_map = NULL;
    637 	/* RX ring. */
    638 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
    639 		bus_dmamap_unload(sc->vte_dmatag,
    640 		    sc->vte_cdata.vte_rx_ring_map);
    641 		bus_dmamap_destroy(sc->vte_dmatag,
    642 		    sc->vte_cdata.vte_rx_ring_map);
    643 	}
    644 	if (sc->vte_cdata.vte_rx_ring != NULL) {
    645 		bus_dmamem_unmap(sc->vte_dmatag,
    646 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
    647 		bus_dmamem_free(sc->vte_dmatag,
    648 		    sc->vte_cdata.vte_rx_ring_seg, 1);
    649 	}
    650 	sc->vte_cdata.vte_rx_ring = NULL;
    651 	sc->vte_cdata.vte_rx_ring_map = NULL;
    652 }
    653 
    654 static bool
    655 vte_shutdown(device_t dev, int howto)
    656 {
    657 
    658 	return (vte_suspend(dev, NULL));
    659 }
    660 
    661 static bool
    662 vte_suspend(device_t dev, const pmf_qual_t *qual)
    663 {
    664 	struct vte_softc *sc = device_private(dev);
    665 	struct ifnet *ifp = &sc->vte_if;
    666 
    667 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
    668 	if ((ifp->if_flags & IFF_RUNNING) != 0)
    669 		vte_stop(ifp, 1);
    670 	return (0);
    671 }
    672 
    673 static bool
    674 vte_resume(device_t dev, const pmf_qual_t *qual)
    675 {
    676 	struct vte_softc *sc = device_private(dev);
    677 	struct ifnet *ifp;
    678 
    679 	ifp = &sc->vte_if;
    680 	if ((ifp->if_flags & IFF_UP) != 0) {
    681 		ifp->if_flags &= ~IFF_RUNNING;
    682 		vte_init(ifp);
    683 	}
    684 
    685 	return (0);
    686 }
    687 
    688 static struct vte_txdesc *
    689 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
    690 {
    691 	struct vte_txdesc *txd;
    692 	struct mbuf *m, *n;
    693 	int copy, error, padlen;
    694 
    695 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
    696 	m = *m_head;
    697 	/*
    698 	 * Controller doesn't auto-pad, so we have to make sure pad
    699 	 * short frames out to the minimum frame length.
    700 	 */
    701 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
    702 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
    703 	else
    704 		padlen = 0;
    705 
    706 	/*
    707 	 * Controller does not support multi-fragmented TX buffers.
    708 	 * Controller spends most of its TX processing time in
    709 	 * de-fragmenting TX buffers.  Either faster CPU or more
    710 	 * advanced controller DMA engine is required to speed up
    711 	 * TX path processing.
    712 	 * To mitigate the de-fragmenting issue, perform deep copy
    713 	 * from fragmented mbuf chains to a pre-allocated mbuf
    714 	 * cluster with extra cost of kernel memory.  For frames
    715 	 * that is composed of single TX buffer, the deep copy is
    716 	 * bypassed.
    717 	 */
    718 	copy = 0;
    719 	if (m->m_next != NULL)
    720 		copy++;
    721 	if (padlen > 0 && (M_READONLY(m) ||
    722 	    padlen > M_TRAILINGSPACE(m)))
    723 		copy++;
    724 	if (copy != 0) {
    725 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
    726 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
    727 		n->m_pkthdr.len = m->m_pkthdr.len;
    728 		n->m_len = m->m_pkthdr.len;
    729 		m = n;
    730 		txd->tx_flags |= VTE_TXMBUF;
    731 	}
    732 
    733 	if (padlen > 0) {
    734 		/* Zero out the bytes in the pad area. */
    735 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
    736 		m->m_pkthdr.len += padlen;
    737 		m->m_len = m->m_pkthdr.len;
    738 	}
    739 
    740 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
    741 	    BUS_DMA_NOWAIT);
    742 	if (error != 0) {
    743 		txd->tx_flags &= ~VTE_TXMBUF;
    744 		return (NULL);
    745 	}
    746 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
    747 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
    748 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    749 
    750 	txd->tx_desc->dtlen =
    751 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
    752 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
    753 	sc->vte_cdata.vte_tx_cnt++;
    754 	/* Update producer index. */
    755 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
    756 
    757 	/* Finally hand over ownership to controller. */
    758 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
    759 	txd->tx_m = m;
    760 
    761 	return (txd);
    762 }
    763 
    764 static void
    765 vte_ifstart(struct ifnet *ifp)
    766 {
    767 	struct vte_softc *sc = ifp->if_softc;
    768 	struct vte_txdesc *txd;
    769 	struct mbuf *m_head, *m;
    770 	int enq;
    771 
    772 	ifp = &sc->vte_if;
    773 
    774 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
    775 
    776 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
    777 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
    778 		return;
    779 
    780 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
    781 		/* Reserve one free TX descriptor. */
    782 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
    783 			ifp->if_flags |= IFF_OACTIVE;
    784 			break;
    785 		}
    786 		IFQ_POLL(&ifp->if_snd, m_head);
    787 		if (m_head == NULL)
    788 			break;
    789 		/*
    790 		 * Pack the data into the transmit ring. If we
    791 		 * don't have room, set the OACTIVE flag and wait
    792 		 * for the NIC to drain the ring.
    793 		 */
    794 		DPRINTF(("vte_encap:"));
    795 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
    796 			DPRINTF((" failed\n"));
    797 			break;
    798 		}
    799 		DPRINTF((" ok\n"));
    800 		IFQ_DEQUEUE(&ifp->if_snd, m);
    801 		KASSERT(m == m_head);
    802 
    803 		enq++;
    804 		/*
    805 		 * If there's a BPF listener, bounce a copy of this frame
    806 		 * to him.
    807 		 */
    808 		bpf_mtap(ifp, m_head, BPF_D_OUT);
    809 		/* Free consumed TX frame. */
    810 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
    811 			m_freem(m_head);
    812 	}
    813 
    814 	if (enq > 0) {
    815 		bus_dmamap_sync(sc->vte_dmatag,
    816 		    sc->vte_cdata.vte_tx_ring_map, 0,
    817 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
    818 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    819 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
    820 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
    821 	}
    822 }
    823 
    824 static void
    825 vte_ifwatchdog(struct ifnet *ifp)
    826 {
    827 	struct vte_softc *sc = ifp->if_softc;
    828 
    829 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
    830 		return;
    831 
    832 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
    833 	if_statinc(ifp, if_oerrors);
    834 	vte_init(ifp);
    835 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
    836 		vte_ifstart(ifp);
    837 }
    838 
    839 static int
    840 vte_mediachange(struct ifnet *ifp)
    841 {
    842 	int error;
    843 	struct vte_softc *sc = ifp->if_softc;
    844 
    845 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
    846 		error = 0;
    847 	else if (error != 0) {
    848 		aprint_error_dev(sc->vte_dev, "could not set media\n");
    849 		return error;
    850 	}
    851 	return 0;
    852 
    853 }
    854 
    855 static int
    856 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    857 {
    858 	struct vte_softc *sc = ifp->if_softc;
    859 	int error, s;
    860 
    861 	s = splnet();
    862 	error = ether_ioctl(ifp, cmd, data);
    863 	if (error == ENETRESET) {
    864 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
    865 		if (ifp->if_flags & IFF_RUNNING)
    866 			vte_rxfilter(sc);
    867 		error = 0;
    868 	}
    869 	splx(s);
    870 	return error;
    871 }
    872 
    873 static void
    874 vte_mac_config(struct vte_softc *sc)
    875 {
    876 	uint16_t mcr;
    877 
    878 	mcr = CSR_READ_2(sc, VTE_MCR0);
    879 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
    880 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
    881 		mcr |= MCR0_FULL_DUPLEX;
    882 #ifdef notyet
    883 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
    884 			mcr |= MCR0_FC_ENB;
    885 		/*
    886 		 * The data sheet is not clear whether the controller
    887 		 * honors received pause frames or not.  The is no
    888 		 * separate control bit for RX pause frame so just
    889 		 * enable MCR0_FC_ENB bit.
    890 		 */
    891 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
    892 			mcr |= MCR0_FC_ENB;
    893 #endif
    894 	}
    895 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
    896 }
    897 
    898 static void
    899 vte_stats_clear(struct vte_softc *sc)
    900 {
    901 
    902 	/* Reading counter registers clears its contents. */
    903 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
    904 	CSR_READ_2(sc, VTE_CNT_MECNT0);
    905 	CSR_READ_2(sc, VTE_CNT_MECNT1);
    906 	CSR_READ_2(sc, VTE_CNT_MECNT2);
    907 	CSR_READ_2(sc, VTE_CNT_MECNT3);
    908 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
    909 	CSR_READ_2(sc, VTE_CNT_MECNT4);
    910 	CSR_READ_2(sc, VTE_CNT_PAUSE);
    911 }
    912 
    913 static void
    914 vte_stats_update(struct vte_softc *sc)
    915 {
    916 	struct vte_hw_stats *stat;
    917 	struct ifnet *ifp = &sc->vte_if;
    918 	uint16_t value;
    919 
    920 	stat = &sc->vte_stats;
    921 
    922 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    923 
    924 	CSR_READ_2(sc, VTE_MECISR);
    925 
    926 	/* RX stats. */
    927 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
    928 
    929 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
    930 	stat->rx_bcast_frames += (value >> 8);
    931 	stat->rx_mcast_frames += (value & 0xFF);
    932 
    933 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
    934 	if_statadd_ref(nsr, if_ierrors,
    935 	    (value >> 8) +			/* rx_runts */
    936 	    (value & 0xFF));			/* rx_crcerrs */
    937 
    938 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
    939 	if_statadd_ref(nsr, if_ierrors,
    940 	    (value & 0xFF));			/* rx_long_frames */
    941 
    942 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
    943 	if_statadd_ref(nsr, if_ierrors,
    944 	    (value >> 8));			/* rx_fifo_full */
    945 	stat->rx_desc_unavail += (value & 0xFF);
    946 
    947 	/* TX stats. */
    948 	if_statadd_ref(nsr, if_opackets,
    949 	    CSR_READ_2(sc, VTE_CNT_TX_DONE));	/* tx_frames */
    950 
    951 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
    952 	if_statadd_ref(nsr, if_oerrors,
    953 	    (value >> 8) +			/* tx_underruns */
    954 	    (value & 0xFF));			/* tx_late_colls */
    955 
    956 	/* Pause stats. */
    957 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
    958 	stat->tx_pause_frames += (value >> 8);
    959 	stat->rx_pause_frames += (value & 0xFF);
    960 
    961 	IF_STAT_PUTREF(ifp);
    962 }
    963 
    964 static int
    965 vte_intr(void *arg)
    966 {
    967 	struct vte_softc *sc = (struct vte_softc *)arg;
    968 	struct ifnet *ifp = &sc->vte_if;
    969 	uint16_t status;
    970 	int n;
    971 
    972 	/* Reading VTE_MISR acknowledges interrupts. */
    973 	status = CSR_READ_2(sc, VTE_MISR);
    974 	DPRINTF(("vte_intr status 0x%x\n", status));
    975 	if ((status & VTE_INTRS) == 0) {
    976 		/* Not ours. */
    977 		return 0;
    978 	}
    979 
    980 	/* Disable interrupts. */
    981 	CSR_WRITE_2(sc, VTE_MIER, 0);
    982 	for (n = 8; (status & VTE_INTRS) != 0;) {
    983 		if ((ifp->if_flags & IFF_RUNNING) == 0)
    984 			break;
    985 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
    986 		    MISR_RX_FIFO_FULL)) != 0)
    987 			vte_rxeof(sc);
    988 		if ((status & MISR_TX_DONE) != 0)
    989 			vte_txeof(sc);
    990 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
    991 			vte_stats_update(sc);
    992 		if_schedule_deferred_start(ifp);
    993 		if (--n > 0)
    994 			status = CSR_READ_2(sc, VTE_MISR);
    995 		else
    996 			break;
    997 	}
    998 
    999 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
   1000 		/* Re-enable interrupts. */
   1001 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1002 	}
   1003 	return 1;
   1004 }
   1005 
   1006 static void
   1007 vte_txeof(struct vte_softc *sc)
   1008 {
   1009 	struct ifnet *ifp;
   1010 	struct vte_txdesc *txd;
   1011 	uint16_t status;
   1012 	int cons, prog;
   1013 
   1014 	ifp = &sc->vte_if;
   1015 
   1016 	if (sc->vte_cdata.vte_tx_cnt == 0)
   1017 		return;
   1018 	bus_dmamap_sync(sc->vte_dmatag,
   1019 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1020 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1021 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1022 	cons = sc->vte_cdata.vte_tx_cons;
   1023 	/*
   1024 	 * Go through our TX list and free mbufs for those
   1025 	 * frames which have been transmitted.
   1026 	 */
   1027 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
   1028 		txd = &sc->vte_cdata.vte_txdesc[cons];
   1029 		status = le16toh(txd->tx_desc->dtst);
   1030 		if ((status & VTE_DTST_TX_OWN) != 0)
   1031 			break;
   1032 		if ((status & VTE_DTST_TX_OK) != 0)
   1033 			if_statadd(ifp, if_collisions, (status & 0xf));
   1034 		sc->vte_cdata.vte_tx_cnt--;
   1035 		/* Reclaim transmitted mbufs. */
   1036 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
   1037 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1038 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
   1039 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1040 			m_freem(txd->tx_m);
   1041 		txd->tx_flags &= ~VTE_TXMBUF;
   1042 		txd->tx_m = NULL;
   1043 		prog++;
   1044 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
   1045 	}
   1046 
   1047 	if (prog > 0) {
   1048 		ifp->if_flags &= ~IFF_OACTIVE;
   1049 		sc->vte_cdata.vte_tx_cons = cons;
   1050 		/*
   1051 		 * Unarm watchdog timer only when there is no pending
   1052 		 * frames in TX queue.
   1053 		 */
   1054 		if (sc->vte_cdata.vte_tx_cnt == 0)
   1055 			sc->vte_watchdog_timer = 0;
   1056 	}
   1057 }
   1058 
   1059 static int
   1060 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
   1061 {
   1062 	struct mbuf *m;
   1063 	bus_dmamap_t map;
   1064 
   1065 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   1066 	if (m == NULL)
   1067 		return (ENOBUFS);
   1068 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1069 	m_adj(m, sizeof(uint32_t));
   1070 
   1071 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
   1072 	    sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
   1073 		m_freem(m);
   1074 		return (ENOBUFS);
   1075 	}
   1076 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
   1077 
   1078 	if (rxd->rx_m != NULL) {
   1079 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1080 		    0, rxd->rx_dmamap->dm_mapsize,
   1081 		    BUS_DMASYNC_POSTREAD);
   1082 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
   1083 	}
   1084 	map = rxd->rx_dmamap;
   1085 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
   1086 	sc->vte_cdata.vte_rx_sparemap = map;
   1087 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1088 	    0, rxd->rx_dmamap->dm_mapsize,
   1089 	    BUS_DMASYNC_PREREAD);
   1090 	rxd->rx_m = m;
   1091 	rxd->rx_desc->drbp =
   1092 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1093 	rxd->rx_desc->drlen = htole16(
   1094 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
   1095 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
   1096 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
   1097 		rxd->rx_dmamap->dm_segs[0].ds_len));
   1098 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1099 
   1100 	return (0);
   1101 }
   1102 
   1103 static void
   1104 vte_rxeof(struct vte_softc *sc)
   1105 {
   1106 	struct ifnet *ifp;
   1107 	struct vte_rxdesc *rxd;
   1108 	struct mbuf *m;
   1109 	uint16_t status, total_len;
   1110 	int cons, prog;
   1111 
   1112 	bus_dmamap_sync(sc->vte_dmatag,
   1113 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1114 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1115 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1116 	cons = sc->vte_cdata.vte_rx_cons;
   1117 	ifp = &sc->vte_if;
   1118 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
   1119 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
   1120 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
   1121 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
   1122 		status = le16toh(rxd->rx_desc->drst);
   1123 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
   1124 			cons, rxd, rxd->rx_m, status,
   1125 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
   1126 		if ((status & VTE_DRST_RX_OWN) != 0)
   1127 			break;
   1128 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
   1129 		m = rxd->rx_m;
   1130 		if ((status & VTE_DRST_RX_OK) == 0) {
   1131 			/* Discard errored frame. */
   1132 			rxd->rx_desc->drlen =
   1133 			    htole16(MCLBYTES - sizeof(uint32_t));
   1134 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1135 			continue;
   1136 		}
   1137 		if (vte_newbuf(sc, rxd) != 0) {
   1138 			DPRINTF(("vte_rxeof newbuf failed\n"));
   1139 			if_statinc(ifp, if_ierrors);
   1140 			rxd->rx_desc->drlen =
   1141 			    htole16(MCLBYTES - sizeof(uint32_t));
   1142 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1143 			continue;
   1144 		}
   1145 
   1146 		/*
   1147 		 * It seems there is no way to strip FCS bytes.
   1148 		 */
   1149 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1150 		m_set_rcvif(m, ifp);
   1151 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1152 	}
   1153 
   1154 	if (prog > 0) {
   1155 		/* Update the consumer index. */
   1156 		sc->vte_cdata.vte_rx_cons = cons;
   1157 		/*
   1158 		 * Sync updated RX descriptors such that controller see
   1159 		 * modified RX buffer addresses.
   1160 		 */
   1161 		bus_dmamap_sync(sc->vte_dmatag,
   1162 		    sc->vte_cdata.vte_rx_ring_map, 0,
   1163 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1164 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1165 #ifdef notyet
   1166 		/*
   1167 		 * Update residue counter.  Controller does not
   1168 		 * keep track of number of available RX descriptors
   1169 		 * such that driver should have to update VTE_MRDCR
   1170 		 * to make controller know how many free RX
   1171 		 * descriptors were added to controller.  This is
   1172 		 * a similar mechanism used in VIA velocity
   1173 		 * controllers and it indicates controller just
   1174 		 * polls OWN bit of current RX descriptor pointer.
   1175 		 * A couple of severe issues were seen on sample
   1176 		 * board where the controller continuously emits TX
   1177 		 * pause frames once RX pause threshold crossed.
   1178 		 * Once triggered it never recovered form that
   1179 		 * state, I couldn't find a way to make it back to
   1180 		 * work at least.  This issue effectively
   1181 		 * disconnected the system from network.  Also, the
   1182 		 * controller used 00:00:00:00:00:00 as source
   1183 		 * station address of TX pause frame. Probably this
   1184 		 * is one of reason why vendor recommends not to
   1185 		 * enable flow control on R6040 controller.
   1186 		 */
   1187 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
   1188 		    (((VTE_RX_RING_CNT * 2) / 10) <<
   1189 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1190 #endif
   1191 	rnd_add_uint32(&sc->rnd_source, prog);
   1192 	}
   1193 }
   1194 
   1195 static void
   1196 vte_tick(void *arg)
   1197 {
   1198 	struct vte_softc *sc;
   1199 	int s = splnet();
   1200 
   1201 	sc = (struct vte_softc *)arg;
   1202 
   1203 	mii_tick(&sc->vte_mii);
   1204 	vte_stats_update(sc);
   1205 	vte_txeof(sc);
   1206 	vte_ifwatchdog(&sc->vte_if);
   1207 	callout_schedule(&sc->vte_tick_ch, hz);
   1208 	splx(s);
   1209 }
   1210 
   1211 static void
   1212 vte_reset(struct vte_softc *sc)
   1213 {
   1214 	uint16_t mcr;
   1215 	int i;
   1216 
   1217 	mcr = CSR_READ_2(sc, VTE_MCR1);
   1218 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
   1219 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
   1220 		DELAY(10);
   1221 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
   1222 			break;
   1223 	}
   1224 	if (i == 0)
   1225 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
   1226 	/*
   1227 	 * Follow the guide of vendor recommended way to reset MAC.
   1228 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
   1229 	 * not reliable so manually reset internal state machine.
   1230 	 */
   1231 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
   1232 	CSR_WRITE_2(sc, VTE_MACSM, 0);
   1233 	DELAY(5000);
   1234 }
   1235 
   1236 
   1237 static int
   1238 vte_init(struct ifnet *ifp)
   1239 {
   1240 	struct vte_softc *sc = ifp->if_softc;
   1241 	bus_addr_t paddr;
   1242 	uint8_t eaddr[ETHER_ADDR_LEN];
   1243 	int s, error;
   1244 
   1245 	s = splnet();
   1246 	/*
   1247 	 * Cancel any pending I/O.
   1248 	 */
   1249 	vte_stop(ifp, 1);
   1250 	/*
   1251 	 * Reset the chip to a known state.
   1252 	 */
   1253 	vte_reset(sc);
   1254 
   1255 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
   1256 		splx(s);
   1257 		return 0;
   1258 	}
   1259 
   1260 	/* Initialize RX descriptors. */
   1261 	if (vte_init_rx_ring(sc) != 0) {
   1262 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
   1263 		vte_stop(ifp, 1);
   1264 		splx(s);
   1265 		return ENOMEM;
   1266 	}
   1267 	if (vte_init_tx_ring(sc) != 0) {
   1268 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
   1269 		vte_stop(ifp, 1);
   1270 		splx(s);
   1271 		return ENOMEM;
   1272 	}
   1273 
   1274 	/*
   1275 	 * Reprogram the station address.  Controller supports up
   1276 	 * to 4 different station addresses so driver programs the
   1277 	 * first station address as its own ethernet address and
   1278 	 * configure the remaining three addresses as perfect
   1279 	 * multicast addresses.
   1280 	 */
   1281 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1282 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
   1283 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
   1284 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
   1285 
   1286 	/* Set TX descriptor base addresses. */
   1287 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
   1288 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
   1289 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
   1290 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
   1291 
   1292 	/* Set RX descriptor base addresses. */
   1293 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
   1294 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
   1295 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
   1296 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
   1297 	/*
   1298 	 * Initialize RX descriptor residue counter and set RX
   1299 	 * pause threshold to 20% of available RX descriptors.
   1300 	 * See comments on vte_rxeof() for details on flow control
   1301 	 * issues.
   1302 	 */
   1303 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
   1304 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1305 
   1306 	/*
   1307 	 * Always use maximum frame size that controller can
   1308 	 * support.  Otherwise received frames that has longer
   1309 	 * frame length than vte(4) MTU would be silently dropped
   1310 	 * in controller.  This would break path-MTU discovery as
   1311 	 * sender wouldn't get any responses from receiver. The
   1312 	 * RX buffer size should be multiple of 4.
   1313 	 * Note, jumbo frames are silently ignored by controller
   1314 	 * and even MAC counters do not detect them.
   1315 	 */
   1316 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
   1317 
   1318 	/* Configure FIFO. */
   1319 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
   1320 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
   1321 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
   1322 
   1323 	/*
   1324 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
   1325 	 * control configuration is done after detecting a valid
   1326 	 * link.  Note, we don't generate early interrupt here
   1327 	 * as well since FreeBSD does not have interrupt latency
   1328 	 * problems like Windows.
   1329 	 */
   1330 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
   1331 	/*
   1332 	 * We manually keep track of PHY status changes to
   1333 	 * configure resolved duplex and flow control since only
   1334 	 * duplex configuration can be automatically reflected to
   1335 	 * MCR0.
   1336 	 */
   1337 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
   1338 	    MCR1_EXCESS_COL_RETRY_16);
   1339 
   1340 	/* Initialize RX filter. */
   1341 	vte_rxfilter(sc);
   1342 
   1343 	/* Disable TX/RX interrupt moderation control. */
   1344 	CSR_WRITE_2(sc, VTE_MRICR, 0);
   1345 	CSR_WRITE_2(sc, VTE_MTICR, 0);
   1346 
   1347 	/* Enable MAC event counter interrupts. */
   1348 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
   1349 	/* Clear MAC statistics. */
   1350 	vte_stats_clear(sc);
   1351 
   1352 	/* Acknowledge all pending interrupts and clear it. */
   1353 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1354 	CSR_WRITE_2(sc, VTE_MISR, 0);
   1355 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1356 		CSR_READ_2(sc, VTE_MISR)));
   1357 
   1358 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1359 	ifp->if_flags |= IFF_RUNNING;
   1360 	ifp->if_flags &= ~IFF_OACTIVE;
   1361 
   1362 	/* calling mii_mediachg will call back vte_start_mac() */
   1363 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
   1364 		error = 0;
   1365 	else if (error != 0) {
   1366 		aprint_error_dev(sc->vte_dev, "could not set media\n");
   1367 		splx(s);
   1368 		return error;
   1369 	}
   1370 
   1371 	callout_schedule(&sc->vte_tick_ch, hz);
   1372 
   1373 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1374 		CSR_READ_2(sc, VTE_MISR)));
   1375 	splx(s);
   1376 	return 0;
   1377 }
   1378 
   1379 static void
   1380 vte_stop(struct ifnet *ifp, int disable)
   1381 {
   1382 	struct vte_softc *sc = ifp->if_softc;
   1383 	struct vte_txdesc *txd;
   1384 	struct vte_rxdesc *rxd;
   1385 	int i;
   1386 
   1387 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
   1388 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1389 		return;
   1390 	/*
   1391 	 * Mark the interface down and cancel the watchdog timer.
   1392 	 */
   1393 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1394 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1395 	callout_stop(&sc->vte_tick_ch);
   1396 	sc->vte_watchdog_timer = 0;
   1397 	vte_stats_update(sc);
   1398 	/* Disable interrupts. */
   1399 	CSR_WRITE_2(sc, VTE_MIER, 0);
   1400 	CSR_WRITE_2(sc, VTE_MECIER, 0);
   1401 	/* Stop RX/TX MACs. */
   1402 	vte_stop_mac(sc);
   1403 	/* Clear interrupts. */
   1404 	CSR_READ_2(sc, VTE_MISR);
   1405 	/*
   1406 	 * Free TX/RX mbufs still in the queues.
   1407 	 */
   1408 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1409 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1410 		if (rxd->rx_m != NULL) {
   1411 			bus_dmamap_sync(sc->vte_dmatag,
   1412 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
   1413 			    BUS_DMASYNC_POSTREAD);
   1414 			bus_dmamap_unload(sc->vte_dmatag,
   1415 			    rxd->rx_dmamap);
   1416 			m_freem(rxd->rx_m);
   1417 			rxd->rx_m = NULL;
   1418 		}
   1419 	}
   1420 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1421 		txd = &sc->vte_cdata.vte_txdesc[i];
   1422 		if (txd->tx_m != NULL) {
   1423 			bus_dmamap_sync(sc->vte_dmatag,
   1424 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
   1425 			    BUS_DMASYNC_POSTWRITE);
   1426 			bus_dmamap_unload(sc->vte_dmatag,
   1427 			    txd->tx_dmamap);
   1428 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1429 				m_freem(txd->tx_m);
   1430 			txd->tx_m = NULL;
   1431 			txd->tx_flags &= ~VTE_TXMBUF;
   1432 		}
   1433 	}
   1434 	/* Free TX mbuf pools used for deep copy. */
   1435 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1436 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
   1437 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
   1438 			sc->vte_cdata.vte_txmbufs[i] = NULL;
   1439 		}
   1440 	}
   1441 }
   1442 
   1443 static void
   1444 vte_start_mac(struct vte_softc *sc)
   1445 {
   1446 	struct ifnet *ifp = &sc->vte_if;
   1447 	uint16_t mcr;
   1448 	int i;
   1449 
   1450 	/* Enable RX/TX MACs. */
   1451 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1452 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
   1453 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
   1454 	    (ifp->if_flags & IFF_RUNNING) != 0) {
   1455 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
   1456 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1457 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1458 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1459 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
   1460 			    (MCR0_RX_ENB | MCR0_TX_ENB))
   1461 				break;
   1462 			DELAY(10);
   1463 		}
   1464 		if (i == 0)
   1465 			aprint_error_dev(sc->vte_dev,
   1466 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
   1467 	}
   1468 	vte_rxfilter(sc);
   1469 }
   1470 
   1471 static void
   1472 vte_stop_mac(struct vte_softc *sc)
   1473 {
   1474 	uint16_t mcr;
   1475 	int i;
   1476 
   1477 	/* Disable RX/TX MACs. */
   1478 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1479 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
   1480 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
   1481 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1482 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1483 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1484 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
   1485 				break;
   1486 			DELAY(10);
   1487 		}
   1488 		if (i == 0)
   1489 			aprint_error_dev(sc->vte_dev,
   1490 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
   1491 	}
   1492 }
   1493 
   1494 static int
   1495 vte_init_tx_ring(struct vte_softc *sc)
   1496 {
   1497 	struct vte_tx_desc *desc;
   1498 	struct vte_txdesc *txd;
   1499 	bus_addr_t addr;
   1500 	int i;
   1501 
   1502 	sc->vte_cdata.vte_tx_prod = 0;
   1503 	sc->vte_cdata.vte_tx_cons = 0;
   1504 	sc->vte_cdata.vte_tx_cnt = 0;
   1505 
   1506 	/* Pre-allocate TX mbufs for deep copy. */
   1507 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1508 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
   1509 		    MT_DATA, M_PKTHDR);
   1510 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
   1511 			return (ENOBUFS);
   1512 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
   1513 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
   1514 	}
   1515 	desc = sc->vte_cdata.vte_tx_ring;
   1516 	bzero(desc, VTE_TX_RING_SZ);
   1517 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1518 		txd = &sc->vte_cdata.vte_txdesc[i];
   1519 		txd->tx_m = NULL;
   1520 		if (i != VTE_TX_RING_CNT - 1)
   1521 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1522 			    sizeof(struct vte_tx_desc) * (i + 1);
   1523 		else
   1524 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1525 			    sizeof(struct vte_tx_desc) * 0;
   1526 		desc = &sc->vte_cdata.vte_tx_ring[i];
   1527 		desc->dtnp = htole32(addr);
   1528 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1529 		txd->tx_desc = desc;
   1530 	}
   1531 
   1532 	bus_dmamap_sync(sc->vte_dmatag,
   1533 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1534 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1535 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1536 	return (0);
   1537 }
   1538 
   1539 static int
   1540 vte_init_rx_ring(struct vte_softc *sc)
   1541 {
   1542 	struct vte_rx_desc *desc;
   1543 	struct vte_rxdesc *rxd;
   1544 	bus_addr_t addr;
   1545 	int i;
   1546 
   1547 	sc->vte_cdata.vte_rx_cons = 0;
   1548 	desc = sc->vte_cdata.vte_rx_ring;
   1549 	bzero(desc, VTE_RX_RING_SZ);
   1550 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1551 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1552 		rxd->rx_m = NULL;
   1553 		if (i != VTE_RX_RING_CNT - 1)
   1554 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1555 			    + sizeof(struct vte_rx_desc) * (i + 1);
   1556 		else
   1557 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1558 			    + sizeof(struct vte_rx_desc) * 0;
   1559 		desc = &sc->vte_cdata.vte_rx_ring[i];
   1560 		desc->drnp = htole32(addr);
   1561 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1562 		rxd->rx_desc = desc;
   1563 		if (vte_newbuf(sc, rxd) != 0)
   1564 			return (ENOBUFS);
   1565 	}
   1566 
   1567 	bus_dmamap_sync(sc->vte_dmatag,
   1568 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1569 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1570 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1571 
   1572 	return (0);
   1573 }
   1574 
   1575 static void
   1576 vte_rxfilter(struct vte_softc *sc)
   1577 {
   1578 	struct ethercom *ec = &sc->vte_ec;
   1579 	struct ether_multistep step;
   1580 	struct ether_multi *enm;
   1581 	struct ifnet *ifp;
   1582 	uint8_t *eaddr;
   1583 	uint32_t crc;
   1584 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
   1585 	uint16_t mchash[4], mcr;
   1586 	int i, nperf;
   1587 
   1588 	ifp = &sc->vte_if;
   1589 
   1590 	DPRINTF(("vte_rxfilter\n"));
   1591 	memset(mchash, 0, sizeof(mchash));
   1592 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1593 		rxfilt_perf[i][0] = 0xFFFF;
   1594 		rxfilt_perf[i][1] = 0xFFFF;
   1595 		rxfilt_perf[i][2] = 0xFFFF;
   1596 	}
   1597 
   1598 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1599 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
   1600 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
   1601 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1602 		mcr |= MCR0_BROADCAST_DIS;
   1603 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1604 		if ((ifp->if_flags & IFF_PROMISC) != 0)
   1605 			mcr |= MCR0_PROMISC;
   1606 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
   1607 			mcr |= MCR0_MULTICAST;
   1608 		mchash[0] = 0xFFFF;
   1609 		mchash[1] = 0xFFFF;
   1610 		mchash[2] = 0xFFFF;
   1611 		mchash[3] = 0xFFFF;
   1612 		goto chipit;
   1613 	}
   1614 
   1615 	ETHER_LOCK(ec);
   1616 	ETHER_FIRST_MULTI(step, ec, enm);
   1617 	nperf = 0;
   1618 	while (enm != NULL) {
   1619 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
   1620 		    != 0) {
   1621 			sc->vte_if.if_flags |= IFF_ALLMULTI;
   1622 			mcr |= MCR0_MULTICAST;
   1623 			mchash[0] = 0xFFFF;
   1624 			mchash[1] = 0xFFFF;
   1625 			mchash[2] = 0xFFFF;
   1626 			mchash[3] = 0xFFFF;
   1627 			ETHER_UNLOCK(ec);
   1628 			goto chipit;
   1629 		}
   1630 		/*
   1631 		 * Program the first 3 multicast groups into
   1632 		 * the perfect filter.  For all others, use the
   1633 		 * hash table.
   1634 		 */
   1635 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
   1636 			eaddr = enm->enm_addrlo;
   1637 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
   1638 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
   1639 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
   1640 			nperf++;
   1641 		} else {
   1642 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1643 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
   1644 		}
   1645 		ETHER_NEXT_MULTI(step, enm);
   1646 	}
   1647 	ETHER_UNLOCK(ec);
   1648 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
   1649 	    mchash[3] != 0)
   1650 		mcr |= MCR0_MULTICAST;
   1651 
   1652 chipit:
   1653 	/* Program multicast hash table. */
   1654 	DPRINTF(("chipit write multicast\n"));
   1655 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
   1656 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
   1657 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
   1658 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
   1659 	/* Program perfect filter table. */
   1660 	DPRINTF(("chipit write perfect filter\n"));
   1661 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1662 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
   1663 		    rxfilt_perf[i][0]);
   1664 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
   1665 		    rxfilt_perf[i][1]);
   1666 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
   1667 		    rxfilt_perf[i][2]);
   1668 	}
   1669 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
   1670 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1671 	DPRINTF(("chipit read mcro\n"));
   1672 	CSR_READ_2(sc, VTE_MCR0);
   1673 	DPRINTF(("chipit done\n"));
   1674 }
   1675 
   1676 /*
   1677  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
   1678  * set up in vte_pci_attach()
   1679  */
   1680 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
   1681 {
   1682 	int rc;
   1683 	const struct sysctlnode *node;
   1684 
   1685 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1686 	    0, CTLTYPE_NODE, "vte",
   1687 	    SYSCTL_DESCR("vte interface controls"),
   1688 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1689 		goto err;
   1690 	}
   1691 
   1692 	vte_root_num = node->sysctl_num;
   1693 	return;
   1694 
   1695 err:
   1696 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   1697 }
   1698 
   1699 static int
   1700 vte_sysctl_intrxct(SYSCTLFN_ARGS)
   1701 {
   1702 	int error, t;
   1703 	struct sysctlnode node;
   1704 	struct vte_softc *sc;
   1705 
   1706 	node = *rnode;
   1707 	sc = node.sysctl_data;
   1708 	t = sc->vte_int_rx_mod;
   1709 	node.sysctl_data = &t;
   1710 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1711 	if (error || newp == NULL)
   1712 		return error;
   1713 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1714 		return EINVAL;
   1715 
   1716 	sc->vte_int_rx_mod = t;
   1717 	vte_miibus_statchg(&sc->vte_if);
   1718 	return 0;
   1719 }
   1720 
   1721 static int
   1722 vte_sysctl_inttxct(SYSCTLFN_ARGS)
   1723 {
   1724 	int error, t;
   1725 	struct sysctlnode node;
   1726 	struct vte_softc *sc;
   1727 
   1728 	node = *rnode;
   1729 	sc = node.sysctl_data;
   1730 	t = sc->vte_int_tx_mod;
   1731 	node.sysctl_data = &t;
   1732 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1733 	if (error || newp == NULL)
   1734 		return error;
   1735 
   1736 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1737 		return EINVAL;
   1738 	sc->vte_int_tx_mod = t;
   1739 	vte_miibus_statchg(&sc->vte_if);
   1740 	return 0;
   1741 }
   1742