if_vte.c revision 1.22 1 /* $NetBSD: if_vte.c,v 1.22 2019/01/22 03:42:27 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.22 2019/01/22 03:42:27 msaitoh Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79
80 #include <sys/rndsource.h>
81
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104
105 static int vte_match(device_t, cfdata_t, void *);
106 static void vte_attach(device_t, device_t, void *);
107 static int vte_detach(device_t, int);
108 static int vte_dma_alloc(struct vte_softc *);
109 static void vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 vte_encap(struct vte_softc *, struct mbuf **);
112 static void vte_get_macaddr(struct vte_softc *);
113 static int vte_init(struct ifnet *);
114 static int vte_init_rx_ring(struct vte_softc *);
115 static int vte_init_tx_ring(struct vte_softc *);
116 static int vte_intr(void *);
117 static int vte_ifioctl(struct ifnet *, u_long, void *);
118 static void vte_mac_config(struct vte_softc *);
119 static int vte_miibus_readreg(device_t, int, int, uint16_t *);
120 static void vte_miibus_statchg(struct ifnet *);
121 static int vte_miibus_writereg(device_t, int, int, uint16_t);
122 static int vte_mediachange(struct ifnet *);
123 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void vte_reset(struct vte_softc *);
125 static void vte_rxeof(struct vte_softc *);
126 static void vte_rxfilter(struct vte_softc *);
127 static bool vte_shutdown(device_t, int);
128 static bool vte_suspend(device_t, const pmf_qual_t *);
129 static bool vte_resume(device_t, const pmf_qual_t *);
130 static void vte_ifstart(struct ifnet *);
131 static void vte_start_mac(struct vte_softc *);
132 static void vte_stats_clear(struct vte_softc *);
133 static void vte_stats_update(struct vte_softc *);
134 static void vte_stop(struct ifnet *, int);
135 static void vte_stop_mac(struct vte_softc *);
136 static void vte_tick(void *);
137 static void vte_txeof(struct vte_softc *);
138 static void vte_ifwatchdog(struct ifnet *);
139
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143
144 #define DPRINTF(a)
145
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148
149
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154
155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 return 1;
158
159 return 0;
160 }
161
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 struct vte_softc *sc = device_private(self);
166 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 struct ifnet * const ifp = &sc->vte_if;
168 int h_valid;
169 pcireg_t reg, csr;
170 pci_intr_handle_t intrhandle;
171 const char *intrstr;
172 int error;
173 const struct sysctlnode *node;
174 int vte_nodenum;
175 char intrbuf[PCI_INTRSTR_LEN];
176
177 sc->vte_dev = self;
178
179 callout_init(&sc->vte_tick_ch, 0);
180
181 /* Map the device. */
182 h_valid = 0;
183 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
184 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
185 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
186 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
187 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
188 }
189 if (h_valid == 0) {
190 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
191 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
192 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
193 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
194 &sc->vte_bushandle, NULL, NULL) == 0);
195 }
196 }
197 if (h_valid == 0) {
198 aprint_error_dev(self, "unable to map device registers\n");
199 return;
200 }
201 sc->vte_dmatag = pa->pa_dmat;
202 /* Enable the device. */
203 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
204 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
205 csr | PCI_COMMAND_MASTER_ENABLE);
206
207 pci_aprint_devinfo(pa, NULL);
208
209 /* Reset the ethernet controller. */
210 vte_reset(sc);
211
212 if ((error = vte_dma_alloc(sc)) != 0)
213 return;
214
215 /* Load station address. */
216 vte_get_macaddr(sc);
217
218 aprint_normal_dev(self, "Ethernet address %s\n",
219 ether_sprintf(sc->vte_eaddr));
220
221 /* Map and establish interrupts */
222 if (pci_intr_map(pa, &intrhandle)) {
223 aprint_error_dev(self, "couldn't map interrupt\n");
224 return;
225 }
226 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
227 sizeof(intrbuf));
228 sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
229 vte_intr, sc, device_xname(self));
230 if (sc->vte_ih == NULL) {
231 aprint_error_dev(self, "couldn't establish interrupt");
232 if (intrstr != NULL)
233 aprint_error(" at %s", intrstr);
234 aprint_error("\n");
235 return;
236 }
237 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
238
239 sc->vte_if.if_softc = sc;
240 sc->vte_mii.mii_ifp = ifp;
241 sc->vte_mii.mii_readreg = vte_miibus_readreg;
242 sc->vte_mii.mii_writereg = vte_miibus_writereg;
243 sc->vte_mii.mii_statchg = vte_miibus_statchg;
244 sc->vte_ec.ec_mii = &sc->vte_mii;
245 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
246 ether_mediastatus);
247 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
248 MII_OFFSET_ANY, 0);
249 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
250 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
251 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
252 } else
253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
254
255 /*
256 * We can support 802.1Q VLAN-sized frames.
257 */
258 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
259
260 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
261 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
262 ifp->if_ioctl = vte_ifioctl;
263 ifp->if_start = vte_ifstart;
264 ifp->if_watchdog = vte_ifwatchdog;
265 ifp->if_init = vte_init;
266 ifp->if_stop = vte_stop;
267 ifp->if_timer = 0;
268 IFQ_SET_READY(&ifp->if_snd);
269 if_attach(ifp);
270 if_deferred_start_init(ifp, NULL);
271 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
272
273 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
274 pmf_class_network_register(self, ifp);
275 else
276 aprint_error_dev(self, "couldn't establish power handler\n");
277
278 rnd_attach_source(&sc->rnd_source, device_xname(self),
279 RND_TYPE_NET, RND_FLAG_DEFAULT);
280
281 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
282 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
283 SYSCTL_DESCR("vte per-controller controls"),
284 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
285 CTL_EOL) != 0) {
286 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
287 return;
288 }
289 vte_nodenum = node->sysctl_num;
290 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
291 CTLFLAG_READWRITE,
292 CTLTYPE_INT, "int_rxct",
293 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
294 vte_sysctl_intrxct, 0, (void *)sc,
295 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
296 CTL_EOL) != 0) {
297 aprint_normal_dev(sc->vte_dev,
298 "couldn't create int_rxct sysctl node\n");
299 }
300 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
301 CTLFLAG_READWRITE,
302 CTLTYPE_INT, "int_txct",
303 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
304 vte_sysctl_inttxct, 0, (void *)sc,
305 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
306 CTL_EOL) != 0) {
307 aprint_normal_dev(sc->vte_dev,
308 "couldn't create int_txct sysctl node\n");
309 }
310 }
311
312 static int
313 vte_detach(device_t dev, int flags __unused)
314 {
315 struct vte_softc *sc = device_private(dev);
316 struct ifnet *ifp = &sc->vte_if;
317 int s;
318
319 s = splnet();
320 /* Stop the interface. Callouts are stopped in it. */
321 vte_stop(ifp, 1);
322 splx(s);
323
324 pmf_device_deregister(dev);
325
326 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
327 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331
332 vte_dma_free(sc);
333
334 return (0);
335 }
336
337 static int
338 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
339 {
340 struct vte_softc *sc = device_private(dev);
341 int i;
342
343 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
344 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
345 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
346 DELAY(5);
347 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
348 break;
349 }
350
351 if (i == 0) {
352 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
353 return ETIMEDOUT;
354 }
355
356 *val = CSR_READ_2(sc, VTE_MMRD);
357 return 0;
358 }
359
360 static int
361 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
362 {
363 struct vte_softc *sc = device_private(dev);
364 int i;
365
366 CSR_WRITE_2(sc, VTE_MMWD, val);
367 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
368 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
369 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
370 DELAY(5);
371 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
372 break;
373 }
374
375 if (i == 0) {
376 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
377 return ETIMEDOUT;
378 }
379
380 return 0;
381 }
382
383 static void
384 vte_miibus_statchg(struct ifnet *ifp)
385 {
386 struct vte_softc *sc = ifp->if_softc;
387 uint16_t val;
388
389 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
390 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
391
392 sc->vte_flags &= ~VTE_FLAG_LINK;
393 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
394 (IFM_ACTIVE | IFM_AVALID)) {
395 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
396 case IFM_10_T:
397 case IFM_100_TX:
398 sc->vte_flags |= VTE_FLAG_LINK;
399 break;
400 default:
401 break;
402 }
403 }
404
405 /* Stop RX/TX MACs. */
406 vte_stop_mac(sc);
407 /* Program MACs with resolved duplex and flow control. */
408 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
409 /*
410 * Timer waiting time : (63 + TIMER * 64) MII clock.
411 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
412 */
413 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
414 val = 18 << VTE_IM_TIMER_SHIFT;
415 else
416 val = 1 << VTE_IM_TIMER_SHIFT;
417 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
418 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
419 CSR_WRITE_2(sc, VTE_MRICR, val);
420
421 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
422 val = 18 << VTE_IM_TIMER_SHIFT;
423 else
424 val = 1 << VTE_IM_TIMER_SHIFT;
425 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
426 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
427 CSR_WRITE_2(sc, VTE_MTICR, val);
428
429 vte_mac_config(sc);
430 vte_start_mac(sc);
431 DPRINTF(("vte_miibus_statchg: link\n"));
432 }
433 }
434
435 static void
436 vte_get_macaddr(struct vte_softc *sc)
437 {
438 uint16_t mid;
439
440 /*
441 * It seems there is no way to reload station address and
442 * it is supposed to be set by BIOS.
443 */
444 mid = CSR_READ_2(sc, VTE_MID0L);
445 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
446 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
447 mid = CSR_READ_2(sc, VTE_MID0M);
448 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
449 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
450 mid = CSR_READ_2(sc, VTE_MID0H);
451 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
452 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
453 }
454
455
456 static int
457 vte_dma_alloc(struct vte_softc *sc)
458 {
459 struct vte_txdesc *txd;
460 struct vte_rxdesc *rxd;
461 int error, i, rseg;
462
463 /* create DMA map for TX ring */
464 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
465 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
466 &sc->vte_cdata.vte_tx_ring_map);
467 if (error) {
468 aprint_error_dev(sc->vte_dev,
469 "could not create dma map for TX ring (%d)\n",
470 error);
471 goto fail;
472 }
473 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
474 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
475 VTE_TX_RING_ALIGN, 0,
476 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
477 BUS_DMA_NOWAIT);
478 if (error != 0) {
479 aprint_error_dev(sc->vte_dev,
480 "could not allocate DMA'able memory for TX ring (%d).\n",
481 error);
482 goto fail;
483 }
484 KASSERT(rseg == 1);
485 error = bus_dmamem_map(sc->vte_dmatag,
486 sc->vte_cdata.vte_tx_ring_seg, 1,
487 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
488 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
489 if (error != 0) {
490 aprint_error_dev(sc->vte_dev,
491 "could not map DMA'able memory for TX ring (%d).\n",
492 error);
493 goto fail;
494 }
495 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
496 error = bus_dmamap_load(sc->vte_dmatag,
497 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
498 VTE_TX_RING_SZ, NULL,
499 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
500 if (error != 0) {
501 aprint_error_dev(sc->vte_dev,
502 "could not load DMA'able memory for TX ring.\n");
503 goto fail;
504 }
505
506 /* create DMA map for RX ring */
507 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
508 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
509 &sc->vte_cdata.vte_rx_ring_map);
510 if (error) {
511 aprint_error_dev(sc->vte_dev,
512 "could not create dma map for RX ring (%d)\n",
513 error);
514 goto fail;
515 }
516 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
517 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
518 VTE_RX_RING_ALIGN, 0,
519 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
520 BUS_DMA_NOWAIT);
521 if (error != 0) {
522 aprint_error_dev(sc->vte_dev,
523 "could not allocate DMA'able memory for RX ring (%d).\n",
524 error);
525 goto fail;
526 }
527 KASSERT(rseg == 1);
528 error = bus_dmamem_map(sc->vte_dmatag,
529 sc->vte_cdata.vte_rx_ring_seg, 1,
530 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
531 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
532 if (error != 0) {
533 aprint_error_dev(sc->vte_dev,
534 "could not map DMA'able memory for RX ring (%d).\n",
535 error);
536 goto fail;
537 }
538 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
539 error = bus_dmamap_load(sc->vte_dmatag,
540 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
541 VTE_RX_RING_SZ, NULL,
542 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
543 if (error != 0) {
544 aprint_error_dev(sc->vte_dev,
545 "could not load DMA'able memory for RX ring (%d).\n",
546 error);
547 goto fail;
548 }
549
550 /* Create DMA maps for TX buffers. */
551 for (i = 0; i < VTE_TX_RING_CNT; i++) {
552 txd = &sc->vte_cdata.vte_txdesc[i];
553 txd->tx_m = NULL;
554 txd->tx_dmamap = NULL;
555 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
556 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
557 &txd->tx_dmamap);
558 if (error != 0) {
559 aprint_error_dev(sc->vte_dev,
560 "could not create TX DMA map %d (%d).\n", i, error);
561 goto fail;
562 }
563 }
564 /* Create DMA maps for RX buffers. */
565 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
566 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
567 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
568 aprint_error_dev(sc->vte_dev,
569 "could not create spare RX dmamap (%d).\n", error);
570 goto fail;
571 }
572 for (i = 0; i < VTE_RX_RING_CNT; i++) {
573 rxd = &sc->vte_cdata.vte_rxdesc[i];
574 rxd->rx_m = NULL;
575 rxd->rx_dmamap = NULL;
576 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
577 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
578 &rxd->rx_dmamap);
579 if (error != 0) {
580 aprint_error_dev(sc->vte_dev,
581 "could not create RX dmamap %d (%d).\n", i, error);
582 goto fail;
583 }
584 }
585 return 0;
586
587 fail:
588 vte_dma_free(sc);
589 return (error);
590 }
591
592 static void
593 vte_dma_free(struct vte_softc *sc)
594 {
595 struct vte_txdesc *txd;
596 struct vte_rxdesc *rxd;
597 int i;
598
599 /* TX buffers. */
600 for (i = 0; i < VTE_TX_RING_CNT; i++) {
601 txd = &sc->vte_cdata.vte_txdesc[i];
602 if (txd->tx_dmamap != NULL) {
603 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
604 txd->tx_dmamap = NULL;
605 }
606 }
607 /* RX buffers */
608 for (i = 0; i < VTE_RX_RING_CNT; i++) {
609 rxd = &sc->vte_cdata.vte_rxdesc[i];
610 if (rxd->rx_dmamap != NULL) {
611 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
612 rxd->rx_dmamap = NULL;
613 }
614 }
615 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
616 bus_dmamap_destroy(sc->vte_dmatag,
617 sc->vte_cdata.vte_rx_sparemap);
618 sc->vte_cdata.vte_rx_sparemap = NULL;
619 }
620 /* TX descriptor ring. */
621 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
622 bus_dmamap_unload(sc->vte_dmatag,
623 sc->vte_cdata.vte_tx_ring_map);
624 bus_dmamap_destroy(sc->vte_dmatag,
625 sc->vte_cdata.vte_tx_ring_map);
626 }
627 if (sc->vte_cdata.vte_tx_ring != NULL) {
628 bus_dmamem_unmap(sc->vte_dmatag,
629 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
630 bus_dmamem_free(sc->vte_dmatag,
631 sc->vte_cdata.vte_tx_ring_seg, 1);
632 }
633 sc->vte_cdata.vte_tx_ring = NULL;
634 sc->vte_cdata.vte_tx_ring_map = NULL;
635 /* RX ring. */
636 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
637 bus_dmamap_unload(sc->vte_dmatag,
638 sc->vte_cdata.vte_rx_ring_map);
639 bus_dmamap_destroy(sc->vte_dmatag,
640 sc->vte_cdata.vte_rx_ring_map);
641 }
642 if (sc->vte_cdata.vte_rx_ring != NULL) {
643 bus_dmamem_unmap(sc->vte_dmatag,
644 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
645 bus_dmamem_free(sc->vte_dmatag,
646 sc->vte_cdata.vte_rx_ring_seg, 1);
647 }
648 sc->vte_cdata.vte_rx_ring = NULL;
649 sc->vte_cdata.vte_rx_ring_map = NULL;
650 }
651
652 static bool
653 vte_shutdown(device_t dev, int howto)
654 {
655
656 return (vte_suspend(dev, NULL));
657 }
658
659 static bool
660 vte_suspend(device_t dev, const pmf_qual_t *qual)
661 {
662 struct vte_softc *sc = device_private(dev);
663 struct ifnet *ifp = &sc->vte_if;
664
665 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
666 if ((ifp->if_flags & IFF_RUNNING) != 0)
667 vte_stop(ifp, 1);
668 return (0);
669 }
670
671 static bool
672 vte_resume(device_t dev, const pmf_qual_t *qual)
673 {
674 struct vte_softc *sc = device_private(dev);
675 struct ifnet *ifp;
676
677 ifp = &sc->vte_if;
678 if ((ifp->if_flags & IFF_UP) != 0) {
679 ifp->if_flags &= ~IFF_RUNNING;
680 vte_init(ifp);
681 }
682
683 return (0);
684 }
685
686 static struct vte_txdesc *
687 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
688 {
689 struct vte_txdesc *txd;
690 struct mbuf *m, *n;
691 int copy, error, padlen;
692
693 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
694 m = *m_head;
695 /*
696 * Controller doesn't auto-pad, so we have to make sure pad
697 * short frames out to the minimum frame length.
698 */
699 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
700 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
701 else
702 padlen = 0;
703
704 /*
705 * Controller does not support multi-fragmented TX buffers.
706 * Controller spends most of its TX processing time in
707 * de-fragmenting TX buffers. Either faster CPU or more
708 * advanced controller DMA engine is required to speed up
709 * TX path processing.
710 * To mitigate the de-fragmenting issue, perform deep copy
711 * from fragmented mbuf chains to a pre-allocated mbuf
712 * cluster with extra cost of kernel memory. For frames
713 * that is composed of single TX buffer, the deep copy is
714 * bypassed.
715 */
716 copy = 0;
717 if (m->m_next != NULL)
718 copy++;
719 if (padlen > 0 && (M_READONLY(m) ||
720 padlen > M_TRAILINGSPACE(m)))
721 copy++;
722 if (copy != 0) {
723 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
724 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
725 n->m_pkthdr.len = m->m_pkthdr.len;
726 n->m_len = m->m_pkthdr.len;
727 m = n;
728 txd->tx_flags |= VTE_TXMBUF;
729 }
730
731 if (padlen > 0) {
732 /* Zero out the bytes in the pad area. */
733 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
734 m->m_pkthdr.len += padlen;
735 m->m_len = m->m_pkthdr.len;
736 }
737
738 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
739 BUS_DMA_NOWAIT);
740 if (error != 0) {
741 txd->tx_flags &= ~VTE_TXMBUF;
742 return (NULL);
743 }
744 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
745 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
746 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
747
748 txd->tx_desc->dtlen =
749 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
750 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
751 sc->vte_cdata.vte_tx_cnt++;
752 /* Update producer index. */
753 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
754
755 /* Finally hand over ownership to controller. */
756 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
757 txd->tx_m = m;
758
759 return (txd);
760 }
761
762 static void
763 vte_ifstart(struct ifnet *ifp)
764 {
765 struct vte_softc *sc = ifp->if_softc;
766 struct vte_txdesc *txd;
767 struct mbuf *m_head, *m;
768 int enq;
769
770 ifp = &sc->vte_if;
771
772 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
773
774 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
775 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
776 return;
777
778 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
779 /* Reserve one free TX descriptor. */
780 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
781 ifp->if_flags |= IFF_OACTIVE;
782 break;
783 }
784 IFQ_POLL(&ifp->if_snd, m_head);
785 if (m_head == NULL)
786 break;
787 /*
788 * Pack the data into the transmit ring. If we
789 * don't have room, set the OACTIVE flag and wait
790 * for the NIC to drain the ring.
791 */
792 DPRINTF(("vte_encap:"));
793 if ((txd = vte_encap(sc, &m_head)) == NULL) {
794 DPRINTF((" failed\n"));
795 break;
796 }
797 DPRINTF((" ok\n"));
798 IFQ_DEQUEUE(&ifp->if_snd, m);
799 KASSERT(m == m_head);
800
801 enq++;
802 /*
803 * If there's a BPF listener, bounce a copy of this frame
804 * to him.
805 */
806 bpf_mtap(ifp, m_head, BPF_D_OUT);
807 /* Free consumed TX frame. */
808 if ((txd->tx_flags & VTE_TXMBUF) != 0)
809 m_freem(m_head);
810 }
811
812 if (enq > 0) {
813 bus_dmamap_sync(sc->vte_dmatag,
814 sc->vte_cdata.vte_tx_ring_map, 0,
815 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
816 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
818 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
819 }
820 }
821
822 static void
823 vte_ifwatchdog(struct ifnet *ifp)
824 {
825 struct vte_softc *sc = ifp->if_softc;
826
827 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
828 return;
829
830 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
831 ifp->if_oerrors++;
832 vte_init(ifp);
833 if (!IFQ_IS_EMPTY(&ifp->if_snd))
834 vte_ifstart(ifp);
835 }
836
837 static int
838 vte_mediachange(struct ifnet *ifp)
839 {
840 int error;
841 struct vte_softc *sc = ifp->if_softc;
842
843 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
844 error = 0;
845 else if (error != 0) {
846 aprint_error_dev(sc->vte_dev, "could not set media\n");
847 return error;
848 }
849 return 0;
850
851 }
852
853 static int
854 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
855 {
856 struct vte_softc *sc = ifp->if_softc;
857 int error, s;
858
859 s = splnet();
860 error = ether_ioctl(ifp, cmd, data);
861 if (error == ENETRESET) {
862 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
863 if (ifp->if_flags & IFF_RUNNING)
864 vte_rxfilter(sc);
865 error = 0;
866 }
867 splx(s);
868 return error;
869 }
870
871 static void
872 vte_mac_config(struct vte_softc *sc)
873 {
874 uint16_t mcr;
875
876 mcr = CSR_READ_2(sc, VTE_MCR0);
877 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
878 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
879 mcr |= MCR0_FULL_DUPLEX;
880 #ifdef notyet
881 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
882 mcr |= MCR0_FC_ENB;
883 /*
884 * The data sheet is not clear whether the controller
885 * honors received pause frames or not. The is no
886 * separate control bit for RX pause frame so just
887 * enable MCR0_FC_ENB bit.
888 */
889 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
890 mcr |= MCR0_FC_ENB;
891 #endif
892 }
893 CSR_WRITE_2(sc, VTE_MCR0, mcr);
894 }
895
896 static void
897 vte_stats_clear(struct vte_softc *sc)
898 {
899
900 /* Reading counter registers clears its contents. */
901 CSR_READ_2(sc, VTE_CNT_RX_DONE);
902 CSR_READ_2(sc, VTE_CNT_MECNT0);
903 CSR_READ_2(sc, VTE_CNT_MECNT1);
904 CSR_READ_2(sc, VTE_CNT_MECNT2);
905 CSR_READ_2(sc, VTE_CNT_MECNT3);
906 CSR_READ_2(sc, VTE_CNT_TX_DONE);
907 CSR_READ_2(sc, VTE_CNT_MECNT4);
908 CSR_READ_2(sc, VTE_CNT_PAUSE);
909 }
910
911 static void
912 vte_stats_update(struct vte_softc *sc)
913 {
914 struct vte_hw_stats *stat;
915 struct ifnet *ifp = &sc->vte_if;
916 uint16_t value;
917
918 stat = &sc->vte_stats;
919
920 CSR_READ_2(sc, VTE_MECISR);
921 /* RX stats. */
922 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
923 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
924 stat->rx_bcast_frames += (value >> 8);
925 stat->rx_mcast_frames += (value & 0xFF);
926 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
927 stat->rx_runts += (value >> 8);
928 stat->rx_crcerrs += (value & 0xFF);
929 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
930 stat->rx_long_frames += (value & 0xFF);
931 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
932 stat->rx_fifo_full += (value >> 8);
933 stat->rx_desc_unavail += (value & 0xFF);
934
935 /* TX stats. */
936 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
937 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
938 stat->tx_underruns += (value >> 8);
939 stat->tx_late_colls += (value & 0xFF);
940
941 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
942 stat->tx_pause_frames += (value >> 8);
943 stat->rx_pause_frames += (value & 0xFF);
944
945 /* Update ifp counters. */
946 ifp->if_opackets = stat->tx_frames;
947 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
948 ifp->if_ipackets = stat->rx_frames;
949 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
950 stat->rx_long_frames + stat->rx_fifo_full;
951 }
952
953 static int
954 vte_intr(void *arg)
955 {
956 struct vte_softc *sc = (struct vte_softc *)arg;
957 struct ifnet *ifp = &sc->vte_if;
958 uint16_t status;
959 int n;
960
961 /* Reading VTE_MISR acknowledges interrupts. */
962 status = CSR_READ_2(sc, VTE_MISR);
963 DPRINTF(("vte_intr status 0x%x\n", status));
964 if ((status & VTE_INTRS) == 0) {
965 /* Not ours. */
966 return 0;
967 }
968
969 /* Disable interrupts. */
970 CSR_WRITE_2(sc, VTE_MIER, 0);
971 for (n = 8; (status & VTE_INTRS) != 0;) {
972 if ((ifp->if_flags & IFF_RUNNING) == 0)
973 break;
974 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
975 MISR_RX_FIFO_FULL)) != 0)
976 vte_rxeof(sc);
977 if ((status & MISR_TX_DONE) != 0)
978 vte_txeof(sc);
979 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
980 vte_stats_update(sc);
981 if_schedule_deferred_start(ifp);
982 if (--n > 0)
983 status = CSR_READ_2(sc, VTE_MISR);
984 else
985 break;
986 }
987
988 if ((ifp->if_flags & IFF_RUNNING) != 0) {
989 /* Re-enable interrupts. */
990 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
991 }
992 return 1;
993 }
994
995 static void
996 vte_txeof(struct vte_softc *sc)
997 {
998 struct ifnet *ifp;
999 struct vte_txdesc *txd;
1000 uint16_t status;
1001 int cons, prog;
1002
1003 ifp = &sc->vte_if;
1004
1005 if (sc->vte_cdata.vte_tx_cnt == 0)
1006 return;
1007 bus_dmamap_sync(sc->vte_dmatag,
1008 sc->vte_cdata.vte_tx_ring_map, 0,
1009 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1010 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1011 cons = sc->vte_cdata.vte_tx_cons;
1012 /*
1013 * Go through our TX list and free mbufs for those
1014 * frames which have been transmitted.
1015 */
1016 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1017 txd = &sc->vte_cdata.vte_txdesc[cons];
1018 status = le16toh(txd->tx_desc->dtst);
1019 if ((status & VTE_DTST_TX_OWN) != 0)
1020 break;
1021 if ((status & VTE_DTST_TX_OK) != 0)
1022 ifp->if_collisions += (status & 0xf);
1023 sc->vte_cdata.vte_tx_cnt--;
1024 /* Reclaim transmitted mbufs. */
1025 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1026 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1027 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1028 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1029 m_freem(txd->tx_m);
1030 txd->tx_flags &= ~VTE_TXMBUF;
1031 txd->tx_m = NULL;
1032 prog++;
1033 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1034 }
1035
1036 if (prog > 0) {
1037 ifp->if_flags &= ~IFF_OACTIVE;
1038 sc->vte_cdata.vte_tx_cons = cons;
1039 /*
1040 * Unarm watchdog timer only when there is no pending
1041 * frames in TX queue.
1042 */
1043 if (sc->vte_cdata.vte_tx_cnt == 0)
1044 sc->vte_watchdog_timer = 0;
1045 }
1046 }
1047
1048 static int
1049 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1050 {
1051 struct mbuf *m;
1052 bus_dmamap_t map;
1053
1054 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1055 if (m == NULL)
1056 return (ENOBUFS);
1057 m->m_len = m->m_pkthdr.len = MCLBYTES;
1058 m_adj(m, sizeof(uint32_t));
1059
1060 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1061 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1062 m_freem(m);
1063 return (ENOBUFS);
1064 }
1065 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1066
1067 if (rxd->rx_m != NULL) {
1068 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1069 0, rxd->rx_dmamap->dm_mapsize,
1070 BUS_DMASYNC_POSTREAD);
1071 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1072 }
1073 map = rxd->rx_dmamap;
1074 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1075 sc->vte_cdata.vte_rx_sparemap = map;
1076 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1077 0, rxd->rx_dmamap->dm_mapsize,
1078 BUS_DMASYNC_PREREAD);
1079 rxd->rx_m = m;
1080 rxd->rx_desc->drbp =
1081 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1082 rxd->rx_desc->drlen = htole16(
1083 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1084 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1085 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1086 rxd->rx_dmamap->dm_segs[0].ds_len));
1087 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1088
1089 return (0);
1090 }
1091
1092 static void
1093 vte_rxeof(struct vte_softc *sc)
1094 {
1095 struct ifnet *ifp;
1096 struct vte_rxdesc *rxd;
1097 struct mbuf *m;
1098 uint16_t status, total_len;
1099 int cons, prog;
1100
1101 bus_dmamap_sync(sc->vte_dmatag,
1102 sc->vte_cdata.vte_rx_ring_map, 0,
1103 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1104 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1105 cons = sc->vte_cdata.vte_rx_cons;
1106 ifp = &sc->vte_if;
1107 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1108 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1109 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1110 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1111 status = le16toh(rxd->rx_desc->drst);
1112 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1113 cons, rxd, rxd->rx_m, status,
1114 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1115 if ((status & VTE_DRST_RX_OWN) != 0)
1116 break;
1117 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1118 m = rxd->rx_m;
1119 if ((status & VTE_DRST_RX_OK) == 0) {
1120 /* Discard errored frame. */
1121 rxd->rx_desc->drlen =
1122 htole16(MCLBYTES - sizeof(uint32_t));
1123 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1124 continue;
1125 }
1126 if (vte_newbuf(sc, rxd) != 0) {
1127 DPRINTF(("vte_rxeof newbuf failed\n"));
1128 ifp->if_ierrors++;
1129 rxd->rx_desc->drlen =
1130 htole16(MCLBYTES - sizeof(uint32_t));
1131 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1132 continue;
1133 }
1134
1135 /*
1136 * It seems there is no way to strip FCS bytes.
1137 */
1138 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1139 m_set_rcvif(m, ifp);
1140 if_percpuq_enqueue(ifp->if_percpuq, m);
1141 }
1142
1143 if (prog > 0) {
1144 /* Update the consumer index. */
1145 sc->vte_cdata.vte_rx_cons = cons;
1146 /*
1147 * Sync updated RX descriptors such that controller see
1148 * modified RX buffer addresses.
1149 */
1150 bus_dmamap_sync(sc->vte_dmatag,
1151 sc->vte_cdata.vte_rx_ring_map, 0,
1152 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1153 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1154 #ifdef notyet
1155 /*
1156 * Update residue counter. Controller does not
1157 * keep track of number of available RX descriptors
1158 * such that driver should have to update VTE_MRDCR
1159 * to make controller know how many free RX
1160 * descriptors were added to controller. This is
1161 * a similar mechanism used in VIA velocity
1162 * controllers and it indicates controller just
1163 * polls OWN bit of current RX descriptor pointer.
1164 * A couple of severe issues were seen on sample
1165 * board where the controller continuously emits TX
1166 * pause frames once RX pause threshold crossed.
1167 * Once triggered it never recovered form that
1168 * state, I couldn't find a way to make it back to
1169 * work at least. This issue effectively
1170 * disconnected the system from network. Also, the
1171 * controller used 00:00:00:00:00:00 as source
1172 * station address of TX pause frame. Probably this
1173 * is one of reason why vendor recommends not to
1174 * enable flow control on R6040 controller.
1175 */
1176 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1177 (((VTE_RX_RING_CNT * 2) / 10) <<
1178 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1179 #endif
1180 rnd_add_uint32(&sc->rnd_source, prog);
1181 }
1182 }
1183
1184 static void
1185 vte_tick(void *arg)
1186 {
1187 struct vte_softc *sc;
1188 int s = splnet();
1189
1190 sc = (struct vte_softc *)arg;
1191
1192 mii_tick(&sc->vte_mii);
1193 vte_stats_update(sc);
1194 vte_txeof(sc);
1195 vte_ifwatchdog(&sc->vte_if);
1196 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1197 splx(s);
1198 }
1199
1200 static void
1201 vte_reset(struct vte_softc *sc)
1202 {
1203 uint16_t mcr;
1204 int i;
1205
1206 mcr = CSR_READ_2(sc, VTE_MCR1);
1207 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1208 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1209 DELAY(10);
1210 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1211 break;
1212 }
1213 if (i == 0)
1214 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1215 /*
1216 * Follow the guide of vendor recommended way to reset MAC.
1217 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1218 * not reliable so manually reset internal state machine.
1219 */
1220 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1221 CSR_WRITE_2(sc, VTE_MACSM, 0);
1222 DELAY(5000);
1223 }
1224
1225
1226 static int
1227 vte_init(struct ifnet *ifp)
1228 {
1229 struct vte_softc *sc = ifp->if_softc;
1230 bus_addr_t paddr;
1231 uint8_t eaddr[ETHER_ADDR_LEN];
1232 int s, error;
1233
1234 s = splnet();
1235 /*
1236 * Cancel any pending I/O.
1237 */
1238 vte_stop(ifp, 1);
1239 /*
1240 * Reset the chip to a known state.
1241 */
1242 vte_reset(sc);
1243
1244 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1245 splx(s);
1246 return 0;
1247 }
1248
1249 /* Initialize RX descriptors. */
1250 if (vte_init_rx_ring(sc) != 0) {
1251 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1252 vte_stop(ifp, 1);
1253 splx(s);
1254 return ENOMEM;
1255 }
1256 if (vte_init_tx_ring(sc) != 0) {
1257 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1258 vte_stop(ifp, 1);
1259 splx(s);
1260 return ENOMEM;
1261 }
1262
1263 /*
1264 * Reprogram the station address. Controller supports up
1265 * to 4 different station addresses so driver programs the
1266 * first station address as its own ethernet address and
1267 * configure the remaining three addresses as perfect
1268 * multicast addresses.
1269 */
1270 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1271 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1272 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1273 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1274
1275 /* Set TX descriptor base addresses. */
1276 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1277 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1278 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1279 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1280
1281 /* Set RX descriptor base addresses. */
1282 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1283 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1284 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1285 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1286 /*
1287 * Initialize RX descriptor residue counter and set RX
1288 * pause threshold to 20% of available RX descriptors.
1289 * See comments on vte_rxeof() for details on flow control
1290 * issues.
1291 */
1292 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1293 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1294
1295 /*
1296 * Always use maximum frame size that controller can
1297 * support. Otherwise received frames that has longer
1298 * frame length than vte(4) MTU would be silently dropped
1299 * in controller. This would break path-MTU discovery as
1300 * sender wouldn't get any responses from receiver. The
1301 * RX buffer size should be multiple of 4.
1302 * Note, jumbo frames are silently ignored by controller
1303 * and even MAC counters do not detect them.
1304 */
1305 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1306
1307 /* Configure FIFO. */
1308 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1309 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1310 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1311
1312 /*
1313 * Configure TX/RX MACs. Actual resolved duplex and flow
1314 * control configuration is done after detecting a valid
1315 * link. Note, we don't generate early interrupt here
1316 * as well since FreeBSD does not have interrupt latency
1317 * problems like Windows.
1318 */
1319 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1320 /*
1321 * We manually keep track of PHY status changes to
1322 * configure resolved duplex and flow control since only
1323 * duplex configuration can be automatically reflected to
1324 * MCR0.
1325 */
1326 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1327 MCR1_EXCESS_COL_RETRY_16);
1328
1329 /* Initialize RX filter. */
1330 vte_rxfilter(sc);
1331
1332 /* Disable TX/RX interrupt moderation control. */
1333 CSR_WRITE_2(sc, VTE_MRICR, 0);
1334 CSR_WRITE_2(sc, VTE_MTICR, 0);
1335
1336 /* Enable MAC event counter interrupts. */
1337 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1338 /* Clear MAC statistics. */
1339 vte_stats_clear(sc);
1340
1341 /* Acknowledge all pending interrupts and clear it. */
1342 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1343 CSR_WRITE_2(sc, VTE_MISR, 0);
1344 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1345 CSR_READ_2(sc, VTE_MISR)));
1346
1347 sc->vte_flags &= ~VTE_FLAG_LINK;
1348 ifp->if_flags |= IFF_RUNNING;
1349 ifp->if_flags &= ~IFF_OACTIVE;
1350
1351 /* calling mii_mediachg will call back vte_start_mac() */
1352 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1353 error = 0;
1354 else if (error != 0) {
1355 aprint_error_dev(sc->vte_dev, "could not set media\n");
1356 splx(s);
1357 return error;
1358 }
1359
1360 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1361
1362 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1363 CSR_READ_2(sc, VTE_MISR)));
1364 splx(s);
1365 return 0;
1366 }
1367
1368 static void
1369 vte_stop(struct ifnet *ifp, int disable)
1370 {
1371 struct vte_softc *sc = ifp->if_softc;
1372 struct vte_txdesc *txd;
1373 struct vte_rxdesc *rxd;
1374 int i;
1375
1376 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1377 if ((ifp->if_flags & IFF_RUNNING) == 0)
1378 return;
1379 /*
1380 * Mark the interface down and cancel the watchdog timer.
1381 */
1382 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1383 sc->vte_flags &= ~VTE_FLAG_LINK;
1384 callout_stop(&sc->vte_tick_ch);
1385 sc->vte_watchdog_timer = 0;
1386 vte_stats_update(sc);
1387 /* Disable interrupts. */
1388 CSR_WRITE_2(sc, VTE_MIER, 0);
1389 CSR_WRITE_2(sc, VTE_MECIER, 0);
1390 /* Stop RX/TX MACs. */
1391 vte_stop_mac(sc);
1392 /* Clear interrupts. */
1393 CSR_READ_2(sc, VTE_MISR);
1394 /*
1395 * Free TX/RX mbufs still in the queues.
1396 */
1397 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1398 rxd = &sc->vte_cdata.vte_rxdesc[i];
1399 if (rxd->rx_m != NULL) {
1400 bus_dmamap_sync(sc->vte_dmatag,
1401 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1402 BUS_DMASYNC_POSTREAD);
1403 bus_dmamap_unload(sc->vte_dmatag,
1404 rxd->rx_dmamap);
1405 m_freem(rxd->rx_m);
1406 rxd->rx_m = NULL;
1407 }
1408 }
1409 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1410 txd = &sc->vte_cdata.vte_txdesc[i];
1411 if (txd->tx_m != NULL) {
1412 bus_dmamap_sync(sc->vte_dmatag,
1413 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1414 BUS_DMASYNC_POSTWRITE);
1415 bus_dmamap_unload(sc->vte_dmatag,
1416 txd->tx_dmamap);
1417 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1418 m_freem(txd->tx_m);
1419 txd->tx_m = NULL;
1420 txd->tx_flags &= ~VTE_TXMBUF;
1421 }
1422 }
1423 /* Free TX mbuf pools used for deep copy. */
1424 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1425 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1426 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1427 sc->vte_cdata.vte_txmbufs[i] = NULL;
1428 }
1429 }
1430 }
1431
1432 static void
1433 vte_start_mac(struct vte_softc *sc)
1434 {
1435 struct ifnet *ifp = &sc->vte_if;
1436 uint16_t mcr;
1437 int i;
1438
1439 /* Enable RX/TX MACs. */
1440 mcr = CSR_READ_2(sc, VTE_MCR0);
1441 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1442 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1443 (ifp->if_flags & IFF_RUNNING) != 0) {
1444 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1445 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1446 for (i = VTE_TIMEOUT; i > 0; i--) {
1447 mcr = CSR_READ_2(sc, VTE_MCR0);
1448 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1449 (MCR0_RX_ENB | MCR0_TX_ENB))
1450 break;
1451 DELAY(10);
1452 }
1453 if (i == 0)
1454 aprint_error_dev(sc->vte_dev,
1455 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1456 }
1457 vte_rxfilter(sc);
1458 }
1459
1460 static void
1461 vte_stop_mac(struct vte_softc *sc)
1462 {
1463 uint16_t mcr;
1464 int i;
1465
1466 /* Disable RX/TX MACs. */
1467 mcr = CSR_READ_2(sc, VTE_MCR0);
1468 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1469 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1470 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1471 for (i = VTE_TIMEOUT; i > 0; i--) {
1472 mcr = CSR_READ_2(sc, VTE_MCR0);
1473 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1474 break;
1475 DELAY(10);
1476 }
1477 if (i == 0)
1478 aprint_error_dev(sc->vte_dev,
1479 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1480 }
1481 }
1482
1483 static int
1484 vte_init_tx_ring(struct vte_softc *sc)
1485 {
1486 struct vte_tx_desc *desc;
1487 struct vte_txdesc *txd;
1488 bus_addr_t addr;
1489 int i;
1490
1491 sc->vte_cdata.vte_tx_prod = 0;
1492 sc->vte_cdata.vte_tx_cons = 0;
1493 sc->vte_cdata.vte_tx_cnt = 0;
1494
1495 /* Pre-allocate TX mbufs for deep copy. */
1496 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1497 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1498 MT_DATA, M_PKTHDR);
1499 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1500 return (ENOBUFS);
1501 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1502 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1503 }
1504 desc = sc->vte_cdata.vte_tx_ring;
1505 bzero(desc, VTE_TX_RING_SZ);
1506 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1507 txd = &sc->vte_cdata.vte_txdesc[i];
1508 txd->tx_m = NULL;
1509 if (i != VTE_TX_RING_CNT - 1)
1510 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1511 sizeof(struct vte_tx_desc) * (i + 1);
1512 else
1513 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1514 sizeof(struct vte_tx_desc) * 0;
1515 desc = &sc->vte_cdata.vte_tx_ring[i];
1516 desc->dtnp = htole32(addr);
1517 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1518 txd->tx_desc = desc;
1519 }
1520
1521 bus_dmamap_sync(sc->vte_dmatag,
1522 sc->vte_cdata.vte_tx_ring_map, 0,
1523 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1524 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1525 return (0);
1526 }
1527
1528 static int
1529 vte_init_rx_ring(struct vte_softc *sc)
1530 {
1531 struct vte_rx_desc *desc;
1532 struct vte_rxdesc *rxd;
1533 bus_addr_t addr;
1534 int i;
1535
1536 sc->vte_cdata.vte_rx_cons = 0;
1537 desc = sc->vte_cdata.vte_rx_ring;
1538 bzero(desc, VTE_RX_RING_SZ);
1539 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1540 rxd = &sc->vte_cdata.vte_rxdesc[i];
1541 rxd->rx_m = NULL;
1542 if (i != VTE_RX_RING_CNT - 1)
1543 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1544 + sizeof(struct vte_rx_desc) * (i + 1);
1545 else
1546 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1547 + sizeof(struct vte_rx_desc) * 0;
1548 desc = &sc->vte_cdata.vte_rx_ring[i];
1549 desc->drnp = htole32(addr);
1550 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1551 rxd->rx_desc = desc;
1552 if (vte_newbuf(sc, rxd) != 0)
1553 return (ENOBUFS);
1554 }
1555
1556 bus_dmamap_sync(sc->vte_dmatag,
1557 sc->vte_cdata.vte_rx_ring_map, 0,
1558 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1559 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1560
1561 return (0);
1562 }
1563
1564 static void
1565 vte_rxfilter(struct vte_softc *sc)
1566 {
1567 struct ether_multistep step;
1568 struct ether_multi *enm;
1569 struct ifnet *ifp;
1570 uint8_t *eaddr;
1571 uint32_t crc;
1572 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1573 uint16_t mchash[4], mcr;
1574 int i, nperf;
1575
1576 ifp = &sc->vte_if;
1577
1578 DPRINTF(("vte_rxfilter\n"));
1579 memset(mchash, 0, sizeof(mchash));
1580 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1581 rxfilt_perf[i][0] = 0xFFFF;
1582 rxfilt_perf[i][1] = 0xFFFF;
1583 rxfilt_perf[i][2] = 0xFFFF;
1584 }
1585
1586 mcr = CSR_READ_2(sc, VTE_MCR0);
1587 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1588 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1589 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1590 mcr |= MCR0_BROADCAST_DIS;
1591 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1592 if ((ifp->if_flags & IFF_PROMISC) != 0)
1593 mcr |= MCR0_PROMISC;
1594 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1595 mcr |= MCR0_MULTICAST;
1596 mchash[0] = 0xFFFF;
1597 mchash[1] = 0xFFFF;
1598 mchash[2] = 0xFFFF;
1599 mchash[3] = 0xFFFF;
1600 goto chipit;
1601 }
1602
1603 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1604 nperf = 0;
1605 while (enm != NULL) {
1606 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1607 sc->vte_if.if_flags |= IFF_ALLMULTI;
1608 mcr |= MCR0_MULTICAST;
1609 mchash[0] = 0xFFFF;
1610 mchash[1] = 0xFFFF;
1611 mchash[2] = 0xFFFF;
1612 mchash[3] = 0xFFFF;
1613 goto chipit;
1614 }
1615 /*
1616 * Program the first 3 multicast groups into
1617 * the perfect filter. For all others, use the
1618 * hash table.
1619 */
1620 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1621 eaddr = enm->enm_addrlo;
1622 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1623 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1624 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1625 nperf++;
1626 } else {
1627 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1628 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1629 }
1630 ETHER_NEXT_MULTI(step, enm);
1631 }
1632 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1633 mchash[3] != 0)
1634 mcr |= MCR0_MULTICAST;
1635
1636 chipit:
1637 /* Program multicast hash table. */
1638 DPRINTF(("chipit write multicast\n"));
1639 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1640 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1641 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1642 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1643 /* Program perfect filter table. */
1644 DPRINTF(("chipit write perfect filter\n"));
1645 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1646 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1647 rxfilt_perf[i][0]);
1648 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1649 rxfilt_perf[i][1]);
1650 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1651 rxfilt_perf[i][2]);
1652 }
1653 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1654 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1655 DPRINTF(("chipit read mcro\n"));
1656 CSR_READ_2(sc, VTE_MCR0);
1657 DPRINTF(("chipit done\n"));
1658 }
1659
1660 /*
1661 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1662 * set up in vte_pci_attach()
1663 */
1664 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1665 {
1666 int rc;
1667 const struct sysctlnode *node;
1668
1669 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1670 0, CTLTYPE_NODE, "vte",
1671 SYSCTL_DESCR("vte interface controls"),
1672 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1673 goto err;
1674 }
1675
1676 vte_root_num = node->sysctl_num;
1677 return;
1678
1679 err:
1680 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1681 }
1682
1683 static int
1684 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1685 {
1686 int error, t;
1687 struct sysctlnode node;
1688 struct vte_softc *sc;
1689
1690 node = *rnode;
1691 sc = node.sysctl_data;
1692 t = sc->vte_int_rx_mod;
1693 node.sysctl_data = &t;
1694 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1695 if (error || newp == NULL)
1696 return error;
1697 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1698 return EINVAL;
1699
1700 sc->vte_int_rx_mod = t;
1701 vte_miibus_statchg(&sc->vte_if);
1702 return 0;
1703 }
1704
1705 static int
1706 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1707 {
1708 int error, t;
1709 struct sysctlnode node;
1710 struct vte_softc *sc;
1711
1712 node = *rnode;
1713 sc = node.sysctl_data;
1714 t = sc->vte_int_tx_mod;
1715 node.sysctl_data = &t;
1716 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1717 if (error || newp == NULL)
1718 return error;
1719
1720 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1721 return EINVAL;
1722 sc->vte_int_tx_mod = t;
1723 vte_miibus_statchg(&sc->vte_if);
1724 return 0;
1725 }
1726