if_vte.c revision 1.26 1 /* $NetBSD: if_vte.c,v 1.26 2019/05/28 07:41:49 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.26 2019/05/28 07:41:49 msaitoh Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78 #include <net/bpf.h>
79
80 #include <sys/rndsource.h>
81
82 #include "opt_inet.h"
83 #include <net/if_ether.h>
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/if_inarp.h>
90 #endif
91
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 #include <dev/pci/pcidevs.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/pci/if_vtereg.h>
103 #include <dev/pci/if_vtevar.h>
104
105 static int vte_match(device_t, cfdata_t, void *);
106 static void vte_attach(device_t, device_t, void *);
107 static int vte_detach(device_t, int);
108 static int vte_dma_alloc(struct vte_softc *);
109 static void vte_dma_free(struct vte_softc *);
110 static struct vte_txdesc *
111 vte_encap(struct vte_softc *, struct mbuf **);
112 static void vte_get_macaddr(struct vte_softc *);
113 static int vte_init(struct ifnet *);
114 static int vte_init_rx_ring(struct vte_softc *);
115 static int vte_init_tx_ring(struct vte_softc *);
116 static int vte_intr(void *);
117 static int vte_ifioctl(struct ifnet *, u_long, void *);
118 static void vte_mac_config(struct vte_softc *);
119 static int vte_miibus_readreg(device_t, int, int, uint16_t *);
120 static void vte_miibus_statchg(struct ifnet *);
121 static int vte_miibus_writereg(device_t, int, int, uint16_t);
122 static int vte_mediachange(struct ifnet *);
123 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
124 static void vte_reset(struct vte_softc *);
125 static void vte_rxeof(struct vte_softc *);
126 static void vte_rxfilter(struct vte_softc *);
127 static bool vte_shutdown(device_t, int);
128 static bool vte_suspend(device_t, const pmf_qual_t *);
129 static bool vte_resume(device_t, const pmf_qual_t *);
130 static void vte_ifstart(struct ifnet *);
131 static void vte_start_mac(struct vte_softc *);
132 static void vte_stats_clear(struct vte_softc *);
133 static void vte_stats_update(struct vte_softc *);
134 static void vte_stop(struct ifnet *, int);
135 static void vte_stop_mac(struct vte_softc *);
136 static void vte_tick(void *);
137 static void vte_txeof(struct vte_softc *);
138 static void vte_ifwatchdog(struct ifnet *);
139
140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
142 static int vte_root_num;
143
144 #define DPRINTF(a)
145
146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
147 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
148
149
150 static int
151 vte_match(device_t parent, cfdata_t cf, void *aux)
152 {
153 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
154
155 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
156 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
157 return 1;
158
159 return 0;
160 }
161
162 static void
163 vte_attach(device_t parent, device_t self, void *aux)
164 {
165 struct vte_softc *sc = device_private(self);
166 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
167 struct ifnet * const ifp = &sc->vte_if;
168 struct mii_data * const mii = &sc->vte_mii;
169 int h_valid;
170 pcireg_t reg, csr;
171 pci_intr_handle_t intrhandle;
172 const char *intrstr;
173 int error;
174 const struct sysctlnode *node;
175 int vte_nodenum;
176 char intrbuf[PCI_INTRSTR_LEN];
177
178 sc->vte_dev = self;
179
180 callout_init(&sc->vte_tick_ch, 0);
181
182 /* Map the device. */
183 h_valid = 0;
184 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 }
190 if (h_valid == 0) {
191 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 &sc->vte_bushandle, NULL, NULL) == 0);
196 }
197 }
198 if (h_valid == 0) {
199 aprint_error_dev(self, "unable to map device registers\n");
200 return;
201 }
202 sc->vte_dmatag = pa->pa_dmat;
203 /* Enable the device. */
204 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 csr | PCI_COMMAND_MASTER_ENABLE);
207
208 pci_aprint_devinfo(pa, NULL);
209
210 /* Reset the ethernet controller. */
211 vte_reset(sc);
212
213 if ((error = vte_dma_alloc(sc)) != 0)
214 return;
215
216 /* Load station address. */
217 vte_get_macaddr(sc);
218
219 aprint_normal_dev(self, "Ethernet address %s\n",
220 ether_sprintf(sc->vte_eaddr));
221
222 /* Map and establish interrupts */
223 if (pci_intr_map(pa, &intrhandle)) {
224 aprint_error_dev(self, "couldn't map interrupt\n");
225 return;
226 }
227 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
228 sizeof(intrbuf));
229 sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
230 vte_intr, sc, device_xname(self));
231 if (sc->vte_ih == NULL) {
232 aprint_error_dev(self, "couldn't establish interrupt");
233 if (intrstr != NULL)
234 aprint_error(" at %s", intrstr);
235 aprint_error("\n");
236 return;
237 }
238 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
239
240 sc->vte_if.if_softc = sc;
241 mii->mii_ifp = ifp;
242 mii->mii_readreg = vte_miibus_readreg;
243 mii->mii_writereg = vte_miibus_writereg;
244 mii->mii_statchg = vte_miibus_statchg;
245 sc->vte_ec.ec_mii = mii;
246 ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
247 ether_mediastatus);
248 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
249 MII_OFFSET_ANY, 0);
250 if (LIST_FIRST(&mii->mii_phys) == NULL) {
251 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
252 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
253 } else
254 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
255
256 /*
257 * We can support 802.1Q VLAN-sized frames.
258 */
259 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
260
261 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
262 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
263 ifp->if_ioctl = vte_ifioctl;
264 ifp->if_start = vte_ifstart;
265 ifp->if_watchdog = vte_ifwatchdog;
266 ifp->if_init = vte_init;
267 ifp->if_stop = vte_stop;
268 ifp->if_timer = 0;
269 IFQ_SET_READY(&ifp->if_snd);
270 if_attach(ifp);
271 if_deferred_start_init(ifp, NULL);
272 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
273
274 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
275 pmf_class_network_register(self, ifp);
276 else
277 aprint_error_dev(self, "couldn't establish power handler\n");
278
279 rnd_attach_source(&sc->rnd_source, device_xname(self),
280 RND_TYPE_NET, RND_FLAG_DEFAULT);
281
282 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
283 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
284 SYSCTL_DESCR("vte per-controller controls"),
285 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
286 CTL_EOL) != 0) {
287 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
288 return;
289 }
290 vte_nodenum = node->sysctl_num;
291 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
292 CTLFLAG_READWRITE,
293 CTLTYPE_INT, "int_rxct",
294 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
295 vte_sysctl_intrxct, 0, (void *)sc,
296 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
297 CTL_EOL) != 0) {
298 aprint_normal_dev(sc->vte_dev,
299 "couldn't create int_rxct sysctl node\n");
300 }
301 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
302 CTLFLAG_READWRITE,
303 CTLTYPE_INT, "int_txct",
304 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
305 vte_sysctl_inttxct, 0, (void *)sc,
306 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
307 CTL_EOL) != 0) {
308 aprint_normal_dev(sc->vte_dev,
309 "couldn't create int_txct sysctl node\n");
310 }
311 }
312
313 static int
314 vte_detach(device_t dev, int flags __unused)
315 {
316 struct vte_softc *sc = device_private(dev);
317 struct ifnet *ifp = &sc->vte_if;
318 int s;
319
320 s = splnet();
321 /* Stop the interface. Callouts are stopped in it. */
322 vte_stop(ifp, 1);
323 splx(s);
324
325 pmf_device_deregister(dev);
326
327 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
328 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
329
330 ether_ifdetach(ifp);
331 if_detach(ifp);
332
333 vte_dma_free(sc);
334
335 return (0);
336 }
337
338 static int
339 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
340 {
341 struct vte_softc *sc = device_private(dev);
342 int i;
343
344 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
345 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
346 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
347 DELAY(5);
348 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
349 break;
350 }
351
352 if (i == 0) {
353 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
354 return ETIMEDOUT;
355 }
356
357 *val = CSR_READ_2(sc, VTE_MMRD);
358 return 0;
359 }
360
361 static int
362 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
363 {
364 struct vte_softc *sc = device_private(dev);
365 int i;
366
367 CSR_WRITE_2(sc, VTE_MMWD, val);
368 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
369 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
370 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
371 DELAY(5);
372 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
373 break;
374 }
375
376 if (i == 0) {
377 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
378 return ETIMEDOUT;
379 }
380
381 return 0;
382 }
383
384 static void
385 vte_miibus_statchg(struct ifnet *ifp)
386 {
387 struct vte_softc *sc = ifp->if_softc;
388 uint16_t val;
389
390 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
391 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
392
393 sc->vte_flags &= ~VTE_FLAG_LINK;
394 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
395 (IFM_ACTIVE | IFM_AVALID)) {
396 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
397 case IFM_10_T:
398 case IFM_100_TX:
399 sc->vte_flags |= VTE_FLAG_LINK;
400 break;
401 default:
402 break;
403 }
404 }
405
406 /* Stop RX/TX MACs. */
407 vte_stop_mac(sc);
408 /* Program MACs with resolved duplex and flow control. */
409 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
410 /*
411 * Timer waiting time : (63 + TIMER * 64) MII clock.
412 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
413 */
414 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
415 val = 18 << VTE_IM_TIMER_SHIFT;
416 else
417 val = 1 << VTE_IM_TIMER_SHIFT;
418 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
419 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
420 CSR_WRITE_2(sc, VTE_MRICR, val);
421
422 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
423 val = 18 << VTE_IM_TIMER_SHIFT;
424 else
425 val = 1 << VTE_IM_TIMER_SHIFT;
426 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
427 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
428 CSR_WRITE_2(sc, VTE_MTICR, val);
429
430 vte_mac_config(sc);
431 vte_start_mac(sc);
432 DPRINTF(("vte_miibus_statchg: link\n"));
433 }
434 }
435
436 static void
437 vte_get_macaddr(struct vte_softc *sc)
438 {
439 uint16_t mid;
440
441 /*
442 * It seems there is no way to reload station address and
443 * it is supposed to be set by BIOS.
444 */
445 mid = CSR_READ_2(sc, VTE_MID0L);
446 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
447 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
448 mid = CSR_READ_2(sc, VTE_MID0M);
449 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
450 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
451 mid = CSR_READ_2(sc, VTE_MID0H);
452 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
453 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
454 }
455
456
457 static int
458 vte_dma_alloc(struct vte_softc *sc)
459 {
460 struct vte_txdesc *txd;
461 struct vte_rxdesc *rxd;
462 int error, i, rseg;
463
464 /* create DMA map for TX ring */
465 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
466 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
467 &sc->vte_cdata.vte_tx_ring_map);
468 if (error) {
469 aprint_error_dev(sc->vte_dev,
470 "could not create dma map for TX ring (%d)\n",
471 error);
472 goto fail;
473 }
474 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
475 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
476 VTE_TX_RING_ALIGN, 0,
477 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
478 BUS_DMA_NOWAIT);
479 if (error != 0) {
480 aprint_error_dev(sc->vte_dev,
481 "could not allocate DMA'able memory for TX ring (%d).\n",
482 error);
483 goto fail;
484 }
485 KASSERT(rseg == 1);
486 error = bus_dmamem_map(sc->vte_dmatag,
487 sc->vte_cdata.vte_tx_ring_seg, 1,
488 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
489 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
490 if (error != 0) {
491 aprint_error_dev(sc->vte_dev,
492 "could not map DMA'able memory for TX ring (%d).\n",
493 error);
494 goto fail;
495 }
496 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
497 error = bus_dmamap_load(sc->vte_dmatag,
498 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
499 VTE_TX_RING_SZ, NULL,
500 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
501 if (error != 0) {
502 aprint_error_dev(sc->vte_dev,
503 "could not load DMA'able memory for TX ring.\n");
504 goto fail;
505 }
506
507 /* create DMA map for RX ring */
508 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
509 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
510 &sc->vte_cdata.vte_rx_ring_map);
511 if (error) {
512 aprint_error_dev(sc->vte_dev,
513 "could not create dma map for RX ring (%d)\n",
514 error);
515 goto fail;
516 }
517 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
518 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
519 VTE_RX_RING_ALIGN, 0,
520 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
521 BUS_DMA_NOWAIT);
522 if (error != 0) {
523 aprint_error_dev(sc->vte_dev,
524 "could not allocate DMA'able memory for RX ring (%d).\n",
525 error);
526 goto fail;
527 }
528 KASSERT(rseg == 1);
529 error = bus_dmamem_map(sc->vte_dmatag,
530 sc->vte_cdata.vte_rx_ring_seg, 1,
531 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
532 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
533 if (error != 0) {
534 aprint_error_dev(sc->vte_dev,
535 "could not map DMA'able memory for RX ring (%d).\n",
536 error);
537 goto fail;
538 }
539 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
540 error = bus_dmamap_load(sc->vte_dmatag,
541 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
542 VTE_RX_RING_SZ, NULL,
543 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
544 if (error != 0) {
545 aprint_error_dev(sc->vte_dev,
546 "could not load DMA'able memory for RX ring (%d).\n",
547 error);
548 goto fail;
549 }
550
551 /* Create DMA maps for TX buffers. */
552 for (i = 0; i < VTE_TX_RING_CNT; i++) {
553 txd = &sc->vte_cdata.vte_txdesc[i];
554 txd->tx_m = NULL;
555 txd->tx_dmamap = NULL;
556 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
557 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
558 &txd->tx_dmamap);
559 if (error != 0) {
560 aprint_error_dev(sc->vte_dev,
561 "could not create TX DMA map %d (%d).\n", i, error);
562 goto fail;
563 }
564 }
565 /* Create DMA maps for RX buffers. */
566 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
567 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
568 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
569 aprint_error_dev(sc->vte_dev,
570 "could not create spare RX dmamap (%d).\n", error);
571 goto fail;
572 }
573 for (i = 0; i < VTE_RX_RING_CNT; i++) {
574 rxd = &sc->vte_cdata.vte_rxdesc[i];
575 rxd->rx_m = NULL;
576 rxd->rx_dmamap = NULL;
577 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
578 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
579 &rxd->rx_dmamap);
580 if (error != 0) {
581 aprint_error_dev(sc->vte_dev,
582 "could not create RX dmamap %d (%d).\n", i, error);
583 goto fail;
584 }
585 }
586 return 0;
587
588 fail:
589 vte_dma_free(sc);
590 return (error);
591 }
592
593 static void
594 vte_dma_free(struct vte_softc *sc)
595 {
596 struct vte_txdesc *txd;
597 struct vte_rxdesc *rxd;
598 int i;
599
600 /* TX buffers. */
601 for (i = 0; i < VTE_TX_RING_CNT; i++) {
602 txd = &sc->vte_cdata.vte_txdesc[i];
603 if (txd->tx_dmamap != NULL) {
604 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
605 txd->tx_dmamap = NULL;
606 }
607 }
608 /* RX buffers */
609 for (i = 0; i < VTE_RX_RING_CNT; i++) {
610 rxd = &sc->vte_cdata.vte_rxdesc[i];
611 if (rxd->rx_dmamap != NULL) {
612 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
613 rxd->rx_dmamap = NULL;
614 }
615 }
616 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
617 bus_dmamap_destroy(sc->vte_dmatag,
618 sc->vte_cdata.vte_rx_sparemap);
619 sc->vte_cdata.vte_rx_sparemap = NULL;
620 }
621 /* TX descriptor ring. */
622 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
623 bus_dmamap_unload(sc->vte_dmatag,
624 sc->vte_cdata.vte_tx_ring_map);
625 bus_dmamap_destroy(sc->vte_dmatag,
626 sc->vte_cdata.vte_tx_ring_map);
627 }
628 if (sc->vte_cdata.vte_tx_ring != NULL) {
629 bus_dmamem_unmap(sc->vte_dmatag,
630 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
631 bus_dmamem_free(sc->vte_dmatag,
632 sc->vte_cdata.vte_tx_ring_seg, 1);
633 }
634 sc->vte_cdata.vte_tx_ring = NULL;
635 sc->vte_cdata.vte_tx_ring_map = NULL;
636 /* RX ring. */
637 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
638 bus_dmamap_unload(sc->vte_dmatag,
639 sc->vte_cdata.vte_rx_ring_map);
640 bus_dmamap_destroy(sc->vte_dmatag,
641 sc->vte_cdata.vte_rx_ring_map);
642 }
643 if (sc->vte_cdata.vte_rx_ring != NULL) {
644 bus_dmamem_unmap(sc->vte_dmatag,
645 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
646 bus_dmamem_free(sc->vte_dmatag,
647 sc->vte_cdata.vte_rx_ring_seg, 1);
648 }
649 sc->vte_cdata.vte_rx_ring = NULL;
650 sc->vte_cdata.vte_rx_ring_map = NULL;
651 }
652
653 static bool
654 vte_shutdown(device_t dev, int howto)
655 {
656
657 return (vte_suspend(dev, NULL));
658 }
659
660 static bool
661 vte_suspend(device_t dev, const pmf_qual_t *qual)
662 {
663 struct vte_softc *sc = device_private(dev);
664 struct ifnet *ifp = &sc->vte_if;
665
666 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
667 if ((ifp->if_flags & IFF_RUNNING) != 0)
668 vte_stop(ifp, 1);
669 return (0);
670 }
671
672 static bool
673 vte_resume(device_t dev, const pmf_qual_t *qual)
674 {
675 struct vte_softc *sc = device_private(dev);
676 struct ifnet *ifp;
677
678 ifp = &sc->vte_if;
679 if ((ifp->if_flags & IFF_UP) != 0) {
680 ifp->if_flags &= ~IFF_RUNNING;
681 vte_init(ifp);
682 }
683
684 return (0);
685 }
686
687 static struct vte_txdesc *
688 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
689 {
690 struct vte_txdesc *txd;
691 struct mbuf *m, *n;
692 int copy, error, padlen;
693
694 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
695 m = *m_head;
696 /*
697 * Controller doesn't auto-pad, so we have to make sure pad
698 * short frames out to the minimum frame length.
699 */
700 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
701 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
702 else
703 padlen = 0;
704
705 /*
706 * Controller does not support multi-fragmented TX buffers.
707 * Controller spends most of its TX processing time in
708 * de-fragmenting TX buffers. Either faster CPU or more
709 * advanced controller DMA engine is required to speed up
710 * TX path processing.
711 * To mitigate the de-fragmenting issue, perform deep copy
712 * from fragmented mbuf chains to a pre-allocated mbuf
713 * cluster with extra cost of kernel memory. For frames
714 * that is composed of single TX buffer, the deep copy is
715 * bypassed.
716 */
717 copy = 0;
718 if (m->m_next != NULL)
719 copy++;
720 if (padlen > 0 && (M_READONLY(m) ||
721 padlen > M_TRAILINGSPACE(m)))
722 copy++;
723 if (copy != 0) {
724 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
725 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
726 n->m_pkthdr.len = m->m_pkthdr.len;
727 n->m_len = m->m_pkthdr.len;
728 m = n;
729 txd->tx_flags |= VTE_TXMBUF;
730 }
731
732 if (padlen > 0) {
733 /* Zero out the bytes in the pad area. */
734 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
735 m->m_pkthdr.len += padlen;
736 m->m_len = m->m_pkthdr.len;
737 }
738
739 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
740 BUS_DMA_NOWAIT);
741 if (error != 0) {
742 txd->tx_flags &= ~VTE_TXMBUF;
743 return (NULL);
744 }
745 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
746 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
747 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
748
749 txd->tx_desc->dtlen =
750 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
751 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
752 sc->vte_cdata.vte_tx_cnt++;
753 /* Update producer index. */
754 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
755
756 /* Finally hand over ownership to controller. */
757 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
758 txd->tx_m = m;
759
760 return (txd);
761 }
762
763 static void
764 vte_ifstart(struct ifnet *ifp)
765 {
766 struct vte_softc *sc = ifp->if_softc;
767 struct vte_txdesc *txd;
768 struct mbuf *m_head, *m;
769 int enq;
770
771 ifp = &sc->vte_if;
772
773 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
774
775 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
776 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
777 return;
778
779 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
780 /* Reserve one free TX descriptor. */
781 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
782 ifp->if_flags |= IFF_OACTIVE;
783 break;
784 }
785 IFQ_POLL(&ifp->if_snd, m_head);
786 if (m_head == NULL)
787 break;
788 /*
789 * Pack the data into the transmit ring. If we
790 * don't have room, set the OACTIVE flag and wait
791 * for the NIC to drain the ring.
792 */
793 DPRINTF(("vte_encap:"));
794 if ((txd = vte_encap(sc, &m_head)) == NULL) {
795 DPRINTF((" failed\n"));
796 break;
797 }
798 DPRINTF((" ok\n"));
799 IFQ_DEQUEUE(&ifp->if_snd, m);
800 KASSERT(m == m_head);
801
802 enq++;
803 /*
804 * If there's a BPF listener, bounce a copy of this frame
805 * to him.
806 */
807 bpf_mtap(ifp, m_head, BPF_D_OUT);
808 /* Free consumed TX frame. */
809 if ((txd->tx_flags & VTE_TXMBUF) != 0)
810 m_freem(m_head);
811 }
812
813 if (enq > 0) {
814 bus_dmamap_sync(sc->vte_dmatag,
815 sc->vte_cdata.vte_tx_ring_map, 0,
816 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
817 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
818 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
819 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
820 }
821 }
822
823 static void
824 vte_ifwatchdog(struct ifnet *ifp)
825 {
826 struct vte_softc *sc = ifp->if_softc;
827
828 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
829 return;
830
831 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
832 ifp->if_oerrors++;
833 vte_init(ifp);
834 if (!IFQ_IS_EMPTY(&ifp->if_snd))
835 vte_ifstart(ifp);
836 }
837
838 static int
839 vte_mediachange(struct ifnet *ifp)
840 {
841 int error;
842 struct vte_softc *sc = ifp->if_softc;
843
844 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
845 error = 0;
846 else if (error != 0) {
847 aprint_error_dev(sc->vte_dev, "could not set media\n");
848 return error;
849 }
850 return 0;
851
852 }
853
854 static int
855 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
856 {
857 struct vte_softc *sc = ifp->if_softc;
858 int error, s;
859
860 s = splnet();
861 error = ether_ioctl(ifp, cmd, data);
862 if (error == ENETRESET) {
863 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
864 if (ifp->if_flags & IFF_RUNNING)
865 vte_rxfilter(sc);
866 error = 0;
867 }
868 splx(s);
869 return error;
870 }
871
872 static void
873 vte_mac_config(struct vte_softc *sc)
874 {
875 uint16_t mcr;
876
877 mcr = CSR_READ_2(sc, VTE_MCR0);
878 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
879 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
880 mcr |= MCR0_FULL_DUPLEX;
881 #ifdef notyet
882 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
883 mcr |= MCR0_FC_ENB;
884 /*
885 * The data sheet is not clear whether the controller
886 * honors received pause frames or not. The is no
887 * separate control bit for RX pause frame so just
888 * enable MCR0_FC_ENB bit.
889 */
890 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
891 mcr |= MCR0_FC_ENB;
892 #endif
893 }
894 CSR_WRITE_2(sc, VTE_MCR0, mcr);
895 }
896
897 static void
898 vte_stats_clear(struct vte_softc *sc)
899 {
900
901 /* Reading counter registers clears its contents. */
902 CSR_READ_2(sc, VTE_CNT_RX_DONE);
903 CSR_READ_2(sc, VTE_CNT_MECNT0);
904 CSR_READ_2(sc, VTE_CNT_MECNT1);
905 CSR_READ_2(sc, VTE_CNT_MECNT2);
906 CSR_READ_2(sc, VTE_CNT_MECNT3);
907 CSR_READ_2(sc, VTE_CNT_TX_DONE);
908 CSR_READ_2(sc, VTE_CNT_MECNT4);
909 CSR_READ_2(sc, VTE_CNT_PAUSE);
910 }
911
912 static void
913 vte_stats_update(struct vte_softc *sc)
914 {
915 struct vte_hw_stats *stat;
916 struct ifnet *ifp = &sc->vte_if;
917 uint16_t value;
918
919 stat = &sc->vte_stats;
920
921 CSR_READ_2(sc, VTE_MECISR);
922 /* RX stats. */
923 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
924 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
925 stat->rx_bcast_frames += (value >> 8);
926 stat->rx_mcast_frames += (value & 0xFF);
927 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
928 stat->rx_runts += (value >> 8);
929 stat->rx_crcerrs += (value & 0xFF);
930 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
931 stat->rx_long_frames += (value & 0xFF);
932 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
933 stat->rx_fifo_full += (value >> 8);
934 stat->rx_desc_unavail += (value & 0xFF);
935
936 /* TX stats. */
937 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
938 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
939 stat->tx_underruns += (value >> 8);
940 stat->tx_late_colls += (value & 0xFF);
941
942 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
943 stat->tx_pause_frames += (value >> 8);
944 stat->rx_pause_frames += (value & 0xFF);
945
946 /* Update ifp counters. */
947 ifp->if_opackets = stat->tx_frames;
948 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
949 ifp->if_ipackets = stat->rx_frames;
950 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
951 stat->rx_long_frames + stat->rx_fifo_full;
952 }
953
954 static int
955 vte_intr(void *arg)
956 {
957 struct vte_softc *sc = (struct vte_softc *)arg;
958 struct ifnet *ifp = &sc->vte_if;
959 uint16_t status;
960 int n;
961
962 /* Reading VTE_MISR acknowledges interrupts. */
963 status = CSR_READ_2(sc, VTE_MISR);
964 DPRINTF(("vte_intr status 0x%x\n", status));
965 if ((status & VTE_INTRS) == 0) {
966 /* Not ours. */
967 return 0;
968 }
969
970 /* Disable interrupts. */
971 CSR_WRITE_2(sc, VTE_MIER, 0);
972 for (n = 8; (status & VTE_INTRS) != 0;) {
973 if ((ifp->if_flags & IFF_RUNNING) == 0)
974 break;
975 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
976 MISR_RX_FIFO_FULL)) != 0)
977 vte_rxeof(sc);
978 if ((status & MISR_TX_DONE) != 0)
979 vte_txeof(sc);
980 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
981 vte_stats_update(sc);
982 if_schedule_deferred_start(ifp);
983 if (--n > 0)
984 status = CSR_READ_2(sc, VTE_MISR);
985 else
986 break;
987 }
988
989 if ((ifp->if_flags & IFF_RUNNING) != 0) {
990 /* Re-enable interrupts. */
991 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
992 }
993 return 1;
994 }
995
996 static void
997 vte_txeof(struct vte_softc *sc)
998 {
999 struct ifnet *ifp;
1000 struct vte_txdesc *txd;
1001 uint16_t status;
1002 int cons, prog;
1003
1004 ifp = &sc->vte_if;
1005
1006 if (sc->vte_cdata.vte_tx_cnt == 0)
1007 return;
1008 bus_dmamap_sync(sc->vte_dmatag,
1009 sc->vte_cdata.vte_tx_ring_map, 0,
1010 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1011 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1012 cons = sc->vte_cdata.vte_tx_cons;
1013 /*
1014 * Go through our TX list and free mbufs for those
1015 * frames which have been transmitted.
1016 */
1017 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1018 txd = &sc->vte_cdata.vte_txdesc[cons];
1019 status = le16toh(txd->tx_desc->dtst);
1020 if ((status & VTE_DTST_TX_OWN) != 0)
1021 break;
1022 if ((status & VTE_DTST_TX_OK) != 0)
1023 ifp->if_collisions += (status & 0xf);
1024 sc->vte_cdata.vte_tx_cnt--;
1025 /* Reclaim transmitted mbufs. */
1026 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1027 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1028 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1029 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1030 m_freem(txd->tx_m);
1031 txd->tx_flags &= ~VTE_TXMBUF;
1032 txd->tx_m = NULL;
1033 prog++;
1034 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1035 }
1036
1037 if (prog > 0) {
1038 ifp->if_flags &= ~IFF_OACTIVE;
1039 sc->vte_cdata.vte_tx_cons = cons;
1040 /*
1041 * Unarm watchdog timer only when there is no pending
1042 * frames in TX queue.
1043 */
1044 if (sc->vte_cdata.vte_tx_cnt == 0)
1045 sc->vte_watchdog_timer = 0;
1046 }
1047 }
1048
1049 static int
1050 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1051 {
1052 struct mbuf *m;
1053 bus_dmamap_t map;
1054
1055 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1056 if (m == NULL)
1057 return (ENOBUFS);
1058 m->m_len = m->m_pkthdr.len = MCLBYTES;
1059 m_adj(m, sizeof(uint32_t));
1060
1061 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1062 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1063 m_freem(m);
1064 return (ENOBUFS);
1065 }
1066 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1067
1068 if (rxd->rx_m != NULL) {
1069 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1070 0, rxd->rx_dmamap->dm_mapsize,
1071 BUS_DMASYNC_POSTREAD);
1072 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1073 }
1074 map = rxd->rx_dmamap;
1075 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1076 sc->vte_cdata.vte_rx_sparemap = map;
1077 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1078 0, rxd->rx_dmamap->dm_mapsize,
1079 BUS_DMASYNC_PREREAD);
1080 rxd->rx_m = m;
1081 rxd->rx_desc->drbp =
1082 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1083 rxd->rx_desc->drlen = htole16(
1084 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1085 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1086 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1087 rxd->rx_dmamap->dm_segs[0].ds_len));
1088 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1089
1090 return (0);
1091 }
1092
1093 static void
1094 vte_rxeof(struct vte_softc *sc)
1095 {
1096 struct ifnet *ifp;
1097 struct vte_rxdesc *rxd;
1098 struct mbuf *m;
1099 uint16_t status, total_len;
1100 int cons, prog;
1101
1102 bus_dmamap_sync(sc->vte_dmatag,
1103 sc->vte_cdata.vte_rx_ring_map, 0,
1104 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1105 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1106 cons = sc->vte_cdata.vte_rx_cons;
1107 ifp = &sc->vte_if;
1108 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1109 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1110 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1111 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1112 status = le16toh(rxd->rx_desc->drst);
1113 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1114 cons, rxd, rxd->rx_m, status,
1115 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1116 if ((status & VTE_DRST_RX_OWN) != 0)
1117 break;
1118 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1119 m = rxd->rx_m;
1120 if ((status & VTE_DRST_RX_OK) == 0) {
1121 /* Discard errored frame. */
1122 rxd->rx_desc->drlen =
1123 htole16(MCLBYTES - sizeof(uint32_t));
1124 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1125 continue;
1126 }
1127 if (vte_newbuf(sc, rxd) != 0) {
1128 DPRINTF(("vte_rxeof newbuf failed\n"));
1129 ifp->if_ierrors++;
1130 rxd->rx_desc->drlen =
1131 htole16(MCLBYTES - sizeof(uint32_t));
1132 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1133 continue;
1134 }
1135
1136 /*
1137 * It seems there is no way to strip FCS bytes.
1138 */
1139 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1140 m_set_rcvif(m, ifp);
1141 if_percpuq_enqueue(ifp->if_percpuq, m);
1142 }
1143
1144 if (prog > 0) {
1145 /* Update the consumer index. */
1146 sc->vte_cdata.vte_rx_cons = cons;
1147 /*
1148 * Sync updated RX descriptors such that controller see
1149 * modified RX buffer addresses.
1150 */
1151 bus_dmamap_sync(sc->vte_dmatag,
1152 sc->vte_cdata.vte_rx_ring_map, 0,
1153 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1154 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1155 #ifdef notyet
1156 /*
1157 * Update residue counter. Controller does not
1158 * keep track of number of available RX descriptors
1159 * such that driver should have to update VTE_MRDCR
1160 * to make controller know how many free RX
1161 * descriptors were added to controller. This is
1162 * a similar mechanism used in VIA velocity
1163 * controllers and it indicates controller just
1164 * polls OWN bit of current RX descriptor pointer.
1165 * A couple of severe issues were seen on sample
1166 * board where the controller continuously emits TX
1167 * pause frames once RX pause threshold crossed.
1168 * Once triggered it never recovered form that
1169 * state, I couldn't find a way to make it back to
1170 * work at least. This issue effectively
1171 * disconnected the system from network. Also, the
1172 * controller used 00:00:00:00:00:00 as source
1173 * station address of TX pause frame. Probably this
1174 * is one of reason why vendor recommends not to
1175 * enable flow control on R6040 controller.
1176 */
1177 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1178 (((VTE_RX_RING_CNT * 2) / 10) <<
1179 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1180 #endif
1181 rnd_add_uint32(&sc->rnd_source, prog);
1182 }
1183 }
1184
1185 static void
1186 vte_tick(void *arg)
1187 {
1188 struct vte_softc *sc;
1189 int s = splnet();
1190
1191 sc = (struct vte_softc *)arg;
1192
1193 mii_tick(&sc->vte_mii);
1194 vte_stats_update(sc);
1195 vte_txeof(sc);
1196 vte_ifwatchdog(&sc->vte_if);
1197 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1198 splx(s);
1199 }
1200
1201 static void
1202 vte_reset(struct vte_softc *sc)
1203 {
1204 uint16_t mcr;
1205 int i;
1206
1207 mcr = CSR_READ_2(sc, VTE_MCR1);
1208 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1209 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1210 DELAY(10);
1211 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1212 break;
1213 }
1214 if (i == 0)
1215 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1216 /*
1217 * Follow the guide of vendor recommended way to reset MAC.
1218 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1219 * not reliable so manually reset internal state machine.
1220 */
1221 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1222 CSR_WRITE_2(sc, VTE_MACSM, 0);
1223 DELAY(5000);
1224 }
1225
1226
1227 static int
1228 vte_init(struct ifnet *ifp)
1229 {
1230 struct vte_softc *sc = ifp->if_softc;
1231 bus_addr_t paddr;
1232 uint8_t eaddr[ETHER_ADDR_LEN];
1233 int s, error;
1234
1235 s = splnet();
1236 /*
1237 * Cancel any pending I/O.
1238 */
1239 vte_stop(ifp, 1);
1240 /*
1241 * Reset the chip to a known state.
1242 */
1243 vte_reset(sc);
1244
1245 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1246 splx(s);
1247 return 0;
1248 }
1249
1250 /* Initialize RX descriptors. */
1251 if (vte_init_rx_ring(sc) != 0) {
1252 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1253 vte_stop(ifp, 1);
1254 splx(s);
1255 return ENOMEM;
1256 }
1257 if (vte_init_tx_ring(sc) != 0) {
1258 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1259 vte_stop(ifp, 1);
1260 splx(s);
1261 return ENOMEM;
1262 }
1263
1264 /*
1265 * Reprogram the station address. Controller supports up
1266 * to 4 different station addresses so driver programs the
1267 * first station address as its own ethernet address and
1268 * configure the remaining three addresses as perfect
1269 * multicast addresses.
1270 */
1271 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1272 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1273 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1274 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1275
1276 /* Set TX descriptor base addresses. */
1277 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1278 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1279 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1280 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1281
1282 /* Set RX descriptor base addresses. */
1283 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1284 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1285 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1286 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1287 /*
1288 * Initialize RX descriptor residue counter and set RX
1289 * pause threshold to 20% of available RX descriptors.
1290 * See comments on vte_rxeof() for details on flow control
1291 * issues.
1292 */
1293 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1294 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1295
1296 /*
1297 * Always use maximum frame size that controller can
1298 * support. Otherwise received frames that has longer
1299 * frame length than vte(4) MTU would be silently dropped
1300 * in controller. This would break path-MTU discovery as
1301 * sender wouldn't get any responses from receiver. The
1302 * RX buffer size should be multiple of 4.
1303 * Note, jumbo frames are silently ignored by controller
1304 * and even MAC counters do not detect them.
1305 */
1306 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1307
1308 /* Configure FIFO. */
1309 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1310 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1311 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1312
1313 /*
1314 * Configure TX/RX MACs. Actual resolved duplex and flow
1315 * control configuration is done after detecting a valid
1316 * link. Note, we don't generate early interrupt here
1317 * as well since FreeBSD does not have interrupt latency
1318 * problems like Windows.
1319 */
1320 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1321 /*
1322 * We manually keep track of PHY status changes to
1323 * configure resolved duplex and flow control since only
1324 * duplex configuration can be automatically reflected to
1325 * MCR0.
1326 */
1327 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1328 MCR1_EXCESS_COL_RETRY_16);
1329
1330 /* Initialize RX filter. */
1331 vte_rxfilter(sc);
1332
1333 /* Disable TX/RX interrupt moderation control. */
1334 CSR_WRITE_2(sc, VTE_MRICR, 0);
1335 CSR_WRITE_2(sc, VTE_MTICR, 0);
1336
1337 /* Enable MAC event counter interrupts. */
1338 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1339 /* Clear MAC statistics. */
1340 vte_stats_clear(sc);
1341
1342 /* Acknowledge all pending interrupts and clear it. */
1343 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1344 CSR_WRITE_2(sc, VTE_MISR, 0);
1345 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1346 CSR_READ_2(sc, VTE_MISR)));
1347
1348 sc->vte_flags &= ~VTE_FLAG_LINK;
1349 ifp->if_flags |= IFF_RUNNING;
1350 ifp->if_flags &= ~IFF_OACTIVE;
1351
1352 /* calling mii_mediachg will call back vte_start_mac() */
1353 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1354 error = 0;
1355 else if (error != 0) {
1356 aprint_error_dev(sc->vte_dev, "could not set media\n");
1357 splx(s);
1358 return error;
1359 }
1360
1361 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1362
1363 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1364 CSR_READ_2(sc, VTE_MISR)));
1365 splx(s);
1366 return 0;
1367 }
1368
1369 static void
1370 vte_stop(struct ifnet *ifp, int disable)
1371 {
1372 struct vte_softc *sc = ifp->if_softc;
1373 struct vte_txdesc *txd;
1374 struct vte_rxdesc *rxd;
1375 int i;
1376
1377 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1378 if ((ifp->if_flags & IFF_RUNNING) == 0)
1379 return;
1380 /*
1381 * Mark the interface down and cancel the watchdog timer.
1382 */
1383 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1384 sc->vte_flags &= ~VTE_FLAG_LINK;
1385 callout_stop(&sc->vte_tick_ch);
1386 sc->vte_watchdog_timer = 0;
1387 vte_stats_update(sc);
1388 /* Disable interrupts. */
1389 CSR_WRITE_2(sc, VTE_MIER, 0);
1390 CSR_WRITE_2(sc, VTE_MECIER, 0);
1391 /* Stop RX/TX MACs. */
1392 vte_stop_mac(sc);
1393 /* Clear interrupts. */
1394 CSR_READ_2(sc, VTE_MISR);
1395 /*
1396 * Free TX/RX mbufs still in the queues.
1397 */
1398 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1399 rxd = &sc->vte_cdata.vte_rxdesc[i];
1400 if (rxd->rx_m != NULL) {
1401 bus_dmamap_sync(sc->vte_dmatag,
1402 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1403 BUS_DMASYNC_POSTREAD);
1404 bus_dmamap_unload(sc->vte_dmatag,
1405 rxd->rx_dmamap);
1406 m_freem(rxd->rx_m);
1407 rxd->rx_m = NULL;
1408 }
1409 }
1410 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1411 txd = &sc->vte_cdata.vte_txdesc[i];
1412 if (txd->tx_m != NULL) {
1413 bus_dmamap_sync(sc->vte_dmatag,
1414 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1415 BUS_DMASYNC_POSTWRITE);
1416 bus_dmamap_unload(sc->vte_dmatag,
1417 txd->tx_dmamap);
1418 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1419 m_freem(txd->tx_m);
1420 txd->tx_m = NULL;
1421 txd->tx_flags &= ~VTE_TXMBUF;
1422 }
1423 }
1424 /* Free TX mbuf pools used for deep copy. */
1425 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1426 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1427 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1428 sc->vte_cdata.vte_txmbufs[i] = NULL;
1429 }
1430 }
1431 }
1432
1433 static void
1434 vte_start_mac(struct vte_softc *sc)
1435 {
1436 struct ifnet *ifp = &sc->vte_if;
1437 uint16_t mcr;
1438 int i;
1439
1440 /* Enable RX/TX MACs. */
1441 mcr = CSR_READ_2(sc, VTE_MCR0);
1442 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1443 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1444 (ifp->if_flags & IFF_RUNNING) != 0) {
1445 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1446 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1447 for (i = VTE_TIMEOUT; i > 0; i--) {
1448 mcr = CSR_READ_2(sc, VTE_MCR0);
1449 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1450 (MCR0_RX_ENB | MCR0_TX_ENB))
1451 break;
1452 DELAY(10);
1453 }
1454 if (i == 0)
1455 aprint_error_dev(sc->vte_dev,
1456 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1457 }
1458 vte_rxfilter(sc);
1459 }
1460
1461 static void
1462 vte_stop_mac(struct vte_softc *sc)
1463 {
1464 uint16_t mcr;
1465 int i;
1466
1467 /* Disable RX/TX MACs. */
1468 mcr = CSR_READ_2(sc, VTE_MCR0);
1469 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1470 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1471 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1472 for (i = VTE_TIMEOUT; i > 0; i--) {
1473 mcr = CSR_READ_2(sc, VTE_MCR0);
1474 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1475 break;
1476 DELAY(10);
1477 }
1478 if (i == 0)
1479 aprint_error_dev(sc->vte_dev,
1480 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1481 }
1482 }
1483
1484 static int
1485 vte_init_tx_ring(struct vte_softc *sc)
1486 {
1487 struct vte_tx_desc *desc;
1488 struct vte_txdesc *txd;
1489 bus_addr_t addr;
1490 int i;
1491
1492 sc->vte_cdata.vte_tx_prod = 0;
1493 sc->vte_cdata.vte_tx_cons = 0;
1494 sc->vte_cdata.vte_tx_cnt = 0;
1495
1496 /* Pre-allocate TX mbufs for deep copy. */
1497 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1498 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1499 MT_DATA, M_PKTHDR);
1500 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1501 return (ENOBUFS);
1502 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1503 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1504 }
1505 desc = sc->vte_cdata.vte_tx_ring;
1506 bzero(desc, VTE_TX_RING_SZ);
1507 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1508 txd = &sc->vte_cdata.vte_txdesc[i];
1509 txd->tx_m = NULL;
1510 if (i != VTE_TX_RING_CNT - 1)
1511 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1512 sizeof(struct vte_tx_desc) * (i + 1);
1513 else
1514 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1515 sizeof(struct vte_tx_desc) * 0;
1516 desc = &sc->vte_cdata.vte_tx_ring[i];
1517 desc->dtnp = htole32(addr);
1518 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1519 txd->tx_desc = desc;
1520 }
1521
1522 bus_dmamap_sync(sc->vte_dmatag,
1523 sc->vte_cdata.vte_tx_ring_map, 0,
1524 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1525 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1526 return (0);
1527 }
1528
1529 static int
1530 vte_init_rx_ring(struct vte_softc *sc)
1531 {
1532 struct vte_rx_desc *desc;
1533 struct vte_rxdesc *rxd;
1534 bus_addr_t addr;
1535 int i;
1536
1537 sc->vte_cdata.vte_rx_cons = 0;
1538 desc = sc->vte_cdata.vte_rx_ring;
1539 bzero(desc, VTE_RX_RING_SZ);
1540 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1541 rxd = &sc->vte_cdata.vte_rxdesc[i];
1542 rxd->rx_m = NULL;
1543 if (i != VTE_RX_RING_CNT - 1)
1544 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1545 + sizeof(struct vte_rx_desc) * (i + 1);
1546 else
1547 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1548 + sizeof(struct vte_rx_desc) * 0;
1549 desc = &sc->vte_cdata.vte_rx_ring[i];
1550 desc->drnp = htole32(addr);
1551 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1552 rxd->rx_desc = desc;
1553 if (vte_newbuf(sc, rxd) != 0)
1554 return (ENOBUFS);
1555 }
1556
1557 bus_dmamap_sync(sc->vte_dmatag,
1558 sc->vte_cdata.vte_rx_ring_map, 0,
1559 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1560 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1561
1562 return (0);
1563 }
1564
1565 static void
1566 vte_rxfilter(struct vte_softc *sc)
1567 {
1568 struct ethercom *ec = &sc->vte_ec;
1569 struct ether_multistep step;
1570 struct ether_multi *enm;
1571 struct ifnet *ifp;
1572 uint8_t *eaddr;
1573 uint32_t crc;
1574 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1575 uint16_t mchash[4], mcr;
1576 int i, nperf;
1577
1578 ifp = &sc->vte_if;
1579
1580 DPRINTF(("vte_rxfilter\n"));
1581 memset(mchash, 0, sizeof(mchash));
1582 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1583 rxfilt_perf[i][0] = 0xFFFF;
1584 rxfilt_perf[i][1] = 0xFFFF;
1585 rxfilt_perf[i][2] = 0xFFFF;
1586 }
1587
1588 mcr = CSR_READ_2(sc, VTE_MCR0);
1589 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1590 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1591 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1592 mcr |= MCR0_BROADCAST_DIS;
1593 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1594 if ((ifp->if_flags & IFF_PROMISC) != 0)
1595 mcr |= MCR0_PROMISC;
1596 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1597 mcr |= MCR0_MULTICAST;
1598 mchash[0] = 0xFFFF;
1599 mchash[1] = 0xFFFF;
1600 mchash[2] = 0xFFFF;
1601 mchash[3] = 0xFFFF;
1602 goto chipit;
1603 }
1604
1605 ETHER_LOCK(ec);
1606 ETHER_FIRST_MULTI(step, ec, enm);
1607 nperf = 0;
1608 while (enm != NULL) {
1609 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
1610 != 0) {
1611 sc->vte_if.if_flags |= IFF_ALLMULTI;
1612 mcr |= MCR0_MULTICAST;
1613 mchash[0] = 0xFFFF;
1614 mchash[1] = 0xFFFF;
1615 mchash[2] = 0xFFFF;
1616 mchash[3] = 0xFFFF;
1617 ETHER_UNLOCK(ec);
1618 goto chipit;
1619 }
1620 /*
1621 * Program the first 3 multicast groups into
1622 * the perfect filter. For all others, use the
1623 * hash table.
1624 */
1625 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1626 eaddr = enm->enm_addrlo;
1627 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1628 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1629 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1630 nperf++;
1631 } else {
1632 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1633 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1634 }
1635 ETHER_NEXT_MULTI(step, enm);
1636 }
1637 ETHER_UNLOCK(ec);
1638 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1639 mchash[3] != 0)
1640 mcr |= MCR0_MULTICAST;
1641
1642 chipit:
1643 /* Program multicast hash table. */
1644 DPRINTF(("chipit write multicast\n"));
1645 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1646 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1647 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1648 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1649 /* Program perfect filter table. */
1650 DPRINTF(("chipit write perfect filter\n"));
1651 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1652 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1653 rxfilt_perf[i][0]);
1654 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1655 rxfilt_perf[i][1]);
1656 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1657 rxfilt_perf[i][2]);
1658 }
1659 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1660 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1661 DPRINTF(("chipit read mcro\n"));
1662 CSR_READ_2(sc, VTE_MCR0);
1663 DPRINTF(("chipit done\n"));
1664 }
1665
1666 /*
1667 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1668 * set up in vte_pci_attach()
1669 */
1670 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1671 {
1672 int rc;
1673 const struct sysctlnode *node;
1674
1675 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1676 0, CTLTYPE_NODE, "vte",
1677 SYSCTL_DESCR("vte interface controls"),
1678 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1679 goto err;
1680 }
1681
1682 vte_root_num = node->sysctl_num;
1683 return;
1684
1685 err:
1686 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1687 }
1688
1689 static int
1690 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1691 {
1692 int error, t;
1693 struct sysctlnode node;
1694 struct vte_softc *sc;
1695
1696 node = *rnode;
1697 sc = node.sysctl_data;
1698 t = sc->vte_int_rx_mod;
1699 node.sysctl_data = &t;
1700 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1701 if (error || newp == NULL)
1702 return error;
1703 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1704 return EINVAL;
1705
1706 sc->vte_int_rx_mod = t;
1707 vte_miibus_statchg(&sc->vte_if);
1708 return 0;
1709 }
1710
1711 static int
1712 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1713 {
1714 int error, t;
1715 struct sysctlnode node;
1716 struct vte_softc *sc;
1717
1718 node = *rnode;
1719 sc = node.sysctl_data;
1720 t = sc->vte_int_tx_mod;
1721 node.sysctl_data = &t;
1722 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1723 if (error || newp == NULL)
1724 return error;
1725
1726 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1727 return EINVAL;
1728 sc->vte_int_tx_mod = t;
1729 vte_miibus_statchg(&sc->vte_if);
1730 return 0;
1731 }
1732