Home | History | Annotate | Line # | Download | only in pci
if_vte.c revision 1.30
      1 /*	$NetBSD: if_vte.c,v 1.30 2020/02/04 05:44:14 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*-
     28  * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
     29  * All rights reserved.
     30  *
     31  * Redistribution and use in source and binary forms, with or without
     32  * modification, are permitted provided that the following conditions
     33  * are met:
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice unmodified, this list of conditions, and the following
     36  *    disclaimer.
     37  * 2. Redistributions in binary form must reproduce the above copyright
     38  *    notice, this list of conditions and the following disclaimer in the
     39  *    documentation and/or other materials provided with the distribution.
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  */
     53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
     54 
     55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.30 2020/02/04 05:44:14 thorpej Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/protosw.h>
     64 #include <sys/socket.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/errno.h>
     67 #include <sys/malloc.h>
     68 #include <sys/kernel.h>
     69 #include <sys/device.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include <net/if.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_dl.h>
     76 #include <net/route.h>
     77 #include <net/netisr.h>
     78 #include <net/bpf.h>
     79 
     80 #include <sys/rndsource.h>
     81 
     82 #include "opt_inet.h"
     83 #include <net/if_ether.h>
     84 #ifdef INET
     85 #include <netinet/in.h>
     86 #include <netinet/in_systm.h>
     87 #include <netinet/in_var.h>
     88 #include <netinet/ip.h>
     89 #include <netinet/if_inarp.h>
     90 #endif
     91 
     92 #include <sys/bus.h>
     93 #include <sys/intr.h>
     94 
     95 #include <dev/pci/pcireg.h>
     96 #include <dev/pci/pcivar.h>
     97 #include <dev/pci/pcidevs.h>
     98 
     99 #include <dev/mii/mii.h>
    100 #include <dev/mii/miivar.h>
    101 
    102 #include <dev/pci/if_vtereg.h>
    103 #include <dev/pci/if_vtevar.h>
    104 
    105 static int	vte_match(device_t, cfdata_t, void *);
    106 static void	vte_attach(device_t, device_t, void *);
    107 static int	vte_detach(device_t, int);
    108 static int	vte_dma_alloc(struct vte_softc *);
    109 static void	vte_dma_free(struct vte_softc *);
    110 static struct vte_txdesc *
    111 		vte_encap(struct vte_softc *, struct mbuf **);
    112 static void	vte_get_macaddr(struct vte_softc *);
    113 static int	vte_init(struct ifnet *);
    114 static int	vte_init_rx_ring(struct vte_softc *);
    115 static int	vte_init_tx_ring(struct vte_softc *);
    116 static int	vte_intr(void *);
    117 static int	vte_ifioctl(struct ifnet *, u_long, void *);
    118 static void	vte_mac_config(struct vte_softc *);
    119 static int	vte_miibus_readreg(device_t, int, int, uint16_t *);
    120 static void	vte_miibus_statchg(struct ifnet *);
    121 static int	vte_miibus_writereg(device_t, int, int, uint16_t);
    122 static int	vte_mediachange(struct ifnet *);
    123 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
    124 static void	vte_reset(struct vte_softc *);
    125 static void	vte_rxeof(struct vte_softc *);
    126 static void	vte_rxfilter(struct vte_softc *);
    127 static bool	vte_shutdown(device_t, int);
    128 static bool	vte_suspend(device_t, const pmf_qual_t *);
    129 static bool	vte_resume(device_t, const pmf_qual_t *);
    130 static void	vte_ifstart(struct ifnet *);
    131 static void	vte_start_mac(struct vte_softc *);
    132 static void	vte_stats_clear(struct vte_softc *);
    133 static void	vte_stats_update(struct vte_softc *);
    134 static void	vte_stop(struct ifnet *, int);
    135 static void	vte_stop_mac(struct vte_softc *);
    136 static void	vte_tick(void *);
    137 static void	vte_txeof(struct vte_softc *);
    138 static void	vte_ifwatchdog(struct ifnet *);
    139 
    140 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
    141 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
    142 static int vte_root_num;
    143 
    144 #define DPRINTF(a)
    145 
    146 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
    147     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    148 
    149 
    150 static int
    151 vte_match(device_t parent, cfdata_t cf, void *aux)
    152 {
    153 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    154 
    155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
    156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
    157 		return 1;
    158 
    159 	return 0;
    160 }
    161 
    162 static void
    163 vte_attach(device_t parent, device_t self, void *aux)
    164 {
    165 	struct vte_softc *sc = device_private(self);
    166 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
    167 	struct ifnet * const ifp = &sc->vte_if;
    168 	struct mii_data * const mii = &sc->vte_mii;
    169 	int h_valid;
    170 	pcireg_t reg, csr;
    171 	pci_intr_handle_t intrhandle;
    172 	const char *intrstr;
    173 	int error;
    174 	const struct sysctlnode *node;
    175 	int vte_nodenum;
    176 	char intrbuf[PCI_INTRSTR_LEN];
    177 
    178 	sc->vte_dev = self;
    179 
    180 	callout_init(&sc->vte_tick_ch, 0);
    181 
    182 	/* Map the device. */
    183 	h_valid = 0;
    184 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
    185 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
    186 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
    187 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    188 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
    189 	}
    190 	if (h_valid == 0) {
    191 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
    192 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    193 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
    194 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
    195 			    &sc->vte_bushandle, NULL, NULL) == 0);
    196 		}
    197 	}
    198 	if (h_valid == 0) {
    199 		aprint_error_dev(self, "unable to map device registers\n");
    200 		return;
    201 	}
    202 	sc->vte_dmatag = pa->pa_dmat;
    203 	/* Enable the device. */
    204 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    205 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    206 	    csr | PCI_COMMAND_MASTER_ENABLE);
    207 
    208 	pci_aprint_devinfo(pa, NULL);
    209 
    210 	/* Reset the ethernet controller. */
    211 	vte_reset(sc);
    212 
    213 	if ((error = vte_dma_alloc(sc)) != 0)
    214 		return;
    215 
    216 	/* Load station address. */
    217 	vte_get_macaddr(sc);
    218 
    219 	aprint_normal_dev(self, "Ethernet address %s\n",
    220 	    ether_sprintf(sc->vte_eaddr));
    221 
    222 	/* Map and establish interrupts */
    223 	if (pci_intr_map(pa, &intrhandle)) {
    224 		aprint_error_dev(self, "couldn't map interrupt\n");
    225 		return;
    226 	}
    227 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
    228 	    sizeof(intrbuf));
    229 	sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
    230 	    vte_intr, sc, device_xname(self));
    231 	if (sc->vte_ih == NULL) {
    232 		aprint_error_dev(self, "couldn't establish interrupt");
    233 		if (intrstr != NULL)
    234 			aprint_error(" at %s", intrstr);
    235 		aprint_error("\n");
    236 		return;
    237 	}
    238 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    239 
    240 	sc->vte_if.if_softc = sc;
    241 	mii->mii_ifp = ifp;
    242 	mii->mii_readreg = vte_miibus_readreg;
    243 	mii->mii_writereg = vte_miibus_writereg;
    244 	mii->mii_statchg = vte_miibus_statchg;
    245 	sc->vte_ec.ec_mii = mii;
    246 	ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
    247 	    ether_mediastatus);
    248 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
    249 	    MII_OFFSET_ANY, 0);
    250 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    251 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    252 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    253 	} else
    254 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    255 
    256 	/*
    257 	 * We can support 802.1Q VLAN-sized frames.
    258 	 */
    259 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    260 
    261 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    262 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    263 	ifp->if_ioctl = vte_ifioctl;
    264 	ifp->if_start = vte_ifstart;
    265 	ifp->if_watchdog = vte_ifwatchdog;
    266 	ifp->if_init = vte_init;
    267 	ifp->if_stop = vte_stop;
    268 	ifp->if_timer = 0;
    269 	IFQ_SET_READY(&ifp->if_snd);
    270 	if_attach(ifp);
    271 	if_deferred_start_init(ifp, NULL);
    272 	ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
    273 
    274 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
    275 		pmf_class_network_register(self, ifp);
    276 	else
    277 		aprint_error_dev(self, "couldn't establish power handler\n");
    278 
    279 	rnd_attach_source(&sc->rnd_source, device_xname(self),
    280 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    281 
    282 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    283 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
    284 	    SYSCTL_DESCR("vte per-controller controls"),
    285 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
    286 	    CTL_EOL) != 0) {
    287 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
    288 		return;
    289 	}
    290 	vte_nodenum = node->sysctl_num;
    291 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    292 	    CTLFLAG_READWRITE,
    293 	    CTLTYPE_INT, "int_rxct",
    294 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
    295 	    vte_sysctl_intrxct, 0, (void *)sc,
    296 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    297 	    CTL_EOL) != 0) {
    298 		aprint_normal_dev(sc->vte_dev,
    299 		    "couldn't create int_rxct sysctl node\n");
    300 	}
    301 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    302 	    CTLFLAG_READWRITE,
    303 	    CTLTYPE_INT, "int_txct",
    304 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
    305 	    vte_sysctl_inttxct, 0, (void *)sc,
    306 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    307 	    CTL_EOL) != 0) {
    308 		aprint_normal_dev(sc->vte_dev,
    309 		    "couldn't create int_txct sysctl node\n");
    310 	}
    311 }
    312 
    313 static int
    314 vte_detach(device_t dev, int flags __unused)
    315 {
    316 	struct vte_softc *sc = device_private(dev);
    317 	struct ifnet *ifp = &sc->vte_if;
    318 	int s;
    319 
    320 	s = splnet();
    321 	/* Stop the interface. Callouts are stopped in it. */
    322 	vte_stop(ifp, 1);
    323 	splx(s);
    324 
    325 	pmf_device_deregister(dev);
    326 
    327 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    328 
    329 	ether_ifdetach(ifp);
    330 	if_detach(ifp);
    331 	ifmedia_fini(&sc->vte_mii.mii_media);
    332 
    333 	vte_dma_free(sc);
    334 
    335 	return (0);
    336 }
    337 
    338 static int
    339 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    340 {
    341 	struct vte_softc *sc = device_private(dev);
    342 	int i;
    343 
    344 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
    345 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    346 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    347 		DELAY(5);
    348 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
    349 			break;
    350 	}
    351 
    352 	if (i == 0) {
    353 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
    354 		return ETIMEDOUT;
    355 	}
    356 
    357 	*val = CSR_READ_2(sc, VTE_MMRD);
    358 	return 0;
    359 }
    360 
    361 static int
    362 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    363 {
    364 	struct vte_softc *sc = device_private(dev);
    365 	int i;
    366 
    367 	CSR_WRITE_2(sc, VTE_MMWD, val);
    368 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
    369 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    370 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    371 		DELAY(5);
    372 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
    373 			break;
    374 	}
    375 
    376 	if (i == 0) {
    377 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
    378 		return ETIMEDOUT;
    379 	}
    380 
    381 	return 0;
    382 }
    383 
    384 static void
    385 vte_miibus_statchg(struct ifnet *ifp)
    386 {
    387 	struct vte_softc *sc = ifp->if_softc;
    388 	uint16_t val;
    389 
    390 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
    391 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
    392 
    393 	sc->vte_flags &= ~VTE_FLAG_LINK;
    394 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    395 	    (IFM_ACTIVE | IFM_AVALID)) {
    396 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
    397 		case IFM_10_T:
    398 		case IFM_100_TX:
    399 			sc->vte_flags |= VTE_FLAG_LINK;
    400 			break;
    401 		default:
    402 			break;
    403 		}
    404 	}
    405 
    406 	/* Stop RX/TX MACs. */
    407 	vte_stop_mac(sc);
    408 	/* Program MACs with resolved duplex and flow control. */
    409 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
    410 		/*
    411 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
    412 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
    413 		 */
    414 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    415 			val = 18 << VTE_IM_TIMER_SHIFT;
    416 		else
    417 			val = 1 << VTE_IM_TIMER_SHIFT;
    418 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
    419 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    420 		CSR_WRITE_2(sc, VTE_MRICR, val);
    421 
    422 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    423 			val = 18 << VTE_IM_TIMER_SHIFT;
    424 		else
    425 			val = 1 << VTE_IM_TIMER_SHIFT;
    426 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
    427 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    428 		CSR_WRITE_2(sc, VTE_MTICR, val);
    429 
    430 		vte_mac_config(sc);
    431 		vte_start_mac(sc);
    432 		DPRINTF(("vte_miibus_statchg: link\n"));
    433 	}
    434 }
    435 
    436 static void
    437 vte_get_macaddr(struct vte_softc *sc)
    438 {
    439 	uint16_t mid;
    440 
    441 	/*
    442 	 * It seems there is no way to reload station address and
    443 	 * it is supposed to be set by BIOS.
    444 	 */
    445 	mid = CSR_READ_2(sc, VTE_MID0L);
    446 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
    447 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
    448 	mid = CSR_READ_2(sc, VTE_MID0M);
    449 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
    450 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
    451 	mid = CSR_READ_2(sc, VTE_MID0H);
    452 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
    453 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
    454 }
    455 
    456 
    457 static int
    458 vte_dma_alloc(struct vte_softc *sc)
    459 {
    460 	struct vte_txdesc *txd;
    461 	struct vte_rxdesc *rxd;
    462 	int error, i, rseg;
    463 
    464 	/* create DMA map for TX ring */
    465 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
    466 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    467 	    &sc->vte_cdata.vte_tx_ring_map);
    468 	if (error) {
    469 		aprint_error_dev(sc->vte_dev,
    470 		    "could not create dma map for TX ring (%d)\n",
    471 		    error);
    472 		goto fail;
    473 	}
    474 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
    475 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
    476 	    VTE_TX_RING_ALIGN, 0,
    477 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
    478 	    BUS_DMA_NOWAIT);
    479 	if (error != 0) {
    480 		aprint_error_dev(sc->vte_dev,
    481 		    "could not allocate DMA'able memory for TX ring (%d).\n",
    482 		    error);
    483 		goto fail;
    484 	}
    485 	KASSERT(rseg == 1);
    486 	error = bus_dmamem_map(sc->vte_dmatag,
    487 	    sc->vte_cdata.vte_tx_ring_seg, 1,
    488 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
    489 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    490 	if (error != 0) {
    491 		aprint_error_dev(sc->vte_dev,
    492 		    "could not map DMA'able memory for TX ring (%d).\n",
    493 		    error);
    494 		goto fail;
    495 	}
    496 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
    497 	error = bus_dmamap_load(sc->vte_dmatag,
    498 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
    499 	    VTE_TX_RING_SZ, NULL,
    500 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    501 	if (error != 0) {
    502 		aprint_error_dev(sc->vte_dev,
    503 		    "could not load DMA'able memory for TX ring.\n");
    504 		goto fail;
    505 	}
    506 
    507 	/* create DMA map for RX ring */
    508 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
    509 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    510 	    &sc->vte_cdata.vte_rx_ring_map);
    511 	if (error) {
    512 		aprint_error_dev(sc->vte_dev,
    513 		    "could not create dma map for RX ring (%d)\n",
    514 		    error);
    515 		goto fail;
    516 	}
    517 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
    518 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
    519 	    VTE_RX_RING_ALIGN, 0,
    520 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
    521 	    BUS_DMA_NOWAIT);
    522 	if (error != 0) {
    523 		aprint_error_dev(sc->vte_dev,
    524 		    "could not allocate DMA'able memory for RX ring (%d).\n",
    525 		    error);
    526 		goto fail;
    527 	}
    528 	KASSERT(rseg == 1);
    529 	error = bus_dmamem_map(sc->vte_dmatag,
    530 	    sc->vte_cdata.vte_rx_ring_seg, 1,
    531 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
    532 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    533 	if (error != 0) {
    534 		aprint_error_dev(sc->vte_dev,
    535 		    "could not map DMA'able memory for RX ring (%d).\n",
    536 		    error);
    537 		goto fail;
    538 	}
    539 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
    540 	error = bus_dmamap_load(sc->vte_dmatag,
    541 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
    542 	    VTE_RX_RING_SZ, NULL,
    543 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    544 	if (error != 0) {
    545 		aprint_error_dev(sc->vte_dev,
    546 		    "could not load DMA'able memory for RX ring (%d).\n",
    547 		    error);
    548 		goto fail;
    549 	}
    550 
    551 	/* Create DMA maps for TX buffers. */
    552 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    553 		txd = &sc->vte_cdata.vte_txdesc[i];
    554 		txd->tx_m = NULL;
    555 		txd->tx_dmamap = NULL;
    556 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    557 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    558 		    &txd->tx_dmamap);
    559 		if (error != 0) {
    560 			aprint_error_dev(sc->vte_dev,
    561 			    "could not create TX DMA map %d (%d).\n", i, error);
    562 			goto fail;
    563 		}
    564 	}
    565 	/* Create DMA maps for RX buffers. */
    566 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    567 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    568 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
    569 		aprint_error_dev(sc->vte_dev,
    570 		    "could not create spare RX dmamap (%d).\n", error);
    571 		goto fail;
    572 	}
    573 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    574 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    575 		rxd->rx_m = NULL;
    576 		rxd->rx_dmamap = NULL;
    577 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    578 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    579 		    &rxd->rx_dmamap);
    580 		if (error != 0) {
    581 			aprint_error_dev(sc->vte_dev,
    582 			    "could not create RX dmamap %d (%d).\n", i, error);
    583 			goto fail;
    584 		}
    585 	}
    586 	return 0;
    587 
    588 fail:
    589 	vte_dma_free(sc);
    590 	return (error);
    591 }
    592 
    593 static void
    594 vte_dma_free(struct vte_softc *sc)
    595 {
    596 	struct vte_txdesc *txd;
    597 	struct vte_rxdesc *rxd;
    598 	int i;
    599 
    600 	/* TX buffers. */
    601 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    602 		txd = &sc->vte_cdata.vte_txdesc[i];
    603 		if (txd->tx_dmamap != NULL) {
    604 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
    605 			txd->tx_dmamap = NULL;
    606 		}
    607 	}
    608 	/* RX buffers */
    609 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    610 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    611 		if (rxd->rx_dmamap != NULL) {
    612 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
    613 			rxd->rx_dmamap = NULL;
    614 		}
    615 	}
    616 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
    617 		bus_dmamap_destroy(sc->vte_dmatag,
    618 		    sc->vte_cdata.vte_rx_sparemap);
    619 		sc->vte_cdata.vte_rx_sparemap = NULL;
    620 	}
    621 	/* TX descriptor ring. */
    622 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
    623 		bus_dmamap_unload(sc->vte_dmatag,
    624 		    sc->vte_cdata.vte_tx_ring_map);
    625 		bus_dmamap_destroy(sc->vte_dmatag,
    626 		    sc->vte_cdata.vte_tx_ring_map);
    627 	}
    628 	if (sc->vte_cdata.vte_tx_ring != NULL) {
    629 		bus_dmamem_unmap(sc->vte_dmatag,
    630 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
    631 		bus_dmamem_free(sc->vte_dmatag,
    632 		    sc->vte_cdata.vte_tx_ring_seg, 1);
    633 	}
    634 	sc->vte_cdata.vte_tx_ring = NULL;
    635 	sc->vte_cdata.vte_tx_ring_map = NULL;
    636 	/* RX ring. */
    637 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
    638 		bus_dmamap_unload(sc->vte_dmatag,
    639 		    sc->vte_cdata.vte_rx_ring_map);
    640 		bus_dmamap_destroy(sc->vte_dmatag,
    641 		    sc->vte_cdata.vte_rx_ring_map);
    642 	}
    643 	if (sc->vte_cdata.vte_rx_ring != NULL) {
    644 		bus_dmamem_unmap(sc->vte_dmatag,
    645 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
    646 		bus_dmamem_free(sc->vte_dmatag,
    647 		    sc->vte_cdata.vte_rx_ring_seg, 1);
    648 	}
    649 	sc->vte_cdata.vte_rx_ring = NULL;
    650 	sc->vte_cdata.vte_rx_ring_map = NULL;
    651 }
    652 
    653 static bool
    654 vte_shutdown(device_t dev, int howto)
    655 {
    656 
    657 	return (vte_suspend(dev, NULL));
    658 }
    659 
    660 static bool
    661 vte_suspend(device_t dev, const pmf_qual_t *qual)
    662 {
    663 	struct vte_softc *sc = device_private(dev);
    664 	struct ifnet *ifp = &sc->vte_if;
    665 
    666 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
    667 	if ((ifp->if_flags & IFF_RUNNING) != 0)
    668 		vte_stop(ifp, 1);
    669 	return (0);
    670 }
    671 
    672 static bool
    673 vte_resume(device_t dev, const pmf_qual_t *qual)
    674 {
    675 	struct vte_softc *sc = device_private(dev);
    676 	struct ifnet *ifp;
    677 
    678 	ifp = &sc->vte_if;
    679 	if ((ifp->if_flags & IFF_UP) != 0) {
    680 		ifp->if_flags &= ~IFF_RUNNING;
    681 		vte_init(ifp);
    682 	}
    683 
    684 	return (0);
    685 }
    686 
    687 static struct vte_txdesc *
    688 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
    689 {
    690 	struct vte_txdesc *txd;
    691 	struct mbuf *m, *n;
    692 	int copy, error, padlen;
    693 
    694 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
    695 	m = *m_head;
    696 	/*
    697 	 * Controller doesn't auto-pad, so we have to make sure pad
    698 	 * short frames out to the minimum frame length.
    699 	 */
    700 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
    701 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
    702 	else
    703 		padlen = 0;
    704 
    705 	/*
    706 	 * Controller does not support multi-fragmented TX buffers.
    707 	 * Controller spends most of its TX processing time in
    708 	 * de-fragmenting TX buffers.  Either faster CPU or more
    709 	 * advanced controller DMA engine is required to speed up
    710 	 * TX path processing.
    711 	 * To mitigate the de-fragmenting issue, perform deep copy
    712 	 * from fragmented mbuf chains to a pre-allocated mbuf
    713 	 * cluster with extra cost of kernel memory.  For frames
    714 	 * that is composed of single TX buffer, the deep copy is
    715 	 * bypassed.
    716 	 */
    717 	copy = 0;
    718 	if (m->m_next != NULL)
    719 		copy++;
    720 	if (padlen > 0 && (M_READONLY(m) ||
    721 	    padlen > M_TRAILINGSPACE(m)))
    722 		copy++;
    723 	if (copy != 0) {
    724 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
    725 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
    726 		n->m_pkthdr.len = m->m_pkthdr.len;
    727 		n->m_len = m->m_pkthdr.len;
    728 		m = n;
    729 		txd->tx_flags |= VTE_TXMBUF;
    730 	}
    731 
    732 	if (padlen > 0) {
    733 		/* Zero out the bytes in the pad area. */
    734 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
    735 		m->m_pkthdr.len += padlen;
    736 		m->m_len = m->m_pkthdr.len;
    737 	}
    738 
    739 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
    740 	    BUS_DMA_NOWAIT);
    741 	if (error != 0) {
    742 		txd->tx_flags &= ~VTE_TXMBUF;
    743 		return (NULL);
    744 	}
    745 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
    746 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
    747 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    748 
    749 	txd->tx_desc->dtlen =
    750 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
    751 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
    752 	sc->vte_cdata.vte_tx_cnt++;
    753 	/* Update producer index. */
    754 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
    755 
    756 	/* Finally hand over ownership to controller. */
    757 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
    758 	txd->tx_m = m;
    759 
    760 	return (txd);
    761 }
    762 
    763 static void
    764 vte_ifstart(struct ifnet *ifp)
    765 {
    766 	struct vte_softc *sc = ifp->if_softc;
    767 	struct vte_txdesc *txd;
    768 	struct mbuf *m_head, *m;
    769 	int enq;
    770 
    771 	ifp = &sc->vte_if;
    772 
    773 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
    774 
    775 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
    776 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
    777 		return;
    778 
    779 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
    780 		/* Reserve one free TX descriptor. */
    781 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
    782 			ifp->if_flags |= IFF_OACTIVE;
    783 			break;
    784 		}
    785 		IFQ_POLL(&ifp->if_snd, m_head);
    786 		if (m_head == NULL)
    787 			break;
    788 		/*
    789 		 * Pack the data into the transmit ring. If we
    790 		 * don't have room, set the OACTIVE flag and wait
    791 		 * for the NIC to drain the ring.
    792 		 */
    793 		DPRINTF(("vte_encap:"));
    794 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
    795 			DPRINTF((" failed\n"));
    796 			break;
    797 		}
    798 		DPRINTF((" ok\n"));
    799 		IFQ_DEQUEUE(&ifp->if_snd, m);
    800 		KASSERT(m == m_head);
    801 
    802 		enq++;
    803 		/*
    804 		 * If there's a BPF listener, bounce a copy of this frame
    805 		 * to him.
    806 		 */
    807 		bpf_mtap(ifp, m_head, BPF_D_OUT);
    808 		/* Free consumed TX frame. */
    809 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
    810 			m_freem(m_head);
    811 	}
    812 
    813 	if (enq > 0) {
    814 		bus_dmamap_sync(sc->vte_dmatag,
    815 		    sc->vte_cdata.vte_tx_ring_map, 0,
    816 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
    817 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    818 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
    819 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
    820 	}
    821 }
    822 
    823 static void
    824 vte_ifwatchdog(struct ifnet *ifp)
    825 {
    826 	struct vte_softc *sc = ifp->if_softc;
    827 
    828 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
    829 		return;
    830 
    831 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
    832 	if_statinc(ifp, if_oerrors);
    833 	vte_init(ifp);
    834 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
    835 		vte_ifstart(ifp);
    836 }
    837 
    838 static int
    839 vte_mediachange(struct ifnet *ifp)
    840 {
    841 	int error;
    842 	struct vte_softc *sc = ifp->if_softc;
    843 
    844 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
    845 		error = 0;
    846 	else if (error != 0) {
    847 		aprint_error_dev(sc->vte_dev, "could not set media\n");
    848 		return error;
    849 	}
    850 	return 0;
    851 
    852 }
    853 
    854 static int
    855 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    856 {
    857 	struct vte_softc *sc = ifp->if_softc;
    858 	int error, s;
    859 
    860 	s = splnet();
    861 	error = ether_ioctl(ifp, cmd, data);
    862 	if (error == ENETRESET) {
    863 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
    864 		if (ifp->if_flags & IFF_RUNNING)
    865 			vte_rxfilter(sc);
    866 		error = 0;
    867 	}
    868 	splx(s);
    869 	return error;
    870 }
    871 
    872 static void
    873 vte_mac_config(struct vte_softc *sc)
    874 {
    875 	uint16_t mcr;
    876 
    877 	mcr = CSR_READ_2(sc, VTE_MCR0);
    878 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
    879 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
    880 		mcr |= MCR0_FULL_DUPLEX;
    881 #ifdef notyet
    882 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
    883 			mcr |= MCR0_FC_ENB;
    884 		/*
    885 		 * The data sheet is not clear whether the controller
    886 		 * honors received pause frames or not.  The is no
    887 		 * separate control bit for RX pause frame so just
    888 		 * enable MCR0_FC_ENB bit.
    889 		 */
    890 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
    891 			mcr |= MCR0_FC_ENB;
    892 #endif
    893 	}
    894 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
    895 }
    896 
    897 static void
    898 vte_stats_clear(struct vte_softc *sc)
    899 {
    900 
    901 	/* Reading counter registers clears its contents. */
    902 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
    903 	CSR_READ_2(sc, VTE_CNT_MECNT0);
    904 	CSR_READ_2(sc, VTE_CNT_MECNT1);
    905 	CSR_READ_2(sc, VTE_CNT_MECNT2);
    906 	CSR_READ_2(sc, VTE_CNT_MECNT3);
    907 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
    908 	CSR_READ_2(sc, VTE_CNT_MECNT4);
    909 	CSR_READ_2(sc, VTE_CNT_PAUSE);
    910 }
    911 
    912 static void
    913 vte_stats_update(struct vte_softc *sc)
    914 {
    915 	struct vte_hw_stats *stat;
    916 	struct ifnet *ifp = &sc->vte_if;
    917 	uint16_t value;
    918 
    919 	stat = &sc->vte_stats;
    920 
    921 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    922 
    923 	CSR_READ_2(sc, VTE_MECISR);
    924 
    925 	/* RX stats. */
    926 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
    927 
    928 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
    929 	stat->rx_bcast_frames += (value >> 8);
    930 	stat->rx_mcast_frames += (value & 0xFF);
    931 
    932 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
    933 	if_statadd_ref(nsr, if_ierrors,
    934 	    (value >> 8) +			/* rx_runts */
    935 	    (value & 0xFF));			/* rx_crcerrs */
    936 
    937 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
    938 	if_statadd_ref(nsr, if_ierrors,
    939 	    (value & 0xFF));			/* rx_long_frames */
    940 
    941 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
    942 	if_statadd_ref(nsr, if_ierrors,
    943 	    (value >> 8));			/* rx_fifo_full */
    944 	stat->rx_desc_unavail += (value & 0xFF);
    945 
    946 	/* TX stats. */
    947 	if_statadd_ref(nsr, if_opackets,
    948 	    CSR_READ_2(sc, VTE_CNT_TX_DONE));	/* tx_frames */
    949 
    950 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
    951 	if_statadd_ref(nsr, if_oerrors,
    952 	    (value >> 8) +			/* tx_underruns */
    953 	    (value & 0xFF));			/* tx_late_colls */
    954 
    955 	/* Pause stats. */
    956 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
    957 	stat->tx_pause_frames += (value >> 8);
    958 	stat->rx_pause_frames += (value & 0xFF);
    959 
    960 	IF_STAT_PUTREF(ifp);
    961 }
    962 
    963 static int
    964 vte_intr(void *arg)
    965 {
    966 	struct vte_softc *sc = (struct vte_softc *)arg;
    967 	struct ifnet *ifp = &sc->vte_if;
    968 	uint16_t status;
    969 	int n;
    970 
    971 	/* Reading VTE_MISR acknowledges interrupts. */
    972 	status = CSR_READ_2(sc, VTE_MISR);
    973 	DPRINTF(("vte_intr status 0x%x\n", status));
    974 	if ((status & VTE_INTRS) == 0) {
    975 		/* Not ours. */
    976 		return 0;
    977 	}
    978 
    979 	/* Disable interrupts. */
    980 	CSR_WRITE_2(sc, VTE_MIER, 0);
    981 	for (n = 8; (status & VTE_INTRS) != 0;) {
    982 		if ((ifp->if_flags & IFF_RUNNING) == 0)
    983 			break;
    984 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
    985 		    MISR_RX_FIFO_FULL)) != 0)
    986 			vte_rxeof(sc);
    987 		if ((status & MISR_TX_DONE) != 0)
    988 			vte_txeof(sc);
    989 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
    990 			vte_stats_update(sc);
    991 		if_schedule_deferred_start(ifp);
    992 		if (--n > 0)
    993 			status = CSR_READ_2(sc, VTE_MISR);
    994 		else
    995 			break;
    996 	}
    997 
    998 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
    999 		/* Re-enable interrupts. */
   1000 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1001 	}
   1002 	return 1;
   1003 }
   1004 
   1005 static void
   1006 vte_txeof(struct vte_softc *sc)
   1007 {
   1008 	struct ifnet *ifp;
   1009 	struct vte_txdesc *txd;
   1010 	uint16_t status;
   1011 	int cons, prog;
   1012 
   1013 	ifp = &sc->vte_if;
   1014 
   1015 	if (sc->vte_cdata.vte_tx_cnt == 0)
   1016 		return;
   1017 	bus_dmamap_sync(sc->vte_dmatag,
   1018 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1019 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1020 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1021 	cons = sc->vte_cdata.vte_tx_cons;
   1022 	/*
   1023 	 * Go through our TX list and free mbufs for those
   1024 	 * frames which have been transmitted.
   1025 	 */
   1026 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
   1027 		txd = &sc->vte_cdata.vte_txdesc[cons];
   1028 		status = le16toh(txd->tx_desc->dtst);
   1029 		if ((status & VTE_DTST_TX_OWN) != 0)
   1030 			break;
   1031 		if ((status & VTE_DTST_TX_OK) != 0)
   1032 			if_statadd(ifp, if_collisions, (status & 0xf));
   1033 		sc->vte_cdata.vte_tx_cnt--;
   1034 		/* Reclaim transmitted mbufs. */
   1035 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
   1036 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1037 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
   1038 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1039 			m_freem(txd->tx_m);
   1040 		txd->tx_flags &= ~VTE_TXMBUF;
   1041 		txd->tx_m = NULL;
   1042 		prog++;
   1043 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
   1044 	}
   1045 
   1046 	if (prog > 0) {
   1047 		ifp->if_flags &= ~IFF_OACTIVE;
   1048 		sc->vte_cdata.vte_tx_cons = cons;
   1049 		/*
   1050 		 * Unarm watchdog timer only when there is no pending
   1051 		 * frames in TX queue.
   1052 		 */
   1053 		if (sc->vte_cdata.vte_tx_cnt == 0)
   1054 			sc->vte_watchdog_timer = 0;
   1055 	}
   1056 }
   1057 
   1058 static int
   1059 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
   1060 {
   1061 	struct mbuf *m;
   1062 	bus_dmamap_t map;
   1063 
   1064 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   1065 	if (m == NULL)
   1066 		return (ENOBUFS);
   1067 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1068 	m_adj(m, sizeof(uint32_t));
   1069 
   1070 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
   1071 	    sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
   1072 		m_freem(m);
   1073 		return (ENOBUFS);
   1074 	}
   1075 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
   1076 
   1077 	if (rxd->rx_m != NULL) {
   1078 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1079 		    0, rxd->rx_dmamap->dm_mapsize,
   1080 		    BUS_DMASYNC_POSTREAD);
   1081 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
   1082 	}
   1083 	map = rxd->rx_dmamap;
   1084 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
   1085 	sc->vte_cdata.vte_rx_sparemap = map;
   1086 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1087 	    0, rxd->rx_dmamap->dm_mapsize,
   1088 	    BUS_DMASYNC_PREREAD);
   1089 	rxd->rx_m = m;
   1090 	rxd->rx_desc->drbp =
   1091 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1092 	rxd->rx_desc->drlen = htole16(
   1093 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
   1094 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
   1095 		(u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
   1096 		rxd->rx_dmamap->dm_segs[0].ds_len));
   1097 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1098 
   1099 	return (0);
   1100 }
   1101 
   1102 static void
   1103 vte_rxeof(struct vte_softc *sc)
   1104 {
   1105 	struct ifnet *ifp;
   1106 	struct vte_rxdesc *rxd;
   1107 	struct mbuf *m;
   1108 	uint16_t status, total_len;
   1109 	int cons, prog;
   1110 
   1111 	bus_dmamap_sync(sc->vte_dmatag,
   1112 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1113 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1114 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1115 	cons = sc->vte_cdata.vte_rx_cons;
   1116 	ifp = &sc->vte_if;
   1117 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
   1118 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
   1119 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
   1120 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
   1121 		status = le16toh(rxd->rx_desc->drst);
   1122 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
   1123 			cons, rxd, rxd->rx_m, status,
   1124 			VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
   1125 		if ((status & VTE_DRST_RX_OWN) != 0)
   1126 			break;
   1127 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
   1128 		m = rxd->rx_m;
   1129 		if ((status & VTE_DRST_RX_OK) == 0) {
   1130 			/* Discard errored frame. */
   1131 			rxd->rx_desc->drlen =
   1132 			    htole16(MCLBYTES - sizeof(uint32_t));
   1133 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1134 			continue;
   1135 		}
   1136 		if (vte_newbuf(sc, rxd) != 0) {
   1137 			DPRINTF(("vte_rxeof newbuf failed\n"));
   1138 			if_statinc(ifp, if_ierrors);
   1139 			rxd->rx_desc->drlen =
   1140 			    htole16(MCLBYTES - sizeof(uint32_t));
   1141 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1142 			continue;
   1143 		}
   1144 
   1145 		/*
   1146 		 * It seems there is no way to strip FCS bytes.
   1147 		 */
   1148 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1149 		m_set_rcvif(m, ifp);
   1150 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1151 	}
   1152 
   1153 	if (prog > 0) {
   1154 		/* Update the consumer index. */
   1155 		sc->vte_cdata.vte_rx_cons = cons;
   1156 		/*
   1157 		 * Sync updated RX descriptors such that controller see
   1158 		 * modified RX buffer addresses.
   1159 		 */
   1160 		bus_dmamap_sync(sc->vte_dmatag,
   1161 		    sc->vte_cdata.vte_rx_ring_map, 0,
   1162 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1163 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1164 #ifdef notyet
   1165 		/*
   1166 		 * Update residue counter.  Controller does not
   1167 		 * keep track of number of available RX descriptors
   1168 		 * such that driver should have to update VTE_MRDCR
   1169 		 * to make controller know how many free RX
   1170 		 * descriptors were added to controller.  This is
   1171 		 * a similar mechanism used in VIA velocity
   1172 		 * controllers and it indicates controller just
   1173 		 * polls OWN bit of current RX descriptor pointer.
   1174 		 * A couple of severe issues were seen on sample
   1175 		 * board where the controller continuously emits TX
   1176 		 * pause frames once RX pause threshold crossed.
   1177 		 * Once triggered it never recovered form that
   1178 		 * state, I couldn't find a way to make it back to
   1179 		 * work at least.  This issue effectively
   1180 		 * disconnected the system from network.  Also, the
   1181 		 * controller used 00:00:00:00:00:00 as source
   1182 		 * station address of TX pause frame. Probably this
   1183 		 * is one of reason why vendor recommends not to
   1184 		 * enable flow control on R6040 controller.
   1185 		 */
   1186 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
   1187 		    (((VTE_RX_RING_CNT * 2) / 10) <<
   1188 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1189 #endif
   1190 	rnd_add_uint32(&sc->rnd_source, prog);
   1191 	}
   1192 }
   1193 
   1194 static void
   1195 vte_tick(void *arg)
   1196 {
   1197 	struct vte_softc *sc;
   1198 	int s = splnet();
   1199 
   1200 	sc = (struct vte_softc *)arg;
   1201 
   1202 	mii_tick(&sc->vte_mii);
   1203 	vte_stats_update(sc);
   1204 	vte_txeof(sc);
   1205 	vte_ifwatchdog(&sc->vte_if);
   1206 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1207 	splx(s);
   1208 }
   1209 
   1210 static void
   1211 vte_reset(struct vte_softc *sc)
   1212 {
   1213 	uint16_t mcr;
   1214 	int i;
   1215 
   1216 	mcr = CSR_READ_2(sc, VTE_MCR1);
   1217 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
   1218 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
   1219 		DELAY(10);
   1220 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
   1221 			break;
   1222 	}
   1223 	if (i == 0)
   1224 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
   1225 	/*
   1226 	 * Follow the guide of vendor recommended way to reset MAC.
   1227 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
   1228 	 * not reliable so manually reset internal state machine.
   1229 	 */
   1230 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
   1231 	CSR_WRITE_2(sc, VTE_MACSM, 0);
   1232 	DELAY(5000);
   1233 }
   1234 
   1235 
   1236 static int
   1237 vte_init(struct ifnet *ifp)
   1238 {
   1239 	struct vte_softc *sc = ifp->if_softc;
   1240 	bus_addr_t paddr;
   1241 	uint8_t eaddr[ETHER_ADDR_LEN];
   1242 	int s, error;
   1243 
   1244 	s = splnet();
   1245 	/*
   1246 	 * Cancel any pending I/O.
   1247 	 */
   1248 	vte_stop(ifp, 1);
   1249 	/*
   1250 	 * Reset the chip to a known state.
   1251 	 */
   1252 	vte_reset(sc);
   1253 
   1254 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
   1255 		splx(s);
   1256 		return 0;
   1257 	}
   1258 
   1259 	/* Initialize RX descriptors. */
   1260 	if (vte_init_rx_ring(sc) != 0) {
   1261 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
   1262 		vte_stop(ifp, 1);
   1263 		splx(s);
   1264 		return ENOMEM;
   1265 	}
   1266 	if (vte_init_tx_ring(sc) != 0) {
   1267 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
   1268 		vte_stop(ifp, 1);
   1269 		splx(s);
   1270 		return ENOMEM;
   1271 	}
   1272 
   1273 	/*
   1274 	 * Reprogram the station address.  Controller supports up
   1275 	 * to 4 different station addresses so driver programs the
   1276 	 * first station address as its own ethernet address and
   1277 	 * configure the remaining three addresses as perfect
   1278 	 * multicast addresses.
   1279 	 */
   1280 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1281 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
   1282 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
   1283 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
   1284 
   1285 	/* Set TX descriptor base addresses. */
   1286 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
   1287 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
   1288 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
   1289 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
   1290 
   1291 	/* Set RX descriptor base addresses. */
   1292 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
   1293 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
   1294 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
   1295 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
   1296 	/*
   1297 	 * Initialize RX descriptor residue counter and set RX
   1298 	 * pause threshold to 20% of available RX descriptors.
   1299 	 * See comments on vte_rxeof() for details on flow control
   1300 	 * issues.
   1301 	 */
   1302 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
   1303 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1304 
   1305 	/*
   1306 	 * Always use maximum frame size that controller can
   1307 	 * support.  Otherwise received frames that has longer
   1308 	 * frame length than vte(4) MTU would be silently dropped
   1309 	 * in controller.  This would break path-MTU discovery as
   1310 	 * sender wouldn't get any responses from receiver. The
   1311 	 * RX buffer size should be multiple of 4.
   1312 	 * Note, jumbo frames are silently ignored by controller
   1313 	 * and even MAC counters do not detect them.
   1314 	 */
   1315 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
   1316 
   1317 	/* Configure FIFO. */
   1318 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
   1319 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
   1320 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
   1321 
   1322 	/*
   1323 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
   1324 	 * control configuration is done after detecting a valid
   1325 	 * link.  Note, we don't generate early interrupt here
   1326 	 * as well since FreeBSD does not have interrupt latency
   1327 	 * problems like Windows.
   1328 	 */
   1329 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
   1330 	/*
   1331 	 * We manually keep track of PHY status changes to
   1332 	 * configure resolved duplex and flow control since only
   1333 	 * duplex configuration can be automatically reflected to
   1334 	 * MCR0.
   1335 	 */
   1336 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
   1337 	    MCR1_EXCESS_COL_RETRY_16);
   1338 
   1339 	/* Initialize RX filter. */
   1340 	vte_rxfilter(sc);
   1341 
   1342 	/* Disable TX/RX interrupt moderation control. */
   1343 	CSR_WRITE_2(sc, VTE_MRICR, 0);
   1344 	CSR_WRITE_2(sc, VTE_MTICR, 0);
   1345 
   1346 	/* Enable MAC event counter interrupts. */
   1347 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
   1348 	/* Clear MAC statistics. */
   1349 	vte_stats_clear(sc);
   1350 
   1351 	/* Acknowledge all pending interrupts and clear it. */
   1352 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1353 	CSR_WRITE_2(sc, VTE_MISR, 0);
   1354 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1355 		CSR_READ_2(sc, VTE_MISR)));
   1356 
   1357 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1358 	ifp->if_flags |= IFF_RUNNING;
   1359 	ifp->if_flags &= ~IFF_OACTIVE;
   1360 
   1361 	/* calling mii_mediachg will call back vte_start_mac() */
   1362 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
   1363 		error = 0;
   1364 	else if (error != 0) {
   1365 		aprint_error_dev(sc->vte_dev, "could not set media\n");
   1366 		splx(s);
   1367 		return error;
   1368 	}
   1369 
   1370 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1371 
   1372 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
   1373 		CSR_READ_2(sc, VTE_MISR)));
   1374 	splx(s);
   1375 	return 0;
   1376 }
   1377 
   1378 static void
   1379 vte_stop(struct ifnet *ifp, int disable)
   1380 {
   1381 	struct vte_softc *sc = ifp->if_softc;
   1382 	struct vte_txdesc *txd;
   1383 	struct vte_rxdesc *rxd;
   1384 	int i;
   1385 
   1386 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
   1387 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1388 		return;
   1389 	/*
   1390 	 * Mark the interface down and cancel the watchdog timer.
   1391 	 */
   1392 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1393 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1394 	callout_stop(&sc->vte_tick_ch);
   1395 	sc->vte_watchdog_timer = 0;
   1396 	vte_stats_update(sc);
   1397 	/* Disable interrupts. */
   1398 	CSR_WRITE_2(sc, VTE_MIER, 0);
   1399 	CSR_WRITE_2(sc, VTE_MECIER, 0);
   1400 	/* Stop RX/TX MACs. */
   1401 	vte_stop_mac(sc);
   1402 	/* Clear interrupts. */
   1403 	CSR_READ_2(sc, VTE_MISR);
   1404 	/*
   1405 	 * Free TX/RX mbufs still in the queues.
   1406 	 */
   1407 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1408 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1409 		if (rxd->rx_m != NULL) {
   1410 			bus_dmamap_sync(sc->vte_dmatag,
   1411 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
   1412 			    BUS_DMASYNC_POSTREAD);
   1413 			bus_dmamap_unload(sc->vte_dmatag,
   1414 			    rxd->rx_dmamap);
   1415 			m_freem(rxd->rx_m);
   1416 			rxd->rx_m = NULL;
   1417 		}
   1418 	}
   1419 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1420 		txd = &sc->vte_cdata.vte_txdesc[i];
   1421 		if (txd->tx_m != NULL) {
   1422 			bus_dmamap_sync(sc->vte_dmatag,
   1423 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
   1424 			    BUS_DMASYNC_POSTWRITE);
   1425 			bus_dmamap_unload(sc->vte_dmatag,
   1426 			    txd->tx_dmamap);
   1427 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1428 				m_freem(txd->tx_m);
   1429 			txd->tx_m = NULL;
   1430 			txd->tx_flags &= ~VTE_TXMBUF;
   1431 		}
   1432 	}
   1433 	/* Free TX mbuf pools used for deep copy. */
   1434 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1435 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
   1436 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
   1437 			sc->vte_cdata.vte_txmbufs[i] = NULL;
   1438 		}
   1439 	}
   1440 }
   1441 
   1442 static void
   1443 vte_start_mac(struct vte_softc *sc)
   1444 {
   1445 	struct ifnet *ifp = &sc->vte_if;
   1446 	uint16_t mcr;
   1447 	int i;
   1448 
   1449 	/* Enable RX/TX MACs. */
   1450 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1451 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
   1452 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
   1453 	    (ifp->if_flags & IFF_RUNNING) != 0) {
   1454 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
   1455 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1456 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1457 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1458 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
   1459 			    (MCR0_RX_ENB | MCR0_TX_ENB))
   1460 				break;
   1461 			DELAY(10);
   1462 		}
   1463 		if (i == 0)
   1464 			aprint_error_dev(sc->vte_dev,
   1465 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
   1466 	}
   1467 	vte_rxfilter(sc);
   1468 }
   1469 
   1470 static void
   1471 vte_stop_mac(struct vte_softc *sc)
   1472 {
   1473 	uint16_t mcr;
   1474 	int i;
   1475 
   1476 	/* Disable RX/TX MACs. */
   1477 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1478 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
   1479 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
   1480 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1481 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1482 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1483 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
   1484 				break;
   1485 			DELAY(10);
   1486 		}
   1487 		if (i == 0)
   1488 			aprint_error_dev(sc->vte_dev,
   1489 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
   1490 	}
   1491 }
   1492 
   1493 static int
   1494 vte_init_tx_ring(struct vte_softc *sc)
   1495 {
   1496 	struct vte_tx_desc *desc;
   1497 	struct vte_txdesc *txd;
   1498 	bus_addr_t addr;
   1499 	int i;
   1500 
   1501 	sc->vte_cdata.vte_tx_prod = 0;
   1502 	sc->vte_cdata.vte_tx_cons = 0;
   1503 	sc->vte_cdata.vte_tx_cnt = 0;
   1504 
   1505 	/* Pre-allocate TX mbufs for deep copy. */
   1506 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1507 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
   1508 		    MT_DATA, M_PKTHDR);
   1509 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
   1510 			return (ENOBUFS);
   1511 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
   1512 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
   1513 	}
   1514 	desc = sc->vte_cdata.vte_tx_ring;
   1515 	bzero(desc, VTE_TX_RING_SZ);
   1516 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1517 		txd = &sc->vte_cdata.vte_txdesc[i];
   1518 		txd->tx_m = NULL;
   1519 		if (i != VTE_TX_RING_CNT - 1)
   1520 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1521 			    sizeof(struct vte_tx_desc) * (i + 1);
   1522 		else
   1523 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1524 			    sizeof(struct vte_tx_desc) * 0;
   1525 		desc = &sc->vte_cdata.vte_tx_ring[i];
   1526 		desc->dtnp = htole32(addr);
   1527 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1528 		txd->tx_desc = desc;
   1529 	}
   1530 
   1531 	bus_dmamap_sync(sc->vte_dmatag,
   1532 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1533 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1534 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1535 	return (0);
   1536 }
   1537 
   1538 static int
   1539 vte_init_rx_ring(struct vte_softc *sc)
   1540 {
   1541 	struct vte_rx_desc *desc;
   1542 	struct vte_rxdesc *rxd;
   1543 	bus_addr_t addr;
   1544 	int i;
   1545 
   1546 	sc->vte_cdata.vte_rx_cons = 0;
   1547 	desc = sc->vte_cdata.vte_rx_ring;
   1548 	bzero(desc, VTE_RX_RING_SZ);
   1549 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1550 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1551 		rxd->rx_m = NULL;
   1552 		if (i != VTE_RX_RING_CNT - 1)
   1553 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1554 			    + sizeof(struct vte_rx_desc) * (i + 1);
   1555 		else
   1556 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1557 			    + sizeof(struct vte_rx_desc) * 0;
   1558 		desc = &sc->vte_cdata.vte_rx_ring[i];
   1559 		desc->drnp = htole32(addr);
   1560 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1561 		rxd->rx_desc = desc;
   1562 		if (vte_newbuf(sc, rxd) != 0)
   1563 			return (ENOBUFS);
   1564 	}
   1565 
   1566 	bus_dmamap_sync(sc->vte_dmatag,
   1567 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1568 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1569 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1570 
   1571 	return (0);
   1572 }
   1573 
   1574 static void
   1575 vte_rxfilter(struct vte_softc *sc)
   1576 {
   1577 	struct ethercom *ec = &sc->vte_ec;
   1578 	struct ether_multistep step;
   1579 	struct ether_multi *enm;
   1580 	struct ifnet *ifp;
   1581 	uint8_t *eaddr;
   1582 	uint32_t crc;
   1583 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
   1584 	uint16_t mchash[4], mcr;
   1585 	int i, nperf;
   1586 
   1587 	ifp = &sc->vte_if;
   1588 
   1589 	DPRINTF(("vte_rxfilter\n"));
   1590 	memset(mchash, 0, sizeof(mchash));
   1591 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1592 		rxfilt_perf[i][0] = 0xFFFF;
   1593 		rxfilt_perf[i][1] = 0xFFFF;
   1594 		rxfilt_perf[i][2] = 0xFFFF;
   1595 	}
   1596 
   1597 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1598 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
   1599 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
   1600 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1601 		mcr |= MCR0_BROADCAST_DIS;
   1602 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1603 		if ((ifp->if_flags & IFF_PROMISC) != 0)
   1604 			mcr |= MCR0_PROMISC;
   1605 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
   1606 			mcr |= MCR0_MULTICAST;
   1607 		mchash[0] = 0xFFFF;
   1608 		mchash[1] = 0xFFFF;
   1609 		mchash[2] = 0xFFFF;
   1610 		mchash[3] = 0xFFFF;
   1611 		goto chipit;
   1612 	}
   1613 
   1614 	ETHER_LOCK(ec);
   1615 	ETHER_FIRST_MULTI(step, ec, enm);
   1616 	nperf = 0;
   1617 	while (enm != NULL) {
   1618 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
   1619 		    != 0) {
   1620 			sc->vte_if.if_flags |= IFF_ALLMULTI;
   1621 			mcr |= MCR0_MULTICAST;
   1622 			mchash[0] = 0xFFFF;
   1623 			mchash[1] = 0xFFFF;
   1624 			mchash[2] = 0xFFFF;
   1625 			mchash[3] = 0xFFFF;
   1626 			ETHER_UNLOCK(ec);
   1627 			goto chipit;
   1628 		}
   1629 		/*
   1630 		 * Program the first 3 multicast groups into
   1631 		 * the perfect filter.  For all others, use the
   1632 		 * hash table.
   1633 		 */
   1634 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
   1635 			eaddr = enm->enm_addrlo;
   1636 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
   1637 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
   1638 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
   1639 			nperf++;
   1640 		} else {
   1641 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1642 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
   1643 		}
   1644 		ETHER_NEXT_MULTI(step, enm);
   1645 	}
   1646 	ETHER_UNLOCK(ec);
   1647 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
   1648 	    mchash[3] != 0)
   1649 		mcr |= MCR0_MULTICAST;
   1650 
   1651 chipit:
   1652 	/* Program multicast hash table. */
   1653 	DPRINTF(("chipit write multicast\n"));
   1654 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
   1655 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
   1656 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
   1657 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
   1658 	/* Program perfect filter table. */
   1659 	DPRINTF(("chipit write perfect filter\n"));
   1660 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1661 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
   1662 		    rxfilt_perf[i][0]);
   1663 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
   1664 		    rxfilt_perf[i][1]);
   1665 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
   1666 		    rxfilt_perf[i][2]);
   1667 	}
   1668 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
   1669 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1670 	DPRINTF(("chipit read mcro\n"));
   1671 	CSR_READ_2(sc, VTE_MCR0);
   1672 	DPRINTF(("chipit done\n"));
   1673 }
   1674 
   1675 /*
   1676  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
   1677  * set up in vte_pci_attach()
   1678  */
   1679 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
   1680 {
   1681 	int rc;
   1682 	const struct sysctlnode *node;
   1683 
   1684 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1685 	    0, CTLTYPE_NODE, "vte",
   1686 	    SYSCTL_DESCR("vte interface controls"),
   1687 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1688 		goto err;
   1689 	}
   1690 
   1691 	vte_root_num = node->sysctl_num;
   1692 	return;
   1693 
   1694 err:
   1695 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   1696 }
   1697 
   1698 static int
   1699 vte_sysctl_intrxct(SYSCTLFN_ARGS)
   1700 {
   1701 	int error, t;
   1702 	struct sysctlnode node;
   1703 	struct vte_softc *sc;
   1704 
   1705 	node = *rnode;
   1706 	sc = node.sysctl_data;
   1707 	t = sc->vte_int_rx_mod;
   1708 	node.sysctl_data = &t;
   1709 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1710 	if (error || newp == NULL)
   1711 		return error;
   1712 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1713 		return EINVAL;
   1714 
   1715 	sc->vte_int_rx_mod = t;
   1716 	vte_miibus_statchg(&sc->vte_if);
   1717 	return 0;
   1718 }
   1719 
   1720 static int
   1721 vte_sysctl_inttxct(SYSCTLFN_ARGS)
   1722 {
   1723 	int error, t;
   1724 	struct sysctlnode node;
   1725 	struct vte_softc *sc;
   1726 
   1727 	node = *rnode;
   1728 	sc = node.sysctl_data;
   1729 	t = sc->vte_int_tx_mod;
   1730 	node.sysctl_data = &t;
   1731 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1732 	if (error || newp == NULL)
   1733 		return error;
   1734 
   1735 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1736 		return EINVAL;
   1737 	sc->vte_int_tx_mod = t;
   1738 	vte_miibus_statchg(&sc->vte_if);
   1739 	return 0;
   1740 }
   1741