if_vte.c revision 1.34 1 /* $NetBSD: if_vte.c,v 1.34 2022/09/17 15:31:29 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.34 2022/09/17 15:31:29 thorpej Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/bpf.h>
78
79 #include <sys/rndsource.h>
80
81 #include "opt_inet.h"
82 #include <net/if_ether.h>
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/in_var.h>
87 #include <netinet/ip.h>
88 #include <netinet/if_inarp.h>
89 #endif
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100
101 #include <dev/pci/if_vtereg.h>
102 #include <dev/pci/if_vtevar.h>
103
104 static int vte_match(device_t, cfdata_t, void *);
105 static void vte_attach(device_t, device_t, void *);
106 static int vte_detach(device_t, int);
107 static int vte_dma_alloc(struct vte_softc *);
108 static void vte_dma_free(struct vte_softc *);
109 static struct vte_txdesc *
110 vte_encap(struct vte_softc *, struct mbuf **);
111 static void vte_get_macaddr(struct vte_softc *);
112 static int vte_init(struct ifnet *);
113 static int vte_init_rx_ring(struct vte_softc *);
114 static int vte_init_tx_ring(struct vte_softc *);
115 static int vte_intr(void *);
116 static int vte_ifioctl(struct ifnet *, u_long, void *);
117 static void vte_mac_config(struct vte_softc *);
118 static int vte_miibus_readreg(device_t, int, int, uint16_t *);
119 static void vte_miibus_statchg(struct ifnet *);
120 static int vte_miibus_writereg(device_t, int, int, uint16_t);
121 static int vte_mediachange(struct ifnet *);
122 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
123 static void vte_reset(struct vte_softc *);
124 static void vte_rxeof(struct vte_softc *);
125 static void vte_rxfilter(struct vte_softc *);
126 static bool vte_shutdown(device_t, int);
127 static bool vte_suspend(device_t, const pmf_qual_t *);
128 static bool vte_resume(device_t, const pmf_qual_t *);
129 static void vte_ifstart(struct ifnet *);
130 static void vte_start_mac(struct vte_softc *);
131 static void vte_stats_clear(struct vte_softc *);
132 static void vte_stats_update(struct vte_softc *);
133 static void vte_stop(struct ifnet *, int);
134 static void vte_stop_mac(struct vte_softc *);
135 static void vte_tick(void *);
136 static void vte_txeof(struct vte_softc *);
137 static void vte_ifwatchdog(struct ifnet *);
138
139 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
140 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
141 static int vte_root_num;
142
143 #define DPRINTF(a)
144
145 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
146 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
147
148
149 static int
150 vte_match(device_t parent, cfdata_t cf, void *aux)
151 {
152 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
153
154 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
155 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
156 return 1;
157
158 return 0;
159 }
160
161 static void
162 vte_attach(device_t parent, device_t self, void *aux)
163 {
164 struct vte_softc *sc = device_private(self);
165 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
166 struct ifnet * const ifp = &sc->vte_if;
167 struct mii_data * const mii = &sc->vte_mii;
168 int h_valid;
169 pcireg_t reg, csr;
170 pci_intr_handle_t intrhandle;
171 const char *intrstr;
172 int error;
173 const struct sysctlnode *node;
174 int vte_nodenum;
175 char intrbuf[PCI_INTRSTR_LEN];
176
177 sc->vte_dev = self;
178
179 callout_init(&sc->vte_tick_ch, 0);
180 callout_setfunc(&sc->vte_tick_ch, vte_tick, sc);
181
182 /* Map the device. */
183 h_valid = 0;
184 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 }
190 if (h_valid == 0) {
191 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 &sc->vte_bushandle, NULL, NULL) == 0);
196 }
197 }
198 if (h_valid == 0) {
199 aprint_error_dev(self, "unable to map device registers\n");
200 return;
201 }
202 sc->vte_dmatag = pa->pa_dmat;
203 /* Enable the device. */
204 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 csr | PCI_COMMAND_MASTER_ENABLE);
207
208 pci_aprint_devinfo(pa, NULL);
209
210 /* Reset the ethernet controller. */
211 vte_reset(sc);
212
213 if ((error = vte_dma_alloc(sc)) != 0)
214 return;
215
216 /* Load station address. */
217 vte_get_macaddr(sc);
218
219 aprint_normal_dev(self, "Ethernet address %s\n",
220 ether_sprintf(sc->vte_eaddr));
221
222 /* Map and establish interrupts */
223 if (pci_intr_map(pa, &intrhandle)) {
224 aprint_error_dev(self, "couldn't map interrupt\n");
225 return;
226 }
227 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf,
228 sizeof(intrbuf));
229 sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
230 vte_intr, sc, device_xname(self));
231 if (sc->vte_ih == NULL) {
232 aprint_error_dev(self, "couldn't establish interrupt");
233 if (intrstr != NULL)
234 aprint_error(" at %s", intrstr);
235 aprint_error("\n");
236 return;
237 }
238 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
239
240 sc->vte_if.if_softc = sc;
241 mii->mii_ifp = ifp;
242 mii->mii_readreg = vte_miibus_readreg;
243 mii->mii_writereg = vte_miibus_writereg;
244 mii->mii_statchg = vte_miibus_statchg;
245 sc->vte_ec.ec_mii = mii;
246 ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange,
247 ether_mediastatus);
248 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
249 MII_OFFSET_ANY, 0);
250 if (LIST_FIRST(&mii->mii_phys) == NULL) {
251 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
252 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
253 } else
254 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
255
256 /*
257 * We can support 802.1Q VLAN-sized frames.
258 */
259 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
260
261 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
262 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
263 ifp->if_ioctl = vte_ifioctl;
264 ifp->if_start = vte_ifstart;
265 ifp->if_watchdog = vte_ifwatchdog;
266 ifp->if_init = vte_init;
267 ifp->if_stop = vte_stop;
268 ifp->if_timer = 0;
269 IFQ_SET_READY(&ifp->if_snd);
270 if_attach(ifp);
271 if_deferred_start_init(ifp, NULL);
272 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
273
274 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
275 pmf_class_network_register(self, ifp);
276 else
277 aprint_error_dev(self, "couldn't establish power handler\n");
278
279 rnd_attach_source(&sc->rnd_source, device_xname(self),
280 RND_TYPE_NET, RND_FLAG_DEFAULT);
281
282 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
283 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
284 SYSCTL_DESCR("vte per-controller controls"),
285 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
286 CTL_EOL) != 0) {
287 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
288 return;
289 }
290 vte_nodenum = node->sysctl_num;
291 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
292 CTLFLAG_READWRITE,
293 CTLTYPE_INT, "int_rxct",
294 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
295 vte_sysctl_intrxct, 0, (void *)sc,
296 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
297 CTL_EOL) != 0) {
298 aprint_normal_dev(sc->vte_dev,
299 "couldn't create int_rxct sysctl node\n");
300 }
301 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
302 CTLFLAG_READWRITE,
303 CTLTYPE_INT, "int_txct",
304 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
305 vte_sysctl_inttxct, 0, (void *)sc,
306 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
307 CTL_EOL) != 0) {
308 aprint_normal_dev(sc->vte_dev,
309 "couldn't create int_txct sysctl node\n");
310 }
311 }
312
313 static int
314 vte_detach(device_t dev, int flags __unused)
315 {
316 struct vte_softc *sc = device_private(dev);
317 struct ifnet *ifp = &sc->vte_if;
318 int s;
319
320 s = splnet();
321 /* Stop the interface. Callouts are stopped in it. */
322 vte_stop(ifp, 1);
323 splx(s);
324
325 pmf_device_deregister(dev);
326
327 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
328
329 ether_ifdetach(ifp);
330 if_detach(ifp);
331 ifmedia_fini(&sc->vte_mii.mii_media);
332
333 vte_dma_free(sc);
334
335 return (0);
336 }
337
338 static int
339 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
340 {
341 struct vte_softc *sc = device_private(dev);
342 int i;
343
344 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
345 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
346 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
347 DELAY(5);
348 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
349 break;
350 }
351
352 if (i == 0) {
353 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
354 return ETIMEDOUT;
355 }
356
357 *val = CSR_READ_2(sc, VTE_MMRD);
358 return 0;
359 }
360
361 static int
362 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
363 {
364 struct vte_softc *sc = device_private(dev);
365 int i;
366
367 CSR_WRITE_2(sc, VTE_MMWD, val);
368 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
369 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
370 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
371 DELAY(5);
372 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
373 break;
374 }
375
376 if (i == 0) {
377 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
378 return ETIMEDOUT;
379 }
380
381 return 0;
382 }
383
384 static void
385 vte_miibus_statchg(struct ifnet *ifp)
386 {
387 struct vte_softc *sc = ifp->if_softc;
388 uint16_t val;
389
390 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
391 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
392
393 sc->vte_flags &= ~VTE_FLAG_LINK;
394 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
395 (IFM_ACTIVE | IFM_AVALID)) {
396 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
397 case IFM_10_T:
398 case IFM_100_TX:
399 sc->vte_flags |= VTE_FLAG_LINK;
400 break;
401 default:
402 break;
403 }
404 }
405
406 /* Stop RX/TX MACs. */
407 vte_stop_mac(sc);
408 /* Program MACs with resolved duplex and flow control. */
409 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
410 /*
411 * Timer waiting time : (63 + TIMER * 64) MII clock.
412 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
413 */
414 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
415 val = 18 << VTE_IM_TIMER_SHIFT;
416 else
417 val = 1 << VTE_IM_TIMER_SHIFT;
418 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
419 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
420 CSR_WRITE_2(sc, VTE_MRICR, val);
421
422 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
423 val = 18 << VTE_IM_TIMER_SHIFT;
424 else
425 val = 1 << VTE_IM_TIMER_SHIFT;
426 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
427 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
428 CSR_WRITE_2(sc, VTE_MTICR, val);
429
430 vte_mac_config(sc);
431 vte_start_mac(sc);
432 DPRINTF(("vte_miibus_statchg: link\n"));
433 }
434 }
435
436 static void
437 vte_get_macaddr(struct vte_softc *sc)
438 {
439 uint16_t mid;
440
441 /*
442 * It seems there is no way to reload station address and
443 * it is supposed to be set by BIOS.
444 */
445 mid = CSR_READ_2(sc, VTE_MID0L);
446 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
447 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
448 mid = CSR_READ_2(sc, VTE_MID0M);
449 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
450 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
451 mid = CSR_READ_2(sc, VTE_MID0H);
452 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
453 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
454 }
455
456
457 static int
458 vte_dma_alloc(struct vte_softc *sc)
459 {
460 struct vte_txdesc *txd;
461 struct vte_rxdesc *rxd;
462 int error, i, rseg;
463
464 /* create DMA map for TX ring */
465 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
466 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
467 &sc->vte_cdata.vte_tx_ring_map);
468 if (error) {
469 aprint_error_dev(sc->vte_dev,
470 "could not create dma map for TX ring (%d)\n",
471 error);
472 goto fail;
473 }
474 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
475 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
476 VTE_TX_RING_ALIGN, 0,
477 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
478 BUS_DMA_NOWAIT);
479 if (error != 0) {
480 aprint_error_dev(sc->vte_dev,
481 "could not allocate DMA'able memory for TX ring (%d).\n",
482 error);
483 goto fail;
484 }
485 KASSERT(rseg == 1);
486 error = bus_dmamem_map(sc->vte_dmatag,
487 sc->vte_cdata.vte_tx_ring_seg, 1,
488 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
489 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
490 if (error != 0) {
491 aprint_error_dev(sc->vte_dev,
492 "could not map DMA'able memory for TX ring (%d).\n",
493 error);
494 goto fail;
495 }
496 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
497 error = bus_dmamap_load(sc->vte_dmatag,
498 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
499 VTE_TX_RING_SZ, NULL,
500 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
501 if (error != 0) {
502 aprint_error_dev(sc->vte_dev,
503 "could not load DMA'able memory for TX ring.\n");
504 goto fail;
505 }
506
507 /* create DMA map for RX ring */
508 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
509 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
510 &sc->vte_cdata.vte_rx_ring_map);
511 if (error) {
512 aprint_error_dev(sc->vte_dev,
513 "could not create dma map for RX ring (%d)\n",
514 error);
515 goto fail;
516 }
517 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
518 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
519 VTE_RX_RING_ALIGN, 0,
520 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
521 BUS_DMA_NOWAIT);
522 if (error != 0) {
523 aprint_error_dev(sc->vte_dev,
524 "could not allocate DMA'able memory for RX ring (%d).\n",
525 error);
526 goto fail;
527 }
528 KASSERT(rseg == 1);
529 error = bus_dmamem_map(sc->vte_dmatag,
530 sc->vte_cdata.vte_rx_ring_seg, 1,
531 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
532 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
533 if (error != 0) {
534 aprint_error_dev(sc->vte_dev,
535 "could not map DMA'able memory for RX ring (%d).\n",
536 error);
537 goto fail;
538 }
539 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
540 error = bus_dmamap_load(sc->vte_dmatag,
541 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
542 VTE_RX_RING_SZ, NULL,
543 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
544 if (error != 0) {
545 aprint_error_dev(sc->vte_dev,
546 "could not load DMA'able memory for RX ring (%d).\n",
547 error);
548 goto fail;
549 }
550
551 /* Create DMA maps for TX buffers. */
552 for (i = 0; i < VTE_TX_RING_CNT; i++) {
553 txd = &sc->vte_cdata.vte_txdesc[i];
554 txd->tx_m = NULL;
555 txd->tx_dmamap = NULL;
556 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
557 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
558 &txd->tx_dmamap);
559 if (error != 0) {
560 aprint_error_dev(sc->vte_dev,
561 "could not create TX DMA map %d (%d).\n", i, error);
562 goto fail;
563 }
564 }
565 /* Create DMA maps for RX buffers. */
566 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
567 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
568 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
569 aprint_error_dev(sc->vte_dev,
570 "could not create spare RX dmamap (%d).\n", error);
571 goto fail;
572 }
573 for (i = 0; i < VTE_RX_RING_CNT; i++) {
574 rxd = &sc->vte_cdata.vte_rxdesc[i];
575 rxd->rx_m = NULL;
576 rxd->rx_dmamap = NULL;
577 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
578 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
579 &rxd->rx_dmamap);
580 if (error != 0) {
581 aprint_error_dev(sc->vte_dev,
582 "could not create RX dmamap %d (%d).\n", i, error);
583 goto fail;
584 }
585 }
586 return 0;
587
588 fail:
589 vte_dma_free(sc);
590 return (error);
591 }
592
593 static void
594 vte_dma_free(struct vte_softc *sc)
595 {
596 struct vte_txdesc *txd;
597 struct vte_rxdesc *rxd;
598 int i;
599
600 /* TX buffers. */
601 for (i = 0; i < VTE_TX_RING_CNT; i++) {
602 txd = &sc->vte_cdata.vte_txdesc[i];
603 if (txd->tx_dmamap != NULL) {
604 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
605 txd->tx_dmamap = NULL;
606 }
607 }
608 /* RX buffers */
609 for (i = 0; i < VTE_RX_RING_CNT; i++) {
610 rxd = &sc->vte_cdata.vte_rxdesc[i];
611 if (rxd->rx_dmamap != NULL) {
612 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
613 rxd->rx_dmamap = NULL;
614 }
615 }
616 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
617 bus_dmamap_destroy(sc->vte_dmatag,
618 sc->vte_cdata.vte_rx_sparemap);
619 sc->vte_cdata.vte_rx_sparemap = NULL;
620 }
621 /* TX descriptor ring. */
622 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
623 bus_dmamap_unload(sc->vte_dmatag,
624 sc->vte_cdata.vte_tx_ring_map);
625 bus_dmamap_destroy(sc->vte_dmatag,
626 sc->vte_cdata.vte_tx_ring_map);
627 }
628 if (sc->vte_cdata.vte_tx_ring != NULL) {
629 bus_dmamem_unmap(sc->vte_dmatag,
630 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
631 bus_dmamem_free(sc->vte_dmatag,
632 sc->vte_cdata.vte_tx_ring_seg, 1);
633 }
634 sc->vte_cdata.vte_tx_ring = NULL;
635 sc->vte_cdata.vte_tx_ring_map = NULL;
636 /* RX ring. */
637 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
638 bus_dmamap_unload(sc->vte_dmatag,
639 sc->vte_cdata.vte_rx_ring_map);
640 bus_dmamap_destroy(sc->vte_dmatag,
641 sc->vte_cdata.vte_rx_ring_map);
642 }
643 if (sc->vte_cdata.vte_rx_ring != NULL) {
644 bus_dmamem_unmap(sc->vte_dmatag,
645 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
646 bus_dmamem_free(sc->vte_dmatag,
647 sc->vte_cdata.vte_rx_ring_seg, 1);
648 }
649 sc->vte_cdata.vte_rx_ring = NULL;
650 sc->vte_cdata.vte_rx_ring_map = NULL;
651 }
652
653 static bool
654 vte_shutdown(device_t dev, int howto)
655 {
656
657 return (vte_suspend(dev, NULL));
658 }
659
660 static bool
661 vte_suspend(device_t dev, const pmf_qual_t *qual)
662 {
663 struct vte_softc *sc = device_private(dev);
664 struct ifnet *ifp = &sc->vte_if;
665
666 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
667 if ((ifp->if_flags & IFF_RUNNING) != 0)
668 vte_stop(ifp, 1);
669 return (0);
670 }
671
672 static bool
673 vte_resume(device_t dev, const pmf_qual_t *qual)
674 {
675 struct vte_softc *sc = device_private(dev);
676 struct ifnet *ifp;
677
678 ifp = &sc->vte_if;
679 if ((ifp->if_flags & IFF_UP) != 0) {
680 ifp->if_flags &= ~IFF_RUNNING;
681 vte_init(ifp);
682 }
683
684 return (0);
685 }
686
687 static struct vte_txdesc *
688 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
689 {
690 struct vte_txdesc *txd;
691 struct mbuf *m, *n;
692 int copy, error, padlen;
693
694 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
695 m = *m_head;
696 /*
697 * Controller doesn't auto-pad, so we have to make sure pad
698 * short frames out to the minimum frame length.
699 */
700 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
701 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
702 else
703 padlen = 0;
704
705 /*
706 * Controller does not support multi-fragmented TX buffers.
707 * Controller spends most of its TX processing time in
708 * de-fragmenting TX buffers. Either faster CPU or more
709 * advanced controller DMA engine is required to speed up
710 * TX path processing.
711 * To mitigate the de-fragmenting issue, perform deep copy
712 * from fragmented mbuf chains to a pre-allocated mbuf
713 * cluster with extra cost of kernel memory. For frames
714 * that is composed of single TX buffer, the deep copy is
715 * bypassed.
716 */
717 copy = 0;
718 if (m->m_next != NULL)
719 copy++;
720 if (padlen > 0 && (M_READONLY(m) ||
721 padlen > M_TRAILINGSPACE(m)))
722 copy++;
723 if (copy != 0) {
724 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
725 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
726 n->m_pkthdr.len = m->m_pkthdr.len;
727 n->m_len = m->m_pkthdr.len;
728 m = n;
729 txd->tx_flags |= VTE_TXMBUF;
730 }
731
732 if (padlen > 0) {
733 /* Zero out the bytes in the pad area. */
734 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
735 m->m_pkthdr.len += padlen;
736 m->m_len = m->m_pkthdr.len;
737 }
738
739 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m,
740 BUS_DMA_NOWAIT);
741 if (error != 0) {
742 txd->tx_flags &= ~VTE_TXMBUF;
743 return (NULL);
744 }
745 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
746 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
747 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
748
749 txd->tx_desc->dtlen =
750 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
751 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
752 sc->vte_cdata.vte_tx_cnt++;
753 /* Update producer index. */
754 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
755
756 /* Finally hand over ownership to controller. */
757 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
758 txd->tx_m = m;
759
760 return (txd);
761 }
762
763 static void
764 vte_ifstart(struct ifnet *ifp)
765 {
766 struct vte_softc *sc = ifp->if_softc;
767 struct vte_txdesc *txd;
768 struct mbuf *m_head, *m;
769 int enq;
770
771 ifp = &sc->vte_if;
772
773 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
774
775 if ((ifp->if_flags & IFF_RUNNING) == 0) {
776 return;
777 }
778 if ((sc->vte_flags & VTE_FLAG_LINK) == 0) {
779 return;
780 }
781
782 /* Reserve one free TX descriptor. */
783 for (enq = 0; sc->vte_cdata.vte_tx_cnt < VTE_TX_RING_CNT - 1; ) {
784 IFQ_POLL(&ifp->if_snd, m_head);
785 if (m_head == NULL)
786 break;
787 /*
788 * Pack the data into the transmit ring.
789 */
790 DPRINTF(("vte_encap:"));
791 if ((txd = vte_encap(sc, &m_head)) == NULL) {
792 DPRINTF((" failed\n"));
793 break;
794 }
795 DPRINTF((" ok\n"));
796 IFQ_DEQUEUE(&ifp->if_snd, m);
797 KASSERT(m == m_head);
798
799 enq++;
800 /*
801 * If there's a BPF listener, bounce a copy of this frame
802 * to him.
803 */
804 bpf_mtap(ifp, m_head, BPF_D_OUT);
805 /* Free consumed TX frame. */
806 if ((txd->tx_flags & VTE_TXMBUF) != 0)
807 m_freem(m_head);
808 }
809
810 if (enq > 0) {
811 bus_dmamap_sync(sc->vte_dmatag,
812 sc->vte_cdata.vte_tx_ring_map, 0,
813 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
814 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
816 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
817 }
818 }
819
820 static void
821 vte_ifwatchdog(struct ifnet *ifp)
822 {
823 struct vte_softc *sc = ifp->if_softc;
824
825 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
826 return;
827
828 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
829 if_statinc(ifp, if_oerrors);
830 vte_init(ifp);
831 if (!IFQ_IS_EMPTY(&ifp->if_snd))
832 vte_ifstart(ifp);
833 }
834
835 static int
836 vte_mediachange(struct ifnet *ifp)
837 {
838 int error;
839 struct vte_softc *sc = ifp->if_softc;
840
841 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
842 error = 0;
843 else if (error != 0) {
844 aprint_error_dev(sc->vte_dev, "could not set media\n");
845 return error;
846 }
847 return 0;
848
849 }
850
851 static int
852 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
853 {
854 struct vte_softc *sc = ifp->if_softc;
855 int error, s;
856
857 s = splnet();
858 error = ether_ioctl(ifp, cmd, data);
859 if (error == ENETRESET) {
860 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
861 if (ifp->if_flags & IFF_RUNNING)
862 vte_rxfilter(sc);
863 error = 0;
864 }
865 splx(s);
866 return error;
867 }
868
869 static void
870 vte_mac_config(struct vte_softc *sc)
871 {
872 uint16_t mcr;
873
874 mcr = CSR_READ_2(sc, VTE_MCR0);
875 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
876 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
877 mcr |= MCR0_FULL_DUPLEX;
878 #ifdef notyet
879 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
880 mcr |= MCR0_FC_ENB;
881 /*
882 * The data sheet is not clear whether the controller
883 * honors received pause frames or not. The is no
884 * separate control bit for RX pause frame so just
885 * enable MCR0_FC_ENB bit.
886 */
887 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
888 mcr |= MCR0_FC_ENB;
889 #endif
890 }
891 CSR_WRITE_2(sc, VTE_MCR0, mcr);
892 }
893
894 static void
895 vte_stats_clear(struct vte_softc *sc)
896 {
897
898 /* Reading counter registers clears its contents. */
899 CSR_READ_2(sc, VTE_CNT_RX_DONE);
900 CSR_READ_2(sc, VTE_CNT_MECNT0);
901 CSR_READ_2(sc, VTE_CNT_MECNT1);
902 CSR_READ_2(sc, VTE_CNT_MECNT2);
903 CSR_READ_2(sc, VTE_CNT_MECNT3);
904 CSR_READ_2(sc, VTE_CNT_TX_DONE);
905 CSR_READ_2(sc, VTE_CNT_MECNT4);
906 CSR_READ_2(sc, VTE_CNT_PAUSE);
907 }
908
909 static void
910 vte_stats_update(struct vte_softc *sc)
911 {
912 struct vte_hw_stats *stat;
913 struct ifnet *ifp = &sc->vte_if;
914 uint16_t value;
915
916 stat = &sc->vte_stats;
917
918 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
919
920 CSR_READ_2(sc, VTE_MECISR);
921
922 /* RX stats. */
923 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
924
925 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
926 stat->rx_bcast_frames += (value >> 8);
927 stat->rx_mcast_frames += (value & 0xFF);
928
929 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
930 if_statadd_ref(nsr, if_ierrors,
931 (value >> 8) + /* rx_runts */
932 (value & 0xFF)); /* rx_crcerrs */
933
934 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
935 if_statadd_ref(nsr, if_ierrors,
936 (value & 0xFF)); /* rx_long_frames */
937
938 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
939 if_statadd_ref(nsr, if_ierrors,
940 (value >> 8)); /* rx_fifo_full */
941 stat->rx_desc_unavail += (value & 0xFF);
942
943 /* TX stats. */
944 if_statadd_ref(nsr, if_opackets,
945 CSR_READ_2(sc, VTE_CNT_TX_DONE)); /* tx_frames */
946
947 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
948 if_statadd_ref(nsr, if_oerrors,
949 (value >> 8) + /* tx_underruns */
950 (value & 0xFF)); /* tx_late_colls */
951
952 /* Pause stats. */
953 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
954 stat->tx_pause_frames += (value >> 8);
955 stat->rx_pause_frames += (value & 0xFF);
956
957 IF_STAT_PUTREF(ifp);
958 }
959
960 static int
961 vte_intr(void *arg)
962 {
963 struct vte_softc *sc = (struct vte_softc *)arg;
964 struct ifnet *ifp = &sc->vte_if;
965 uint16_t status;
966 int n;
967
968 /* Reading VTE_MISR acknowledges interrupts. */
969 status = CSR_READ_2(sc, VTE_MISR);
970 DPRINTF(("vte_intr status 0x%x\n", status));
971 if ((status & VTE_INTRS) == 0) {
972 /* Not ours. */
973 return 0;
974 }
975
976 /* Disable interrupts. */
977 CSR_WRITE_2(sc, VTE_MIER, 0);
978 for (n = 8; (status & VTE_INTRS) != 0;) {
979 if ((ifp->if_flags & IFF_RUNNING) == 0)
980 break;
981 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
982 MISR_RX_FIFO_FULL)) != 0)
983 vte_rxeof(sc);
984 if ((status & MISR_TX_DONE) != 0)
985 vte_txeof(sc);
986 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
987 vte_stats_update(sc);
988 if_schedule_deferred_start(ifp);
989 if (--n > 0)
990 status = CSR_READ_2(sc, VTE_MISR);
991 else
992 break;
993 }
994
995 if ((ifp->if_flags & IFF_RUNNING) != 0) {
996 /* Re-enable interrupts. */
997 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
998 }
999 return 1;
1000 }
1001
1002 static void
1003 vte_txeof(struct vte_softc *sc)
1004 {
1005 struct ifnet *ifp;
1006 struct vte_txdesc *txd;
1007 uint16_t status;
1008 int cons, prog;
1009
1010 ifp = &sc->vte_if;
1011
1012 if (sc->vte_cdata.vte_tx_cnt == 0)
1013 return;
1014 bus_dmamap_sync(sc->vte_dmatag,
1015 sc->vte_cdata.vte_tx_ring_map, 0,
1016 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1017 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1018 cons = sc->vte_cdata.vte_tx_cons;
1019 /*
1020 * Go through our TX list and free mbufs for those
1021 * frames which have been transmitted.
1022 */
1023 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1024 txd = &sc->vte_cdata.vte_txdesc[cons];
1025 status = le16toh(txd->tx_desc->dtst);
1026 if ((status & VTE_DTST_TX_OWN) != 0)
1027 break;
1028 if ((status & VTE_DTST_TX_OK) != 0)
1029 if_statadd(ifp, if_collisions, (status & 0xf));
1030 sc->vte_cdata.vte_tx_cnt--;
1031 /* Reclaim transmitted mbufs. */
1032 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1033 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1034 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1035 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1036 m_freem(txd->tx_m);
1037 txd->tx_flags &= ~VTE_TXMBUF;
1038 txd->tx_m = NULL;
1039 prog++;
1040 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1041 }
1042
1043 if (prog > 0) {
1044 sc->vte_cdata.vte_tx_cons = cons;
1045 /*
1046 * Unarm watchdog timer only when there is no pending
1047 * frames in TX queue.
1048 */
1049 if (sc->vte_cdata.vte_tx_cnt == 0)
1050 sc->vte_watchdog_timer = 0;
1051 }
1052 }
1053
1054 static int
1055 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1056 {
1057 struct mbuf *m;
1058 bus_dmamap_t map;
1059
1060 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1061 if (m == NULL)
1062 return (ENOBUFS);
1063 m->m_len = m->m_pkthdr.len = MCLBYTES;
1064 m_adj(m, sizeof(uint32_t));
1065
1066 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1067 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) {
1068 m_freem(m);
1069 return (ENOBUFS);
1070 }
1071 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1072
1073 if (rxd->rx_m != NULL) {
1074 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1075 0, rxd->rx_dmamap->dm_mapsize,
1076 BUS_DMASYNC_POSTREAD);
1077 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1078 }
1079 map = rxd->rx_dmamap;
1080 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1081 sc->vte_cdata.vte_rx_sparemap = map;
1082 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1083 0, rxd->rx_dmamap->dm_mapsize,
1084 BUS_DMASYNC_PREREAD);
1085 rxd->rx_m = m;
1086 rxd->rx_desc->drbp =
1087 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1088 rxd->rx_desc->drlen = htole16(
1089 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1090 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m,
1091 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr,
1092 rxd->rx_dmamap->dm_segs[0].ds_len));
1093 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1094
1095 return (0);
1096 }
1097
1098 static void
1099 vte_rxeof(struct vte_softc *sc)
1100 {
1101 struct ifnet *ifp;
1102 struct vte_rxdesc *rxd;
1103 struct mbuf *m;
1104 uint16_t status, total_len;
1105 int cons, prog;
1106
1107 bus_dmamap_sync(sc->vte_dmatag,
1108 sc->vte_cdata.vte_rx_ring_map, 0,
1109 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1110 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1111 cons = sc->vte_cdata.vte_rx_cons;
1112 ifp = &sc->vte_if;
1113 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1114 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1115 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1116 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1117 status = le16toh(rxd->rx_desc->drst);
1118 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n",
1119 cons, rxd, rxd->rx_m, status,
1120 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1121 if ((status & VTE_DRST_RX_OWN) != 0)
1122 break;
1123 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1124 m = rxd->rx_m;
1125 if ((status & VTE_DRST_RX_OK) == 0) {
1126 /* Discard errored frame. */
1127 rxd->rx_desc->drlen =
1128 htole16(MCLBYTES - sizeof(uint32_t));
1129 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1130 continue;
1131 }
1132 if (vte_newbuf(sc, rxd) != 0) {
1133 DPRINTF(("vte_rxeof newbuf failed\n"));
1134 if_statinc(ifp, if_ierrors);
1135 rxd->rx_desc->drlen =
1136 htole16(MCLBYTES - sizeof(uint32_t));
1137 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1138 continue;
1139 }
1140
1141 /*
1142 * It seems there is no way to strip FCS bytes.
1143 */
1144 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1145 m_set_rcvif(m, ifp);
1146 if_percpuq_enqueue(ifp->if_percpuq, m);
1147 }
1148
1149 if (prog > 0) {
1150 /* Update the consumer index. */
1151 sc->vte_cdata.vte_rx_cons = cons;
1152 /*
1153 * Sync updated RX descriptors such that controller see
1154 * modified RX buffer addresses.
1155 */
1156 bus_dmamap_sync(sc->vte_dmatag,
1157 sc->vte_cdata.vte_rx_ring_map, 0,
1158 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1159 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1160 #ifdef notyet
1161 /*
1162 * Update residue counter. Controller does not
1163 * keep track of number of available RX descriptors
1164 * such that driver should have to update VTE_MRDCR
1165 * to make controller know how many free RX
1166 * descriptors were added to controller. This is
1167 * a similar mechanism used in VIA velocity
1168 * controllers and it indicates controller just
1169 * polls OWN bit of current RX descriptor pointer.
1170 * A couple of severe issues were seen on sample
1171 * board where the controller continuously emits TX
1172 * pause frames once RX pause threshold crossed.
1173 * Once triggered it never recovered form that
1174 * state, I couldn't find a way to make it back to
1175 * work at least. This issue effectively
1176 * disconnected the system from network. Also, the
1177 * controller used 00:00:00:00:00:00 as source
1178 * station address of TX pause frame. Probably this
1179 * is one of reason why vendor recommends not to
1180 * enable flow control on R6040 controller.
1181 */
1182 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1183 (((VTE_RX_RING_CNT * 2) / 10) <<
1184 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1185 #endif
1186 rnd_add_uint32(&sc->rnd_source, prog);
1187 }
1188 }
1189
1190 static void
1191 vte_tick(void *arg)
1192 {
1193 struct vte_softc *sc;
1194 int s = splnet();
1195
1196 sc = (struct vte_softc *)arg;
1197
1198 mii_tick(&sc->vte_mii);
1199 vte_stats_update(sc);
1200 vte_txeof(sc);
1201 vte_ifwatchdog(&sc->vte_if);
1202 callout_schedule(&sc->vte_tick_ch, hz);
1203 splx(s);
1204 }
1205
1206 static void
1207 vte_reset(struct vte_softc *sc)
1208 {
1209 uint16_t mcr, mdcsc;
1210 int i;
1211
1212 mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1213 mcr = CSR_READ_2(sc, VTE_MCR1);
1214 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1215 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1216 DELAY(10);
1217 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1218 break;
1219 }
1220 if (i == 0)
1221 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1222 /*
1223 * Follow the guide of vendor recommended way to reset MAC.
1224 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1225 * not reliable so manually reset internal state machine.
1226 */
1227 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1228 CSR_WRITE_2(sc, VTE_MACSM, 0);
1229 DELAY(5000);
1230
1231 /*
1232 * On some SoCs (like Vortex86DX3) MDC speed control register value
1233 * needs to be restored to original value instead of default one,
1234 * otherwise some PHY registers may fail to be read.
1235 */
1236 if (mdcsc != MDCSC_DEFAULT)
1237 CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1238 }
1239
1240
1241 static int
1242 vte_init(struct ifnet *ifp)
1243 {
1244 struct vte_softc *sc = ifp->if_softc;
1245 bus_addr_t paddr;
1246 uint8_t eaddr[ETHER_ADDR_LEN];
1247 int s, error;
1248
1249 s = splnet();
1250 /*
1251 * Cancel any pending I/O.
1252 */
1253 vte_stop(ifp, 1);
1254 /*
1255 * Reset the chip to a known state.
1256 */
1257 vte_reset(sc);
1258
1259 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1260 splx(s);
1261 return 0;
1262 }
1263
1264 /* Initialize RX descriptors. */
1265 if (vte_init_rx_ring(sc) != 0) {
1266 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1267 vte_stop(ifp, 1);
1268 splx(s);
1269 return ENOMEM;
1270 }
1271 if (vte_init_tx_ring(sc) != 0) {
1272 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1273 vte_stop(ifp, 1);
1274 splx(s);
1275 return ENOMEM;
1276 }
1277
1278 /*
1279 * Reprogram the station address. Controller supports up
1280 * to 4 different station addresses so driver programs the
1281 * first station address as its own ethernet address and
1282 * configure the remaining three addresses as perfect
1283 * multicast addresses.
1284 */
1285 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1286 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1287 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1288 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1289
1290 /* Set TX descriptor base addresses. */
1291 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1292 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1293 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1294 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1295
1296 /* Set RX descriptor base addresses. */
1297 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1298 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1299 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1300 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1301 /*
1302 * Initialize RX descriptor residue counter and set RX
1303 * pause threshold to 20% of available RX descriptors.
1304 * See comments on vte_rxeof() for details on flow control
1305 * issues.
1306 */
1307 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1308 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1309
1310 /*
1311 * Always use maximum frame size that controller can
1312 * support. Otherwise received frames that has longer
1313 * frame length than vte(4) MTU would be silently dropped
1314 * in controller. This would break path-MTU discovery as
1315 * sender wouldn't get any responses from receiver. The
1316 * RX buffer size should be multiple of 4.
1317 * Note, jumbo frames are silently ignored by controller
1318 * and even MAC counters do not detect them.
1319 */
1320 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1321
1322 /* Configure FIFO. */
1323 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1324 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1325 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1326
1327 /*
1328 * Configure TX/RX MACs. Actual resolved duplex and flow
1329 * control configuration is done after detecting a valid
1330 * link. Note, we don't generate early interrupt here
1331 * as well since FreeBSD does not have interrupt latency
1332 * problems like Windows.
1333 */
1334 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1335 /*
1336 * We manually keep track of PHY status changes to
1337 * configure resolved duplex and flow control since only
1338 * duplex configuration can be automatically reflected to
1339 * MCR0.
1340 */
1341 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1342 MCR1_EXCESS_COL_RETRY_16);
1343
1344 /* Initialize RX filter. */
1345 vte_rxfilter(sc);
1346
1347 /* Disable TX/RX interrupt moderation control. */
1348 CSR_WRITE_2(sc, VTE_MRICR, 0);
1349 CSR_WRITE_2(sc, VTE_MTICR, 0);
1350
1351 /* Enable MAC event counter interrupts. */
1352 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1353 /* Clear MAC statistics. */
1354 vte_stats_clear(sc);
1355
1356 /* Acknowledge all pending interrupts and clear it. */
1357 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1358 CSR_WRITE_2(sc, VTE_MISR, 0);
1359 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1360 CSR_READ_2(sc, VTE_MISR)));
1361
1362 sc->vte_flags &= ~VTE_FLAG_LINK;
1363 ifp->if_flags |= IFF_RUNNING;
1364
1365 /* calling mii_mediachg will call back vte_start_mac() */
1366 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1367 error = 0;
1368 else if (error != 0) {
1369 aprint_error_dev(sc->vte_dev, "could not set media\n");
1370 splx(s);
1371 return error;
1372 }
1373
1374 callout_schedule(&sc->vte_tick_ch, hz);
1375
1376 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER),
1377 CSR_READ_2(sc, VTE_MISR)));
1378 splx(s);
1379 return 0;
1380 }
1381
1382 static void
1383 vte_stop(struct ifnet *ifp, int disable)
1384 {
1385 struct vte_softc *sc = ifp->if_softc;
1386 struct vte_txdesc *txd;
1387 struct vte_rxdesc *rxd;
1388 int i;
1389
1390 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1391 if ((ifp->if_flags & IFF_RUNNING) == 0)
1392 return;
1393 /*
1394 * Mark the interface down and cancel the watchdog timer.
1395 */
1396 ifp->if_flags &= ~IFF_RUNNING;
1397 sc->vte_flags &= ~VTE_FLAG_LINK;
1398 callout_stop(&sc->vte_tick_ch);
1399 sc->vte_watchdog_timer = 0;
1400 vte_stats_update(sc);
1401 /* Disable interrupts. */
1402 CSR_WRITE_2(sc, VTE_MIER, 0);
1403 CSR_WRITE_2(sc, VTE_MECIER, 0);
1404 /* Stop RX/TX MACs. */
1405 vte_stop_mac(sc);
1406 /* Clear interrupts. */
1407 CSR_READ_2(sc, VTE_MISR);
1408 /*
1409 * Free TX/RX mbufs still in the queues.
1410 */
1411 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1412 rxd = &sc->vte_cdata.vte_rxdesc[i];
1413 if (rxd->rx_m != NULL) {
1414 bus_dmamap_sync(sc->vte_dmatag,
1415 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1416 BUS_DMASYNC_POSTREAD);
1417 bus_dmamap_unload(sc->vte_dmatag,
1418 rxd->rx_dmamap);
1419 m_freem(rxd->rx_m);
1420 rxd->rx_m = NULL;
1421 }
1422 }
1423 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1424 txd = &sc->vte_cdata.vte_txdesc[i];
1425 if (txd->tx_m != NULL) {
1426 bus_dmamap_sync(sc->vte_dmatag,
1427 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1428 BUS_DMASYNC_POSTWRITE);
1429 bus_dmamap_unload(sc->vte_dmatag,
1430 txd->tx_dmamap);
1431 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1432 m_freem(txd->tx_m);
1433 txd->tx_m = NULL;
1434 txd->tx_flags &= ~VTE_TXMBUF;
1435 }
1436 }
1437 /* Free TX mbuf pools used for deep copy. */
1438 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1439 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1440 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1441 sc->vte_cdata.vte_txmbufs[i] = NULL;
1442 }
1443 }
1444 }
1445
1446 static void
1447 vte_start_mac(struct vte_softc *sc)
1448 {
1449 struct ifnet *ifp = &sc->vte_if;
1450 uint16_t mcr;
1451 int i;
1452
1453 /* Enable RX/TX MACs. */
1454 mcr = CSR_READ_2(sc, VTE_MCR0);
1455 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1456 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1457 (ifp->if_flags & IFF_RUNNING) != 0) {
1458 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1459 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1460 for (i = VTE_TIMEOUT; i > 0; i--) {
1461 mcr = CSR_READ_2(sc, VTE_MCR0);
1462 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1463 (MCR0_RX_ENB | MCR0_TX_ENB))
1464 break;
1465 DELAY(10);
1466 }
1467 if (i == 0)
1468 aprint_error_dev(sc->vte_dev,
1469 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1470 }
1471 vte_rxfilter(sc);
1472 }
1473
1474 static void
1475 vte_stop_mac(struct vte_softc *sc)
1476 {
1477 uint16_t mcr;
1478 int i;
1479
1480 /* Disable RX/TX MACs. */
1481 mcr = CSR_READ_2(sc, VTE_MCR0);
1482 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1483 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1484 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1485 for (i = VTE_TIMEOUT; i > 0; i--) {
1486 mcr = CSR_READ_2(sc, VTE_MCR0);
1487 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1488 break;
1489 DELAY(10);
1490 }
1491 if (i == 0)
1492 aprint_error_dev(sc->vte_dev,
1493 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1494 }
1495 }
1496
1497 static int
1498 vte_init_tx_ring(struct vte_softc *sc)
1499 {
1500 struct vte_tx_desc *desc;
1501 struct vte_txdesc *txd;
1502 bus_addr_t addr;
1503 int i;
1504
1505 sc->vte_cdata.vte_tx_prod = 0;
1506 sc->vte_cdata.vte_tx_cons = 0;
1507 sc->vte_cdata.vte_tx_cnt = 0;
1508
1509 /* Pre-allocate TX mbufs for deep copy. */
1510 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1511 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1512 MT_DATA, M_PKTHDR);
1513 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1514 return (ENOBUFS);
1515 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1516 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1517 }
1518 desc = sc->vte_cdata.vte_tx_ring;
1519 bzero(desc, VTE_TX_RING_SZ);
1520 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1521 txd = &sc->vte_cdata.vte_txdesc[i];
1522 txd->tx_m = NULL;
1523 if (i != VTE_TX_RING_CNT - 1)
1524 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1525 sizeof(struct vte_tx_desc) * (i + 1);
1526 else
1527 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1528 sizeof(struct vte_tx_desc) * 0;
1529 desc = &sc->vte_cdata.vte_tx_ring[i];
1530 desc->dtnp = htole32(addr);
1531 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1532 txd->tx_desc = desc;
1533 }
1534
1535 bus_dmamap_sync(sc->vte_dmatag,
1536 sc->vte_cdata.vte_tx_ring_map, 0,
1537 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1538 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1539 return (0);
1540 }
1541
1542 static int
1543 vte_init_rx_ring(struct vte_softc *sc)
1544 {
1545 struct vte_rx_desc *desc;
1546 struct vte_rxdesc *rxd;
1547 bus_addr_t addr;
1548 int i;
1549
1550 sc->vte_cdata.vte_rx_cons = 0;
1551 desc = sc->vte_cdata.vte_rx_ring;
1552 bzero(desc, VTE_RX_RING_SZ);
1553 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1554 rxd = &sc->vte_cdata.vte_rxdesc[i];
1555 rxd->rx_m = NULL;
1556 if (i != VTE_RX_RING_CNT - 1)
1557 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1558 + sizeof(struct vte_rx_desc) * (i + 1);
1559 else
1560 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1561 + sizeof(struct vte_rx_desc) * 0;
1562 desc = &sc->vte_cdata.vte_rx_ring[i];
1563 desc->drnp = htole32(addr);
1564 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1565 rxd->rx_desc = desc;
1566 if (vte_newbuf(sc, rxd) != 0)
1567 return (ENOBUFS);
1568 }
1569
1570 bus_dmamap_sync(sc->vte_dmatag,
1571 sc->vte_cdata.vte_rx_ring_map, 0,
1572 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1573 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1574
1575 return (0);
1576 }
1577
1578 static void
1579 vte_rxfilter(struct vte_softc *sc)
1580 {
1581 struct ethercom *ec = &sc->vte_ec;
1582 struct ether_multistep step;
1583 struct ether_multi *enm;
1584 struct ifnet *ifp;
1585 uint8_t *eaddr;
1586 uint32_t crc;
1587 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1588 uint16_t mchash[4], mcr;
1589 int i, nperf;
1590
1591 ifp = &sc->vte_if;
1592
1593 DPRINTF(("vte_rxfilter\n"));
1594 memset(mchash, 0, sizeof(mchash));
1595 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1596 rxfilt_perf[i][0] = 0xFFFF;
1597 rxfilt_perf[i][1] = 0xFFFF;
1598 rxfilt_perf[i][2] = 0xFFFF;
1599 }
1600
1601 mcr = CSR_READ_2(sc, VTE_MCR0);
1602 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1603 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1604 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1605 mcr |= MCR0_BROADCAST_DIS;
1606 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1607 if ((ifp->if_flags & IFF_PROMISC) != 0)
1608 mcr |= MCR0_PROMISC;
1609 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1610 mcr |= MCR0_MULTICAST;
1611 mchash[0] = 0xFFFF;
1612 mchash[1] = 0xFFFF;
1613 mchash[2] = 0xFFFF;
1614 mchash[3] = 0xFFFF;
1615 goto chipit;
1616 }
1617
1618 ETHER_LOCK(ec);
1619 ETHER_FIRST_MULTI(step, ec, enm);
1620 nperf = 0;
1621 while (enm != NULL) {
1622 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)
1623 != 0) {
1624 sc->vte_if.if_flags |= IFF_ALLMULTI;
1625 mcr |= MCR0_MULTICAST;
1626 mchash[0] = 0xFFFF;
1627 mchash[1] = 0xFFFF;
1628 mchash[2] = 0xFFFF;
1629 mchash[3] = 0xFFFF;
1630 ETHER_UNLOCK(ec);
1631 goto chipit;
1632 }
1633 /*
1634 * Program the first 3 multicast groups into
1635 * the perfect filter. For all others, use the
1636 * hash table.
1637 */
1638 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1639 eaddr = enm->enm_addrlo;
1640 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1641 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1642 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1643 nperf++;
1644 } else {
1645 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1646 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1647 }
1648 ETHER_NEXT_MULTI(step, enm);
1649 }
1650 ETHER_UNLOCK(ec);
1651 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1652 mchash[3] != 0)
1653 mcr |= MCR0_MULTICAST;
1654
1655 chipit:
1656 /* Program multicast hash table. */
1657 DPRINTF(("chipit write multicast\n"));
1658 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1659 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1660 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1661 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1662 /* Program perfect filter table. */
1663 DPRINTF(("chipit write perfect filter\n"));
1664 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1665 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1666 rxfilt_perf[i][0]);
1667 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1668 rxfilt_perf[i][1]);
1669 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1670 rxfilt_perf[i][2]);
1671 }
1672 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1673 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1674 DPRINTF(("chipit read mcro\n"));
1675 CSR_READ_2(sc, VTE_MCR0);
1676 DPRINTF(("chipit done\n"));
1677 }
1678
1679 /*
1680 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1681 * set up in vte_pci_attach()
1682 */
1683 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1684 {
1685 int rc;
1686 const struct sysctlnode *node;
1687
1688 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1689 0, CTLTYPE_NODE, "vte",
1690 SYSCTL_DESCR("vte interface controls"),
1691 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1692 goto err;
1693 }
1694
1695 vte_root_num = node->sysctl_num;
1696 return;
1697
1698 err:
1699 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1700 }
1701
1702 static int
1703 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1704 {
1705 int error, t;
1706 struct sysctlnode node;
1707 struct vte_softc *sc;
1708
1709 node = *rnode;
1710 sc = node.sysctl_data;
1711 t = sc->vte_int_rx_mod;
1712 node.sysctl_data = &t;
1713 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1714 if (error || newp == NULL)
1715 return error;
1716 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1717 return EINVAL;
1718
1719 sc->vte_int_rx_mod = t;
1720 vte_miibus_statchg(&sc->vte_if);
1721 return 0;
1722 }
1723
1724 static int
1725 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1726 {
1727 int error, t;
1728 struct sysctlnode node;
1729 struct vte_softc *sc;
1730
1731 node = *rnode;
1732 sc = node.sysctl_data;
1733 t = sc->vte_int_tx_mod;
1734 node.sysctl_data = &t;
1735 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1736 if (error || newp == NULL)
1737 return error;
1738
1739 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1740 return EINVAL;
1741 sc->vte_int_tx_mod = t;
1742 vte_miibus_statchg(&sc->vte_if);
1743 return 0;
1744 }
1745