if_vte.c revision 1.7 1 /* $NetBSD: if_vte.c,v 1.7 2012/07/22 14:33:04 matt Exp $ */
2
3 /*
4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 /*-
28 * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice unmodified, this list of conditions, and the following
36 * disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 */
53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
54
55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.7 2012/07/22 14:33:04 matt Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/mbuf.h>
63 #include <sys/protosw.h>
64 #include <sys/socket.h>
65 #include <sys/ioctl.h>
66 #include <sys/errno.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/device.h>
70 #include <sys/sysctl.h>
71
72 #include <net/if.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_dl.h>
76 #include <net/route.h>
77 #include <net/netisr.h>
78
79 #include <net/bpf.h>
80 #include <net/bpfdesc.h>
81
82 #include <sys/rnd.h>
83
84 #include "opt_inet.h"
85 #include <net/if_ether.h>
86 #ifdef INET
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip.h>
91 #include <netinet/if_inarp.h>
92 #endif
93
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103
104 #include <dev/pci/if_vtereg.h>
105 #include <dev/pci/if_vtevar.h>
106
107 static int vte_match(device_t, cfdata_t, void *);
108 static void vte_attach(device_t, device_t, void *);
109 static int vte_detach(device_t, int);
110 static int vte_dma_alloc(struct vte_softc *);
111 static void vte_dma_free(struct vte_softc *);
112 static struct vte_txdesc *
113 vte_encap(struct vte_softc *, struct mbuf **);
114 static void vte_get_macaddr(struct vte_softc *);
115 static int vte_init(struct ifnet *);
116 static int vte_init_rx_ring(struct vte_softc *);
117 static int vte_init_tx_ring(struct vte_softc *);
118 static int vte_intr(void *);
119 static int vte_ifioctl(struct ifnet *, u_long, void *);
120 static void vte_mac_config(struct vte_softc *);
121 static int vte_miibus_readreg(device_t, int, int);
122 static void vte_miibus_statchg(struct ifnet *);
123 static void vte_miibus_writereg(device_t, int, int, int);
124 static int vte_mediachange(struct ifnet *);
125 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
126 static void vte_reset(struct vte_softc *);
127 static void vte_rxeof(struct vte_softc *);
128 static void vte_rxfilter(struct vte_softc *);
129 static bool vte_shutdown(device_t, int);
130 static bool vte_suspend(device_t, const pmf_qual_t *);
131 static bool vte_resume(device_t, const pmf_qual_t *);
132 static void vte_ifstart(struct ifnet *);
133 static void vte_start_mac(struct vte_softc *);
134 static void vte_stats_clear(struct vte_softc *);
135 static void vte_stats_update(struct vte_softc *);
136 static void vte_stop(struct ifnet *, int);
137 static void vte_stop_mac(struct vte_softc *);
138 static void vte_tick(void *);
139 static void vte_txeof(struct vte_softc *);
140 static void vte_ifwatchdog(struct ifnet *);
141
142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
144 static int vte_root_num;
145
146 #define DPRINTF(a)
147
148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
149 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
150
151
152 static int
153 vte_match(device_t parent, cfdata_t cf, void *aux)
154 {
155 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
156
157 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
158 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
159 return 1;
160
161 return 0;
162 }
163
164 static void
165 vte_attach(device_t parent, device_t self, void *aux)
166 {
167 struct vte_softc *sc = device_private(self);
168 struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
169 struct ifnet * const ifp = &sc->vte_if;
170 int h_valid;
171 pcireg_t reg, csr;
172 pci_intr_handle_t intrhandle;
173 const char *intrstr;
174 int error;
175 const struct sysctlnode *node;
176 int vte_nodenum;
177
178 sc->vte_dev = self;
179
180 callout_init(&sc->vte_tick_ch, 0);
181
182 /* Map the device. */
183 h_valid = 0;
184 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
185 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
186 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
187 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
188 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
189 }
190 if (h_valid == 0) {
191 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
192 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
193 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
194 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
195 &sc->vte_bushandle, NULL, NULL) == 0);
196 }
197 }
198 if (h_valid == 0) {
199 aprint_error_dev(self, "unable to map device registers\n");
200 return;
201 }
202 sc->vte_dmatag = pa->pa_dmat;
203 /* Enable the device. */
204 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
205 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
206 csr | PCI_COMMAND_MASTER_ENABLE);
207
208 pci_aprint_devinfo(pa, NULL);
209
210 /* Reset the ethernet controller. */
211 vte_reset(sc);
212
213 if ((error = vte_dma_alloc(sc)) != 0)
214 return;
215
216 /* Load station address. */
217 vte_get_macaddr(sc);
218
219 aprint_normal_dev(self, "Ethernet address %s\n",
220 ether_sprintf(sc->vte_eaddr));
221
222 /* Map and establish interrupts */
223 if (pci_intr_map(pa, &intrhandle)) {
224 aprint_error_dev(self, "couldn't map interrupt\n");
225 return;
226 }
227 intrstr = pci_intr_string(pa->pa_pc, intrhandle);
228 sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
229 vte_intr, sc);
230 if (sc->vte_ih == NULL) {
231 aprint_error_dev(self, "couldn't establish interrupt");
232 if (intrstr != NULL)
233 aprint_error(" at %s", intrstr);
234 aprint_error("\n");
235 return;
236 }
237 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
238
239 sc->vte_if.if_softc = sc;
240 sc->vte_mii.mii_ifp = ifp;
241 sc->vte_mii.mii_readreg = vte_miibus_readreg;
242 sc->vte_mii.mii_writereg = vte_miibus_writereg;
243 sc->vte_mii.mii_statchg = vte_miibus_statchg;
244 sc->vte_ec.ec_mii = &sc->vte_mii;
245 ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
246 ether_mediastatus);
247 mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
248 MII_OFFSET_ANY, 0);
249 if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
250 ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
251 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
252 } else
253 ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
254
255 /*
256 * We can support 802.1Q VLAN-sized frames.
257 */
258 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
259
260 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
261 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
262 ifp->if_ioctl = vte_ifioctl;
263 ifp->if_start = vte_ifstart;
264 ifp->if_watchdog = vte_ifwatchdog;
265 ifp->if_init = vte_init;
266 ifp->if_stop = vte_stop;
267 ifp->if_timer = 0;
268 IFQ_SET_READY(&ifp->if_snd);
269 if_attach(ifp);
270 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
271
272 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
273 pmf_class_network_register(self, ifp);
274 else
275 aprint_error_dev(self, "couldn't establish power handler\n");
276
277 rnd_attach_source(&sc->rnd_source, device_xname(self),
278 RND_TYPE_NET, 0);
279
280 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
281 0, CTLTYPE_NODE, device_xname(sc->vte_dev),
282 SYSCTL_DESCR("vte per-controller controls"),
283 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
284 CTL_EOL) != 0) {
285 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
286 return;
287 }
288 vte_nodenum = node->sysctl_num;
289 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
290 CTLFLAG_READWRITE,
291 CTLTYPE_INT, "int_rxct",
292 SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
293 vte_sysctl_intrxct, 0, (void *)sc,
294 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
295 CTL_EOL) != 0) {
296 aprint_normal_dev(sc->vte_dev,
297 "couldn't create int_rxct sysctl node\n");
298 }
299 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
300 CTLFLAG_READWRITE,
301 CTLTYPE_INT, "int_txct",
302 SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
303 vte_sysctl_inttxct, 0, (void *)sc,
304 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
305 CTL_EOL) != 0) {
306 aprint_normal_dev(sc->vte_dev,
307 "couldn't create int_txct sysctl node\n");
308 }
309 }
310
311 static int
312 vte_detach(device_t dev, int flags __unused)
313 {
314 struct vte_softc *sc = device_private(dev);
315 struct ifnet *ifp = &sc->vte_if;
316 int s;
317
318 s = splnet();
319 /* Stop the interface. Callouts are stopped in it. */
320 vte_stop(ifp, 1);
321 splx(s);
322
323 pmf_device_deregister(dev);
324
325 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
326 ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
327
328 ether_ifdetach(ifp);
329 if_detach(ifp);
330
331 vte_dma_free(sc);
332
333 return (0);
334 }
335
336 static int
337 vte_miibus_readreg(device_t dev, int phy, int reg)
338 {
339 struct vte_softc *sc = device_private(dev);
340 int i;
341
342 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
343 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
344 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
345 DELAY(5);
346 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
347 break;
348 }
349
350 if (i == 0) {
351 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
352 return (0);
353 }
354
355 return (CSR_READ_2(sc, VTE_MMRD));
356 }
357
358 static void
359 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
360 {
361 struct vte_softc *sc = device_private(dev);
362 int i;
363
364 CSR_WRITE_2(sc, VTE_MMWD, val);
365 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
366 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
367 for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
368 DELAY(5);
369 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
370 break;
371 }
372
373 if (i == 0)
374 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
375
376 }
377
378 static void
379 vte_miibus_statchg(struct ifnet *ifp)
380 {
381 struct vte_softc *sc = ifp->if_softc;
382 uint16_t val;
383
384 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
385 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
386
387 sc->vte_flags &= ~VTE_FLAG_LINK;
388 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
389 (IFM_ACTIVE | IFM_AVALID)) {
390 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
391 case IFM_10_T:
392 case IFM_100_TX:
393 sc->vte_flags |= VTE_FLAG_LINK;
394 break;
395 default:
396 break;
397 }
398 }
399
400 /* Stop RX/TX MACs. */
401 vte_stop_mac(sc);
402 /* Program MACs with resolved duplex and flow control. */
403 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
404 /*
405 * Timer waiting time : (63 + TIMER * 64) MII clock.
406 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
407 */
408 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
409 val = 18 << VTE_IM_TIMER_SHIFT;
410 else
411 val = 1 << VTE_IM_TIMER_SHIFT;
412 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
413 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
414 CSR_WRITE_2(sc, VTE_MRICR, val);
415
416 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
417 val = 18 << VTE_IM_TIMER_SHIFT;
418 else
419 val = 1 << VTE_IM_TIMER_SHIFT;
420 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
421 /* 48.6us for 100Mbps, 50.8us for 10Mbps */
422 CSR_WRITE_2(sc, VTE_MTICR, val);
423
424 vte_mac_config(sc);
425 vte_start_mac(sc);
426 DPRINTF(("vte_miibus_statchg: link\n"));
427 }
428 }
429
430 static void
431 vte_get_macaddr(struct vte_softc *sc)
432 {
433 uint16_t mid;
434
435 /*
436 * It seems there is no way to reload station address and
437 * it is supposed to be set by BIOS.
438 */
439 mid = CSR_READ_2(sc, VTE_MID0L);
440 sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
441 sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
442 mid = CSR_READ_2(sc, VTE_MID0M);
443 sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
444 sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
445 mid = CSR_READ_2(sc, VTE_MID0H);
446 sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
447 sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
448 }
449
450
451 static int
452 vte_dma_alloc(struct vte_softc *sc)
453 {
454 struct vte_txdesc *txd;
455 struct vte_rxdesc *rxd;
456 int error, i, rseg;
457
458 /* create DMA map for TX ring */
459 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
460 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
461 &sc->vte_cdata.vte_tx_ring_map);
462 if (error) {
463 aprint_error_dev(sc->vte_dev,
464 "could not create dma map for TX ring (%d)\n",
465 error);
466 goto fail;
467 }
468 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */
469 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
470 VTE_TX_RING_ALIGN, 0,
471 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
472 BUS_DMA_NOWAIT);
473 if (error != 0) {
474 aprint_error_dev(sc->vte_dev,
475 "could not allocate DMA'able memory for TX ring (%d).\n",
476 error);
477 goto fail;
478 }
479 KASSERT(rseg == 1);
480 error = bus_dmamem_map(sc->vte_dmatag,
481 sc->vte_cdata.vte_tx_ring_seg, 1,
482 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
483 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
484 if (error != 0) {
485 aprint_error_dev(sc->vte_dev,
486 "could not map DMA'able memory for TX ring (%d).\n",
487 error);
488 goto fail;
489 }
490 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
491 error = bus_dmamap_load(sc->vte_dmatag,
492 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
493 VTE_TX_RING_SZ, NULL,
494 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
495 if (error != 0) {
496 aprint_error_dev(sc->vte_dev,
497 "could not load DMA'able memory for TX ring.\n");
498 goto fail;
499 }
500
501 /* create DMA map for RX ring */
502 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
503 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
504 &sc->vte_cdata.vte_rx_ring_map);
505 if (error) {
506 aprint_error_dev(sc->vte_dev,
507 "could not create dma map for RX ring (%d)\n",
508 error);
509 goto fail;
510 }
511 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */
512 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
513 VTE_RX_RING_ALIGN, 0,
514 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
515 BUS_DMA_NOWAIT);
516 if (error != 0) {
517 aprint_error_dev(sc->vte_dev,
518 "could not allocate DMA'able memory for RX ring (%d).\n",
519 error);
520 goto fail;
521 }
522 KASSERT(rseg == 1);
523 error = bus_dmamem_map(sc->vte_dmatag,
524 sc->vte_cdata.vte_rx_ring_seg, 1,
525 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
526 BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
527 if (error != 0) {
528 aprint_error_dev(sc->vte_dev,
529 "could not map DMA'able memory for RX ring (%d).\n",
530 error);
531 goto fail;
532 }
533 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
534 error = bus_dmamap_load(sc->vte_dmatag,
535 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
536 VTE_RX_RING_SZ, NULL,
537 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
538 if (error != 0) {
539 aprint_error_dev(sc->vte_dev,
540 "could not load DMA'able memory for RX ring (%d).\n",
541 error);
542 goto fail;
543 }
544
545 /* Create DMA maps for TX buffers. */
546 for (i = 0; i < VTE_TX_RING_CNT; i++) {
547 txd = &sc->vte_cdata.vte_txdesc[i];
548 txd->tx_m = NULL;
549 txd->tx_dmamap = NULL;
550 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
551 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
552 &txd->tx_dmamap);
553 if (error != 0) {
554 aprint_error_dev(sc->vte_dev,
555 "could not create TX DMA map %d (%d).\n", i, error);
556 goto fail;
557 }
558 }
559 /* Create DMA maps for RX buffers. */
560 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
561 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
562 &sc->vte_cdata.vte_rx_sparemap)) != 0) {
563 aprint_error_dev(sc->vte_dev,
564 "could not create spare RX dmamap (%d).\n", error);
565 goto fail;
566 }
567 for (i = 0; i < VTE_RX_RING_CNT; i++) {
568 rxd = &sc->vte_cdata.vte_rxdesc[i];
569 rxd->rx_m = NULL;
570 rxd->rx_dmamap = NULL;
571 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
572 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
573 &rxd->rx_dmamap);
574 if (error != 0) {
575 aprint_error_dev(sc->vte_dev,
576 "could not create RX dmamap %d (%d).\n", i, error);
577 goto fail;
578 }
579 }
580 return 0;
581
582 fail:
583 vte_dma_free(sc);
584 return (error);
585 }
586
587 static void
588 vte_dma_free(struct vte_softc *sc)
589 {
590 struct vte_txdesc *txd;
591 struct vte_rxdesc *rxd;
592 int i;
593
594 /* TX buffers. */
595 for (i = 0; i < VTE_TX_RING_CNT; i++) {
596 txd = &sc->vte_cdata.vte_txdesc[i];
597 if (txd->tx_dmamap != NULL) {
598 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
599 txd->tx_dmamap = NULL;
600 }
601 }
602 /* RX buffers */
603 for (i = 0; i < VTE_RX_RING_CNT; i++) {
604 rxd = &sc->vte_cdata.vte_rxdesc[i];
605 if (rxd->rx_dmamap != NULL) {
606 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
607 rxd->rx_dmamap = NULL;
608 }
609 }
610 if (sc->vte_cdata.vte_rx_sparemap != NULL) {
611 bus_dmamap_destroy(sc->vte_dmatag,
612 sc->vte_cdata.vte_rx_sparemap);
613 sc->vte_cdata.vte_rx_sparemap = NULL;
614 }
615 /* TX descriptor ring. */
616 if (sc->vte_cdata.vte_tx_ring_map != NULL) {
617 bus_dmamap_unload(sc->vte_dmatag,
618 sc->vte_cdata.vte_tx_ring_map);
619 bus_dmamap_destroy(sc->vte_dmatag,
620 sc->vte_cdata.vte_tx_ring_map);
621 }
622 if (sc->vte_cdata.vte_tx_ring != NULL) {
623 bus_dmamem_unmap(sc->vte_dmatag,
624 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
625 bus_dmamem_free(sc->vte_dmatag,
626 sc->vte_cdata.vte_tx_ring_seg, 1);
627 }
628 sc->vte_cdata.vte_tx_ring = NULL;
629 sc->vte_cdata.vte_tx_ring_map = NULL;
630 /* RX ring. */
631 if (sc->vte_cdata.vte_rx_ring_map != NULL) {
632 bus_dmamap_unload(sc->vte_dmatag,
633 sc->vte_cdata.vte_rx_ring_map);
634 bus_dmamap_destroy(sc->vte_dmatag,
635 sc->vte_cdata.vte_rx_ring_map);
636 }
637 if (sc->vte_cdata.vte_rx_ring != NULL) {
638 bus_dmamem_unmap(sc->vte_dmatag,
639 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
640 bus_dmamem_free(sc->vte_dmatag,
641 sc->vte_cdata.vte_rx_ring_seg, 1);
642 }
643 sc->vte_cdata.vte_rx_ring = NULL;
644 sc->vte_cdata.vte_rx_ring_map = NULL;
645 }
646
647 static bool
648 vte_shutdown(device_t dev, int howto)
649 {
650
651 return (vte_suspend(dev, NULL));
652 }
653
654 static bool
655 vte_suspend(device_t dev, const pmf_qual_t *qual)
656 {
657 struct vte_softc *sc = device_private(dev);
658 struct ifnet *ifp = &sc->vte_if;
659
660 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
661 if ((ifp->if_flags & IFF_RUNNING) != 0)
662 vte_stop(ifp, 1);
663 return (0);
664 }
665
666 static bool
667 vte_resume(device_t dev, const pmf_qual_t *qual)
668 {
669 struct vte_softc *sc = device_private(dev);
670 struct ifnet *ifp;
671
672 ifp = &sc->vte_if;
673 if ((ifp->if_flags & IFF_UP) != 0) {
674 ifp->if_flags &= ~IFF_RUNNING;
675 vte_init(ifp);
676 }
677
678 return (0);
679 }
680
681 static struct vte_txdesc *
682 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
683 {
684 struct vte_txdesc *txd;
685 struct mbuf *m, *n;
686 int copy, error, padlen;
687
688 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
689 m = *m_head;
690 /*
691 * Controller doesn't auto-pad, so we have to make sure pad
692 * short frames out to the minimum frame length.
693 */
694 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
695 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
696 else
697 padlen = 0;
698
699 /*
700 * Controller does not support multi-fragmented TX buffers.
701 * Controller spends most of its TX processing time in
702 * de-fragmenting TX buffers. Either faster CPU or more
703 * advanced controller DMA engine is required to speed up
704 * TX path processing.
705 * To mitigate the de-fragmenting issue, perform deep copy
706 * from fragmented mbuf chains to a pre-allocated mbuf
707 * cluster with extra cost of kernel memory. For frames
708 * that is composed of single TX buffer, the deep copy is
709 * bypassed.
710 */
711 copy = 0;
712 if (m->m_next != NULL)
713 copy++;
714 if (padlen > 0 && (M_READONLY(m) ||
715 padlen > M_TRAILINGSPACE(m)))
716 copy++;
717 if (copy != 0) {
718 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
719 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
720 n->m_pkthdr.len = m->m_pkthdr.len;
721 n->m_len = m->m_pkthdr.len;
722 m = n;
723 txd->tx_flags |= VTE_TXMBUF;
724 }
725
726 if (padlen > 0) {
727 /* Zero out the bytes in the pad area. */
728 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
729 m->m_pkthdr.len += padlen;
730 m->m_len = m->m_pkthdr.len;
731 }
732
733 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
734 if (error != 0) {
735 txd->tx_flags &= ~VTE_TXMBUF;
736 return (NULL);
737 }
738 KASSERT(txd->tx_dmamap->dm_nsegs == 1);
739 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
740 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
741
742 txd->tx_desc->dtlen =
743 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
744 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
745 sc->vte_cdata.vte_tx_cnt++;
746 /* Update producer index. */
747 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
748
749 /* Finally hand over ownership to controller. */
750 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
751 txd->tx_m = m;
752
753 return (txd);
754 }
755
756 static void
757 vte_ifstart(struct ifnet *ifp)
758 {
759 struct vte_softc *sc = ifp->if_softc;
760 struct vte_txdesc *txd;
761 struct mbuf *m_head, *m;
762 int enq;
763
764 ifp = &sc->vte_if;
765
766 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
767
768 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
769 IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
770 return;
771
772 for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
773 /* Reserve one free TX descriptor. */
774 if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
775 ifp->if_flags |= IFF_OACTIVE;
776 break;
777 }
778 IFQ_POLL(&ifp->if_snd, m_head);
779 if (m_head == NULL)
780 break;
781 /*
782 * Pack the data into the transmit ring. If we
783 * don't have room, set the OACTIVE flag and wait
784 * for the NIC to drain the ring.
785 */
786 DPRINTF(("vte_encap:"));
787 if ((txd = vte_encap(sc, &m_head)) == NULL) {
788 DPRINTF((" failed\n"));
789 break;
790 }
791 DPRINTF((" ok\n"));
792 IFQ_DEQUEUE(&ifp->if_snd, m);
793 KASSERT(m == m_head);
794
795 enq++;
796 /*
797 * If there's a BPF listener, bounce a copy of this frame
798 * to him.
799 */
800 bpf_mtap(ifp, m_head);
801 /* Free consumed TX frame. */
802 if ((txd->tx_flags & VTE_TXMBUF) != 0)
803 m_freem(m_head);
804 }
805
806 if (enq > 0) {
807 bus_dmamap_sync(sc->vte_dmatag,
808 sc->vte_cdata.vte_tx_ring_map, 0,
809 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
810 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
811 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
812 sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
813 }
814 }
815
816 static void
817 vte_ifwatchdog(struct ifnet *ifp)
818 {
819 struct vte_softc *sc = ifp->if_softc;
820
821 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
822 return;
823
824 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
825 ifp->if_oerrors++;
826 vte_init(ifp);
827 if (!IFQ_IS_EMPTY(&ifp->if_snd))
828 vte_ifstart(ifp);
829 }
830
831 static int
832 vte_mediachange(struct ifnet *ifp)
833 {
834 int error;
835 struct vte_softc *sc = ifp->if_softc;
836
837 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
838 error = 0;
839 else if (error != 0) {
840 aprint_error_dev(sc->vte_dev, "could not set media\n");
841 return error;
842 }
843 return 0;
844
845 }
846
847 static int
848 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
849 {
850 struct vte_softc *sc = ifp->if_softc;
851 int error, s;
852
853 s = splnet();
854 error = ether_ioctl(ifp, cmd, data);
855 if (error == ENETRESET) {
856 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
857 if (ifp->if_flags & IFF_RUNNING)
858 vte_rxfilter(sc);
859 error = 0;
860 }
861 splx(s);
862 return error;
863 }
864
865 static void
866 vte_mac_config(struct vte_softc *sc)
867 {
868 uint16_t mcr;
869
870 mcr = CSR_READ_2(sc, VTE_MCR0);
871 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
872 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
873 mcr |= MCR0_FULL_DUPLEX;
874 #ifdef notyet
875 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
876 mcr |= MCR0_FC_ENB;
877 /*
878 * The data sheet is not clear whether the controller
879 * honors received pause frames or not. The is no
880 * separate control bit for RX pause frame so just
881 * enable MCR0_FC_ENB bit.
882 */
883 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
884 mcr |= MCR0_FC_ENB;
885 #endif
886 }
887 CSR_WRITE_2(sc, VTE_MCR0, mcr);
888 }
889
890 static void
891 vte_stats_clear(struct vte_softc *sc)
892 {
893
894 /* Reading counter registers clears its contents. */
895 CSR_READ_2(sc, VTE_CNT_RX_DONE);
896 CSR_READ_2(sc, VTE_CNT_MECNT0);
897 CSR_READ_2(sc, VTE_CNT_MECNT1);
898 CSR_READ_2(sc, VTE_CNT_MECNT2);
899 CSR_READ_2(sc, VTE_CNT_MECNT3);
900 CSR_READ_2(sc, VTE_CNT_TX_DONE);
901 CSR_READ_2(sc, VTE_CNT_MECNT4);
902 CSR_READ_2(sc, VTE_CNT_PAUSE);
903 }
904
905 static void
906 vte_stats_update(struct vte_softc *sc)
907 {
908 struct vte_hw_stats *stat;
909 struct ifnet *ifp = &sc->vte_if;
910 uint16_t value;
911
912 stat = &sc->vte_stats;
913
914 CSR_READ_2(sc, VTE_MECISR);
915 /* RX stats. */
916 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
917 value = CSR_READ_2(sc, VTE_CNT_MECNT0);
918 stat->rx_bcast_frames += (value >> 8);
919 stat->rx_mcast_frames += (value & 0xFF);
920 value = CSR_READ_2(sc, VTE_CNT_MECNT1);
921 stat->rx_runts += (value >> 8);
922 stat->rx_crcerrs += (value & 0xFF);
923 value = CSR_READ_2(sc, VTE_CNT_MECNT2);
924 stat->rx_long_frames += (value & 0xFF);
925 value = CSR_READ_2(sc, VTE_CNT_MECNT3);
926 stat->rx_fifo_full += (value >> 8);
927 stat->rx_desc_unavail += (value & 0xFF);
928
929 /* TX stats. */
930 stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
931 value = CSR_READ_2(sc, VTE_CNT_MECNT4);
932 stat->tx_underruns += (value >> 8);
933 stat->tx_late_colls += (value & 0xFF);
934
935 value = CSR_READ_2(sc, VTE_CNT_PAUSE);
936 stat->tx_pause_frames += (value >> 8);
937 stat->rx_pause_frames += (value & 0xFF);
938
939 /* Update ifp counters. */
940 ifp->if_opackets = stat->tx_frames;
941 ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
942 ifp->if_ipackets = stat->rx_frames;
943 ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
944 stat->rx_long_frames + stat->rx_fifo_full;
945 }
946
947 static int
948 vte_intr(void *arg)
949 {
950 struct vte_softc *sc = (struct vte_softc *)arg;
951 struct ifnet *ifp = &sc->vte_if;
952 uint16_t status;
953 int n;
954
955 /* Reading VTE_MISR acknowledges interrupts. */
956 status = CSR_READ_2(sc, VTE_MISR);
957 DPRINTF(("vte_intr status 0x%x\n", status));
958 if ((status & VTE_INTRS) == 0) {
959 /* Not ours. */
960 return 0;
961 }
962
963 /* Disable interrupts. */
964 CSR_WRITE_2(sc, VTE_MIER, 0);
965 for (n = 8; (status & VTE_INTRS) != 0;) {
966 if ((ifp->if_flags & IFF_RUNNING) == 0)
967 break;
968 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
969 MISR_RX_FIFO_FULL)) != 0)
970 vte_rxeof(sc);
971 if ((status & MISR_TX_DONE) != 0)
972 vte_txeof(sc);
973 if ((status & MISR_EVENT_CNT_OFLOW) != 0)
974 vte_stats_update(sc);
975 if (!IFQ_IS_EMPTY(&ifp->if_snd))
976 vte_ifstart(ifp);
977 if (--n > 0)
978 status = CSR_READ_2(sc, VTE_MISR);
979 else
980 break;
981 }
982
983 if ((ifp->if_flags & IFF_RUNNING) != 0) {
984 /* Re-enable interrupts. */
985 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
986 }
987 return 1;
988 }
989
990 static void
991 vte_txeof(struct vte_softc *sc)
992 {
993 struct ifnet *ifp;
994 struct vte_txdesc *txd;
995 uint16_t status;
996 int cons, prog;
997
998 ifp = &sc->vte_if;
999
1000 if (sc->vte_cdata.vte_tx_cnt == 0)
1001 return;
1002 bus_dmamap_sync(sc->vte_dmatag,
1003 sc->vte_cdata.vte_tx_ring_map, 0,
1004 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1005 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1006 cons = sc->vte_cdata.vte_tx_cons;
1007 /*
1008 * Go through our TX list and free mbufs for those
1009 * frames which have been transmitted.
1010 */
1011 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1012 txd = &sc->vte_cdata.vte_txdesc[cons];
1013 status = le16toh(txd->tx_desc->dtst);
1014 if ((status & VTE_DTST_TX_OWN) != 0)
1015 break;
1016 if ((status & VTE_DTST_TX_OK) != 0)
1017 ifp->if_collisions += (status & 0xf);
1018 sc->vte_cdata.vte_tx_cnt--;
1019 /* Reclaim transmitted mbufs. */
1020 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
1021 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1022 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
1023 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1024 m_freem(txd->tx_m);
1025 txd->tx_flags &= ~VTE_TXMBUF;
1026 txd->tx_m = NULL;
1027 prog++;
1028 VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1029 }
1030
1031 if (prog > 0) {
1032 ifp->if_flags &= ~IFF_OACTIVE;
1033 sc->vte_cdata.vte_tx_cons = cons;
1034 /*
1035 * Unarm watchdog timer only when there is no pending
1036 * frames in TX queue.
1037 */
1038 if (sc->vte_cdata.vte_tx_cnt == 0)
1039 sc->vte_watchdog_timer = 0;
1040 }
1041 }
1042
1043 static int
1044 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1045 {
1046 struct mbuf *m;
1047 bus_dmamap_t map;
1048
1049 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1050 if (m == NULL)
1051 return (ENOBUFS);
1052 m->m_len = m->m_pkthdr.len = MCLBYTES;
1053 m_adj(m, sizeof(uint32_t));
1054
1055 if (bus_dmamap_load_mbuf(sc->vte_dmatag,
1056 sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
1057 m_freem(m);
1058 return (ENOBUFS);
1059 }
1060 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
1061
1062 if (rxd->rx_m != NULL) {
1063 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1064 0, rxd->rx_dmamap->dm_mapsize,
1065 BUS_DMASYNC_POSTREAD);
1066 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
1067 }
1068 map = rxd->rx_dmamap;
1069 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1070 sc->vte_cdata.vte_rx_sparemap = map;
1071 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
1072 0, rxd->rx_dmamap->dm_mapsize,
1073 BUS_DMASYNC_PREREAD);
1074 rxd->rx_m = m;
1075 rxd->rx_desc->drbp =
1076 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
1077 rxd->rx_desc->drlen = htole16(
1078 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
1079 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
1080 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1081
1082 return (0);
1083 }
1084
1085 static void
1086 vte_rxeof(struct vte_softc *sc)
1087 {
1088 struct ifnet *ifp;
1089 struct vte_rxdesc *rxd;
1090 struct mbuf *m;
1091 uint16_t status, total_len;
1092 int cons, prog;
1093
1094 bus_dmamap_sync(sc->vte_dmatag,
1095 sc->vte_cdata.vte_rx_ring_map, 0,
1096 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1097 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1098 cons = sc->vte_cdata.vte_rx_cons;
1099 ifp = &sc->vte_if;
1100 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
1101 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
1102 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1103 rxd = &sc->vte_cdata.vte_rxdesc[cons];
1104 status = le16toh(rxd->rx_desc->drst);
1105 DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
1106 if ((status & VTE_DRST_RX_OWN) != 0)
1107 break;
1108 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1109 m = rxd->rx_m;
1110 if ((status & VTE_DRST_RX_OK) == 0) {
1111 /* Discard errored frame. */
1112 rxd->rx_desc->drlen =
1113 htole16(MCLBYTES - sizeof(uint32_t));
1114 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1115 continue;
1116 }
1117 if (vte_newbuf(sc, rxd) != 0) {
1118 DPRINTF(("vte_rxeof newbuf failed\n"));
1119 ifp->if_ierrors++;
1120 rxd->rx_desc->drlen =
1121 htole16(MCLBYTES - sizeof(uint32_t));
1122 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1123 continue;
1124 }
1125
1126 /*
1127 * It seems there is no way to strip FCS bytes.
1128 */
1129 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1130 m->m_pkthdr.rcvif = ifp;
1131 ifp->if_ipackets++;
1132 bpf_mtap(ifp, m);
1133 (*ifp->if_input)(ifp, m);
1134 }
1135
1136 if (prog > 0) {
1137 /* Update the consumer index. */
1138 sc->vte_cdata.vte_rx_cons = cons;
1139 /*
1140 * Sync updated RX descriptors such that controller see
1141 * modified RX buffer addresses.
1142 */
1143 bus_dmamap_sync(sc->vte_dmatag,
1144 sc->vte_cdata.vte_rx_ring_map, 0,
1145 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1146 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1147 #ifdef notyet
1148 /*
1149 * Update residue counter. Controller does not
1150 * keep track of number of available RX descriptors
1151 * such that driver should have to update VTE_MRDCR
1152 * to make controller know how many free RX
1153 * descriptors were added to controller. This is
1154 * a similar mechanism used in VIA velocity
1155 * controllers and it indicates controller just
1156 * polls OWN bit of current RX descriptor pointer.
1157 * A couple of severe issues were seen on sample
1158 * board where the controller continuously emits TX
1159 * pause frames once RX pause threshold crossed.
1160 * Once triggered it never recovered form that
1161 * state, I couldn't find a way to make it back to
1162 * work at least. This issue effectively
1163 * disconnected the system from network. Also, the
1164 * controller used 00:00:00:00:00:00 as source
1165 * station address of TX pause frame. Probably this
1166 * is one of reason why vendor recommends not to
1167 * enable flow control on R6040 controller.
1168 */
1169 CSR_WRITE_2(sc, VTE_MRDCR, prog |
1170 (((VTE_RX_RING_CNT * 2) / 10) <<
1171 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1172 #endif
1173 rnd_add_uint32(&sc->rnd_source, prog);
1174 }
1175 }
1176
1177 static void
1178 vte_tick(void *arg)
1179 {
1180 struct vte_softc *sc;
1181 int s = splnet();
1182
1183 sc = (struct vte_softc *)arg;
1184
1185 mii_tick(&sc->vte_mii);
1186 vte_stats_update(sc);
1187 vte_txeof(sc);
1188 vte_ifwatchdog(&sc->vte_if);
1189 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1190 splx(s);
1191 }
1192
1193 static void
1194 vte_reset(struct vte_softc *sc)
1195 {
1196 uint16_t mcr;
1197 int i;
1198
1199 mcr = CSR_READ_2(sc, VTE_MCR1);
1200 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1201 for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1202 DELAY(10);
1203 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1204 break;
1205 }
1206 if (i == 0)
1207 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1208 /*
1209 * Follow the guide of vendor recommended way to reset MAC.
1210 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1211 * not reliable so manually reset internal state machine.
1212 */
1213 CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1214 CSR_WRITE_2(sc, VTE_MACSM, 0);
1215 DELAY(5000);
1216 }
1217
1218
1219 static int
1220 vte_init(struct ifnet *ifp)
1221 {
1222 struct vte_softc *sc = ifp->if_softc;
1223 bus_addr_t paddr;
1224 uint8_t eaddr[ETHER_ADDR_LEN];
1225 int s, error;
1226
1227 s = splnet();
1228 /*
1229 * Cancel any pending I/O.
1230 */
1231 vte_stop(ifp, 1);
1232 /*
1233 * Reset the chip to a known state.
1234 */
1235 vte_reset(sc);
1236
1237 if ((sc->vte_if.if_flags & IFF_UP) == 0) {
1238 splx(s);
1239 return 0;
1240 }
1241
1242 /* Initialize RX descriptors. */
1243 if (vte_init_rx_ring(sc) != 0) {
1244 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
1245 vte_stop(ifp, 1);
1246 splx(s);
1247 return ENOMEM;
1248 }
1249 if (vte_init_tx_ring(sc) != 0) {
1250 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
1251 vte_stop(ifp, 1);
1252 splx(s);
1253 return ENOMEM;
1254 }
1255
1256 /*
1257 * Reprogram the station address. Controller supports up
1258 * to 4 different station addresses so driver programs the
1259 * first station address as its own ethernet address and
1260 * configure the remaining three addresses as perfect
1261 * multicast addresses.
1262 */
1263 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1264 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1265 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1266 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1267
1268 /* Set TX descriptor base addresses. */
1269 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
1270 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
1271 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1272 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1273
1274 /* Set RX descriptor base addresses. */
1275 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
1276 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
1277 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1278 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1279 /*
1280 * Initialize RX descriptor residue counter and set RX
1281 * pause threshold to 20% of available RX descriptors.
1282 * See comments on vte_rxeof() for details on flow control
1283 * issues.
1284 */
1285 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1286 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1287
1288 /*
1289 * Always use maximum frame size that controller can
1290 * support. Otherwise received frames that has longer
1291 * frame length than vte(4) MTU would be silently dropped
1292 * in controller. This would break path-MTU discovery as
1293 * sender wouldn't get any responses from receiver. The
1294 * RX buffer size should be multiple of 4.
1295 * Note, jumbo frames are silently ignored by controller
1296 * and even MAC counters do not detect them.
1297 */
1298 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1299
1300 /* Configure FIFO. */
1301 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1302 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1303 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1304
1305 /*
1306 * Configure TX/RX MACs. Actual resolved duplex and flow
1307 * control configuration is done after detecting a valid
1308 * link. Note, we don't generate early interrupt here
1309 * as well since FreeBSD does not have interrupt latency
1310 * problems like Windows.
1311 */
1312 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1313 /*
1314 * We manually keep track of PHY status changes to
1315 * configure resolved duplex and flow control since only
1316 * duplex configuration can be automatically reflected to
1317 * MCR0.
1318 */
1319 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1320 MCR1_EXCESS_COL_RETRY_16);
1321
1322 /* Initialize RX filter. */
1323 vte_rxfilter(sc);
1324
1325 /* Disable TX/RX interrupt moderation control. */
1326 CSR_WRITE_2(sc, VTE_MRICR, 0);
1327 CSR_WRITE_2(sc, VTE_MTICR, 0);
1328
1329 /* Enable MAC event counter interrupts. */
1330 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1331 /* Clear MAC statistics. */
1332 vte_stats_clear(sc);
1333
1334 /* Acknowledge all pending interrupts and clear it. */
1335 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1336 CSR_WRITE_2(sc, VTE_MISR, 0);
1337 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1338
1339 sc->vte_flags &= ~VTE_FLAG_LINK;
1340 ifp->if_flags |= IFF_RUNNING;
1341 ifp->if_flags &= ~IFF_OACTIVE;
1342
1343 /* calling mii_mediachg will call back vte_start_mac() */
1344 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
1345 error = 0;
1346 else if (error != 0) {
1347 aprint_error_dev(sc->vte_dev, "could not set media\n");
1348 splx(s);
1349 return error;
1350 }
1351
1352 callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1353
1354 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
1355 splx(s);
1356 return 0;
1357 }
1358
1359 static void
1360 vte_stop(struct ifnet *ifp, int disable)
1361 {
1362 struct vte_softc *sc = ifp->if_softc;
1363 struct vte_txdesc *txd;
1364 struct vte_rxdesc *rxd;
1365 int i;
1366
1367 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
1368 if ((ifp->if_flags & IFF_RUNNING) == 0)
1369 return;
1370 /*
1371 * Mark the interface down and cancel the watchdog timer.
1372 */
1373 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1374 sc->vte_flags &= ~VTE_FLAG_LINK;
1375 callout_stop(&sc->vte_tick_ch);
1376 sc->vte_watchdog_timer = 0;
1377 vte_stats_update(sc);
1378 /* Disable interrupts. */
1379 CSR_WRITE_2(sc, VTE_MIER, 0);
1380 CSR_WRITE_2(sc, VTE_MECIER, 0);
1381 /* Stop RX/TX MACs. */
1382 vte_stop_mac(sc);
1383 /* Clear interrupts. */
1384 CSR_READ_2(sc, VTE_MISR);
1385 /*
1386 * Free TX/RX mbufs still in the queues.
1387 */
1388 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1389 rxd = &sc->vte_cdata.vte_rxdesc[i];
1390 if (rxd->rx_m != NULL) {
1391 bus_dmamap_sync(sc->vte_dmatag,
1392 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
1393 BUS_DMASYNC_POSTREAD);
1394 bus_dmamap_unload(sc->vte_dmatag,
1395 rxd->rx_dmamap);
1396 m_freem(rxd->rx_m);
1397 rxd->rx_m = NULL;
1398 }
1399 }
1400 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1401 txd = &sc->vte_cdata.vte_txdesc[i];
1402 if (txd->tx_m != NULL) {
1403 bus_dmamap_sync(sc->vte_dmatag,
1404 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
1405 BUS_DMASYNC_POSTWRITE);
1406 bus_dmamap_unload(sc->vte_dmatag,
1407 txd->tx_dmamap);
1408 if ((txd->tx_flags & VTE_TXMBUF) == 0)
1409 m_freem(txd->tx_m);
1410 txd->tx_m = NULL;
1411 txd->tx_flags &= ~VTE_TXMBUF;
1412 }
1413 }
1414 /* Free TX mbuf pools used for deep copy. */
1415 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1416 if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1417 m_freem(sc->vte_cdata.vte_txmbufs[i]);
1418 sc->vte_cdata.vte_txmbufs[i] = NULL;
1419 }
1420 }
1421 }
1422
1423 static void
1424 vte_start_mac(struct vte_softc *sc)
1425 {
1426 struct ifnet *ifp = &sc->vte_if;
1427 uint16_t mcr;
1428 int i;
1429
1430 /* Enable RX/TX MACs. */
1431 mcr = CSR_READ_2(sc, VTE_MCR0);
1432 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1433 (MCR0_RX_ENB | MCR0_TX_ENB) &&
1434 (ifp->if_flags & IFF_RUNNING) != 0) {
1435 mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1436 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1437 for (i = VTE_TIMEOUT; i > 0; i--) {
1438 mcr = CSR_READ_2(sc, VTE_MCR0);
1439 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1440 (MCR0_RX_ENB | MCR0_TX_ENB))
1441 break;
1442 DELAY(10);
1443 }
1444 if (i == 0)
1445 aprint_error_dev(sc->vte_dev,
1446 "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1447 }
1448 vte_rxfilter(sc);
1449 }
1450
1451 static void
1452 vte_stop_mac(struct vte_softc *sc)
1453 {
1454 uint16_t mcr;
1455 int i;
1456
1457 /* Disable RX/TX MACs. */
1458 mcr = CSR_READ_2(sc, VTE_MCR0);
1459 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1460 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1461 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1462 for (i = VTE_TIMEOUT; i > 0; i--) {
1463 mcr = CSR_READ_2(sc, VTE_MCR0);
1464 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1465 break;
1466 DELAY(10);
1467 }
1468 if (i == 0)
1469 aprint_error_dev(sc->vte_dev,
1470 "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1471 }
1472 }
1473
1474 static int
1475 vte_init_tx_ring(struct vte_softc *sc)
1476 {
1477 struct vte_tx_desc *desc;
1478 struct vte_txdesc *txd;
1479 bus_addr_t addr;
1480 int i;
1481
1482 sc->vte_cdata.vte_tx_prod = 0;
1483 sc->vte_cdata.vte_tx_cons = 0;
1484 sc->vte_cdata.vte_tx_cnt = 0;
1485
1486 /* Pre-allocate TX mbufs for deep copy. */
1487 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1488 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1489 MT_DATA, M_PKTHDR);
1490 if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1491 return (ENOBUFS);
1492 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1493 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1494 }
1495 desc = sc->vte_cdata.vte_tx_ring;
1496 bzero(desc, VTE_TX_RING_SZ);
1497 for (i = 0; i < VTE_TX_RING_CNT; i++) {
1498 txd = &sc->vte_cdata.vte_txdesc[i];
1499 txd->tx_m = NULL;
1500 if (i != VTE_TX_RING_CNT - 1)
1501 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1502 sizeof(struct vte_tx_desc) * (i + 1);
1503 else
1504 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
1505 sizeof(struct vte_tx_desc) * 0;
1506 desc = &sc->vte_cdata.vte_tx_ring[i];
1507 desc->dtnp = htole32(addr);
1508 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
1509 txd->tx_desc = desc;
1510 }
1511
1512 bus_dmamap_sync(sc->vte_dmatag,
1513 sc->vte_cdata.vte_tx_ring_map, 0,
1514 sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
1515 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1516 return (0);
1517 }
1518
1519 static int
1520 vte_init_rx_ring(struct vte_softc *sc)
1521 {
1522 struct vte_rx_desc *desc;
1523 struct vte_rxdesc *rxd;
1524 bus_addr_t addr;
1525 int i;
1526
1527 sc->vte_cdata.vte_rx_cons = 0;
1528 desc = sc->vte_cdata.vte_rx_ring;
1529 bzero(desc, VTE_RX_RING_SZ);
1530 for (i = 0; i < VTE_RX_RING_CNT; i++) {
1531 rxd = &sc->vte_cdata.vte_rxdesc[i];
1532 rxd->rx_m = NULL;
1533 if (i != VTE_RX_RING_CNT - 1)
1534 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1535 + sizeof(struct vte_rx_desc) * (i + 1);
1536 else
1537 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
1538 + sizeof(struct vte_rx_desc) * 0;
1539 desc = &sc->vte_cdata.vte_rx_ring[i];
1540 desc->drnp = htole32(addr);
1541 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
1542 rxd->rx_desc = desc;
1543 if (vte_newbuf(sc, rxd) != 0)
1544 return (ENOBUFS);
1545 }
1546
1547 bus_dmamap_sync(sc->vte_dmatag,
1548 sc->vte_cdata.vte_rx_ring_map, 0,
1549 sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
1550 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1551
1552 return (0);
1553 }
1554
1555 static void
1556 vte_rxfilter(struct vte_softc *sc)
1557 {
1558 struct ether_multistep step;
1559 struct ether_multi *enm;
1560 struct ifnet *ifp;
1561 uint8_t *eaddr;
1562 uint32_t crc;
1563 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1564 uint16_t mchash[4], mcr;
1565 int i, nperf;
1566
1567 ifp = &sc->vte_if;
1568
1569 DPRINTF(("vte_rxfilter\n"));
1570 memset(mchash, 0, sizeof(mchash));
1571 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1572 rxfilt_perf[i][0] = 0xFFFF;
1573 rxfilt_perf[i][1] = 0xFFFF;
1574 rxfilt_perf[i][2] = 0xFFFF;
1575 }
1576
1577 mcr = CSR_READ_2(sc, VTE_MCR0);
1578 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
1579 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
1580 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1581 mcr |= MCR0_BROADCAST_DIS;
1582 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1583 if ((ifp->if_flags & IFF_PROMISC) != 0)
1584 mcr |= MCR0_PROMISC;
1585 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1586 mcr |= MCR0_MULTICAST;
1587 mchash[0] = 0xFFFF;
1588 mchash[1] = 0xFFFF;
1589 mchash[2] = 0xFFFF;
1590 mchash[3] = 0xFFFF;
1591 goto chipit;
1592 }
1593
1594 ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
1595 nperf = 0;
1596 while (enm != NULL) {
1597 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1598 sc->vte_if.if_flags |= IFF_ALLMULTI;
1599 mcr |= MCR0_MULTICAST;
1600 mchash[0] = 0xFFFF;
1601 mchash[1] = 0xFFFF;
1602 mchash[2] = 0xFFFF;
1603 mchash[3] = 0xFFFF;
1604 goto chipit;
1605 }
1606 /*
1607 * Program the first 3 multicast groups into
1608 * the perfect filter. For all others, use the
1609 * hash table.
1610 */
1611 if (nperf < VTE_RXFILT_PERFECT_CNT) {
1612 eaddr = enm->enm_addrlo;
1613 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1614 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1615 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1616 nperf++;
1617 } else {
1618 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1619 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1620 }
1621 ETHER_NEXT_MULTI(step, enm);
1622 }
1623 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
1624 mchash[3] != 0)
1625 mcr |= MCR0_MULTICAST;
1626
1627 chipit:
1628 /* Program multicast hash table. */
1629 DPRINTF(("chipit write multicast\n"));
1630 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
1631 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
1632 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
1633 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
1634 /* Program perfect filter table. */
1635 DPRINTF(("chipit write perfect filter\n"));
1636 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1637 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
1638 rxfilt_perf[i][0]);
1639 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
1640 rxfilt_perf[i][1]);
1641 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
1642 rxfilt_perf[i][2]);
1643 }
1644 DPRINTF(("chipit mcr0 0x%x\n", mcr));
1645 CSR_WRITE_2(sc, VTE_MCR0, mcr);
1646 DPRINTF(("chipit read mcro\n"));
1647 CSR_READ_2(sc, VTE_MCR0);
1648 DPRINTF(("chipit done\n"));
1649 }
1650
1651 /*
1652 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
1653 * set up in vte_pci_attach()
1654 */
1655 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
1656 {
1657 int rc;
1658 const struct sysctlnode *node;
1659
1660 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1661 0, CTLTYPE_NODE, "hw", NULL,
1662 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1663 goto err;
1664 }
1665
1666 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1667 0, CTLTYPE_NODE, "vte",
1668 SYSCTL_DESCR("vte interface controls"),
1669 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1670 goto err;
1671 }
1672
1673 vte_root_num = node->sysctl_num;
1674 return;
1675
1676 err:
1677 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
1678 }
1679
1680 static int
1681 vte_sysctl_intrxct(SYSCTLFN_ARGS)
1682 {
1683 int error, t;
1684 struct sysctlnode node;
1685 struct vte_softc *sc;
1686
1687 node = *rnode;
1688 sc = node.sysctl_data;
1689 t = sc->vte_int_rx_mod;
1690 node.sysctl_data = &t;
1691 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1692 if (error || newp == NULL)
1693 return error;
1694 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1695 return EINVAL;
1696
1697 sc->vte_int_rx_mod = t;
1698 vte_miibus_statchg(&sc->vte_if);
1699 return 0;
1700 }
1701
1702 static int
1703 vte_sysctl_inttxct(SYSCTLFN_ARGS)
1704 {
1705 int error, t;
1706 struct sysctlnode node;
1707 struct vte_softc *sc;
1708
1709 node = *rnode;
1710 sc = node.sysctl_data;
1711 t = sc->vte_int_tx_mod;
1712 node.sysctl_data = &t;
1713 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1714 if (error || newp == NULL)
1715 return error;
1716
1717 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
1718 return EINVAL;
1719 sc->vte_int_tx_mod = t;
1720 vte_miibus_statchg(&sc->vte_if);
1721 return 0;
1722 }
1723