Home | History | Annotate | Line # | Download | only in pci
if_vte.c revision 1.7.2.1
      1 /*	$NetBSD: if_vte.c,v 1.7.2.1 2013/06/23 06:20:18 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2011 Manuel Bouyer.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*-
     28  * Copyright (c) 2010, Pyun YongHyeon <yongari (at) FreeBSD.org>
     29  * All rights reserved.
     30  *
     31  * Redistribution and use in source and binary forms, with or without
     32  * modification, are permitted provided that the following conditions
     33  * are met:
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice unmodified, this list of conditions, and the following
     36  *    disclaimer.
     37  * 2. Redistributions in binary form must reproduce the above copyright
     38  *    notice, this list of conditions and the following disclaimer in the
     39  *    documentation and/or other materials provided with the distribution.
     40  *
     41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     51  * SUCH DAMAGE.
     52  */
     53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */
     54 
     55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.7.2.1 2013/06/23 06:20:18 tls Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/protosw.h>
     64 #include <sys/socket.h>
     65 #include <sys/ioctl.h>
     66 #include <sys/errno.h>
     67 #include <sys/malloc.h>
     68 #include <sys/kernel.h>
     69 #include <sys/device.h>
     70 #include <sys/sysctl.h>
     71 
     72 #include <net/if.h>
     73 #include <net/if_media.h>
     74 #include <net/if_types.h>
     75 #include <net/if_dl.h>
     76 #include <net/route.h>
     77 #include <net/netisr.h>
     78 
     79 #include <net/bpf.h>
     80 #include <net/bpfdesc.h>
     81 
     82 #include <sys/rnd.h>
     83 
     84 #include "opt_inet.h"
     85 #include <net/if_ether.h>
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #include <netinet/in_systm.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip.h>
     91 #include <netinet/if_inarp.h>
     92 #endif
     93 
     94 #include <sys/bus.h>
     95 #include <sys/intr.h>
     96 
     97 #include <dev/pci/pcireg.h>
     98 #include <dev/pci/pcivar.h>
     99 #include <dev/pci/pcidevs.h>
    100 
    101 #include <dev/mii/mii.h>
    102 #include <dev/mii/miivar.h>
    103 
    104 #include <dev/pci/if_vtereg.h>
    105 #include <dev/pci/if_vtevar.h>
    106 
    107 static int	vte_match(device_t, cfdata_t, void *);
    108 static void	vte_attach(device_t, device_t, void *);
    109 static int	vte_detach(device_t, int);
    110 static int	vte_dma_alloc(struct vte_softc *);
    111 static void	vte_dma_free(struct vte_softc *);
    112 static struct vte_txdesc *
    113 		vte_encap(struct vte_softc *, struct mbuf **);
    114 static void	vte_get_macaddr(struct vte_softc *);
    115 static int	vte_init(struct ifnet *);
    116 static int	vte_init_rx_ring(struct vte_softc *);
    117 static int	vte_init_tx_ring(struct vte_softc *);
    118 static int	vte_intr(void *);
    119 static int	vte_ifioctl(struct ifnet *, u_long, void *);
    120 static void	vte_mac_config(struct vte_softc *);
    121 static int	vte_miibus_readreg(device_t, int, int);
    122 static void	vte_miibus_statchg(struct ifnet *);
    123 static void	vte_miibus_writereg(device_t, int, int, int);
    124 static int	vte_mediachange(struct ifnet *);
    125 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
    126 static void	vte_reset(struct vte_softc *);
    127 static void	vte_rxeof(struct vte_softc *);
    128 static void	vte_rxfilter(struct vte_softc *);
    129 static bool	vte_shutdown(device_t, int);
    130 static bool	vte_suspend(device_t, const pmf_qual_t *);
    131 static bool	vte_resume(device_t, const pmf_qual_t *);
    132 static void	vte_ifstart(struct ifnet *);
    133 static void	vte_start_mac(struct vte_softc *);
    134 static void	vte_stats_clear(struct vte_softc *);
    135 static void	vte_stats_update(struct vte_softc *);
    136 static void	vte_stop(struct ifnet *, int);
    137 static void	vte_stop_mac(struct vte_softc *);
    138 static void	vte_tick(void *);
    139 static void	vte_txeof(struct vte_softc *);
    140 static void	vte_ifwatchdog(struct ifnet *);
    141 
    142 static int vte_sysctl_intrxct(SYSCTLFN_PROTO);
    143 static int vte_sysctl_inttxct(SYSCTLFN_PROTO);
    144 static int vte_root_num;
    145 
    146 #define DPRINTF(a)
    147 
    148 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc),
    149     vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    150 
    151 
    152 static int
    153 vte_match(device_t parent, cfdata_t cf, void *aux)
    154 {
    155 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    156 
    157 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC &&
    158 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040)
    159 		return 1;
    160 
    161 	return 0;
    162 }
    163 
    164 static void
    165 vte_attach(device_t parent, device_t self, void *aux)
    166 {
    167 	struct vte_softc *sc = device_private(self);
    168 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
    169 	struct ifnet * const ifp = &sc->vte_if;
    170 	int h_valid;
    171 	pcireg_t reg, csr;
    172 	pci_intr_handle_t intrhandle;
    173 	const char *intrstr;
    174 	int error;
    175 	const struct sysctlnode *node;
    176 	int vte_nodenum;
    177 
    178 	sc->vte_dev = self;
    179 
    180 	callout_init(&sc->vte_tick_ch, 0);
    181 
    182 	/* Map the device. */
    183 	h_valid = 0;
    184 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM);
    185 	if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) {
    186 		h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM,
    187 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
    188 		    0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0);
    189 	}
    190 	if (h_valid == 0) {
    191 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO);
    192 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    193 			h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO,
    194 			    PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag,
    195 			    &sc->vte_bushandle, NULL, NULL) == 0);
    196 		}
    197 	}
    198 	if (h_valid == 0) {
    199 		aprint_error_dev(self, "unable to map device registers\n");
    200 		return;
    201 	}
    202 	sc->vte_dmatag = pa->pa_dmat;
    203 	/* Enable the device. */
    204 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    205 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    206 	    csr | PCI_COMMAND_MASTER_ENABLE);
    207 
    208 	pci_aprint_devinfo(pa, NULL);
    209 
    210 	/* Reset the ethernet controller. */
    211 	vte_reset(sc);
    212 
    213 	if ((error = vte_dma_alloc(sc)) != 0)
    214 		return;
    215 
    216 	/* Load station address. */
    217 	vte_get_macaddr(sc);
    218 
    219 	aprint_normal_dev(self, "Ethernet address %s\n",
    220 	    ether_sprintf(sc->vte_eaddr));
    221 
    222 	/* Map and establish interrupts */
    223 	if (pci_intr_map(pa, &intrhandle)) {
    224 	    aprint_error_dev(self, "couldn't map interrupt\n");
    225 	    return;
    226 	}
    227 	intrstr = pci_intr_string(pa->pa_pc, intrhandle);
    228 	sc->vte_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
    229 	    vte_intr, sc);
    230 	if (sc->vte_ih == NULL) {
    231 		aprint_error_dev(self, "couldn't establish interrupt");
    232 		if (intrstr != NULL)
    233 			aprint_error(" at %s", intrstr);
    234 		aprint_error("\n");
    235 		return;
    236 	}
    237 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    238 
    239 	sc->vte_if.if_softc = sc;
    240 	sc->vte_mii.mii_ifp = ifp;
    241 	sc->vte_mii.mii_readreg = vte_miibus_readreg;
    242 	sc->vte_mii.mii_writereg = vte_miibus_writereg;
    243 	sc->vte_mii.mii_statchg = vte_miibus_statchg;
    244 	sc->vte_ec.ec_mii = &sc->vte_mii;
    245 	ifmedia_init(&sc->vte_mii.mii_media, IFM_IMASK, vte_mediachange,
    246 	    ether_mediastatus);
    247 	mii_attach(self, &sc->vte_mii, 0xffffffff, MII_PHY_ANY,
    248 	    MII_OFFSET_ANY, 0);
    249 	if (LIST_FIRST(&sc->vte_mii.mii_phys) == NULL) {
    250 		ifmedia_add(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    251 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_NONE);
    252 	} else
    253 		ifmedia_set(&sc->vte_mii.mii_media, IFM_ETHER|IFM_AUTO);
    254 
    255 	/*
    256 	 * We can support 802.1Q VLAN-sized frames.
    257 	 */
    258 	sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    259 
    260         strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    261         ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
    262         ifp->if_ioctl = vte_ifioctl;
    263         ifp->if_start = vte_ifstart;
    264         ifp->if_watchdog = vte_ifwatchdog;
    265         ifp->if_init = vte_init;
    266         ifp->if_stop = vte_stop;
    267         ifp->if_timer = 0;
    268         IFQ_SET_READY(&ifp->if_snd);
    269         if_attach(ifp);
    270         ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr);
    271 
    272 	if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown))
    273 		pmf_class_network_register(self, ifp);
    274 	else
    275 		aprint_error_dev(self, "couldn't establish power handler\n");
    276 
    277         rnd_attach_source(&sc->rnd_source, device_xname(self),
    278             RND_TYPE_NET, 0);
    279 
    280 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    281 	    0, CTLTYPE_NODE, device_xname(sc->vte_dev),
    282 	    SYSCTL_DESCR("vte per-controller controls"),
    283 	    NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE,
    284 	    CTL_EOL) != 0) {
    285 		aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n");
    286 		return;
    287 	}
    288 	vte_nodenum = node->sysctl_num;
    289 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    290 	    CTLFLAG_READWRITE,
    291 	    CTLTYPE_INT, "int_rxct",
    292 	    SYSCTL_DESCR("vte RX interrupt moderation packet counter"),
    293 	    vte_sysctl_intrxct, 0, (void *)sc,
    294 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    295 	    CTL_EOL) != 0) {
    296 		aprint_normal_dev(sc->vte_dev,
    297 		    "couldn't create int_rxct sysctl node\n");
    298 	}
    299 	if (sysctl_createv(&sc->vte_clog, 0, NULL, &node,
    300 	    CTLFLAG_READWRITE,
    301 	    CTLTYPE_INT, "int_txct",
    302 	    SYSCTL_DESCR("vte TX interrupt moderation packet counter"),
    303 	    vte_sysctl_inttxct, 0, (void *)sc,
    304 	    0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE,
    305 	    CTL_EOL) != 0) {
    306 		aprint_normal_dev(sc->vte_dev,
    307 		    "couldn't create int_txct sysctl node\n");
    308 	}
    309 }
    310 
    311 static int
    312 vte_detach(device_t dev, int flags __unused)
    313 {
    314 	struct vte_softc *sc = device_private(dev);
    315 	struct ifnet *ifp = &sc->vte_if;
    316 	int s;
    317 
    318 	s = splnet();
    319 	/* Stop the interface. Callouts are stopped in it. */
    320 	vte_stop(ifp, 1);
    321 	splx(s);
    322 
    323 	pmf_device_deregister(dev);
    324 
    325 	mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    326 	ifmedia_delete_instance(&sc->vte_mii.mii_media, IFM_INST_ANY);
    327 
    328 	ether_ifdetach(ifp);
    329 	if_detach(ifp);
    330 
    331 	vte_dma_free(sc);
    332 
    333 	return (0);
    334 }
    335 
    336 static int
    337 vte_miibus_readreg(device_t dev, int phy, int reg)
    338 {
    339 	struct vte_softc *sc = device_private(dev);
    340 	int i;
    341 
    342 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
    343 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    344 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    345 		DELAY(5);
    346 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
    347 			break;
    348 	}
    349 
    350 	if (i == 0) {
    351 		aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg);
    352 		return (0);
    353 	}
    354 
    355 	return (CSR_READ_2(sc, VTE_MMRD));
    356 }
    357 
    358 static void
    359 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
    360 {
    361 	struct vte_softc *sc = device_private(dev);
    362 	int i;
    363 
    364 	CSR_WRITE_2(sc, VTE_MMWD, val);
    365 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
    366 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
    367 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
    368 		DELAY(5);
    369 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
    370 			break;
    371 	}
    372 
    373 	if (i == 0)
    374 		aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg);
    375 
    376 }
    377 
    378 static void
    379 vte_miibus_statchg(struct ifnet *ifp)
    380 {
    381 	struct vte_softc *sc = ifp->if_softc;
    382 	uint16_t val;
    383 
    384 	DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n",
    385 	    sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active));
    386 
    387 	sc->vte_flags &= ~VTE_FLAG_LINK;
    388 	if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
    389 	    (IFM_ACTIVE | IFM_AVALID)) {
    390 		switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) {
    391 		case IFM_10_T:
    392 		case IFM_100_TX:
    393 			sc->vte_flags |= VTE_FLAG_LINK;
    394 			break;
    395 		default:
    396 			break;
    397 		}
    398 	}
    399 
    400 	/* Stop RX/TX MACs. */
    401 	vte_stop_mac(sc);
    402 	/* Program MACs with resolved duplex and flow control. */
    403 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
    404 		/*
    405 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
    406 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
    407 		 */
    408 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    409 			val = 18 << VTE_IM_TIMER_SHIFT;
    410 		else
    411 			val = 1 << VTE_IM_TIMER_SHIFT;
    412 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
    413 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    414 		CSR_WRITE_2(sc, VTE_MRICR, val);
    415 
    416 		if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX)
    417 			val = 18 << VTE_IM_TIMER_SHIFT;
    418 		else
    419 			val = 1 << VTE_IM_TIMER_SHIFT;
    420 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
    421 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
    422 		CSR_WRITE_2(sc, VTE_MTICR, val);
    423 
    424 		vte_mac_config(sc);
    425 		vte_start_mac(sc);
    426 		DPRINTF(("vte_miibus_statchg: link\n"));
    427 	}
    428 }
    429 
    430 static void
    431 vte_get_macaddr(struct vte_softc *sc)
    432 {
    433 	uint16_t mid;
    434 
    435 	/*
    436 	 * It seems there is no way to reload station address and
    437 	 * it is supposed to be set by BIOS.
    438 	 */
    439 	mid = CSR_READ_2(sc, VTE_MID0L);
    440 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
    441 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
    442 	mid = CSR_READ_2(sc, VTE_MID0M);
    443 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
    444 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
    445 	mid = CSR_READ_2(sc, VTE_MID0H);
    446 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
    447 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
    448 }
    449 
    450 
    451 static int
    452 vte_dma_alloc(struct vte_softc *sc)
    453 {
    454 	struct vte_txdesc *txd;
    455 	struct vte_rxdesc *rxd;
    456 	int error, i, rseg;
    457 
    458 	/* create DMA map for TX ring */
    459 	error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1,
    460 	    VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    461 	    &sc->vte_cdata.vte_tx_ring_map);
    462 	if (error) {
    463 		aprint_error_dev(sc->vte_dev,
    464 		    "could not create dma map for TX ring (%d)\n",
    465 		    error);
    466 		goto fail;
    467 	}
    468 	/* Allocate and map DMA'able memory and load the DMA map for TX ring. */
    469 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ,
    470 	    VTE_TX_RING_ALIGN, 0,
    471 	    sc->vte_cdata.vte_tx_ring_seg, 1, &rseg,
    472 	    BUS_DMA_NOWAIT);
    473 	if (error != 0) {
    474 		aprint_error_dev(sc->vte_dev,
    475 		    "could not allocate DMA'able memory for TX ring (%d).\n",
    476 		    error);
    477 		goto fail;
    478 	}
    479 	KASSERT(rseg == 1);
    480 	error = bus_dmamem_map(sc->vte_dmatag,
    481 	    sc->vte_cdata.vte_tx_ring_seg, 1,
    482 	    VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring),
    483 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    484 	if (error != 0) {
    485 		aprint_error_dev(sc->vte_dev,
    486 		    "could not map DMA'able memory for TX ring (%d).\n",
    487 		    error);
    488 		goto fail;
    489 	}
    490 	memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ);
    491 	error = bus_dmamap_load(sc->vte_dmatag,
    492 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
    493 	    VTE_TX_RING_SZ, NULL,
    494 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    495 	if (error != 0) {
    496 		aprint_error_dev(sc->vte_dev,
    497 		    "could not load DMA'able memory for TX ring.\n");
    498 		goto fail;
    499 	}
    500 
    501 	/* create DMA map for RX ring */
    502 	error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1,
    503 	    VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    504 	    &sc->vte_cdata.vte_rx_ring_map);
    505 	if (error) {
    506 		aprint_error_dev(sc->vte_dev,
    507 		    "could not create dma map for RX ring (%d)\n",
    508 		    error);
    509 		goto fail;
    510 	}
    511 	/* Allocate and map DMA'able memory and load the DMA map for RX ring. */
    512 	error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ,
    513 	    VTE_RX_RING_ALIGN, 0,
    514 	    sc->vte_cdata.vte_rx_ring_seg, 1, &rseg,
    515 	    BUS_DMA_NOWAIT);
    516 	if (error != 0) {
    517 		aprint_error_dev(sc->vte_dev,
    518 		    "could not allocate DMA'able memory for RX ring (%d).\n",
    519 		    error);
    520 		goto fail;
    521 	}
    522 	KASSERT(rseg == 1);
    523 	error = bus_dmamem_map(sc->vte_dmatag,
    524 	    sc->vte_cdata.vte_rx_ring_seg, 1,
    525 	    VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring),
    526 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    527 	if (error != 0) {
    528 		aprint_error_dev(sc->vte_dev,
    529 		    "could not map DMA'able memory for RX ring (%d).\n",
    530 		    error);
    531 		goto fail;
    532 	}
    533 	memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ);
    534 	error = bus_dmamap_load(sc->vte_dmatag,
    535 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
    536 	    VTE_RX_RING_SZ, NULL,
    537 	    BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE);
    538 	if (error != 0) {
    539 		aprint_error_dev(sc->vte_dev,
    540 		    "could not load DMA'able memory for RX ring (%d).\n",
    541 		    error);
    542 		goto fail;
    543 	}
    544 
    545 	/* Create DMA maps for TX buffers. */
    546 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    547 		txd = &sc->vte_cdata.vte_txdesc[i];
    548 		txd->tx_m = NULL;
    549 		txd->tx_dmamap = NULL;
    550 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    551 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    552 		    &txd->tx_dmamap);
    553 		if (error != 0) {
    554 			aprint_error_dev(sc->vte_dev,
    555 			    "could not create TX DMA map %d (%d).\n", i, error);
    556 			goto fail;
    557 		}
    558 	}
    559 	/* Create DMA maps for RX buffers. */
    560 	if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    561 	    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    562 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
    563 		aprint_error_dev(sc->vte_dev,
    564 		    "could not create spare RX dmamap (%d).\n", error);
    565 		goto fail;
    566 	}
    567 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    568 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    569 		rxd->rx_m = NULL;
    570 		rxd->rx_dmamap = NULL;
    571 		error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES,
    572 		    1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    573 		    &rxd->rx_dmamap);
    574 		if (error != 0) {
    575 			aprint_error_dev(sc->vte_dev,
    576 			    "could not create RX dmamap %d (%d).\n", i, error);
    577 			goto fail;
    578 		}
    579 	}
    580 	return 0;
    581 
    582 fail:
    583 	vte_dma_free(sc);
    584 	return (error);
    585 }
    586 
    587 static void
    588 vte_dma_free(struct vte_softc *sc)
    589 {
    590 	struct vte_txdesc *txd;
    591 	struct vte_rxdesc *rxd;
    592 	int i;
    593 
    594 	/* TX buffers. */
    595 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
    596 		txd = &sc->vte_cdata.vte_txdesc[i];
    597 		if (txd->tx_dmamap != NULL) {
    598 			bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap);
    599 			txd->tx_dmamap = NULL;
    600 		}
    601 	}
    602 	/* RX buffers */
    603 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
    604 		rxd = &sc->vte_cdata.vte_rxdesc[i];
    605 		if (rxd->rx_dmamap != NULL) {
    606 			bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap);
    607 			rxd->rx_dmamap = NULL;
    608 		}
    609 	}
    610 	if (sc->vte_cdata.vte_rx_sparemap != NULL) {
    611 		bus_dmamap_destroy(sc->vte_dmatag,
    612 		    sc->vte_cdata.vte_rx_sparemap);
    613 		sc->vte_cdata.vte_rx_sparemap = NULL;
    614 	}
    615 	/* TX descriptor ring. */
    616 	if (sc->vte_cdata.vte_tx_ring_map != NULL) {
    617 		bus_dmamap_unload(sc->vte_dmatag,
    618 		    sc->vte_cdata.vte_tx_ring_map);
    619 		bus_dmamap_destroy(sc->vte_dmatag,
    620 		    sc->vte_cdata.vte_tx_ring_map);
    621 	}
    622 	if (sc->vte_cdata.vte_tx_ring != NULL) {
    623 		bus_dmamem_unmap(sc->vte_dmatag,
    624 		    sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ);
    625 		bus_dmamem_free(sc->vte_dmatag,
    626 		    sc->vte_cdata.vte_tx_ring_seg, 1);
    627 	}
    628 	sc->vte_cdata.vte_tx_ring = NULL;
    629 	sc->vte_cdata.vte_tx_ring_map = NULL;
    630 	/* RX ring. */
    631 	if (sc->vte_cdata.vte_rx_ring_map != NULL) {
    632 		bus_dmamap_unload(sc->vte_dmatag,
    633 		    sc->vte_cdata.vte_rx_ring_map);
    634 		bus_dmamap_destroy(sc->vte_dmatag,
    635 		    sc->vte_cdata.vte_rx_ring_map);
    636 	}
    637 	if (sc->vte_cdata.vte_rx_ring != NULL) {
    638 		bus_dmamem_unmap(sc->vte_dmatag,
    639 		    sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ);
    640 		bus_dmamem_free(sc->vte_dmatag,
    641 		    sc->vte_cdata.vte_rx_ring_seg, 1);
    642 	}
    643 	sc->vte_cdata.vte_rx_ring = NULL;
    644 	sc->vte_cdata.vte_rx_ring_map = NULL;
    645 }
    646 
    647 static bool
    648 vte_shutdown(device_t dev, int howto)
    649 {
    650 
    651 	return (vte_suspend(dev, NULL));
    652 }
    653 
    654 static bool
    655 vte_suspend(device_t dev, const pmf_qual_t *qual)
    656 {
    657 	struct vte_softc *sc = device_private(dev);
    658 	struct ifnet *ifp = &sc->vte_if;
    659 
    660 	DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags));
    661 	if ((ifp->if_flags & IFF_RUNNING) != 0)
    662 		vte_stop(ifp, 1);
    663 	return (0);
    664 }
    665 
    666 static bool
    667 vte_resume(device_t dev, const pmf_qual_t *qual)
    668 {
    669 	struct vte_softc *sc = device_private(dev);
    670 	struct ifnet *ifp;
    671 
    672 	ifp = &sc->vte_if;
    673 	if ((ifp->if_flags & IFF_UP) != 0) {
    674 		ifp->if_flags &= ~IFF_RUNNING;
    675 		vte_init(ifp);
    676 	}
    677 
    678 	return (0);
    679 }
    680 
    681 static struct vte_txdesc *
    682 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
    683 {
    684 	struct vte_txdesc *txd;
    685 	struct mbuf *m, *n;
    686 	int copy, error, padlen;
    687 
    688 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
    689 	m = *m_head;
    690 	/*
    691 	 * Controller doesn't auto-pad, so we have to make sure pad
    692 	 * short frames out to the minimum frame length.
    693 	 */
    694 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
    695 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
    696 	else
    697 		padlen = 0;
    698 
    699 	/*
    700 	 * Controller does not support multi-fragmented TX buffers.
    701 	 * Controller spends most of its TX processing time in
    702 	 * de-fragmenting TX buffers.  Either faster CPU or more
    703 	 * advanced controller DMA engine is required to speed up
    704 	 * TX path processing.
    705 	 * To mitigate the de-fragmenting issue, perform deep copy
    706 	 * from fragmented mbuf chains to a pre-allocated mbuf
    707 	 * cluster with extra cost of kernel memory.  For frames
    708 	 * that is composed of single TX buffer, the deep copy is
    709 	 * bypassed.
    710 	 */
    711 	copy = 0;
    712 	if (m->m_next != NULL)
    713 		copy++;
    714 	if (padlen > 0 && (M_READONLY(m) ||
    715 	    padlen > M_TRAILINGSPACE(m)))
    716 		copy++;
    717 	if (copy != 0) {
    718 		n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
    719 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
    720 		n->m_pkthdr.len = m->m_pkthdr.len;
    721 		n->m_len = m->m_pkthdr.len;
    722 		m = n;
    723 		txd->tx_flags |= VTE_TXMBUF;
    724 	}
    725 
    726 	if (padlen > 0) {
    727 		/* Zero out the bytes in the pad area. */
    728 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
    729 		m->m_pkthdr.len += padlen;
    730 		m->m_len = m->m_pkthdr.len;
    731 	}
    732 
    733 	error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 0);
    734 	if (error != 0) {
    735 		txd->tx_flags &= ~VTE_TXMBUF;
    736 		return (NULL);
    737 	}
    738 	KASSERT(txd->tx_dmamap->dm_nsegs == 1);
    739 	bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
    740 	    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
    741 
    742 	txd->tx_desc->dtlen =
    743 	    htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len));
    744 	txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr);
    745 	sc->vte_cdata.vte_tx_cnt++;
    746 	/* Update producer index. */
    747 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
    748 
    749 	/* Finally hand over ownership to controller. */
    750 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
    751 	txd->tx_m = m;
    752 
    753 	return (txd);
    754 }
    755 
    756 static void
    757 vte_ifstart(struct ifnet *ifp)
    758 {
    759 	struct vte_softc *sc = ifp->if_softc;
    760 	struct vte_txdesc *txd;
    761 	struct mbuf *m_head, *m;
    762 	int enq;
    763 
    764 	ifp = &sc->vte_if;
    765 
    766 	DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags));
    767 
    768 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
    769 	    IFF_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
    770 		return;
    771 
    772 	for (enq = 0; !IFQ_IS_EMPTY(&ifp->if_snd); ) {
    773 		/* Reserve one free TX descriptor. */
    774 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
    775 			ifp->if_flags |= IFF_OACTIVE;
    776 			break;
    777 		}
    778 		IFQ_POLL(&ifp->if_snd, m_head);
    779 		if (m_head == NULL)
    780 			break;
    781 		/*
    782 		 * Pack the data into the transmit ring. If we
    783 		 * don't have room, set the OACTIVE flag and wait
    784 		 * for the NIC to drain the ring.
    785 		 */
    786 		DPRINTF(("vte_encap:"));
    787 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
    788 			DPRINTF((" failed\n"));
    789 			break;
    790 		}
    791 		DPRINTF((" ok\n"));
    792 		IFQ_DEQUEUE(&ifp->if_snd, m);
    793 		KASSERT(m == m_head);
    794 
    795 		enq++;
    796 		/*
    797 		 * If there's a BPF listener, bounce a copy of this frame
    798 		 * to him.
    799 		 */
    800 		bpf_mtap(ifp, m_head);
    801 		/* Free consumed TX frame. */
    802 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
    803 			m_freem(m_head);
    804 	}
    805 
    806 	if (enq > 0) {
    807 		bus_dmamap_sync(sc->vte_dmatag,
    808 		    sc->vte_cdata.vte_tx_ring_map, 0,
    809 		    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
    810 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    811 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
    812 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
    813 	}
    814 }
    815 
    816 static void
    817 vte_ifwatchdog(struct ifnet *ifp)
    818 {
    819 	struct vte_softc *sc = ifp->if_softc;
    820 
    821 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
    822 		return;
    823 
    824 	aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n");
    825 	ifp->if_oerrors++;
    826 	vte_init(ifp);
    827 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
    828 		vte_ifstart(ifp);
    829 }
    830 
    831 static int
    832 vte_mediachange(struct ifnet *ifp)
    833 {
    834 	int error;
    835 	struct vte_softc *sc = ifp->if_softc;
    836 
    837 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
    838 		error = 0;
    839 	else if (error != 0) {
    840 		aprint_error_dev(sc->vte_dev, "could not set media\n");
    841 		return error;
    842 	}
    843 											return 0;
    844 
    845 }
    846 
    847 static int
    848 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    849 {
    850 	struct vte_softc *sc = ifp->if_softc;
    851 	int error, s;
    852 
    853 	s = splnet();
    854 	error = ether_ioctl(ifp, cmd, data);
    855 	if (error == ENETRESET) {
    856 		DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags));
    857 		if (ifp->if_flags & IFF_RUNNING)
    858 			vte_rxfilter(sc);
    859 		error = 0;
    860 	}
    861 	splx(s);
    862 	return error;
    863 }
    864 
    865 static void
    866 vte_mac_config(struct vte_softc *sc)
    867 {
    868 	uint16_t mcr;
    869 
    870 	mcr = CSR_READ_2(sc, VTE_MCR0);
    871 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
    872 	if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) {
    873 		mcr |= MCR0_FULL_DUPLEX;
    874 #ifdef notyet
    875 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
    876 			mcr |= MCR0_FC_ENB;
    877 		/*
    878 		 * The data sheet is not clear whether the controller
    879 		 * honors received pause frames or not.  The is no
    880 		 * separate control bit for RX pause frame so just
    881 		 * enable MCR0_FC_ENB bit.
    882 		 */
    883 		if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
    884 			mcr |= MCR0_FC_ENB;
    885 #endif
    886 	}
    887 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
    888 }
    889 
    890 static void
    891 vte_stats_clear(struct vte_softc *sc)
    892 {
    893 
    894 	/* Reading counter registers clears its contents. */
    895 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
    896 	CSR_READ_2(sc, VTE_CNT_MECNT0);
    897 	CSR_READ_2(sc, VTE_CNT_MECNT1);
    898 	CSR_READ_2(sc, VTE_CNT_MECNT2);
    899 	CSR_READ_2(sc, VTE_CNT_MECNT3);
    900 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
    901 	CSR_READ_2(sc, VTE_CNT_MECNT4);
    902 	CSR_READ_2(sc, VTE_CNT_PAUSE);
    903 }
    904 
    905 static void
    906 vte_stats_update(struct vte_softc *sc)
    907 {
    908 	struct vte_hw_stats *stat;
    909 	struct ifnet *ifp = &sc->vte_if;
    910 	uint16_t value;
    911 
    912 	stat = &sc->vte_stats;
    913 
    914 	CSR_READ_2(sc, VTE_MECISR);
    915 	/* RX stats. */
    916 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
    917 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
    918 	stat->rx_bcast_frames += (value >> 8);
    919 	stat->rx_mcast_frames += (value & 0xFF);
    920 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
    921 	stat->rx_runts += (value >> 8);
    922 	stat->rx_crcerrs += (value & 0xFF);
    923 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
    924 	stat->rx_long_frames += (value & 0xFF);
    925 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
    926 	stat->rx_fifo_full += (value >> 8);
    927 	stat->rx_desc_unavail += (value & 0xFF);
    928 
    929 	/* TX stats. */
    930 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
    931 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
    932 	stat->tx_underruns += (value >> 8);
    933 	stat->tx_late_colls += (value & 0xFF);
    934 
    935 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
    936 	stat->tx_pause_frames += (value >> 8);
    937 	stat->rx_pause_frames += (value & 0xFF);
    938 
    939 	/* Update ifp counters. */
    940 	ifp->if_opackets = stat->tx_frames;
    941 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
    942 	ifp->if_ipackets = stat->rx_frames;
    943 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
    944 	    stat->rx_long_frames + stat->rx_fifo_full;
    945 }
    946 
    947 static int
    948 vte_intr(void *arg)
    949 {
    950 	struct vte_softc *sc = (struct vte_softc *)arg;
    951 	struct ifnet *ifp = &sc->vte_if;
    952 	uint16_t status;
    953 	int n;
    954 
    955 	/* Reading VTE_MISR acknowledges interrupts. */
    956 	status = CSR_READ_2(sc, VTE_MISR);
    957 	DPRINTF(("vte_intr status 0x%x\n", status));
    958 	if ((status & VTE_INTRS) == 0) {
    959 		/* Not ours. */
    960 		return 0;
    961 	}
    962 
    963 	/* Disable interrupts. */
    964 	CSR_WRITE_2(sc, VTE_MIER, 0);
    965 	for (n = 8; (status & VTE_INTRS) != 0;) {
    966 		if ((ifp->if_flags & IFF_RUNNING) == 0)
    967 			break;
    968 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
    969 		    MISR_RX_FIFO_FULL)) != 0)
    970 			vte_rxeof(sc);
    971 		if ((status & MISR_TX_DONE) != 0)
    972 			vte_txeof(sc);
    973 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
    974 			vte_stats_update(sc);
    975 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
    976 			vte_ifstart(ifp);
    977 		if (--n > 0)
    978 			status = CSR_READ_2(sc, VTE_MISR);
    979 		else
    980 			break;
    981 	}
    982 
    983 	if ((ifp->if_flags & IFF_RUNNING) != 0) {
    984 		/* Re-enable interrupts. */
    985 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
    986 	}
    987 	return 1;
    988 }
    989 
    990 static void
    991 vte_txeof(struct vte_softc *sc)
    992 {
    993 	struct ifnet *ifp;
    994 	struct vte_txdesc *txd;
    995 	uint16_t status;
    996 	int cons, prog;
    997 
    998 	ifp = &sc->vte_if;
    999 
   1000 	if (sc->vte_cdata.vte_tx_cnt == 0)
   1001 		return;
   1002 	bus_dmamap_sync(sc->vte_dmatag,
   1003 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1004 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1005 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1006 	cons = sc->vte_cdata.vte_tx_cons;
   1007 	/*
   1008 	 * Go through our TX list and free mbufs for those
   1009 	 * frames which have been transmitted.
   1010 	 */
   1011 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
   1012 		txd = &sc->vte_cdata.vte_txdesc[cons];
   1013 		status = le16toh(txd->tx_desc->dtst);
   1014 		if ((status & VTE_DTST_TX_OWN) != 0)
   1015 			break;
   1016 		if ((status & VTE_DTST_TX_OK) != 0)
   1017 			ifp->if_collisions += (status & 0xf);
   1018 		sc->vte_cdata.vte_tx_cnt--;
   1019 		/* Reclaim transmitted mbufs. */
   1020 		bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0,
   1021 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1022 		bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap);
   1023 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1024 			m_freem(txd->tx_m);
   1025 		txd->tx_flags &= ~VTE_TXMBUF;
   1026 		txd->tx_m = NULL;
   1027 		prog++;
   1028 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
   1029 	}
   1030 
   1031 	if (prog > 0) {
   1032 		ifp->if_flags &= ~IFF_OACTIVE;
   1033 		sc->vte_cdata.vte_tx_cons = cons;
   1034 		/*
   1035 		 * Unarm watchdog timer only when there is no pending
   1036 		 * frames in TX queue.
   1037 		 */
   1038 		if (sc->vte_cdata.vte_tx_cnt == 0)
   1039 			sc->vte_watchdog_timer = 0;
   1040 	}
   1041 }
   1042 
   1043 static int
   1044 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
   1045 {
   1046 	struct mbuf *m;
   1047 	bus_dmamap_t map;
   1048 
   1049 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   1050 	if (m == NULL)
   1051 		return (ENOBUFS);
   1052 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1053 	m_adj(m, sizeof(uint32_t));
   1054 
   1055 	if (bus_dmamap_load_mbuf(sc->vte_dmatag,
   1056 	    sc->vte_cdata.vte_rx_sparemap, m, 0) != 0) {
   1057 		m_freem(m);
   1058 		return (ENOBUFS);
   1059 	}
   1060 	KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1);
   1061 
   1062 	if (rxd->rx_m != NULL) {
   1063 		bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1064 		    0, rxd->rx_dmamap->dm_mapsize,
   1065 		    BUS_DMASYNC_POSTREAD);
   1066 		bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap);
   1067 	}
   1068 	map = rxd->rx_dmamap;
   1069 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
   1070 	sc->vte_cdata.vte_rx_sparemap = map;
   1071 	bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap,
   1072 	    0, rxd->rx_dmamap->dm_mapsize,
   1073 	    BUS_DMASYNC_PREREAD);
   1074 	rxd->rx_m = m;
   1075 	rxd->rx_desc->drbp =
   1076 	    htole32(rxd->rx_dmamap->dm_segs[0].ds_addr);
   1077 	rxd->rx_desc->drlen = htole16(
   1078 	    VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len));
   1079 	DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, rxd->rx_dmamap->dm_segs[0].ds_len));
   1080 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1081 
   1082 	return (0);
   1083 }
   1084 
   1085 static void
   1086 vte_rxeof(struct vte_softc *sc)
   1087 {
   1088 	struct ifnet *ifp;
   1089 	struct vte_rxdesc *rxd;
   1090 	struct mbuf *m;
   1091 	uint16_t status, total_len;
   1092 	int cons, prog;
   1093 
   1094 	bus_dmamap_sync(sc->vte_dmatag,
   1095 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1096 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1097 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1098 	cons = sc->vte_cdata.vte_rx_cons;
   1099 	ifp = &sc->vte_if;
   1100 	DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags));
   1101 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++,
   1102 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
   1103 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
   1104 		status = le16toh(rxd->rx_desc->drst);
   1105 		DPRINTF(("vte_rxoef rxd %d/%p mbuf %p status 0x%x len %d\n", cons, rxd, rxd->rx_m, status, VTE_RX_LEN(le16toh(rxd->rx_desc->drlen))));
   1106 		if ((status & VTE_DRST_RX_OWN) != 0)
   1107 			break;
   1108 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
   1109 		m = rxd->rx_m;
   1110 		if ((status & VTE_DRST_RX_OK) == 0) {
   1111 			/* Discard errored frame. */
   1112 			rxd->rx_desc->drlen =
   1113 			    htole16(MCLBYTES - sizeof(uint32_t));
   1114 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1115 			continue;
   1116 		}
   1117 		if (vte_newbuf(sc, rxd) != 0) {
   1118 			DPRINTF(("vte_rxeof newbuf failed\n"));
   1119 			ifp->if_ierrors++;
   1120 			rxd->rx_desc->drlen =
   1121 			    htole16(MCLBYTES - sizeof(uint32_t));
   1122 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
   1123 			continue;
   1124 		}
   1125 
   1126 		/*
   1127 		 * It seems there is no way to strip FCS bytes.
   1128 		 */
   1129 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
   1130 		m->m_pkthdr.rcvif = ifp;
   1131 		ifp->if_ipackets++;
   1132 		bpf_mtap(ifp, m);
   1133 		(*ifp->if_input)(ifp, m);
   1134 	}
   1135 
   1136 	if (prog > 0) {
   1137 		/* Update the consumer index. */
   1138 		sc->vte_cdata.vte_rx_cons = cons;
   1139 		/*
   1140 		 * Sync updated RX descriptors such that controller see
   1141 		 * modified RX buffer addresses.
   1142 		 */
   1143 		bus_dmamap_sync(sc->vte_dmatag,
   1144 		    sc->vte_cdata.vte_rx_ring_map, 0,
   1145 		    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1146 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1147 #ifdef notyet
   1148 		/*
   1149 		 * Update residue counter.  Controller does not
   1150 		 * keep track of number of available RX descriptors
   1151 		 * such that driver should have to update VTE_MRDCR
   1152 		 * to make controller know how many free RX
   1153 		 * descriptors were added to controller.  This is
   1154 		 * a similar mechanism used in VIA velocity
   1155 		 * controllers and it indicates controller just
   1156 		 * polls OWN bit of current RX descriptor pointer.
   1157 		 * A couple of severe issues were seen on sample
   1158 		 * board where the controller continuously emits TX
   1159 		 * pause frames once RX pause threshold crossed.
   1160 		 * Once triggered it never recovered form that
   1161 		 * state, I couldn't find a way to make it back to
   1162 		 * work at least.  This issue effectively
   1163 		 * disconnected the system from network.  Also, the
   1164 		 * controller used 00:00:00:00:00:00 as source
   1165 		 * station address of TX pause frame. Probably this
   1166 		 * is one of reason why vendor recommends not to
   1167 		 * enable flow control on R6040 controller.
   1168 		 */
   1169 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
   1170 		    (((VTE_RX_RING_CNT * 2) / 10) <<
   1171 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1172 #endif
   1173 	rnd_add_uint32(&sc->rnd_source, prog);
   1174 	}
   1175 }
   1176 
   1177 static void
   1178 vte_tick(void *arg)
   1179 {
   1180 	struct vte_softc *sc;
   1181 	int s = splnet();
   1182 
   1183 	sc = (struct vte_softc *)arg;
   1184 
   1185 	mii_tick(&sc->vte_mii);
   1186 	vte_stats_update(sc);
   1187 	vte_txeof(sc);
   1188 	vte_ifwatchdog(&sc->vte_if);
   1189 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1190 	splx(s);
   1191 }
   1192 
   1193 static void
   1194 vte_reset(struct vte_softc *sc)
   1195 {
   1196 	uint16_t mcr;
   1197 	int i;
   1198 
   1199 	mcr = CSR_READ_2(sc, VTE_MCR1);
   1200 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
   1201 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
   1202 		DELAY(10);
   1203 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
   1204 			break;
   1205 	}
   1206 	if (i == 0)
   1207 		aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
   1208 	/*
   1209 	 * Follow the guide of vendor recommended way to reset MAC.
   1210 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
   1211 	 * not reliable so manually reset internal state machine.
   1212 	 */
   1213 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
   1214 	CSR_WRITE_2(sc, VTE_MACSM, 0);
   1215 	DELAY(5000);
   1216 }
   1217 
   1218 
   1219 static int
   1220 vte_init(struct ifnet *ifp)
   1221 {
   1222 	struct vte_softc *sc = ifp->if_softc;
   1223 	bus_addr_t paddr;
   1224 	uint8_t eaddr[ETHER_ADDR_LEN];
   1225 	int s, error;
   1226 
   1227 	s = splnet();
   1228 	/*
   1229 	 * Cancel any pending I/O.
   1230 	 */
   1231 	vte_stop(ifp, 1);
   1232 	/*
   1233 	 * Reset the chip to a known state.
   1234 	 */
   1235 	vte_reset(sc);
   1236 
   1237 	if ((sc->vte_if.if_flags & IFF_UP) == 0) {
   1238 		splx(s);
   1239 		return 0;
   1240 	}
   1241 
   1242 	/* Initialize RX descriptors. */
   1243 	if (vte_init_rx_ring(sc) != 0) {
   1244 		aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n");
   1245 		vte_stop(ifp, 1);
   1246 		splx(s);
   1247 		return ENOMEM;
   1248 	}
   1249 	if (vte_init_tx_ring(sc) != 0) {
   1250 		aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n");
   1251 		vte_stop(ifp, 1);
   1252 		splx(s);
   1253 		return ENOMEM;
   1254 	}
   1255 
   1256 	/*
   1257 	 * Reprogram the station address.  Controller supports up
   1258 	 * to 4 different station addresses so driver programs the
   1259 	 * first station address as its own ethernet address and
   1260 	 * configure the remaining three addresses as perfect
   1261 	 * multicast addresses.
   1262 	 */
   1263 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1264 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
   1265 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
   1266 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
   1267 
   1268 	/* Set TX descriptor base addresses. */
   1269 	paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr;
   1270 	DPRINTF(("tx paddr 0x%x\n", (u_int)paddr));
   1271 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
   1272 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
   1273 
   1274 	/* Set RX descriptor base addresses. */
   1275 	paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr;
   1276 	DPRINTF(("rx paddr 0x%x\n", (u_int)paddr));
   1277 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
   1278 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
   1279 	/*
   1280 	 * Initialize RX descriptor residue counter and set RX
   1281 	 * pause threshold to 20% of available RX descriptors.
   1282 	 * See comments on vte_rxeof() for details on flow control
   1283 	 * issues.
   1284 	 */
   1285 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
   1286 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
   1287 
   1288 	/*
   1289 	 * Always use maximum frame size that controller can
   1290 	 * support.  Otherwise received frames that has longer
   1291 	 * frame length than vte(4) MTU would be silently dropped
   1292 	 * in controller.  This would break path-MTU discovery as
   1293 	 * sender wouldn't get any responses from receiver. The
   1294 	 * RX buffer size should be multiple of 4.
   1295 	 * Note, jumbo frames are silently ignored by controller
   1296 	 * and even MAC counters do not detect them.
   1297 	 */
   1298 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
   1299 
   1300 	/* Configure FIFO. */
   1301 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
   1302 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
   1303 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
   1304 
   1305 	/*
   1306 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
   1307 	 * control configuration is done after detecting a valid
   1308 	 * link.  Note, we don't generate early interrupt here
   1309 	 * as well since FreeBSD does not have interrupt latency
   1310 	 * problems like Windows.
   1311 	 */
   1312 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
   1313 	/*
   1314 	 * We manually keep track of PHY status changes to
   1315 	 * configure resolved duplex and flow control since only
   1316 	 * duplex configuration can be automatically reflected to
   1317 	 * MCR0.
   1318 	 */
   1319 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
   1320 	    MCR1_EXCESS_COL_RETRY_16);
   1321 
   1322 	/* Initialize RX filter. */
   1323 	vte_rxfilter(sc);
   1324 
   1325 	/* Disable TX/RX interrupt moderation control. */
   1326 	CSR_WRITE_2(sc, VTE_MRICR, 0);
   1327 	CSR_WRITE_2(sc, VTE_MTICR, 0);
   1328 
   1329 	/* Enable MAC event counter interrupts. */
   1330 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
   1331 	/* Clear MAC statistics. */
   1332 	vte_stats_clear(sc);
   1333 
   1334 	/* Acknowledge all pending interrupts and clear it. */
   1335 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
   1336 	CSR_WRITE_2(sc, VTE_MISR, 0);
   1337 	DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
   1338 
   1339 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1340 	ifp->if_flags |= IFF_RUNNING;
   1341 	ifp->if_flags &= ~IFF_OACTIVE;
   1342 
   1343 	/* calling mii_mediachg will call back vte_start_mac() */
   1344 	if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO)
   1345 		error = 0;
   1346 	else if (error != 0) {
   1347 		aprint_error_dev(sc->vte_dev, "could not set media\n");
   1348 		splx(s);
   1349 		return error;
   1350 	}
   1351 
   1352 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
   1353 
   1354 	DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), CSR_READ_2(sc, VTE_MISR)));
   1355 	splx(s);
   1356 	return 0;
   1357 }
   1358 
   1359 static void
   1360 vte_stop(struct ifnet *ifp, int disable)
   1361 {
   1362 	struct vte_softc *sc = ifp->if_softc;
   1363 	struct vte_txdesc *txd;
   1364 	struct vte_rxdesc *rxd;
   1365 	int i;
   1366 
   1367 	DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags));
   1368 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1369 		return;
   1370 	/*
   1371 	 * Mark the interface down and cancel the watchdog timer.
   1372 	 */
   1373 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1374 	sc->vte_flags &= ~VTE_FLAG_LINK;
   1375 	callout_stop(&sc->vte_tick_ch);
   1376 	sc->vte_watchdog_timer = 0;
   1377 	vte_stats_update(sc);
   1378 	/* Disable interrupts. */
   1379 	CSR_WRITE_2(sc, VTE_MIER, 0);
   1380 	CSR_WRITE_2(sc, VTE_MECIER, 0);
   1381 	/* Stop RX/TX MACs. */
   1382 	vte_stop_mac(sc);
   1383 	/* Clear interrupts. */
   1384 	CSR_READ_2(sc, VTE_MISR);
   1385 	/*
   1386 	 * Free TX/RX mbufs still in the queues.
   1387 	 */
   1388 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1389 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1390 		if (rxd->rx_m != NULL) {
   1391 			bus_dmamap_sync(sc->vte_dmatag,
   1392 			    rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
   1393 			    BUS_DMASYNC_POSTREAD);
   1394 			bus_dmamap_unload(sc->vte_dmatag,
   1395 			    rxd->rx_dmamap);
   1396 			m_freem(rxd->rx_m);
   1397 			rxd->rx_m = NULL;
   1398 		}
   1399 	}
   1400 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1401 		txd = &sc->vte_cdata.vte_txdesc[i];
   1402 		if (txd->tx_m != NULL) {
   1403 			bus_dmamap_sync(sc->vte_dmatag,
   1404 			    txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize,
   1405 			    BUS_DMASYNC_POSTWRITE);
   1406 			bus_dmamap_unload(sc->vte_dmatag,
   1407 			    txd->tx_dmamap);
   1408 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
   1409 				m_freem(txd->tx_m);
   1410 			txd->tx_m = NULL;
   1411 			txd->tx_flags &= ~VTE_TXMBUF;
   1412 		}
   1413 	}
   1414 	/* Free TX mbuf pools used for deep copy. */
   1415 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1416 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
   1417 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
   1418 			sc->vte_cdata.vte_txmbufs[i] = NULL;
   1419 		}
   1420 	}
   1421 }
   1422 
   1423 static void
   1424 vte_start_mac(struct vte_softc *sc)
   1425 {
   1426 	struct ifnet *ifp = &sc->vte_if;
   1427 	uint16_t mcr;
   1428 	int i;
   1429 
   1430 	/* Enable RX/TX MACs. */
   1431 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1432 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
   1433 	    (MCR0_RX_ENB | MCR0_TX_ENB) &&
   1434 	    (ifp->if_flags & IFF_RUNNING) != 0) {
   1435 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
   1436 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1437 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1438 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1439 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
   1440 			    (MCR0_RX_ENB | MCR0_TX_ENB))
   1441 				break;
   1442 			DELAY(10);
   1443 		}
   1444 		if (i == 0)
   1445 			aprint_error_dev(sc->vte_dev,
   1446 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
   1447 	}
   1448 	vte_rxfilter(sc);
   1449 }
   1450 
   1451 static void
   1452 vte_stop_mac(struct vte_softc *sc)
   1453 {
   1454 	uint16_t mcr;
   1455 	int i;
   1456 
   1457 	/* Disable RX/TX MACs. */
   1458 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1459 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
   1460 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
   1461 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1462 		for (i = VTE_TIMEOUT; i > 0; i--) {
   1463 			mcr = CSR_READ_2(sc, VTE_MCR0);
   1464 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
   1465 				break;
   1466 			DELAY(10);
   1467 		}
   1468 		if (i == 0)
   1469 			aprint_error_dev(sc->vte_dev,
   1470 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
   1471 	}
   1472 }
   1473 
   1474 static int
   1475 vte_init_tx_ring(struct vte_softc *sc)
   1476 {
   1477 	struct vte_tx_desc *desc;
   1478 	struct vte_txdesc *txd;
   1479 	bus_addr_t addr;
   1480 	int i;
   1481 
   1482 	sc->vte_cdata.vte_tx_prod = 0;
   1483 	sc->vte_cdata.vte_tx_cons = 0;
   1484 	sc->vte_cdata.vte_tx_cnt = 0;
   1485 
   1486 	/* Pre-allocate TX mbufs for deep copy. */
   1487 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1488 		sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
   1489 		    MT_DATA, M_PKTHDR);
   1490 		if (sc->vte_cdata.vte_txmbufs[i] == NULL)
   1491 			return (ENOBUFS);
   1492 		sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
   1493 		sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
   1494 	}
   1495 	desc = sc->vte_cdata.vte_tx_ring;
   1496 	bzero(desc, VTE_TX_RING_SZ);
   1497 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
   1498 		txd = &sc->vte_cdata.vte_txdesc[i];
   1499 		txd->tx_m = NULL;
   1500 		if (i != VTE_TX_RING_CNT - 1)
   1501 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1502 			    sizeof(struct vte_tx_desc) * (i + 1);
   1503 		else
   1504 			addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr +
   1505 			    sizeof(struct vte_tx_desc) * 0;
   1506 		desc = &sc->vte_cdata.vte_tx_ring[i];
   1507 		desc->dtnp = htole32(addr);
   1508 		DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1509 		txd->tx_desc = desc;
   1510 	}
   1511 
   1512 	bus_dmamap_sync(sc->vte_dmatag,
   1513 	    sc->vte_cdata.vte_tx_ring_map, 0,
   1514 	    sc->vte_cdata.vte_tx_ring_map->dm_mapsize,
   1515 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1516 	return (0);
   1517 }
   1518 
   1519 static int
   1520 vte_init_rx_ring(struct vte_softc *sc)
   1521 {
   1522 	struct vte_rx_desc *desc;
   1523 	struct vte_rxdesc *rxd;
   1524 	bus_addr_t addr;
   1525 	int i;
   1526 
   1527 	sc->vte_cdata.vte_rx_cons = 0;
   1528 	desc = sc->vte_cdata.vte_rx_ring;
   1529 	bzero(desc, VTE_RX_RING_SZ);
   1530 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
   1531 		rxd = &sc->vte_cdata.vte_rxdesc[i];
   1532 		rxd->rx_m = NULL;
   1533 		if (i != VTE_RX_RING_CNT - 1)
   1534 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1535 			    + sizeof(struct vte_rx_desc) * (i + 1);
   1536 		else
   1537 			addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr
   1538 			    + sizeof(struct vte_rx_desc) * 0;
   1539 		desc = &sc->vte_cdata.vte_rx_ring[i];
   1540 		desc->drnp = htole32(addr);
   1541 		DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr));
   1542 		rxd->rx_desc = desc;
   1543 		if (vte_newbuf(sc, rxd) != 0)
   1544 			return (ENOBUFS);
   1545 	}
   1546 
   1547 	bus_dmamap_sync(sc->vte_dmatag,
   1548 	    sc->vte_cdata.vte_rx_ring_map, 0,
   1549 	    sc->vte_cdata.vte_rx_ring_map->dm_mapsize,
   1550 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1551 
   1552 	return (0);
   1553 }
   1554 
   1555 static void
   1556 vte_rxfilter(struct vte_softc *sc)
   1557 {
   1558 	struct ether_multistep step;
   1559 	struct ether_multi *enm;
   1560 	struct ifnet *ifp;
   1561 	uint8_t *eaddr;
   1562 	uint32_t crc;
   1563 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
   1564 	uint16_t mchash[4], mcr;
   1565 	int i, nperf;
   1566 
   1567 	ifp = &sc->vte_if;
   1568 
   1569 	DPRINTF(("vte_rxfilter\n"));
   1570 	memset(mchash, 0, sizeof(mchash));
   1571 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1572 		rxfilt_perf[i][0] = 0xFFFF;
   1573 		rxfilt_perf[i][1] = 0xFFFF;
   1574 		rxfilt_perf[i][2] = 0xFFFF;
   1575 	}
   1576 
   1577 	mcr = CSR_READ_2(sc, VTE_MCR0);
   1578 	DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr));
   1579 	mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST);
   1580 	if ((ifp->if_flags & IFF_BROADCAST) == 0)
   1581 		mcr |= MCR0_BROADCAST_DIS;
   1582 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   1583 		if ((ifp->if_flags & IFF_PROMISC) != 0)
   1584 			mcr |= MCR0_PROMISC;
   1585 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
   1586 			mcr |= MCR0_MULTICAST;
   1587 		mchash[0] = 0xFFFF;
   1588 		mchash[1] = 0xFFFF;
   1589 		mchash[2] = 0xFFFF;
   1590 		mchash[3] = 0xFFFF;
   1591 		goto chipit;
   1592 	}
   1593 
   1594 	ETHER_FIRST_MULTI(step, &sc->vte_ec, enm);
   1595 	nperf = 0;
   1596 	while (enm != NULL) {
   1597 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1598 			sc->vte_if.if_flags |= IFF_ALLMULTI;
   1599 			mcr |= MCR0_MULTICAST;
   1600 			mchash[0] = 0xFFFF;
   1601 			mchash[1] = 0xFFFF;
   1602 			mchash[2] = 0xFFFF;
   1603 			mchash[3] = 0xFFFF;
   1604 			goto chipit;
   1605 		}
   1606 		/*
   1607 		 * Program the first 3 multicast groups into
   1608 		 * the perfect filter.  For all others, use the
   1609 		 * hash table.
   1610 		 */
   1611 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
   1612 			eaddr = enm->enm_addrlo;
   1613 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
   1614 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
   1615 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
   1616 			nperf++;
   1617 		} else {
   1618 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1619 			mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
   1620 		}
   1621 		ETHER_NEXT_MULTI(step, enm);
   1622 	}
   1623 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
   1624 	    mchash[3] != 0)
   1625 		mcr |= MCR0_MULTICAST;
   1626 
   1627 chipit:
   1628 	/* Program multicast hash table. */
   1629 	DPRINTF(("chipit write multicast\n"));
   1630 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
   1631 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
   1632 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
   1633 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
   1634 	/* Program perfect filter table. */
   1635 	DPRINTF(("chipit write perfect filter\n"));
   1636 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
   1637 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
   1638 		    rxfilt_perf[i][0]);
   1639 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
   1640 		    rxfilt_perf[i][1]);
   1641 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
   1642 		    rxfilt_perf[i][2]);
   1643 	}
   1644 	DPRINTF(("chipit mcr0 0x%x\n", mcr));
   1645 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
   1646 	DPRINTF(("chipit read mcro\n"));
   1647 	CSR_READ_2(sc, VTE_MCR0);
   1648 	DPRINTF(("chipit done\n"));
   1649 }
   1650 
   1651 /*
   1652  * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be
   1653  * set up in vte_pci_attach()
   1654  */
   1655 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup")
   1656 {
   1657 	int rc;
   1658 	const struct sysctlnode *node;
   1659 
   1660 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   1661 	    0, CTLTYPE_NODE, "hw", NULL,
   1662 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   1663 		goto err;
   1664 	}
   1665 
   1666 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1667 	    0, CTLTYPE_NODE, "vte",
   1668 	    SYSCTL_DESCR("vte interface controls"),
   1669 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1670 		goto err;
   1671 	}
   1672 
   1673 	vte_root_num = node->sysctl_num;
   1674 	return;
   1675 
   1676 err:
   1677 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   1678 }
   1679 
   1680 static int
   1681 vte_sysctl_intrxct(SYSCTLFN_ARGS)
   1682 {
   1683 	int error, t;
   1684 	struct sysctlnode node;
   1685 	struct vte_softc *sc;
   1686 
   1687 	node = *rnode;
   1688 	sc = node.sysctl_data;
   1689 	t = sc->vte_int_rx_mod;
   1690 	node.sysctl_data = &t;
   1691 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1692 	if (error || newp == NULL)
   1693 		return error;
   1694 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1695 		return EINVAL;
   1696 
   1697 	sc->vte_int_rx_mod = t;
   1698 	vte_miibus_statchg(&sc->vte_if);
   1699 	return 0;
   1700 }
   1701 
   1702 static int
   1703 vte_sysctl_inttxct(SYSCTLFN_ARGS)
   1704 {
   1705 	int error, t;
   1706 	struct sysctlnode node;
   1707 	struct vte_softc *sc;
   1708 
   1709 	node = *rnode;
   1710 	sc = node.sysctl_data;
   1711 	t = sc->vte_int_tx_mod;
   1712 	node.sysctl_data = &t;
   1713 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1714 	if (error || newp == NULL)
   1715 		return error;
   1716 
   1717 	if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX)
   1718 		return EINVAL;
   1719 	sc->vte_int_tx_mod = t;
   1720 	vte_miibus_statchg(&sc->vte_if);
   1721 	return 0;
   1722 }
   1723